1 //===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines structures to encapsulate the machine model as described in 11 // the target description. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenSchedule.h" 16 #include "CodeGenInstruction.h" 17 #include "CodeGenTarget.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Support/Casting.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/Regex.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include "llvm/TableGen/Error.h" 28 #include <algorithm> 29 #include <iterator> 30 #include <utility> 31 32 using namespace llvm; 33 34 #define DEBUG_TYPE "subtarget-emitter" 35 36 #ifndef NDEBUG 37 static void dumpIdxVec(ArrayRef<unsigned> V) { 38 for (unsigned Idx : V) 39 dbgs() << Idx << ", "; 40 } 41 #endif 42 43 namespace { 44 45 // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp. 46 struct InstrsOp : public SetTheory::Operator { 47 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 48 ArrayRef<SMLoc> Loc) override { 49 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc); 50 } 51 }; 52 53 // (instregex "OpcPat",...) Find all instructions matching an opcode pattern. 54 struct InstRegexOp : public SetTheory::Operator { 55 const CodeGenTarget &Target; 56 InstRegexOp(const CodeGenTarget &t): Target(t) {} 57 58 /// Remove any text inside of parentheses from S. 59 static std::string removeParens(llvm::StringRef S) { 60 std::string Result; 61 unsigned Paren = 0; 62 // NB: We don't care about escaped parens here. 63 for (char C : S) { 64 switch (C) { 65 case '(': 66 ++Paren; 67 break; 68 case ')': 69 --Paren; 70 break; 71 default: 72 if (Paren == 0) 73 Result += C; 74 } 75 } 76 return Result; 77 } 78 79 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 80 ArrayRef<SMLoc> Loc) override { 81 for (Init *Arg : make_range(Expr->arg_begin(), Expr->arg_end())) { 82 StringInit *SI = dyn_cast<StringInit>(Arg); 83 if (!SI) 84 PrintFatalError(Loc, "instregex requires pattern string: " + 85 Expr->getAsString()); 86 StringRef Original = SI->getValue(); 87 88 // Extract a prefix that we can binary search on. 89 static const char RegexMetachars[] = "()^$|*+?.[]\\{}"; 90 auto FirstMeta = Original.find_first_of(RegexMetachars); 91 92 // Look for top-level | or ?. We cannot optimize them to binary search. 93 if (removeParens(Original).find_first_of("|?") != std::string::npos) 94 FirstMeta = 0; 95 96 Optional<Regex> Regexpr = None; 97 StringRef Prefix = Original.substr(0, FirstMeta); 98 StringRef PatStr = Original.substr(FirstMeta); 99 if (!PatStr.empty()) { 100 // For the rest use a python-style prefix match. 101 std::string pat = PatStr; 102 if (pat[0] != '^') { 103 pat.insert(0, "^("); 104 pat.insert(pat.end(), ')'); 105 } 106 Regexpr = Regex(pat); 107 } 108 109 int NumMatches = 0; 110 111 unsigned NumGeneric = Target.getNumFixedInstructions(); 112 ArrayRef<const CodeGenInstruction *> Generics = 113 Target.getInstructionsByEnumValue().slice(0, NumGeneric + 1); 114 115 // The generic opcodes are unsorted, handle them manually. 116 for (auto *Inst : Generics) { 117 StringRef InstName = Inst->TheDef->getName(); 118 if (InstName.startswith(Prefix) && 119 (!Regexpr || Regexpr->match(InstName.substr(Prefix.size())))) { 120 Elts.insert(Inst->TheDef); 121 NumMatches++; 122 } 123 } 124 125 ArrayRef<const CodeGenInstruction *> Instructions = 126 Target.getInstructionsByEnumValue().slice(NumGeneric + 1); 127 128 // Target instructions are sorted. Find the range that starts with our 129 // prefix. 130 struct Comp { 131 bool operator()(const CodeGenInstruction *LHS, StringRef RHS) { 132 return LHS->TheDef->getName() < RHS; 133 } 134 bool operator()(StringRef LHS, const CodeGenInstruction *RHS) { 135 return LHS < RHS->TheDef->getName() && 136 !RHS->TheDef->getName().startswith(LHS); 137 } 138 }; 139 auto Range = std::equal_range(Instructions.begin(), Instructions.end(), 140 Prefix, Comp()); 141 142 // For this range we know that it starts with the prefix. Check if there's 143 // a regex that needs to be checked. 144 for (auto *Inst : make_range(Range)) { 145 StringRef InstName = Inst->TheDef->getName(); 146 if (!Regexpr || Regexpr->match(InstName.substr(Prefix.size()))) { 147 Elts.insert(Inst->TheDef); 148 NumMatches++; 149 } 150 } 151 152 if (0 == NumMatches) 153 PrintFatalError(Loc, "instregex has no matches: " + Original); 154 } 155 } 156 }; 157 158 } // end anonymous namespace 159 160 /// CodeGenModels ctor interprets machine model records and populates maps. 161 CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK, 162 const CodeGenTarget &TGT): 163 Records(RK), Target(TGT) { 164 165 Sets.addFieldExpander("InstRW", "Instrs"); 166 167 // Allow Set evaluation to recognize the dags used in InstRW records: 168 // (instrs Op1, Op1...) 169 Sets.addOperator("instrs", llvm::make_unique<InstrsOp>()); 170 Sets.addOperator("instregex", llvm::make_unique<InstRegexOp>(Target)); 171 172 // Instantiate a CodeGenProcModel for each SchedMachineModel with the values 173 // that are explicitly referenced in tablegen records. Resources associated 174 // with each processor will be derived later. Populate ProcModelMap with the 175 // CodeGenProcModel instances. 176 collectProcModels(); 177 178 // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly 179 // defined, and populate SchedReads and SchedWrites vectors. Implicit 180 // SchedReadWrites that represent sequences derived from expanded variant will 181 // be inferred later. 182 collectSchedRW(); 183 184 // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly 185 // required by an instruction definition, and populate SchedClassIdxMap. Set 186 // NumItineraryClasses to the number of explicit itinerary classes referenced 187 // by instructions. Set NumInstrSchedClasses to the number of itinerary 188 // classes plus any classes implied by instructions that derive from class 189 // Sched and provide SchedRW list. This does not infer any new classes from 190 // SchedVariant. 191 collectSchedClasses(); 192 193 // Find instruction itineraries for each processor. Sort and populate 194 // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires 195 // all itinerary classes to be discovered. 196 collectProcItins(); 197 198 // Find ItinRW records for each processor and itinerary class. 199 // (For per-operand resources mapped to itinerary classes). 200 collectProcItinRW(); 201 202 // Find UnsupportedFeatures records for each processor. 203 // (For per-operand resources mapped to itinerary classes). 204 collectProcUnsupportedFeatures(); 205 206 // Infer new SchedClasses from SchedVariant. 207 inferSchedClasses(); 208 209 // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and 210 // ProcResourceDefs. 211 DEBUG(dbgs() << "\n+++ RESOURCE DEFINITIONS (collectProcResources) +++\n"); 212 collectProcResources(); 213 214 // Find register file definitions for each processor. 215 collectRegisterFiles(); 216 217 checkCompleteness(); 218 } 219 220 /// Gather all processor models. 221 void CodeGenSchedModels::collectProcModels() { 222 RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor"); 223 std::sort(ProcRecords.begin(), ProcRecords.end(), LessRecordFieldName()); 224 225 // Reserve space because we can. Reallocation would be ok. 226 ProcModels.reserve(ProcRecords.size()+1); 227 228 // Use idx=0 for NoModel/NoItineraries. 229 Record *NoModelDef = Records.getDef("NoSchedModel"); 230 Record *NoItinsDef = Records.getDef("NoItineraries"); 231 ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef); 232 ProcModelMap[NoModelDef] = 0; 233 234 // For each processor, find a unique machine model. 235 DEBUG(dbgs() << "+++ PROCESSOR MODELs (addProcModel) +++\n"); 236 for (Record *ProcRecord : ProcRecords) 237 addProcModel(ProcRecord); 238 } 239 240 /// Get a unique processor model based on the defined MachineModel and 241 /// ProcessorItineraries. 242 void CodeGenSchedModels::addProcModel(Record *ProcDef) { 243 Record *ModelKey = getModelOrItinDef(ProcDef); 244 if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second) 245 return; 246 247 std::string Name = ModelKey->getName(); 248 if (ModelKey->isSubClassOf("SchedMachineModel")) { 249 Record *ItinsDef = ModelKey->getValueAsDef("Itineraries"); 250 ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef); 251 } 252 else { 253 // An itinerary is defined without a machine model. Infer a new model. 254 if (!ModelKey->getValueAsListOfDefs("IID").empty()) 255 Name = Name + "Model"; 256 ProcModels.emplace_back(ProcModels.size(), Name, 257 ProcDef->getValueAsDef("SchedModel"), ModelKey); 258 } 259 DEBUG(ProcModels.back().dump()); 260 } 261 262 // Recursively find all reachable SchedReadWrite records. 263 static void scanSchedRW(Record *RWDef, RecVec &RWDefs, 264 SmallPtrSet<Record*, 16> &RWSet) { 265 if (!RWSet.insert(RWDef).second) 266 return; 267 RWDefs.push_back(RWDef); 268 // Reads don't currently have sequence records, but it can be added later. 269 if (RWDef->isSubClassOf("WriteSequence")) { 270 RecVec Seq = RWDef->getValueAsListOfDefs("Writes"); 271 for (Record *WSRec : Seq) 272 scanSchedRW(WSRec, RWDefs, RWSet); 273 } 274 else if (RWDef->isSubClassOf("SchedVariant")) { 275 // Visit each variant (guarded by a different predicate). 276 RecVec Vars = RWDef->getValueAsListOfDefs("Variants"); 277 for (Record *Variant : Vars) { 278 // Visit each RW in the sequence selected by the current variant. 279 RecVec Selected = Variant->getValueAsListOfDefs("Selected"); 280 for (Record *SelDef : Selected) 281 scanSchedRW(SelDef, RWDefs, RWSet); 282 } 283 } 284 } 285 286 // Collect and sort all SchedReadWrites reachable via tablegen records. 287 // More may be inferred later when inferring new SchedClasses from variants. 288 void CodeGenSchedModels::collectSchedRW() { 289 // Reserve idx=0 for invalid writes/reads. 290 SchedWrites.resize(1); 291 SchedReads.resize(1); 292 293 SmallPtrSet<Record*, 16> RWSet; 294 295 // Find all SchedReadWrites referenced by instruction defs. 296 RecVec SWDefs, SRDefs; 297 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 298 Record *SchedDef = Inst->TheDef; 299 if (SchedDef->isValueUnset("SchedRW")) 300 continue; 301 RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW"); 302 for (Record *RW : RWs) { 303 if (RW->isSubClassOf("SchedWrite")) 304 scanSchedRW(RW, SWDefs, RWSet); 305 else { 306 assert(RW->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 307 scanSchedRW(RW, SRDefs, RWSet); 308 } 309 } 310 } 311 // Find all ReadWrites referenced by InstRW. 312 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 313 for (Record *InstRWDef : InstRWDefs) { 314 // For all OperandReadWrites. 315 RecVec RWDefs = InstRWDef->getValueAsListOfDefs("OperandReadWrites"); 316 for (Record *RWDef : RWDefs) { 317 if (RWDef->isSubClassOf("SchedWrite")) 318 scanSchedRW(RWDef, SWDefs, RWSet); 319 else { 320 assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 321 scanSchedRW(RWDef, SRDefs, RWSet); 322 } 323 } 324 } 325 // Find all ReadWrites referenced by ItinRW. 326 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 327 for (Record *ItinRWDef : ItinRWDefs) { 328 // For all OperandReadWrites. 329 RecVec RWDefs = ItinRWDef->getValueAsListOfDefs("OperandReadWrites"); 330 for (Record *RWDef : RWDefs) { 331 if (RWDef->isSubClassOf("SchedWrite")) 332 scanSchedRW(RWDef, SWDefs, RWSet); 333 else { 334 assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 335 scanSchedRW(RWDef, SRDefs, RWSet); 336 } 337 } 338 } 339 // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted 340 // for the loop below that initializes Alias vectors. 341 RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias"); 342 std::sort(AliasDefs.begin(), AliasDefs.end(), LessRecord()); 343 for (Record *ADef : AliasDefs) { 344 Record *MatchDef = ADef->getValueAsDef("MatchRW"); 345 Record *AliasDef = ADef->getValueAsDef("AliasRW"); 346 if (MatchDef->isSubClassOf("SchedWrite")) { 347 if (!AliasDef->isSubClassOf("SchedWrite")) 348 PrintFatalError(ADef->getLoc(), "SchedWrite Alias must be SchedWrite"); 349 scanSchedRW(AliasDef, SWDefs, RWSet); 350 } 351 else { 352 assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 353 if (!AliasDef->isSubClassOf("SchedRead")) 354 PrintFatalError(ADef->getLoc(), "SchedRead Alias must be SchedRead"); 355 scanSchedRW(AliasDef, SRDefs, RWSet); 356 } 357 } 358 // Sort and add the SchedReadWrites directly referenced by instructions or 359 // itinerary resources. Index reads and writes in separate domains. 360 std::sort(SWDefs.begin(), SWDefs.end(), LessRecord()); 361 for (Record *SWDef : SWDefs) { 362 assert(!getSchedRWIdx(SWDef, /*IsRead=*/false) && "duplicate SchedWrite"); 363 SchedWrites.emplace_back(SchedWrites.size(), SWDef); 364 } 365 std::sort(SRDefs.begin(), SRDefs.end(), LessRecord()); 366 for (Record *SRDef : SRDefs) { 367 assert(!getSchedRWIdx(SRDef, /*IsRead-*/true) && "duplicate SchedWrite"); 368 SchedReads.emplace_back(SchedReads.size(), SRDef); 369 } 370 // Initialize WriteSequence vectors. 371 for (CodeGenSchedRW &CGRW : SchedWrites) { 372 if (!CGRW.IsSequence) 373 continue; 374 findRWs(CGRW.TheDef->getValueAsListOfDefs("Writes"), CGRW.Sequence, 375 /*IsRead=*/false); 376 } 377 // Initialize Aliases vectors. 378 for (Record *ADef : AliasDefs) { 379 Record *AliasDef = ADef->getValueAsDef("AliasRW"); 380 getSchedRW(AliasDef).IsAlias = true; 381 Record *MatchDef = ADef->getValueAsDef("MatchRW"); 382 CodeGenSchedRW &RW = getSchedRW(MatchDef); 383 if (RW.IsAlias) 384 PrintFatalError(ADef->getLoc(), "Cannot Alias an Alias"); 385 RW.Aliases.push_back(ADef); 386 } 387 DEBUG( 388 dbgs() << "\n+++ SCHED READS and WRITES (collectSchedRW) +++\n"; 389 for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) { 390 dbgs() << WIdx << ": "; 391 SchedWrites[WIdx].dump(); 392 dbgs() << '\n'; 393 } 394 for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd; ++RIdx) { 395 dbgs() << RIdx << ": "; 396 SchedReads[RIdx].dump(); 397 dbgs() << '\n'; 398 } 399 RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite"); 400 for (Record *RWDef : RWDefs) { 401 if (!getSchedRWIdx(RWDef, RWDef->isSubClassOf("SchedRead"))) { 402 StringRef Name = RWDef->getName(); 403 if (Name != "NoWrite" && Name != "ReadDefault") 404 dbgs() << "Unused SchedReadWrite " << Name << '\n'; 405 } 406 }); 407 } 408 409 /// Compute a SchedWrite name from a sequence of writes. 410 std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) { 411 std::string Name("("); 412 for (auto I = Seq.begin(), E = Seq.end(); I != E; ++I) { 413 if (I != Seq.begin()) 414 Name += '_'; 415 Name += getSchedRW(*I, IsRead).Name; 416 } 417 Name += ')'; 418 return Name; 419 } 420 421 unsigned CodeGenSchedModels::getSchedRWIdx(Record *Def, bool IsRead) const { 422 const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 423 for (std::vector<CodeGenSchedRW>::const_iterator I = RWVec.begin(), 424 E = RWVec.end(); I != E; ++I) { 425 if (I->TheDef == Def) 426 return I - RWVec.begin(); 427 } 428 return 0; 429 } 430 431 bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const { 432 for (const CodeGenSchedRW &Read : SchedReads) { 433 Record *ReadDef = Read.TheDef; 434 if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance")) 435 continue; 436 437 RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites"); 438 if (is_contained(ValidWrites, WriteDef)) { 439 return true; 440 } 441 } 442 return false; 443 } 444 445 static void splitSchedReadWrites(const RecVec &RWDefs, 446 RecVec &WriteDefs, RecVec &ReadDefs) { 447 for (Record *RWDef : RWDefs) { 448 if (RWDef->isSubClassOf("SchedWrite")) 449 WriteDefs.push_back(RWDef); 450 else { 451 assert(RWDef->isSubClassOf("SchedRead") && "unknown SchedReadWrite"); 452 ReadDefs.push_back(RWDef); 453 } 454 } 455 } 456 457 // Split the SchedReadWrites defs and call findRWs for each list. 458 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, 459 IdxVec &Writes, IdxVec &Reads) const { 460 RecVec WriteDefs; 461 RecVec ReadDefs; 462 splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs); 463 findRWs(WriteDefs, Writes, false); 464 findRWs(ReadDefs, Reads, true); 465 } 466 467 // Call getSchedRWIdx for all elements in a sequence of SchedRW defs. 468 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs, 469 bool IsRead) const { 470 for (Record *RWDef : RWDefs) { 471 unsigned Idx = getSchedRWIdx(RWDef, IsRead); 472 assert(Idx && "failed to collect SchedReadWrite"); 473 RWs.push_back(Idx); 474 } 475 } 476 477 void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq, 478 bool IsRead) const { 479 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 480 if (!SchedRW.IsSequence) { 481 RWSeq.push_back(RWIdx); 482 return; 483 } 484 int Repeat = 485 SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1; 486 for (int i = 0; i < Repeat; ++i) { 487 for (unsigned I : SchedRW.Sequence) { 488 expandRWSequence(I, RWSeq, IsRead); 489 } 490 } 491 } 492 493 // Expand a SchedWrite as a sequence following any aliases that coincide with 494 // the given processor model. 495 void CodeGenSchedModels::expandRWSeqForProc( 496 unsigned RWIdx, IdxVec &RWSeq, bool IsRead, 497 const CodeGenProcModel &ProcModel) const { 498 499 const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead); 500 Record *AliasDef = nullptr; 501 for (RecIter AI = SchedWrite.Aliases.begin(), AE = SchedWrite.Aliases.end(); 502 AI != AE; ++AI) { 503 const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW")); 504 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 505 Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); 506 if (&getProcModel(ModelDef) != &ProcModel) 507 continue; 508 } 509 if (AliasDef) 510 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 511 "defined for processor " + ProcModel.ModelName + 512 " Ensure only one SchedAlias exists per RW."); 513 AliasDef = AliasRW.TheDef; 514 } 515 if (AliasDef) { 516 expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead), 517 RWSeq, IsRead,ProcModel); 518 return; 519 } 520 if (!SchedWrite.IsSequence) { 521 RWSeq.push_back(RWIdx); 522 return; 523 } 524 int Repeat = 525 SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1; 526 for (int i = 0; i < Repeat; ++i) { 527 for (unsigned I : SchedWrite.Sequence) { 528 expandRWSeqForProc(I, RWSeq, IsRead, ProcModel); 529 } 530 } 531 } 532 533 // Find the existing SchedWrite that models this sequence of writes. 534 unsigned CodeGenSchedModels::findRWForSequence(ArrayRef<unsigned> Seq, 535 bool IsRead) { 536 std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 537 538 for (std::vector<CodeGenSchedRW>::iterator I = RWVec.begin(), E = RWVec.end(); 539 I != E; ++I) { 540 if (makeArrayRef(I->Sequence) == Seq) 541 return I - RWVec.begin(); 542 } 543 // Index zero reserved for invalid RW. 544 return 0; 545 } 546 547 /// Add this ReadWrite if it doesn't already exist. 548 unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq, 549 bool IsRead) { 550 assert(!Seq.empty() && "cannot insert empty sequence"); 551 if (Seq.size() == 1) 552 return Seq.back(); 553 554 unsigned Idx = findRWForSequence(Seq, IsRead); 555 if (Idx) 556 return Idx; 557 558 unsigned RWIdx = IsRead ? SchedReads.size() : SchedWrites.size(); 559 CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead)); 560 if (IsRead) 561 SchedReads.push_back(SchedRW); 562 else 563 SchedWrites.push_back(SchedRW); 564 return RWIdx; 565 } 566 567 /// Visit all the instruction definitions for this target to gather and 568 /// enumerate the itinerary classes. These are the explicitly specified 569 /// SchedClasses. More SchedClasses may be inferred. 570 void CodeGenSchedModels::collectSchedClasses() { 571 572 // NoItinerary is always the first class at Idx=0 573 assert(SchedClasses.empty() && "Expected empty sched class"); 574 SchedClasses.emplace_back(0, "NoInstrModel", 575 Records.getDef("NoItinerary")); 576 SchedClasses.back().ProcIndices.push_back(0); 577 578 // Create a SchedClass for each unique combination of itinerary class and 579 // SchedRW list. 580 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 581 Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary"); 582 IdxVec Writes, Reads; 583 if (!Inst->TheDef->isValueUnset("SchedRW")) 584 findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads); 585 586 // ProcIdx == 0 indicates the class applies to all processors. 587 unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, /*ProcIndices*/{0}); 588 InstrClassMap[Inst->TheDef] = SCIdx; 589 } 590 // Create classes for InstRW defs. 591 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 592 std::sort(InstRWDefs.begin(), InstRWDefs.end(), LessRecord()); 593 DEBUG(dbgs() << "\n+++ SCHED CLASSES (createInstRWClass) +++\n"); 594 for (Record *RWDef : InstRWDefs) 595 createInstRWClass(RWDef); 596 597 NumInstrSchedClasses = SchedClasses.size(); 598 599 bool EnableDump = false; 600 DEBUG(EnableDump = true); 601 if (!EnableDump) 602 return; 603 604 dbgs() << "\n+++ ITINERARIES and/or MACHINE MODELS (collectSchedClasses) +++\n"; 605 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 606 StringRef InstName = Inst->TheDef->getName(); 607 unsigned SCIdx = getSchedClassIdx(*Inst); 608 if (!SCIdx) { 609 if (!Inst->hasNoSchedulingInfo) 610 dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n'; 611 continue; 612 } 613 CodeGenSchedClass &SC = getSchedClass(SCIdx); 614 if (SC.ProcIndices[0] != 0) 615 PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class " 616 "must not be subtarget specific."); 617 618 IdxVec ProcIndices; 619 if (SC.ItinClassDef->getName() != "NoItinerary") { 620 ProcIndices.push_back(0); 621 dbgs() << "Itinerary for " << InstName << ": " 622 << SC.ItinClassDef->getName() << '\n'; 623 } 624 if (!SC.Writes.empty()) { 625 ProcIndices.push_back(0); 626 dbgs() << "SchedRW machine model for " << InstName; 627 for (IdxIter WI = SC.Writes.begin(), WE = SC.Writes.end(); WI != WE; ++WI) 628 dbgs() << " " << SchedWrites[*WI].Name; 629 for (IdxIter RI = SC.Reads.begin(), RE = SC.Reads.end(); RI != RE; ++RI) 630 dbgs() << " " << SchedReads[*RI].Name; 631 dbgs() << '\n'; 632 } 633 const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs; 634 for (Record *RWDef : RWDefs) { 635 const CodeGenProcModel &ProcModel = 636 getProcModel(RWDef->getValueAsDef("SchedModel")); 637 ProcIndices.push_back(ProcModel.Index); 638 dbgs() << "InstRW on " << ProcModel.ModelName << " for " << InstName; 639 IdxVec Writes; 640 IdxVec Reads; 641 findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"), 642 Writes, Reads); 643 for (unsigned WIdx : Writes) 644 dbgs() << " " << SchedWrites[WIdx].Name; 645 for (unsigned RIdx : Reads) 646 dbgs() << " " << SchedReads[RIdx].Name; 647 dbgs() << '\n'; 648 } 649 // If ProcIndices contains zero, the class applies to all processors. 650 if (!std::count(ProcIndices.begin(), ProcIndices.end(), 0)) { 651 for (const CodeGenProcModel &PM : ProcModels) { 652 if (!std::count(ProcIndices.begin(), ProcIndices.end(), PM.Index)) 653 dbgs() << "No machine model for " << Inst->TheDef->getName() 654 << " on processor " << PM.ModelName << '\n'; 655 } 656 } 657 } 658 } 659 660 /// Find an SchedClass that has been inferred from a per-operand list of 661 /// SchedWrites and SchedReads. 662 unsigned CodeGenSchedModels::findSchedClassIdx(Record *ItinClassDef, 663 ArrayRef<unsigned> Writes, 664 ArrayRef<unsigned> Reads) const { 665 for (SchedClassIter I = schedClassBegin(), E = schedClassEnd(); I != E; ++I) 666 if (I->isKeyEqual(ItinClassDef, Writes, Reads)) 667 return I - schedClassBegin(); 668 return 0; 669 } 670 671 // Get the SchedClass index for an instruction. 672 unsigned CodeGenSchedModels::getSchedClassIdx( 673 const CodeGenInstruction &Inst) const { 674 675 return InstrClassMap.lookup(Inst.TheDef); 676 } 677 678 std::string 679 CodeGenSchedModels::createSchedClassName(Record *ItinClassDef, 680 ArrayRef<unsigned> OperWrites, 681 ArrayRef<unsigned> OperReads) { 682 683 std::string Name; 684 if (ItinClassDef && ItinClassDef->getName() != "NoItinerary") 685 Name = ItinClassDef->getName(); 686 for (unsigned Idx : OperWrites) { 687 if (!Name.empty()) 688 Name += '_'; 689 Name += SchedWrites[Idx].Name; 690 } 691 for (unsigned Idx : OperReads) { 692 Name += '_'; 693 Name += SchedReads[Idx].Name; 694 } 695 return Name; 696 } 697 698 std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) { 699 700 std::string Name; 701 for (RecIter I = InstDefs.begin(), E = InstDefs.end(); I != E; ++I) { 702 if (I != InstDefs.begin()) 703 Name += '_'; 704 Name += (*I)->getName(); 705 } 706 return Name; 707 } 708 709 /// Add an inferred sched class from an itinerary class and per-operand list of 710 /// SchedWrites and SchedReads. ProcIndices contains the set of IDs of 711 /// processors that may utilize this class. 712 unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef, 713 ArrayRef<unsigned> OperWrites, 714 ArrayRef<unsigned> OperReads, 715 ArrayRef<unsigned> ProcIndices) { 716 assert(!ProcIndices.empty() && "expect at least one ProcIdx"); 717 718 unsigned Idx = findSchedClassIdx(ItinClassDef, OperWrites, OperReads); 719 if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) { 720 IdxVec PI; 721 std::set_union(SchedClasses[Idx].ProcIndices.begin(), 722 SchedClasses[Idx].ProcIndices.end(), 723 ProcIndices.begin(), ProcIndices.end(), 724 std::back_inserter(PI)); 725 SchedClasses[Idx].ProcIndices = std::move(PI); 726 return Idx; 727 } 728 Idx = SchedClasses.size(); 729 SchedClasses.emplace_back(Idx, 730 createSchedClassName(ItinClassDef, OperWrites, 731 OperReads), 732 ItinClassDef); 733 CodeGenSchedClass &SC = SchedClasses.back(); 734 SC.Writes = OperWrites; 735 SC.Reads = OperReads; 736 SC.ProcIndices = ProcIndices; 737 738 return Idx; 739 } 740 741 // Create classes for each set of opcodes that are in the same InstReadWrite 742 // definition across all processors. 743 void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) { 744 // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that 745 // intersects with an existing class via a previous InstRWDef. Instrs that do 746 // not intersect with an existing class refer back to their former class as 747 // determined from ItinDef or SchedRW. 748 SmallMapVector<unsigned, SmallVector<Record *, 8>, 4> ClassInstrs; 749 // Sort Instrs into sets. 750 const RecVec *InstDefs = Sets.expand(InstRWDef); 751 if (InstDefs->empty()) 752 PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes"); 753 754 for (Record *InstDef : *InstDefs) { 755 InstClassMapTy::const_iterator Pos = InstrClassMap.find(InstDef); 756 if (Pos == InstrClassMap.end()) 757 PrintFatalError(InstDef->getLoc(), "No sched class for instruction."); 758 unsigned SCIdx = Pos->second; 759 ClassInstrs[SCIdx].push_back(InstDef); 760 } 761 // For each set of Instrs, create a new class if necessary, and map or remap 762 // the Instrs to it. 763 for (auto &Entry : ClassInstrs) { 764 unsigned OldSCIdx = Entry.first; 765 ArrayRef<Record*> InstDefs = Entry.second; 766 // If the all instrs in the current class are accounted for, then leave 767 // them mapped to their old class. 768 if (OldSCIdx) { 769 const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs; 770 if (!RWDefs.empty()) { 771 const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]); 772 unsigned OrigNumInstrs = 773 count_if(*OrigInstDefs, [&](Record *OIDef) { 774 return InstrClassMap[OIDef] == OldSCIdx; 775 }); 776 if (OrigNumInstrs == InstDefs.size()) { 777 assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 && 778 "expected a generic SchedClass"); 779 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel"); 780 // Make sure we didn't already have a InstRW containing this 781 // instruction on this model. 782 for (Record *RWD : RWDefs) { 783 if (RWD->getValueAsDef("SchedModel") == RWModelDef && 784 RWModelDef->getValueAsBit("FullInstRWOverlapCheck")) { 785 for (Record *Inst : InstDefs) { 786 PrintFatalError(InstRWDef->getLoc(), "Overlapping InstRW def " + 787 Inst->getName() + " also matches " + 788 RWD->getValue("Instrs")->getValue()->getAsString()); 789 } 790 } 791 } 792 DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":" 793 << SchedClasses[OldSCIdx].Name << " on " 794 << RWModelDef->getName() << "\n"); 795 SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef); 796 continue; 797 } 798 } 799 } 800 unsigned SCIdx = SchedClasses.size(); 801 SchedClasses.emplace_back(SCIdx, createSchedClassName(InstDefs), nullptr); 802 CodeGenSchedClass &SC = SchedClasses.back(); 803 DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on " 804 << InstRWDef->getValueAsDef("SchedModel")->getName() << "\n"); 805 806 // Preserve ItinDef and Writes/Reads for processors without an InstRW entry. 807 SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef; 808 SC.Writes = SchedClasses[OldSCIdx].Writes; 809 SC.Reads = SchedClasses[OldSCIdx].Reads; 810 SC.ProcIndices.push_back(0); 811 // If we had an old class, copy it's InstRWs to this new class. 812 if (OldSCIdx) { 813 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel"); 814 for (Record *OldRWDef : SchedClasses[OldSCIdx].InstRWs) { 815 if (OldRWDef->getValueAsDef("SchedModel") == RWModelDef) { 816 for (Record *InstDef : InstDefs) { 817 PrintFatalError(OldRWDef->getLoc(), "Overlapping InstRW def " + 818 InstDef->getName() + " also matches " + 819 OldRWDef->getValue("Instrs")->getValue()->getAsString()); 820 } 821 } 822 assert(OldRWDef != InstRWDef && 823 "SchedClass has duplicate InstRW def"); 824 SC.InstRWs.push_back(OldRWDef); 825 } 826 } 827 // Map each Instr to this new class. 828 for (Record *InstDef : InstDefs) 829 InstrClassMap[InstDef] = SCIdx; 830 SC.InstRWs.push_back(InstRWDef); 831 } 832 } 833 834 // True if collectProcItins found anything. 835 bool CodeGenSchedModels::hasItineraries() const { 836 for (const CodeGenProcModel &PM : make_range(procModelBegin(),procModelEnd())) { 837 if (PM.hasItineraries()) 838 return true; 839 } 840 return false; 841 } 842 843 // Gather the processor itineraries. 844 void CodeGenSchedModels::collectProcItins() { 845 DEBUG(dbgs() << "\n+++ PROBLEM ITINERARIES (collectProcItins) +++\n"); 846 for (CodeGenProcModel &ProcModel : ProcModels) { 847 if (!ProcModel.hasItineraries()) 848 continue; 849 850 RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID"); 851 assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect"); 852 853 // Populate ItinDefList with Itinerary records. 854 ProcModel.ItinDefList.resize(NumInstrSchedClasses); 855 856 // Insert each itinerary data record in the correct position within 857 // the processor model's ItinDefList. 858 for (Record *ItinData : ItinRecords) { 859 Record *ItinDef = ItinData->getValueAsDef("TheClass"); 860 bool FoundClass = false; 861 for (SchedClassIter SCI = schedClassBegin(), SCE = schedClassEnd(); 862 SCI != SCE; ++SCI) { 863 // Multiple SchedClasses may share an itinerary. Update all of them. 864 if (SCI->ItinClassDef == ItinDef) { 865 ProcModel.ItinDefList[SCI->Index] = ItinData; 866 FoundClass = true; 867 } 868 } 869 if (!FoundClass) { 870 DEBUG(dbgs() << ProcModel.ItinsDef->getName() 871 << " missing class for itinerary " << ItinDef->getName() << '\n'); 872 } 873 } 874 // Check for missing itinerary entries. 875 assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec"); 876 DEBUG( 877 for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) { 878 if (!ProcModel.ItinDefList[i]) 879 dbgs() << ProcModel.ItinsDef->getName() 880 << " missing itinerary for class " 881 << SchedClasses[i].Name << '\n'; 882 }); 883 } 884 } 885 886 // Gather the read/write types for each itinerary class. 887 void CodeGenSchedModels::collectProcItinRW() { 888 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 889 std::sort(ItinRWDefs.begin(), ItinRWDefs.end(), LessRecord()); 890 for (Record *RWDef : ItinRWDefs) { 891 if (!RWDef->getValueInit("SchedModel")->isComplete()) 892 PrintFatalError(RWDef->getLoc(), "SchedModel is undefined"); 893 Record *ModelDef = RWDef->getValueAsDef("SchedModel"); 894 ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef); 895 if (I == ProcModelMap.end()) { 896 PrintFatalError(RWDef->getLoc(), "Undefined SchedMachineModel " 897 + ModelDef->getName()); 898 } 899 ProcModels[I->second].ItinRWDefs.push_back(RWDef); 900 } 901 } 902 903 // Gather the unsupported features for processor models. 904 void CodeGenSchedModels::collectProcUnsupportedFeatures() { 905 for (CodeGenProcModel &ProcModel : ProcModels) { 906 for (Record *Pred : ProcModel.ModelDef->getValueAsListOfDefs("UnsupportedFeatures")) { 907 ProcModel.UnsupportedFeaturesDefs.push_back(Pred); 908 } 909 } 910 } 911 912 /// Infer new classes from existing classes. In the process, this may create new 913 /// SchedWrites from sequences of existing SchedWrites. 914 void CodeGenSchedModels::inferSchedClasses() { 915 DEBUG(dbgs() << "\n+++ INFERRING SCHED CLASSES (inferSchedClasses) +++\n"); 916 DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n"); 917 918 // Visit all existing classes and newly created classes. 919 for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) { 920 assert(SchedClasses[Idx].Index == Idx && "bad SCIdx"); 921 922 if (SchedClasses[Idx].ItinClassDef) 923 inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx); 924 if (!SchedClasses[Idx].InstRWs.empty()) 925 inferFromInstRWs(Idx); 926 if (!SchedClasses[Idx].Writes.empty()) { 927 inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads, 928 Idx, SchedClasses[Idx].ProcIndices); 929 } 930 assert(SchedClasses.size() < (NumInstrSchedClasses*6) && 931 "too many SchedVariants"); 932 } 933 } 934 935 /// Infer classes from per-processor itinerary resources. 936 void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef, 937 unsigned FromClassIdx) { 938 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 939 const CodeGenProcModel &PM = ProcModels[PIdx]; 940 // For all ItinRW entries. 941 bool HasMatch = false; 942 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); 943 II != IE; ++II) { 944 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); 945 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) 946 continue; 947 if (HasMatch) 948 PrintFatalError((*II)->getLoc(), "Duplicate itinerary class " 949 + ItinClassDef->getName() 950 + " in ItinResources for " + PM.ModelName); 951 HasMatch = true; 952 IdxVec Writes, Reads; 953 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 954 inferFromRW(Writes, Reads, FromClassIdx, PIdx); 955 } 956 } 957 } 958 959 /// Infer classes from per-processor InstReadWrite definitions. 960 void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) { 961 for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) { 962 assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!"); 963 Record *Rec = SchedClasses[SCIdx].InstRWs[I]; 964 const RecVec *InstDefs = Sets.expand(Rec); 965 RecIter II = InstDefs->begin(), IE = InstDefs->end(); 966 for (; II != IE; ++II) { 967 if (InstrClassMap[*II] == SCIdx) 968 break; 969 } 970 // If this class no longer has any instructions mapped to it, it has become 971 // irrelevant. 972 if (II == IE) 973 continue; 974 IdxVec Writes, Reads; 975 findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 976 unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index; 977 inferFromRW(Writes, Reads, SCIdx, PIdx); // May mutate SchedClasses. 978 } 979 } 980 981 namespace { 982 983 // Helper for substituteVariantOperand. 984 struct TransVariant { 985 Record *VarOrSeqDef; // Variant or sequence. 986 unsigned RWIdx; // Index of this variant or sequence's matched type. 987 unsigned ProcIdx; // Processor model index or zero for any. 988 unsigned TransVecIdx; // Index into PredTransitions::TransVec. 989 990 TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti): 991 VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {} 992 }; 993 994 // Associate a predicate with the SchedReadWrite that it guards. 995 // RWIdx is the index of the read/write variant. 996 struct PredCheck { 997 bool IsRead; 998 unsigned RWIdx; 999 Record *Predicate; 1000 1001 PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {} 1002 }; 1003 1004 // A Predicate transition is a list of RW sequences guarded by a PredTerm. 1005 struct PredTransition { 1006 // A predicate term is a conjunction of PredChecks. 1007 SmallVector<PredCheck, 4> PredTerm; 1008 SmallVector<SmallVector<unsigned,4>, 16> WriteSequences; 1009 SmallVector<SmallVector<unsigned,4>, 16> ReadSequences; 1010 SmallVector<unsigned, 4> ProcIndices; 1011 }; 1012 1013 // Encapsulate a set of partially constructed transitions. 1014 // The results are built by repeated calls to substituteVariants. 1015 class PredTransitions { 1016 CodeGenSchedModels &SchedModels; 1017 1018 public: 1019 std::vector<PredTransition> TransVec; 1020 1021 PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {} 1022 1023 void substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq, 1024 bool IsRead, unsigned StartIdx); 1025 1026 void substituteVariants(const PredTransition &Trans); 1027 1028 #ifndef NDEBUG 1029 void dump() const; 1030 #endif 1031 1032 private: 1033 bool mutuallyExclusive(Record *PredDef, ArrayRef<PredCheck> Term); 1034 void getIntersectingVariants( 1035 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 1036 std::vector<TransVariant> &IntersectingVariants); 1037 void pushVariant(const TransVariant &VInfo, bool IsRead); 1038 }; 1039 1040 } // end anonymous namespace 1041 1042 // Return true if this predicate is mutually exclusive with a PredTerm. This 1043 // degenerates into checking if the predicate is mutually exclusive with any 1044 // predicate in the Term's conjunction. 1045 // 1046 // All predicates associated with a given SchedRW are considered mutually 1047 // exclusive. This should work even if the conditions expressed by the 1048 // predicates are not exclusive because the predicates for a given SchedWrite 1049 // are always checked in the order they are defined in the .td file. Later 1050 // conditions implicitly negate any prior condition. 1051 bool PredTransitions::mutuallyExclusive(Record *PredDef, 1052 ArrayRef<PredCheck> Term) { 1053 for (const PredCheck &PC: Term) { 1054 if (PC.Predicate == PredDef) 1055 return false; 1056 1057 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(PC.RWIdx, PC.IsRead); 1058 assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant"); 1059 RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 1060 for (RecIter VI = Variants.begin(), VE = Variants.end(); VI != VE; ++VI) { 1061 if ((*VI)->getValueAsDef("Predicate") == PredDef) 1062 return true; 1063 } 1064 } 1065 return false; 1066 } 1067 1068 static bool hasAliasedVariants(const CodeGenSchedRW &RW, 1069 CodeGenSchedModels &SchedModels) { 1070 if (RW.HasVariants) 1071 return true; 1072 1073 for (Record *Alias : RW.Aliases) { 1074 const CodeGenSchedRW &AliasRW = 1075 SchedModels.getSchedRW(Alias->getValueAsDef("AliasRW")); 1076 if (AliasRW.HasVariants) 1077 return true; 1078 if (AliasRW.IsSequence) { 1079 IdxVec ExpandedRWs; 1080 SchedModels.expandRWSequence(AliasRW.Index, ExpandedRWs, AliasRW.IsRead); 1081 for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end(); 1082 SI != SE; ++SI) { 1083 if (hasAliasedVariants(SchedModels.getSchedRW(*SI, AliasRW.IsRead), 1084 SchedModels)) { 1085 return true; 1086 } 1087 } 1088 } 1089 } 1090 return false; 1091 } 1092 1093 static bool hasVariant(ArrayRef<PredTransition> Transitions, 1094 CodeGenSchedModels &SchedModels) { 1095 for (ArrayRef<PredTransition>::iterator 1096 PTI = Transitions.begin(), PTE = Transitions.end(); 1097 PTI != PTE; ++PTI) { 1098 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1099 WSI = PTI->WriteSequences.begin(), WSE = PTI->WriteSequences.end(); 1100 WSI != WSE; ++WSI) { 1101 for (SmallVectorImpl<unsigned>::const_iterator 1102 WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) { 1103 if (hasAliasedVariants(SchedModels.getSchedWrite(*WI), SchedModels)) 1104 return true; 1105 } 1106 } 1107 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1108 RSI = PTI->ReadSequences.begin(), RSE = PTI->ReadSequences.end(); 1109 RSI != RSE; ++RSI) { 1110 for (SmallVectorImpl<unsigned>::const_iterator 1111 RI = RSI->begin(), RE = RSI->end(); RI != RE; ++RI) { 1112 if (hasAliasedVariants(SchedModels.getSchedRead(*RI), SchedModels)) 1113 return true; 1114 } 1115 } 1116 } 1117 return false; 1118 } 1119 1120 // Populate IntersectingVariants with any variants or aliased sequences of the 1121 // given SchedRW whose processor indices and predicates are not mutually 1122 // exclusive with the given transition. 1123 void PredTransitions::getIntersectingVariants( 1124 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 1125 std::vector<TransVariant> &IntersectingVariants) { 1126 1127 bool GenericRW = false; 1128 1129 std::vector<TransVariant> Variants; 1130 if (SchedRW.HasVariants) { 1131 unsigned VarProcIdx = 0; 1132 if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) { 1133 Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel"); 1134 VarProcIdx = SchedModels.getProcModel(ModelDef).Index; 1135 } 1136 // Push each variant. Assign TransVecIdx later. 1137 const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 1138 for (Record *VarDef : VarDefs) 1139 Variants.push_back(TransVariant(VarDef, SchedRW.Index, VarProcIdx, 0)); 1140 if (VarProcIdx == 0) 1141 GenericRW = true; 1142 } 1143 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1144 AI != AE; ++AI) { 1145 // If either the SchedAlias itself or the SchedReadWrite that it aliases 1146 // to is defined within a processor model, constrain all variants to 1147 // that processor. 1148 unsigned AliasProcIdx = 0; 1149 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1150 Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); 1151 AliasProcIdx = SchedModels.getProcModel(ModelDef).Index; 1152 } 1153 const CodeGenSchedRW &AliasRW = 1154 SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW")); 1155 1156 if (AliasRW.HasVariants) { 1157 const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants"); 1158 for (Record *VD : VarDefs) 1159 Variants.push_back(TransVariant(VD, AliasRW.Index, AliasProcIdx, 0)); 1160 } 1161 if (AliasRW.IsSequence) { 1162 Variants.push_back( 1163 TransVariant(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0)); 1164 } 1165 if (AliasProcIdx == 0) 1166 GenericRW = true; 1167 } 1168 for (TransVariant &Variant : Variants) { 1169 // Don't expand variants if the processor models don't intersect. 1170 // A zero processor index means any processor. 1171 SmallVectorImpl<unsigned> &ProcIndices = TransVec[TransIdx].ProcIndices; 1172 if (ProcIndices[0] && Variant.ProcIdx) { 1173 unsigned Cnt = std::count(ProcIndices.begin(), ProcIndices.end(), 1174 Variant.ProcIdx); 1175 if (!Cnt) 1176 continue; 1177 if (Cnt > 1) { 1178 const CodeGenProcModel &PM = 1179 *(SchedModels.procModelBegin() + Variant.ProcIdx); 1180 PrintFatalError(Variant.VarOrSeqDef->getLoc(), 1181 "Multiple variants defined for processor " + 1182 PM.ModelName + 1183 " Ensure only one SchedAlias exists per RW."); 1184 } 1185 } 1186 if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) { 1187 Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate"); 1188 if (mutuallyExclusive(PredDef, TransVec[TransIdx].PredTerm)) 1189 continue; 1190 } 1191 if (IntersectingVariants.empty()) { 1192 // The first variant builds on the existing transition. 1193 Variant.TransVecIdx = TransIdx; 1194 IntersectingVariants.push_back(Variant); 1195 } 1196 else { 1197 // Push another copy of the current transition for more variants. 1198 Variant.TransVecIdx = TransVec.size(); 1199 IntersectingVariants.push_back(Variant); 1200 TransVec.push_back(TransVec[TransIdx]); 1201 } 1202 } 1203 if (GenericRW && IntersectingVariants.empty()) { 1204 PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has " 1205 "a matching predicate on any processor"); 1206 } 1207 } 1208 1209 // Push the Reads/Writes selected by this variant onto the PredTransition 1210 // specified by VInfo. 1211 void PredTransitions:: 1212 pushVariant(const TransVariant &VInfo, bool IsRead) { 1213 PredTransition &Trans = TransVec[VInfo.TransVecIdx]; 1214 1215 // If this operand transition is reached through a processor-specific alias, 1216 // then the whole transition is specific to this processor. 1217 if (VInfo.ProcIdx != 0) 1218 Trans.ProcIndices.assign(1, VInfo.ProcIdx); 1219 1220 IdxVec SelectedRWs; 1221 if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) { 1222 Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate"); 1223 Trans.PredTerm.push_back(PredCheck(IsRead, VInfo.RWIdx,PredDef)); 1224 RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected"); 1225 SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead); 1226 } 1227 else { 1228 assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") && 1229 "variant must be a SchedVariant or aliased WriteSequence"); 1230 SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead)); 1231 } 1232 1233 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead); 1234 1235 SmallVectorImpl<SmallVector<unsigned,4>> &RWSequences = IsRead 1236 ? Trans.ReadSequences : Trans.WriteSequences; 1237 if (SchedRW.IsVariadic) { 1238 unsigned OperIdx = RWSequences.size()-1; 1239 // Make N-1 copies of this transition's last sequence. 1240 for (unsigned i = 1, e = SelectedRWs.size(); i != e; ++i) { 1241 // Create a temporary copy the vector could reallocate. 1242 RWSequences.reserve(RWSequences.size() + 1); 1243 RWSequences.push_back(RWSequences[OperIdx]); 1244 } 1245 // Push each of the N elements of the SelectedRWs onto a copy of the last 1246 // sequence (split the current operand into N operands). 1247 // Note that write sequences should be expanded within this loop--the entire 1248 // sequence belongs to a single operand. 1249 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); 1250 RWI != RWE; ++RWI, ++OperIdx) { 1251 IdxVec ExpandedRWs; 1252 if (IsRead) 1253 ExpandedRWs.push_back(*RWI); 1254 else 1255 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1256 RWSequences[OperIdx].insert(RWSequences[OperIdx].end(), 1257 ExpandedRWs.begin(), ExpandedRWs.end()); 1258 } 1259 assert(OperIdx == RWSequences.size() && "missed a sequence"); 1260 } 1261 else { 1262 // Push this transition's expanded sequence onto this transition's last 1263 // sequence (add to the current operand's sequence). 1264 SmallVectorImpl<unsigned> &Seq = RWSequences.back(); 1265 IdxVec ExpandedRWs; 1266 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); 1267 RWI != RWE; ++RWI) { 1268 if (IsRead) 1269 ExpandedRWs.push_back(*RWI); 1270 else 1271 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1272 } 1273 Seq.insert(Seq.end(), ExpandedRWs.begin(), ExpandedRWs.end()); 1274 } 1275 } 1276 1277 // RWSeq is a sequence of all Reads or all Writes for the next read or write 1278 // operand. StartIdx is an index into TransVec where partial results 1279 // starts. RWSeq must be applied to all transitions between StartIdx and the end 1280 // of TransVec. 1281 void PredTransitions::substituteVariantOperand( 1282 const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) { 1283 1284 // Visit each original RW within the current sequence. 1285 for (SmallVectorImpl<unsigned>::const_iterator 1286 RWI = RWSeq.begin(), RWE = RWSeq.end(); RWI != RWE; ++RWI) { 1287 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(*RWI, IsRead); 1288 // Push this RW on all partial PredTransitions or distribute variants. 1289 // New PredTransitions may be pushed within this loop which should not be 1290 // revisited (TransEnd must be loop invariant). 1291 for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size(); 1292 TransIdx != TransEnd; ++TransIdx) { 1293 // In the common case, push RW onto the current operand's sequence. 1294 if (!hasAliasedVariants(SchedRW, SchedModels)) { 1295 if (IsRead) 1296 TransVec[TransIdx].ReadSequences.back().push_back(*RWI); 1297 else 1298 TransVec[TransIdx].WriteSequences.back().push_back(*RWI); 1299 continue; 1300 } 1301 // Distribute this partial PredTransition across intersecting variants. 1302 // This will push a copies of TransVec[TransIdx] on the back of TransVec. 1303 std::vector<TransVariant> IntersectingVariants; 1304 getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants); 1305 // Now expand each variant on top of its copy of the transition. 1306 for (std::vector<TransVariant>::const_iterator 1307 IVI = IntersectingVariants.begin(), 1308 IVE = IntersectingVariants.end(); 1309 IVI != IVE; ++IVI) { 1310 pushVariant(*IVI, IsRead); 1311 } 1312 } 1313 } 1314 } 1315 1316 // For each variant of a Read/Write in Trans, substitute the sequence of 1317 // Read/Writes guarded by the variant. This is exponential in the number of 1318 // variant Read/Writes, but in practice detection of mutually exclusive 1319 // predicates should result in linear growth in the total number variants. 1320 // 1321 // This is one step in a breadth-first search of nested variants. 1322 void PredTransitions::substituteVariants(const PredTransition &Trans) { 1323 // Build up a set of partial results starting at the back of 1324 // PredTransitions. Remember the first new transition. 1325 unsigned StartIdx = TransVec.size(); 1326 TransVec.emplace_back(); 1327 TransVec.back().PredTerm = Trans.PredTerm; 1328 TransVec.back().ProcIndices = Trans.ProcIndices; 1329 1330 // Visit each original write sequence. 1331 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1332 WSI = Trans.WriteSequences.begin(), WSE = Trans.WriteSequences.end(); 1333 WSI != WSE; ++WSI) { 1334 // Push a new (empty) write sequence onto all partial Transitions. 1335 for (std::vector<PredTransition>::iterator I = 1336 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { 1337 I->WriteSequences.emplace_back(); 1338 } 1339 substituteVariantOperand(*WSI, /*IsRead=*/false, StartIdx); 1340 } 1341 // Visit each original read sequence. 1342 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1343 RSI = Trans.ReadSequences.begin(), RSE = Trans.ReadSequences.end(); 1344 RSI != RSE; ++RSI) { 1345 // Push a new (empty) read sequence onto all partial Transitions. 1346 for (std::vector<PredTransition>::iterator I = 1347 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { 1348 I->ReadSequences.emplace_back(); 1349 } 1350 substituteVariantOperand(*RSI, /*IsRead=*/true, StartIdx); 1351 } 1352 } 1353 1354 // Create a new SchedClass for each variant found by inferFromRW. Pass 1355 static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions, 1356 unsigned FromClassIdx, 1357 CodeGenSchedModels &SchedModels) { 1358 // For each PredTransition, create a new CodeGenSchedTransition, which usually 1359 // requires creating a new SchedClass. 1360 for (ArrayRef<PredTransition>::iterator 1361 I = LastTransitions.begin(), E = LastTransitions.end(); I != E; ++I) { 1362 IdxVec OperWritesVariant; 1363 transform(I->WriteSequences, std::back_inserter(OperWritesVariant), 1364 [&SchedModels](ArrayRef<unsigned> WS) { 1365 return SchedModels.findOrInsertRW(WS, /*IsRead=*/false); 1366 }); 1367 IdxVec OperReadsVariant; 1368 transform(I->ReadSequences, std::back_inserter(OperReadsVariant), 1369 [&SchedModels](ArrayRef<unsigned> RS) { 1370 return SchedModels.findOrInsertRW(RS, /*IsRead=*/true); 1371 }); 1372 CodeGenSchedTransition SCTrans; 1373 SCTrans.ToClassIdx = 1374 SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant, 1375 OperReadsVariant, I->ProcIndices); 1376 SCTrans.ProcIndices.assign(I->ProcIndices.begin(), I->ProcIndices.end()); 1377 // The final PredTerm is unique set of predicates guarding the transition. 1378 RecVec Preds; 1379 transform(I->PredTerm, std::back_inserter(Preds), 1380 [](const PredCheck &P) { 1381 return P.Predicate; 1382 }); 1383 Preds.erase(std::unique(Preds.begin(), Preds.end()), Preds.end()); 1384 SCTrans.PredTerm = std::move(Preds); 1385 SchedModels.getSchedClass(FromClassIdx) 1386 .Transitions.push_back(std::move(SCTrans)); 1387 } 1388 } 1389 1390 // Create new SchedClasses for the given ReadWrite list. If any of the 1391 // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant 1392 // of the ReadWrite list, following Aliases if necessary. 1393 void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites, 1394 ArrayRef<unsigned> OperReads, 1395 unsigned FromClassIdx, 1396 ArrayRef<unsigned> ProcIndices) { 1397 DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices); dbgs() << ") "); 1398 1399 // Create a seed transition with an empty PredTerm and the expanded sequences 1400 // of SchedWrites for the current SchedClass. 1401 std::vector<PredTransition> LastTransitions; 1402 LastTransitions.emplace_back(); 1403 LastTransitions.back().ProcIndices.append(ProcIndices.begin(), 1404 ProcIndices.end()); 1405 1406 for (unsigned WriteIdx : OperWrites) { 1407 IdxVec WriteSeq; 1408 expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false); 1409 LastTransitions[0].WriteSequences.emplace_back(); 1410 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences.back(); 1411 Seq.append(WriteSeq.begin(), WriteSeq.end()); 1412 DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1413 } 1414 DEBUG(dbgs() << " Reads: "); 1415 for (unsigned ReadIdx : OperReads) { 1416 IdxVec ReadSeq; 1417 expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true); 1418 LastTransitions[0].ReadSequences.emplace_back(); 1419 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences.back(); 1420 Seq.append(ReadSeq.begin(), ReadSeq.end()); 1421 DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1422 } 1423 DEBUG(dbgs() << '\n'); 1424 1425 // Collect all PredTransitions for individual operands. 1426 // Iterate until no variant writes remain. 1427 while (hasVariant(LastTransitions, *this)) { 1428 PredTransitions Transitions(*this); 1429 for (const PredTransition &Trans : LastTransitions) 1430 Transitions.substituteVariants(Trans); 1431 DEBUG(Transitions.dump()); 1432 LastTransitions.swap(Transitions.TransVec); 1433 } 1434 // If the first transition has no variants, nothing to do. 1435 if (LastTransitions[0].PredTerm.empty()) 1436 return; 1437 1438 // WARNING: We are about to mutate the SchedClasses vector. Do not refer to 1439 // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions. 1440 inferFromTransitions(LastTransitions, FromClassIdx, *this); 1441 } 1442 1443 // Check if any processor resource group contains all resource records in 1444 // SubUnits. 1445 bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) { 1446 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { 1447 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) 1448 continue; 1449 RecVec SuperUnits = 1450 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); 1451 RecIter RI = SubUnits.begin(), RE = SubUnits.end(); 1452 for ( ; RI != RE; ++RI) { 1453 if (!is_contained(SuperUnits, *RI)) { 1454 break; 1455 } 1456 } 1457 if (RI == RE) 1458 return true; 1459 } 1460 return false; 1461 } 1462 1463 // Verify that overlapping groups have a common supergroup. 1464 void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) { 1465 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { 1466 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) 1467 continue; 1468 RecVec CheckUnits = 1469 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); 1470 for (unsigned j = i+1; j < e; ++j) { 1471 if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup")) 1472 continue; 1473 RecVec OtherUnits = 1474 PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources"); 1475 if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(), 1476 OtherUnits.begin(), OtherUnits.end()) 1477 != CheckUnits.end()) { 1478 // CheckUnits and OtherUnits overlap 1479 OtherUnits.insert(OtherUnits.end(), CheckUnits.begin(), 1480 CheckUnits.end()); 1481 if (!hasSuperGroup(OtherUnits, PM)) { 1482 PrintFatalError((PM.ProcResourceDefs[i])->getLoc(), 1483 "proc resource group overlaps with " 1484 + PM.ProcResourceDefs[j]->getName() 1485 + " but no supergroup contains both."); 1486 } 1487 } 1488 } 1489 } 1490 } 1491 1492 // Collect all the RegisterFile definitions available in this target. 1493 void CodeGenSchedModels::collectRegisterFiles() { 1494 RecVec RegisterFileDefs = Records.getAllDerivedDefinitions("RegisterFile"); 1495 1496 // RegisterFiles is the vector of CodeGenRegisterFile. 1497 for (Record *RF : RegisterFileDefs) { 1498 // For each register file definition, construct a CodeGenRegisterFile object 1499 // and add it to the appropriate scheduling model. 1500 CodeGenProcModel &PM = getProcModel(RF->getValueAsDef("SchedModel")); 1501 PM.RegisterFiles.emplace_back(CodeGenRegisterFile(RF->getName(),RF)); 1502 CodeGenRegisterFile &CGRF = PM.RegisterFiles.back(); 1503 1504 // Now set the number of physical registers as well as the cost of registers 1505 // in each register class. 1506 CGRF.NumPhysRegs = RF->getValueAsInt("NumPhysRegs"); 1507 RecVec RegisterClasses = RF->getValueAsListOfDefs("RegClasses"); 1508 std::vector<int64_t> RegisterCosts = RF->getValueAsListOfInts("RegCosts"); 1509 for (unsigned I = 0, E = RegisterClasses.size(); I < E; ++I) { 1510 int Cost = RegisterCosts.size() > I ? RegisterCosts[I] : 1; 1511 CGRF.Costs.emplace_back(RegisterClasses[I], Cost); 1512 } 1513 } 1514 } 1515 1516 // Collect and sort WriteRes, ReadAdvance, and ProcResources. 1517 void CodeGenSchedModels::collectProcResources() { 1518 ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits"); 1519 ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); 1520 1521 // Add any subtarget-specific SchedReadWrites that are directly associated 1522 // with processor resources. Refer to the parent SchedClass's ProcIndices to 1523 // determine which processors they apply to. 1524 for (SchedClassIter SCI = schedClassBegin(), SCE = schedClassEnd(); 1525 SCI != SCE; ++SCI) { 1526 if (SCI->ItinClassDef) 1527 collectItinProcResources(SCI->ItinClassDef); 1528 else { 1529 // This class may have a default ReadWrite list which can be overriden by 1530 // InstRW definitions. 1531 if (!SCI->InstRWs.empty()) { 1532 for (RecIter RWI = SCI->InstRWs.begin(), RWE = SCI->InstRWs.end(); 1533 RWI != RWE; ++RWI) { 1534 Record *RWModelDef = (*RWI)->getValueAsDef("SchedModel"); 1535 unsigned PIdx = getProcModel(RWModelDef).Index; 1536 IdxVec Writes, Reads; 1537 findRWs((*RWI)->getValueAsListOfDefs("OperandReadWrites"), 1538 Writes, Reads); 1539 collectRWResources(Writes, Reads, PIdx); 1540 } 1541 } 1542 collectRWResources(SCI->Writes, SCI->Reads, SCI->ProcIndices); 1543 } 1544 } 1545 // Add resources separately defined by each subtarget. 1546 RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes"); 1547 for (Record *WR : WRDefs) { 1548 Record *ModelDef = WR->getValueAsDef("SchedModel"); 1549 addWriteRes(WR, getProcModel(ModelDef).Index); 1550 } 1551 RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes"); 1552 for (Record *SWR : SWRDefs) { 1553 Record *ModelDef = SWR->getValueAsDef("SchedModel"); 1554 addWriteRes(SWR, getProcModel(ModelDef).Index); 1555 } 1556 RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance"); 1557 for (Record *RA : RADefs) { 1558 Record *ModelDef = RA->getValueAsDef("SchedModel"); 1559 addReadAdvance(RA, getProcModel(ModelDef).Index); 1560 } 1561 RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance"); 1562 for (Record *SRA : SRADefs) { 1563 if (SRA->getValueInit("SchedModel")->isComplete()) { 1564 Record *ModelDef = SRA->getValueAsDef("SchedModel"); 1565 addReadAdvance(SRA, getProcModel(ModelDef).Index); 1566 } 1567 } 1568 // Add ProcResGroups that are defined within this processor model, which may 1569 // not be directly referenced but may directly specify a buffer size. 1570 RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); 1571 for (Record *PRG : ProcResGroups) { 1572 if (!PRG->getValueInit("SchedModel")->isComplete()) 1573 continue; 1574 CodeGenProcModel &PM = getProcModel(PRG->getValueAsDef("SchedModel")); 1575 if (!is_contained(PM.ProcResourceDefs, PRG)) 1576 PM.ProcResourceDefs.push_back(PRG); 1577 } 1578 // Add ProcResourceUnits unconditionally. 1579 for (Record *PRU : Records.getAllDerivedDefinitions("ProcResourceUnits")) { 1580 if (!PRU->getValueInit("SchedModel")->isComplete()) 1581 continue; 1582 CodeGenProcModel &PM = getProcModel(PRU->getValueAsDef("SchedModel")); 1583 if (!is_contained(PM.ProcResourceDefs, PRU)) 1584 PM.ProcResourceDefs.push_back(PRU); 1585 } 1586 // Finalize each ProcModel by sorting the record arrays. 1587 for (CodeGenProcModel &PM : ProcModels) { 1588 std::sort(PM.WriteResDefs.begin(), PM.WriteResDefs.end(), 1589 LessRecord()); 1590 std::sort(PM.ReadAdvanceDefs.begin(), PM.ReadAdvanceDefs.end(), 1591 LessRecord()); 1592 std::sort(PM.ProcResourceDefs.begin(), PM.ProcResourceDefs.end(), 1593 LessRecord()); 1594 DEBUG( 1595 PM.dump(); 1596 dbgs() << "WriteResDefs: "; 1597 for (RecIter RI = PM.WriteResDefs.begin(), 1598 RE = PM.WriteResDefs.end(); RI != RE; ++RI) { 1599 if ((*RI)->isSubClassOf("WriteRes")) 1600 dbgs() << (*RI)->getValueAsDef("WriteType")->getName() << " "; 1601 else 1602 dbgs() << (*RI)->getName() << " "; 1603 } 1604 dbgs() << "\nReadAdvanceDefs: "; 1605 for (RecIter RI = PM.ReadAdvanceDefs.begin(), 1606 RE = PM.ReadAdvanceDefs.end(); RI != RE; ++RI) { 1607 if ((*RI)->isSubClassOf("ReadAdvance")) 1608 dbgs() << (*RI)->getValueAsDef("ReadType")->getName() << " "; 1609 else 1610 dbgs() << (*RI)->getName() << " "; 1611 } 1612 dbgs() << "\nProcResourceDefs: "; 1613 for (RecIter RI = PM.ProcResourceDefs.begin(), 1614 RE = PM.ProcResourceDefs.end(); RI != RE; ++RI) { 1615 dbgs() << (*RI)->getName() << " "; 1616 } 1617 dbgs() << '\n'); 1618 verifyProcResourceGroups(PM); 1619 } 1620 1621 ProcResourceDefs.clear(); 1622 ProcResGroups.clear(); 1623 } 1624 1625 void CodeGenSchedModels::checkCompleteness() { 1626 bool Complete = true; 1627 bool HadCompleteModel = false; 1628 for (const CodeGenProcModel &ProcModel : procModels()) { 1629 if (!ProcModel.ModelDef->getValueAsBit("CompleteModel")) 1630 continue; 1631 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 1632 if (Inst->hasNoSchedulingInfo) 1633 continue; 1634 if (ProcModel.isUnsupported(*Inst)) 1635 continue; 1636 unsigned SCIdx = getSchedClassIdx(*Inst); 1637 if (!SCIdx) { 1638 if (Inst->TheDef->isValueUnset("SchedRW") && !HadCompleteModel) { 1639 PrintError("No schedule information for instruction '" 1640 + Inst->TheDef->getName() + "'"); 1641 Complete = false; 1642 } 1643 continue; 1644 } 1645 1646 const CodeGenSchedClass &SC = getSchedClass(SCIdx); 1647 if (!SC.Writes.empty()) 1648 continue; 1649 if (SC.ItinClassDef != nullptr && 1650 SC.ItinClassDef->getName() != "NoItinerary") 1651 continue; 1652 1653 const RecVec &InstRWs = SC.InstRWs; 1654 auto I = find_if(InstRWs, [&ProcModel](const Record *R) { 1655 return R->getValueAsDef("SchedModel") == ProcModel.ModelDef; 1656 }); 1657 if (I == InstRWs.end()) { 1658 PrintError("'" + ProcModel.ModelName + "' lacks information for '" + 1659 Inst->TheDef->getName() + "'"); 1660 Complete = false; 1661 } 1662 } 1663 HadCompleteModel = true; 1664 } 1665 if (!Complete) { 1666 errs() << "\n\nIncomplete schedule models found.\n" 1667 << "- Consider setting 'CompleteModel = 0' while developing new models.\n" 1668 << "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = 1'.\n" 1669 << "- Instructions should usually have Sched<[...]> as a superclass, " 1670 "you may temporarily use an empty list.\n" 1671 << "- Instructions related to unsupported features can be excluded with " 1672 "list<Predicate> UnsupportedFeatures = [HasA,..,HasY]; in the " 1673 "processor model.\n\n"; 1674 PrintFatalError("Incomplete schedule model"); 1675 } 1676 } 1677 1678 // Collect itinerary class resources for each processor. 1679 void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) { 1680 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 1681 const CodeGenProcModel &PM = ProcModels[PIdx]; 1682 // For all ItinRW entries. 1683 bool HasMatch = false; 1684 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); 1685 II != IE; ++II) { 1686 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); 1687 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) 1688 continue; 1689 if (HasMatch) 1690 PrintFatalError((*II)->getLoc(), "Duplicate itinerary class " 1691 + ItinClassDef->getName() 1692 + " in ItinResources for " + PM.ModelName); 1693 HasMatch = true; 1694 IdxVec Writes, Reads; 1695 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 1696 collectRWResources(Writes, Reads, PIdx); 1697 } 1698 } 1699 } 1700 1701 void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead, 1702 ArrayRef<unsigned> ProcIndices) { 1703 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 1704 if (SchedRW.TheDef) { 1705 if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) { 1706 for (unsigned Idx : ProcIndices) 1707 addWriteRes(SchedRW.TheDef, Idx); 1708 } 1709 else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) { 1710 for (unsigned Idx : ProcIndices) 1711 addReadAdvance(SchedRW.TheDef, Idx); 1712 } 1713 } 1714 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1715 AI != AE; ++AI) { 1716 IdxVec AliasProcIndices; 1717 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1718 AliasProcIndices.push_back( 1719 getProcModel((*AI)->getValueAsDef("SchedModel")).Index); 1720 } 1721 else 1722 AliasProcIndices = ProcIndices; 1723 const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW")); 1724 assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes"); 1725 1726 IdxVec ExpandedRWs; 1727 expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead); 1728 for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end(); 1729 SI != SE; ++SI) { 1730 collectRWResources(*SI, IsRead, AliasProcIndices); 1731 } 1732 } 1733 } 1734 1735 // Collect resources for a set of read/write types and processor indices. 1736 void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes, 1737 ArrayRef<unsigned> Reads, 1738 ArrayRef<unsigned> ProcIndices) { 1739 for (unsigned Idx : Writes) 1740 collectRWResources(Idx, /*IsRead=*/false, ProcIndices); 1741 1742 for (unsigned Idx : Reads) 1743 collectRWResources(Idx, /*IsRead=*/true, ProcIndices); 1744 } 1745 1746 // Find the processor's resource units for this kind of resource. 1747 Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind, 1748 const CodeGenProcModel &PM, 1749 ArrayRef<SMLoc> Loc) const { 1750 if (ProcResKind->isSubClassOf("ProcResourceUnits")) 1751 return ProcResKind; 1752 1753 Record *ProcUnitDef = nullptr; 1754 assert(!ProcResourceDefs.empty()); 1755 assert(!ProcResGroups.empty()); 1756 1757 for (Record *ProcResDef : ProcResourceDefs) { 1758 if (ProcResDef->getValueAsDef("Kind") == ProcResKind 1759 && ProcResDef->getValueAsDef("SchedModel") == PM.ModelDef) { 1760 if (ProcUnitDef) { 1761 PrintFatalError(Loc, 1762 "Multiple ProcessorResourceUnits associated with " 1763 + ProcResKind->getName()); 1764 } 1765 ProcUnitDef = ProcResDef; 1766 } 1767 } 1768 for (Record *ProcResGroup : ProcResGroups) { 1769 if (ProcResGroup == ProcResKind 1770 && ProcResGroup->getValueAsDef("SchedModel") == PM.ModelDef) { 1771 if (ProcUnitDef) { 1772 PrintFatalError(Loc, 1773 "Multiple ProcessorResourceUnits associated with " 1774 + ProcResKind->getName()); 1775 } 1776 ProcUnitDef = ProcResGroup; 1777 } 1778 } 1779 if (!ProcUnitDef) { 1780 PrintFatalError(Loc, 1781 "No ProcessorResources associated with " 1782 + ProcResKind->getName()); 1783 } 1784 return ProcUnitDef; 1785 } 1786 1787 // Iteratively add a resource and its super resources. 1788 void CodeGenSchedModels::addProcResource(Record *ProcResKind, 1789 CodeGenProcModel &PM, 1790 ArrayRef<SMLoc> Loc) { 1791 while (true) { 1792 Record *ProcResUnits = findProcResUnits(ProcResKind, PM, Loc); 1793 1794 // See if this ProcResource is already associated with this processor. 1795 if (is_contained(PM.ProcResourceDefs, ProcResUnits)) 1796 return; 1797 1798 PM.ProcResourceDefs.push_back(ProcResUnits); 1799 if (ProcResUnits->isSubClassOf("ProcResGroup")) 1800 return; 1801 1802 if (!ProcResUnits->getValueInit("Super")->isComplete()) 1803 return; 1804 1805 ProcResKind = ProcResUnits->getValueAsDef("Super"); 1806 } 1807 } 1808 1809 // Add resources for a SchedWrite to this processor if they don't exist. 1810 void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) { 1811 assert(PIdx && "don't add resources to an invalid Processor model"); 1812 1813 RecVec &WRDefs = ProcModels[PIdx].WriteResDefs; 1814 if (is_contained(WRDefs, ProcWriteResDef)) 1815 return; 1816 WRDefs.push_back(ProcWriteResDef); 1817 1818 // Visit ProcResourceKinds referenced by the newly discovered WriteRes. 1819 RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources"); 1820 for (RecIter WritePRI = ProcResDefs.begin(), WritePRE = ProcResDefs.end(); 1821 WritePRI != WritePRE; ++WritePRI) { 1822 addProcResource(*WritePRI, ProcModels[PIdx], ProcWriteResDef->getLoc()); 1823 } 1824 } 1825 1826 // Add resources for a ReadAdvance to this processor if they don't exist. 1827 void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef, 1828 unsigned PIdx) { 1829 RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs; 1830 if (is_contained(RADefs, ProcReadAdvanceDef)) 1831 return; 1832 RADefs.push_back(ProcReadAdvanceDef); 1833 } 1834 1835 unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const { 1836 RecIter PRPos = find(ProcResourceDefs, PRDef); 1837 if (PRPos == ProcResourceDefs.end()) 1838 PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in " 1839 "the ProcResources list for " + ModelName); 1840 // Idx=0 is reserved for invalid. 1841 return 1 + (PRPos - ProcResourceDefs.begin()); 1842 } 1843 1844 bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const { 1845 for (const Record *TheDef : UnsupportedFeaturesDefs) { 1846 for (const Record *PredDef : Inst.TheDef->getValueAsListOfDefs("Predicates")) { 1847 if (TheDef->getName() == PredDef->getName()) 1848 return true; 1849 } 1850 } 1851 return false; 1852 } 1853 1854 #ifndef NDEBUG 1855 void CodeGenProcModel::dump() const { 1856 dbgs() << Index << ": " << ModelName << " " 1857 << (ModelDef ? ModelDef->getName() : "inferred") << " " 1858 << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n'; 1859 } 1860 1861 void CodeGenSchedRW::dump() const { 1862 dbgs() << Name << (IsVariadic ? " (V) " : " "); 1863 if (IsSequence) { 1864 dbgs() << "("; 1865 dumpIdxVec(Sequence); 1866 dbgs() << ")"; 1867 } 1868 } 1869 1870 void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const { 1871 dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n' 1872 << " Writes: "; 1873 for (unsigned i = 0, N = Writes.size(); i < N; ++i) { 1874 SchedModels->getSchedWrite(Writes[i]).dump(); 1875 if (i < N-1) { 1876 dbgs() << '\n'; 1877 dbgs().indent(10); 1878 } 1879 } 1880 dbgs() << "\n Reads: "; 1881 for (unsigned i = 0, N = Reads.size(); i < N; ++i) { 1882 SchedModels->getSchedRead(Reads[i]).dump(); 1883 if (i < N-1) { 1884 dbgs() << '\n'; 1885 dbgs().indent(10); 1886 } 1887 } 1888 dbgs() << "\n ProcIdx: "; dumpIdxVec(ProcIndices); dbgs() << '\n'; 1889 if (!Transitions.empty()) { 1890 dbgs() << "\n Transitions for Proc "; 1891 for (const CodeGenSchedTransition &Transition : Transitions) { 1892 dumpIdxVec(Transition.ProcIndices); 1893 } 1894 } 1895 } 1896 1897 void PredTransitions::dump() const { 1898 dbgs() << "Expanded Variants:\n"; 1899 for (std::vector<PredTransition>::const_iterator 1900 TI = TransVec.begin(), TE = TransVec.end(); TI != TE; ++TI) { 1901 dbgs() << "{"; 1902 for (SmallVectorImpl<PredCheck>::const_iterator 1903 PCI = TI->PredTerm.begin(), PCE = TI->PredTerm.end(); 1904 PCI != PCE; ++PCI) { 1905 if (PCI != TI->PredTerm.begin()) 1906 dbgs() << ", "; 1907 dbgs() << SchedModels.getSchedRW(PCI->RWIdx, PCI->IsRead).Name 1908 << ":" << PCI->Predicate->getName(); 1909 } 1910 dbgs() << "},\n => {"; 1911 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1912 WSI = TI->WriteSequences.begin(), WSE = TI->WriteSequences.end(); 1913 WSI != WSE; ++WSI) { 1914 dbgs() << "("; 1915 for (SmallVectorImpl<unsigned>::const_iterator 1916 WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) { 1917 if (WI != WSI->begin()) 1918 dbgs() << ", "; 1919 dbgs() << SchedModels.getSchedWrite(*WI).Name; 1920 } 1921 dbgs() << "),"; 1922 } 1923 dbgs() << "}\n"; 1924 } 1925 } 1926 #endif // NDEBUG 1927