1 //===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines structures to encapsulate the machine model as described in 11 // the target description. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenSchedule.h" 16 #include "CodeGenInstruction.h" 17 #include "CodeGenTarget.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Support/Casting.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/Regex.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include "llvm/TableGen/Error.h" 28 #include <algorithm> 29 #include <iterator> 30 #include <utility> 31 32 using namespace llvm; 33 34 #define DEBUG_TYPE "subtarget-emitter" 35 36 #ifndef NDEBUG 37 static void dumpIdxVec(ArrayRef<unsigned> V) { 38 for (unsigned Idx : V) 39 dbgs() << Idx << ", "; 40 } 41 #endif 42 43 namespace { 44 45 // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp. 46 struct InstrsOp : public SetTheory::Operator { 47 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 48 ArrayRef<SMLoc> Loc) override { 49 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc); 50 } 51 }; 52 53 // (instregex "OpcPat",...) Find all instructions matching an opcode pattern. 54 struct InstRegexOp : public SetTheory::Operator { 55 const CodeGenTarget &Target; 56 InstRegexOp(const CodeGenTarget &t): Target(t) {} 57 58 /// Remove any text inside of parentheses from S. 59 static std::string removeParens(llvm::StringRef S) { 60 std::string Result; 61 unsigned Paren = 0; 62 // NB: We don't care about escaped parens here. 63 for (char C : S) { 64 switch (C) { 65 case '(': 66 ++Paren; 67 break; 68 case ')': 69 --Paren; 70 break; 71 default: 72 if (Paren == 0) 73 Result += C; 74 } 75 } 76 return Result; 77 } 78 79 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 80 ArrayRef<SMLoc> Loc) override { 81 for (Init *Arg : make_range(Expr->arg_begin(), Expr->arg_end())) { 82 StringInit *SI = dyn_cast<StringInit>(Arg); 83 if (!SI) 84 PrintFatalError(Loc, "instregex requires pattern string: " + 85 Expr->getAsString()); 86 StringRef Original = SI->getValue(); 87 88 // Extract a prefix that we can binary search on. 89 static const char RegexMetachars[] = "()^$|*+?.[]\\{}"; 90 auto FirstMeta = Original.find_first_of(RegexMetachars); 91 92 // Look for top-level | or ?. We cannot optimize them to binary search. 93 if (removeParens(Original).find_first_of("|?") != std::string::npos) 94 FirstMeta = 0; 95 96 Optional<Regex> Regexpr = None; 97 StringRef Prefix = Original.substr(0, FirstMeta); 98 StringRef PatStr = Original.substr(FirstMeta); 99 if (!PatStr.empty()) { 100 // For the rest use a python-style prefix match. 101 std::string pat = PatStr; 102 if (pat[0] != '^') { 103 pat.insert(0, "^("); 104 pat.insert(pat.end(), ')'); 105 } 106 Regexpr = Regex(pat); 107 } 108 109 int NumMatches = 0; 110 111 unsigned NumGeneric = Target.getNumFixedInstructions(); 112 ArrayRef<const CodeGenInstruction *> Generics = 113 Target.getInstructionsByEnumValue().slice(0, NumGeneric + 1); 114 115 // The generic opcodes are unsorted, handle them manually. 116 for (auto *Inst : Generics) { 117 StringRef InstName = Inst->TheDef->getName(); 118 if (InstName.startswith(Prefix) && 119 (!Regexpr || Regexpr->match(InstName.substr(Prefix.size())))) { 120 Elts.insert(Inst->TheDef); 121 NumMatches++; 122 } 123 } 124 125 ArrayRef<const CodeGenInstruction *> Instructions = 126 Target.getInstructionsByEnumValue().slice(NumGeneric + 1); 127 128 // Target instructions are sorted. Find the range that starts with our 129 // prefix. 130 struct Comp { 131 bool operator()(const CodeGenInstruction *LHS, StringRef RHS) { 132 return LHS->TheDef->getName() < RHS; 133 } 134 bool operator()(StringRef LHS, const CodeGenInstruction *RHS) { 135 return LHS < RHS->TheDef->getName() && 136 !RHS->TheDef->getName().startswith(LHS); 137 } 138 }; 139 auto Range = std::equal_range(Instructions.begin(), Instructions.end(), 140 Prefix, Comp()); 141 142 // For this range we know that it starts with the prefix. Check if there's 143 // a regex that needs to be checked. 144 for (auto *Inst : make_range(Range)) { 145 StringRef InstName = Inst->TheDef->getName(); 146 if (!Regexpr || Regexpr->match(InstName.substr(Prefix.size()))) { 147 Elts.insert(Inst->TheDef); 148 NumMatches++; 149 } 150 } 151 152 if (0 == NumMatches) 153 PrintFatalError(Loc, "instregex has no matches: " + Original); 154 } 155 } 156 }; 157 158 } // end anonymous namespace 159 160 /// CodeGenModels ctor interprets machine model records and populates maps. 161 CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK, 162 const CodeGenTarget &TGT): 163 Records(RK), Target(TGT) { 164 165 Sets.addFieldExpander("InstRW", "Instrs"); 166 167 // Allow Set evaluation to recognize the dags used in InstRW records: 168 // (instrs Op1, Op1...) 169 Sets.addOperator("instrs", llvm::make_unique<InstrsOp>()); 170 Sets.addOperator("instregex", llvm::make_unique<InstRegexOp>(Target)); 171 172 // Instantiate a CodeGenProcModel for each SchedMachineModel with the values 173 // that are explicitly referenced in tablegen records. Resources associated 174 // with each processor will be derived later. Populate ProcModelMap with the 175 // CodeGenProcModel instances. 176 collectProcModels(); 177 178 // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly 179 // defined, and populate SchedReads and SchedWrites vectors. Implicit 180 // SchedReadWrites that represent sequences derived from expanded variant will 181 // be inferred later. 182 collectSchedRW(); 183 184 // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly 185 // required by an instruction definition, and populate SchedClassIdxMap. Set 186 // NumItineraryClasses to the number of explicit itinerary classes referenced 187 // by instructions. Set NumInstrSchedClasses to the number of itinerary 188 // classes plus any classes implied by instructions that derive from class 189 // Sched and provide SchedRW list. This does not infer any new classes from 190 // SchedVariant. 191 collectSchedClasses(); 192 193 // Find instruction itineraries for each processor. Sort and populate 194 // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires 195 // all itinerary classes to be discovered. 196 collectProcItins(); 197 198 // Find ItinRW records for each processor and itinerary class. 199 // (For per-operand resources mapped to itinerary classes). 200 collectProcItinRW(); 201 202 // Find UnsupportedFeatures records for each processor. 203 // (For per-operand resources mapped to itinerary classes). 204 collectProcUnsupportedFeatures(); 205 206 // Infer new SchedClasses from SchedVariant. 207 inferSchedClasses(); 208 209 // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and 210 // ProcResourceDefs. 211 DEBUG(dbgs() << "\n+++ RESOURCE DEFINITIONS (collectProcResources) +++\n"); 212 collectProcResources(); 213 214 // Collect optional processor description. 215 collectOptionalProcessorInfo(); 216 217 checkCompleteness(); 218 } 219 220 void CodeGenSchedModels::collectRetireControlUnits() { 221 RecVec Units = Records.getAllDerivedDefinitions("RetireControlUnit"); 222 223 for (Record *RCU : Units) { 224 CodeGenProcModel &PM = getProcModel(RCU->getValueAsDef("SchedModel")); 225 if (PM.RetireControlUnit) { 226 PrintError(RCU->getLoc(), 227 "Expected a single RetireControlUnit definition"); 228 PrintNote(PM.RetireControlUnit->getLoc(), 229 "Previous definition of RetireControlUnit was here"); 230 } 231 PM.RetireControlUnit = RCU; 232 } 233 } 234 235 /// Collect optional processor information. 236 void CodeGenSchedModels::collectOptionalProcessorInfo() { 237 // Find register file definitions for each processor. 238 collectRegisterFiles(); 239 240 // Collect processor RetireControlUnit descriptors if available. 241 collectRetireControlUnits(); 242 243 // Find pfm counter definitions for each processor. 244 collectPfmCounters(); 245 246 checkCompleteness(); 247 } 248 249 /// Gather all processor models. 250 void CodeGenSchedModels::collectProcModels() { 251 RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor"); 252 llvm::sort(ProcRecords.begin(), ProcRecords.end(), LessRecordFieldName()); 253 254 // Reserve space because we can. Reallocation would be ok. 255 ProcModels.reserve(ProcRecords.size()+1); 256 257 // Use idx=0 for NoModel/NoItineraries. 258 Record *NoModelDef = Records.getDef("NoSchedModel"); 259 Record *NoItinsDef = Records.getDef("NoItineraries"); 260 ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef); 261 ProcModelMap[NoModelDef] = 0; 262 263 // For each processor, find a unique machine model. 264 DEBUG(dbgs() << "+++ PROCESSOR MODELs (addProcModel) +++\n"); 265 for (Record *ProcRecord : ProcRecords) 266 addProcModel(ProcRecord); 267 } 268 269 /// Get a unique processor model based on the defined MachineModel and 270 /// ProcessorItineraries. 271 void CodeGenSchedModels::addProcModel(Record *ProcDef) { 272 Record *ModelKey = getModelOrItinDef(ProcDef); 273 if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second) 274 return; 275 276 std::string Name = ModelKey->getName(); 277 if (ModelKey->isSubClassOf("SchedMachineModel")) { 278 Record *ItinsDef = ModelKey->getValueAsDef("Itineraries"); 279 ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef); 280 } 281 else { 282 // An itinerary is defined without a machine model. Infer a new model. 283 if (!ModelKey->getValueAsListOfDefs("IID").empty()) 284 Name = Name + "Model"; 285 ProcModels.emplace_back(ProcModels.size(), Name, 286 ProcDef->getValueAsDef("SchedModel"), ModelKey); 287 } 288 DEBUG(ProcModels.back().dump()); 289 } 290 291 // Recursively find all reachable SchedReadWrite records. 292 static void scanSchedRW(Record *RWDef, RecVec &RWDefs, 293 SmallPtrSet<Record*, 16> &RWSet) { 294 if (!RWSet.insert(RWDef).second) 295 return; 296 RWDefs.push_back(RWDef); 297 // Reads don't currently have sequence records, but it can be added later. 298 if (RWDef->isSubClassOf("WriteSequence")) { 299 RecVec Seq = RWDef->getValueAsListOfDefs("Writes"); 300 for (Record *WSRec : Seq) 301 scanSchedRW(WSRec, RWDefs, RWSet); 302 } 303 else if (RWDef->isSubClassOf("SchedVariant")) { 304 // Visit each variant (guarded by a different predicate). 305 RecVec Vars = RWDef->getValueAsListOfDefs("Variants"); 306 for (Record *Variant : Vars) { 307 // Visit each RW in the sequence selected by the current variant. 308 RecVec Selected = Variant->getValueAsListOfDefs("Selected"); 309 for (Record *SelDef : Selected) 310 scanSchedRW(SelDef, RWDefs, RWSet); 311 } 312 } 313 } 314 315 // Collect and sort all SchedReadWrites reachable via tablegen records. 316 // More may be inferred later when inferring new SchedClasses from variants. 317 void CodeGenSchedModels::collectSchedRW() { 318 // Reserve idx=0 for invalid writes/reads. 319 SchedWrites.resize(1); 320 SchedReads.resize(1); 321 322 SmallPtrSet<Record*, 16> RWSet; 323 324 // Find all SchedReadWrites referenced by instruction defs. 325 RecVec SWDefs, SRDefs; 326 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 327 Record *SchedDef = Inst->TheDef; 328 if (SchedDef->isValueUnset("SchedRW")) 329 continue; 330 RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW"); 331 for (Record *RW : RWs) { 332 if (RW->isSubClassOf("SchedWrite")) 333 scanSchedRW(RW, SWDefs, RWSet); 334 else { 335 assert(RW->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 336 scanSchedRW(RW, SRDefs, RWSet); 337 } 338 } 339 } 340 // Find all ReadWrites referenced by InstRW. 341 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 342 for (Record *InstRWDef : InstRWDefs) { 343 // For all OperandReadWrites. 344 RecVec RWDefs = InstRWDef->getValueAsListOfDefs("OperandReadWrites"); 345 for (Record *RWDef : RWDefs) { 346 if (RWDef->isSubClassOf("SchedWrite")) 347 scanSchedRW(RWDef, SWDefs, RWSet); 348 else { 349 assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 350 scanSchedRW(RWDef, SRDefs, RWSet); 351 } 352 } 353 } 354 // Find all ReadWrites referenced by ItinRW. 355 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 356 for (Record *ItinRWDef : ItinRWDefs) { 357 // For all OperandReadWrites. 358 RecVec RWDefs = ItinRWDef->getValueAsListOfDefs("OperandReadWrites"); 359 for (Record *RWDef : RWDefs) { 360 if (RWDef->isSubClassOf("SchedWrite")) 361 scanSchedRW(RWDef, SWDefs, RWSet); 362 else { 363 assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 364 scanSchedRW(RWDef, SRDefs, RWSet); 365 } 366 } 367 } 368 // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted 369 // for the loop below that initializes Alias vectors. 370 RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias"); 371 llvm::sort(AliasDefs.begin(), AliasDefs.end(), LessRecord()); 372 for (Record *ADef : AliasDefs) { 373 Record *MatchDef = ADef->getValueAsDef("MatchRW"); 374 Record *AliasDef = ADef->getValueAsDef("AliasRW"); 375 if (MatchDef->isSubClassOf("SchedWrite")) { 376 if (!AliasDef->isSubClassOf("SchedWrite")) 377 PrintFatalError(ADef->getLoc(), "SchedWrite Alias must be SchedWrite"); 378 scanSchedRW(AliasDef, SWDefs, RWSet); 379 } 380 else { 381 assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 382 if (!AliasDef->isSubClassOf("SchedRead")) 383 PrintFatalError(ADef->getLoc(), "SchedRead Alias must be SchedRead"); 384 scanSchedRW(AliasDef, SRDefs, RWSet); 385 } 386 } 387 // Sort and add the SchedReadWrites directly referenced by instructions or 388 // itinerary resources. Index reads and writes in separate domains. 389 llvm::sort(SWDefs.begin(), SWDefs.end(), LessRecord()); 390 for (Record *SWDef : SWDefs) { 391 assert(!getSchedRWIdx(SWDef, /*IsRead=*/false) && "duplicate SchedWrite"); 392 SchedWrites.emplace_back(SchedWrites.size(), SWDef); 393 } 394 llvm::sort(SRDefs.begin(), SRDefs.end(), LessRecord()); 395 for (Record *SRDef : SRDefs) { 396 assert(!getSchedRWIdx(SRDef, /*IsRead-*/true) && "duplicate SchedWrite"); 397 SchedReads.emplace_back(SchedReads.size(), SRDef); 398 } 399 // Initialize WriteSequence vectors. 400 for (CodeGenSchedRW &CGRW : SchedWrites) { 401 if (!CGRW.IsSequence) 402 continue; 403 findRWs(CGRW.TheDef->getValueAsListOfDefs("Writes"), CGRW.Sequence, 404 /*IsRead=*/false); 405 } 406 // Initialize Aliases vectors. 407 for (Record *ADef : AliasDefs) { 408 Record *AliasDef = ADef->getValueAsDef("AliasRW"); 409 getSchedRW(AliasDef).IsAlias = true; 410 Record *MatchDef = ADef->getValueAsDef("MatchRW"); 411 CodeGenSchedRW &RW = getSchedRW(MatchDef); 412 if (RW.IsAlias) 413 PrintFatalError(ADef->getLoc(), "Cannot Alias an Alias"); 414 RW.Aliases.push_back(ADef); 415 } 416 DEBUG( 417 dbgs() << "\n+++ SCHED READS and WRITES (collectSchedRW) +++\n"; 418 for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) { 419 dbgs() << WIdx << ": "; 420 SchedWrites[WIdx].dump(); 421 dbgs() << '\n'; 422 } 423 for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd; ++RIdx) { 424 dbgs() << RIdx << ": "; 425 SchedReads[RIdx].dump(); 426 dbgs() << '\n'; 427 } 428 RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite"); 429 for (Record *RWDef : RWDefs) { 430 if (!getSchedRWIdx(RWDef, RWDef->isSubClassOf("SchedRead"))) { 431 StringRef Name = RWDef->getName(); 432 if (Name != "NoWrite" && Name != "ReadDefault") 433 dbgs() << "Unused SchedReadWrite " << Name << '\n'; 434 } 435 }); 436 } 437 438 /// Compute a SchedWrite name from a sequence of writes. 439 std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) { 440 std::string Name("("); 441 for (auto I = Seq.begin(), E = Seq.end(); I != E; ++I) { 442 if (I != Seq.begin()) 443 Name += '_'; 444 Name += getSchedRW(*I, IsRead).Name; 445 } 446 Name += ')'; 447 return Name; 448 } 449 450 unsigned CodeGenSchedModels::getSchedRWIdx(Record *Def, bool IsRead) const { 451 const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 452 for (std::vector<CodeGenSchedRW>::const_iterator I = RWVec.begin(), 453 E = RWVec.end(); I != E; ++I) { 454 if (I->TheDef == Def) 455 return I - RWVec.begin(); 456 } 457 return 0; 458 } 459 460 bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const { 461 for (const CodeGenSchedRW &Read : SchedReads) { 462 Record *ReadDef = Read.TheDef; 463 if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance")) 464 continue; 465 466 RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites"); 467 if (is_contained(ValidWrites, WriteDef)) { 468 return true; 469 } 470 } 471 return false; 472 } 473 474 static void splitSchedReadWrites(const RecVec &RWDefs, 475 RecVec &WriteDefs, RecVec &ReadDefs) { 476 for (Record *RWDef : RWDefs) { 477 if (RWDef->isSubClassOf("SchedWrite")) 478 WriteDefs.push_back(RWDef); 479 else { 480 assert(RWDef->isSubClassOf("SchedRead") && "unknown SchedReadWrite"); 481 ReadDefs.push_back(RWDef); 482 } 483 } 484 } 485 486 // Split the SchedReadWrites defs and call findRWs for each list. 487 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, 488 IdxVec &Writes, IdxVec &Reads) const { 489 RecVec WriteDefs; 490 RecVec ReadDefs; 491 splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs); 492 findRWs(WriteDefs, Writes, false); 493 findRWs(ReadDefs, Reads, true); 494 } 495 496 // Call getSchedRWIdx for all elements in a sequence of SchedRW defs. 497 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs, 498 bool IsRead) const { 499 for (Record *RWDef : RWDefs) { 500 unsigned Idx = getSchedRWIdx(RWDef, IsRead); 501 assert(Idx && "failed to collect SchedReadWrite"); 502 RWs.push_back(Idx); 503 } 504 } 505 506 void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq, 507 bool IsRead) const { 508 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 509 if (!SchedRW.IsSequence) { 510 RWSeq.push_back(RWIdx); 511 return; 512 } 513 int Repeat = 514 SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1; 515 for (int i = 0; i < Repeat; ++i) { 516 for (unsigned I : SchedRW.Sequence) { 517 expandRWSequence(I, RWSeq, IsRead); 518 } 519 } 520 } 521 522 // Expand a SchedWrite as a sequence following any aliases that coincide with 523 // the given processor model. 524 void CodeGenSchedModels::expandRWSeqForProc( 525 unsigned RWIdx, IdxVec &RWSeq, bool IsRead, 526 const CodeGenProcModel &ProcModel) const { 527 528 const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead); 529 Record *AliasDef = nullptr; 530 for (RecIter AI = SchedWrite.Aliases.begin(), AE = SchedWrite.Aliases.end(); 531 AI != AE; ++AI) { 532 const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW")); 533 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 534 Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); 535 if (&getProcModel(ModelDef) != &ProcModel) 536 continue; 537 } 538 if (AliasDef) 539 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 540 "defined for processor " + ProcModel.ModelName + 541 " Ensure only one SchedAlias exists per RW."); 542 AliasDef = AliasRW.TheDef; 543 } 544 if (AliasDef) { 545 expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead), 546 RWSeq, IsRead,ProcModel); 547 return; 548 } 549 if (!SchedWrite.IsSequence) { 550 RWSeq.push_back(RWIdx); 551 return; 552 } 553 int Repeat = 554 SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1; 555 for (int i = 0; i < Repeat; ++i) { 556 for (unsigned I : SchedWrite.Sequence) { 557 expandRWSeqForProc(I, RWSeq, IsRead, ProcModel); 558 } 559 } 560 } 561 562 // Find the existing SchedWrite that models this sequence of writes. 563 unsigned CodeGenSchedModels::findRWForSequence(ArrayRef<unsigned> Seq, 564 bool IsRead) { 565 std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 566 567 for (std::vector<CodeGenSchedRW>::iterator I = RWVec.begin(), E = RWVec.end(); 568 I != E; ++I) { 569 if (makeArrayRef(I->Sequence) == Seq) 570 return I - RWVec.begin(); 571 } 572 // Index zero reserved for invalid RW. 573 return 0; 574 } 575 576 /// Add this ReadWrite if it doesn't already exist. 577 unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq, 578 bool IsRead) { 579 assert(!Seq.empty() && "cannot insert empty sequence"); 580 if (Seq.size() == 1) 581 return Seq.back(); 582 583 unsigned Idx = findRWForSequence(Seq, IsRead); 584 if (Idx) 585 return Idx; 586 587 unsigned RWIdx = IsRead ? SchedReads.size() : SchedWrites.size(); 588 CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead)); 589 if (IsRead) 590 SchedReads.push_back(SchedRW); 591 else 592 SchedWrites.push_back(SchedRW); 593 return RWIdx; 594 } 595 596 /// Visit all the instruction definitions for this target to gather and 597 /// enumerate the itinerary classes. These are the explicitly specified 598 /// SchedClasses. More SchedClasses may be inferred. 599 void CodeGenSchedModels::collectSchedClasses() { 600 601 // NoItinerary is always the first class at Idx=0 602 assert(SchedClasses.empty() && "Expected empty sched class"); 603 SchedClasses.emplace_back(0, "NoInstrModel", 604 Records.getDef("NoItinerary")); 605 SchedClasses.back().ProcIndices.push_back(0); 606 607 // Create a SchedClass for each unique combination of itinerary class and 608 // SchedRW list. 609 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 610 Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary"); 611 IdxVec Writes, Reads; 612 if (!Inst->TheDef->isValueUnset("SchedRW")) 613 findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads); 614 615 // ProcIdx == 0 indicates the class applies to all processors. 616 unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, /*ProcIndices*/{0}); 617 InstrClassMap[Inst->TheDef] = SCIdx; 618 } 619 // Create classes for InstRW defs. 620 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 621 llvm::sort(InstRWDefs.begin(), InstRWDefs.end(), LessRecord()); 622 DEBUG(dbgs() << "\n+++ SCHED CLASSES (createInstRWClass) +++\n"); 623 for (Record *RWDef : InstRWDefs) 624 createInstRWClass(RWDef); 625 626 NumInstrSchedClasses = SchedClasses.size(); 627 628 bool EnableDump = false; 629 DEBUG(EnableDump = true); 630 if (!EnableDump) 631 return; 632 633 dbgs() << "\n+++ ITINERARIES and/or MACHINE MODELS (collectSchedClasses) +++\n"; 634 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 635 StringRef InstName = Inst->TheDef->getName(); 636 unsigned SCIdx = getSchedClassIdx(*Inst); 637 if (!SCIdx) { 638 if (!Inst->hasNoSchedulingInfo) 639 dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n'; 640 continue; 641 } 642 CodeGenSchedClass &SC = getSchedClass(SCIdx); 643 if (SC.ProcIndices[0] != 0) 644 PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class " 645 "must not be subtarget specific."); 646 647 IdxVec ProcIndices; 648 if (SC.ItinClassDef->getName() != "NoItinerary") { 649 ProcIndices.push_back(0); 650 dbgs() << "Itinerary for " << InstName << ": " 651 << SC.ItinClassDef->getName() << '\n'; 652 } 653 if (!SC.Writes.empty()) { 654 ProcIndices.push_back(0); 655 dbgs() << "SchedRW machine model for " << InstName; 656 for (IdxIter WI = SC.Writes.begin(), WE = SC.Writes.end(); WI != WE; ++WI) 657 dbgs() << " " << SchedWrites[*WI].Name; 658 for (IdxIter RI = SC.Reads.begin(), RE = SC.Reads.end(); RI != RE; ++RI) 659 dbgs() << " " << SchedReads[*RI].Name; 660 dbgs() << '\n'; 661 } 662 const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs; 663 for (Record *RWDef : RWDefs) { 664 const CodeGenProcModel &ProcModel = 665 getProcModel(RWDef->getValueAsDef("SchedModel")); 666 ProcIndices.push_back(ProcModel.Index); 667 dbgs() << "InstRW on " << ProcModel.ModelName << " for " << InstName; 668 IdxVec Writes; 669 IdxVec Reads; 670 findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"), 671 Writes, Reads); 672 for (unsigned WIdx : Writes) 673 dbgs() << " " << SchedWrites[WIdx].Name; 674 for (unsigned RIdx : Reads) 675 dbgs() << " " << SchedReads[RIdx].Name; 676 dbgs() << '\n'; 677 } 678 // If ProcIndices contains zero, the class applies to all processors. 679 if (!std::count(ProcIndices.begin(), ProcIndices.end(), 0)) { 680 for (const CodeGenProcModel &PM : ProcModels) { 681 if (!std::count(ProcIndices.begin(), ProcIndices.end(), PM.Index)) 682 dbgs() << "No machine model for " << Inst->TheDef->getName() 683 << " on processor " << PM.ModelName << '\n'; 684 } 685 } 686 } 687 } 688 689 /// Find an SchedClass that has been inferred from a per-operand list of 690 /// SchedWrites and SchedReads. 691 unsigned CodeGenSchedModels::findSchedClassIdx(Record *ItinClassDef, 692 ArrayRef<unsigned> Writes, 693 ArrayRef<unsigned> Reads) const { 694 for (SchedClassIter I = schedClassBegin(), E = schedClassEnd(); I != E; ++I) 695 if (I->isKeyEqual(ItinClassDef, Writes, Reads)) 696 return I - schedClassBegin(); 697 return 0; 698 } 699 700 // Get the SchedClass index for an instruction. 701 unsigned CodeGenSchedModels::getSchedClassIdx( 702 const CodeGenInstruction &Inst) const { 703 704 return InstrClassMap.lookup(Inst.TheDef); 705 } 706 707 std::string 708 CodeGenSchedModels::createSchedClassName(Record *ItinClassDef, 709 ArrayRef<unsigned> OperWrites, 710 ArrayRef<unsigned> OperReads) { 711 712 std::string Name; 713 if (ItinClassDef && ItinClassDef->getName() != "NoItinerary") 714 Name = ItinClassDef->getName(); 715 for (unsigned Idx : OperWrites) { 716 if (!Name.empty()) 717 Name += '_'; 718 Name += SchedWrites[Idx].Name; 719 } 720 for (unsigned Idx : OperReads) { 721 Name += '_'; 722 Name += SchedReads[Idx].Name; 723 } 724 return Name; 725 } 726 727 std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) { 728 729 std::string Name; 730 for (RecIter I = InstDefs.begin(), E = InstDefs.end(); I != E; ++I) { 731 if (I != InstDefs.begin()) 732 Name += '_'; 733 Name += (*I)->getName(); 734 } 735 return Name; 736 } 737 738 /// Add an inferred sched class from an itinerary class and per-operand list of 739 /// SchedWrites and SchedReads. ProcIndices contains the set of IDs of 740 /// processors that may utilize this class. 741 unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef, 742 ArrayRef<unsigned> OperWrites, 743 ArrayRef<unsigned> OperReads, 744 ArrayRef<unsigned> ProcIndices) { 745 assert(!ProcIndices.empty() && "expect at least one ProcIdx"); 746 747 unsigned Idx = findSchedClassIdx(ItinClassDef, OperWrites, OperReads); 748 if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) { 749 IdxVec PI; 750 std::set_union(SchedClasses[Idx].ProcIndices.begin(), 751 SchedClasses[Idx].ProcIndices.end(), 752 ProcIndices.begin(), ProcIndices.end(), 753 std::back_inserter(PI)); 754 SchedClasses[Idx].ProcIndices = std::move(PI); 755 return Idx; 756 } 757 Idx = SchedClasses.size(); 758 SchedClasses.emplace_back(Idx, 759 createSchedClassName(ItinClassDef, OperWrites, 760 OperReads), 761 ItinClassDef); 762 CodeGenSchedClass &SC = SchedClasses.back(); 763 SC.Writes = OperWrites; 764 SC.Reads = OperReads; 765 SC.ProcIndices = ProcIndices; 766 767 return Idx; 768 } 769 770 // Create classes for each set of opcodes that are in the same InstReadWrite 771 // definition across all processors. 772 void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) { 773 // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that 774 // intersects with an existing class via a previous InstRWDef. Instrs that do 775 // not intersect with an existing class refer back to their former class as 776 // determined from ItinDef or SchedRW. 777 SmallMapVector<unsigned, SmallVector<Record *, 8>, 4> ClassInstrs; 778 // Sort Instrs into sets. 779 const RecVec *InstDefs = Sets.expand(InstRWDef); 780 if (InstDefs->empty()) 781 PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes"); 782 783 for (Record *InstDef : *InstDefs) { 784 InstClassMapTy::const_iterator Pos = InstrClassMap.find(InstDef); 785 if (Pos == InstrClassMap.end()) 786 PrintFatalError(InstDef->getLoc(), "No sched class for instruction."); 787 unsigned SCIdx = Pos->second; 788 ClassInstrs[SCIdx].push_back(InstDef); 789 } 790 // For each set of Instrs, create a new class if necessary, and map or remap 791 // the Instrs to it. 792 for (auto &Entry : ClassInstrs) { 793 unsigned OldSCIdx = Entry.first; 794 ArrayRef<Record*> InstDefs = Entry.second; 795 // If the all instrs in the current class are accounted for, then leave 796 // them mapped to their old class. 797 if (OldSCIdx) { 798 const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs; 799 if (!RWDefs.empty()) { 800 const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]); 801 unsigned OrigNumInstrs = 802 count_if(*OrigInstDefs, [&](Record *OIDef) { 803 return InstrClassMap[OIDef] == OldSCIdx; 804 }); 805 if (OrigNumInstrs == InstDefs.size()) { 806 assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 && 807 "expected a generic SchedClass"); 808 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel"); 809 // Make sure we didn't already have a InstRW containing this 810 // instruction on this model. 811 for (Record *RWD : RWDefs) { 812 if (RWD->getValueAsDef("SchedModel") == RWModelDef && 813 RWModelDef->getValueAsBit("FullInstRWOverlapCheck")) { 814 for (Record *Inst : InstDefs) { 815 PrintFatalError(InstRWDef->getLoc(), "Overlapping InstRW def " + 816 Inst->getName() + " also matches " + 817 RWD->getValue("Instrs")->getValue()->getAsString()); 818 } 819 } 820 } 821 DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":" 822 << SchedClasses[OldSCIdx].Name << " on " 823 << RWModelDef->getName() << "\n"); 824 SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef); 825 continue; 826 } 827 } 828 } 829 unsigned SCIdx = SchedClasses.size(); 830 SchedClasses.emplace_back(SCIdx, createSchedClassName(InstDefs), nullptr); 831 CodeGenSchedClass &SC = SchedClasses.back(); 832 DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on " 833 << InstRWDef->getValueAsDef("SchedModel")->getName() << "\n"); 834 835 // Preserve ItinDef and Writes/Reads for processors without an InstRW entry. 836 SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef; 837 SC.Writes = SchedClasses[OldSCIdx].Writes; 838 SC.Reads = SchedClasses[OldSCIdx].Reads; 839 SC.ProcIndices.push_back(0); 840 // If we had an old class, copy it's InstRWs to this new class. 841 if (OldSCIdx) { 842 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel"); 843 for (Record *OldRWDef : SchedClasses[OldSCIdx].InstRWs) { 844 if (OldRWDef->getValueAsDef("SchedModel") == RWModelDef) { 845 for (Record *InstDef : InstDefs) { 846 PrintFatalError(OldRWDef->getLoc(), "Overlapping InstRW def " + 847 InstDef->getName() + " also matches " + 848 OldRWDef->getValue("Instrs")->getValue()->getAsString()); 849 } 850 } 851 assert(OldRWDef != InstRWDef && 852 "SchedClass has duplicate InstRW def"); 853 SC.InstRWs.push_back(OldRWDef); 854 } 855 } 856 // Map each Instr to this new class. 857 for (Record *InstDef : InstDefs) 858 InstrClassMap[InstDef] = SCIdx; 859 SC.InstRWs.push_back(InstRWDef); 860 } 861 } 862 863 // True if collectProcItins found anything. 864 bool CodeGenSchedModels::hasItineraries() const { 865 for (const CodeGenProcModel &PM : make_range(procModelBegin(),procModelEnd())) { 866 if (PM.hasItineraries()) 867 return true; 868 } 869 return false; 870 } 871 872 // Gather the processor itineraries. 873 void CodeGenSchedModels::collectProcItins() { 874 DEBUG(dbgs() << "\n+++ PROBLEM ITINERARIES (collectProcItins) +++\n"); 875 for (CodeGenProcModel &ProcModel : ProcModels) { 876 if (!ProcModel.hasItineraries()) 877 continue; 878 879 RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID"); 880 assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect"); 881 882 // Populate ItinDefList with Itinerary records. 883 ProcModel.ItinDefList.resize(NumInstrSchedClasses); 884 885 // Insert each itinerary data record in the correct position within 886 // the processor model's ItinDefList. 887 for (Record *ItinData : ItinRecords) { 888 Record *ItinDef = ItinData->getValueAsDef("TheClass"); 889 bool FoundClass = false; 890 for (SchedClassIter SCI = schedClassBegin(), SCE = schedClassEnd(); 891 SCI != SCE; ++SCI) { 892 // Multiple SchedClasses may share an itinerary. Update all of them. 893 if (SCI->ItinClassDef == ItinDef) { 894 ProcModel.ItinDefList[SCI->Index] = ItinData; 895 FoundClass = true; 896 } 897 } 898 if (!FoundClass) { 899 DEBUG(dbgs() << ProcModel.ItinsDef->getName() 900 << " missing class for itinerary " << ItinDef->getName() << '\n'); 901 } 902 } 903 // Check for missing itinerary entries. 904 assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec"); 905 DEBUG( 906 for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) { 907 if (!ProcModel.ItinDefList[i]) 908 dbgs() << ProcModel.ItinsDef->getName() 909 << " missing itinerary for class " 910 << SchedClasses[i].Name << '\n'; 911 }); 912 } 913 } 914 915 // Gather the read/write types for each itinerary class. 916 void CodeGenSchedModels::collectProcItinRW() { 917 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 918 llvm::sort(ItinRWDefs.begin(), ItinRWDefs.end(), LessRecord()); 919 for (Record *RWDef : ItinRWDefs) { 920 if (!RWDef->getValueInit("SchedModel")->isComplete()) 921 PrintFatalError(RWDef->getLoc(), "SchedModel is undefined"); 922 Record *ModelDef = RWDef->getValueAsDef("SchedModel"); 923 ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef); 924 if (I == ProcModelMap.end()) { 925 PrintFatalError(RWDef->getLoc(), "Undefined SchedMachineModel " 926 + ModelDef->getName()); 927 } 928 ProcModels[I->second].ItinRWDefs.push_back(RWDef); 929 } 930 } 931 932 // Gather the unsupported features for processor models. 933 void CodeGenSchedModels::collectProcUnsupportedFeatures() { 934 for (CodeGenProcModel &ProcModel : ProcModels) { 935 for (Record *Pred : ProcModel.ModelDef->getValueAsListOfDefs("UnsupportedFeatures")) { 936 ProcModel.UnsupportedFeaturesDefs.push_back(Pred); 937 } 938 } 939 } 940 941 /// Infer new classes from existing classes. In the process, this may create new 942 /// SchedWrites from sequences of existing SchedWrites. 943 void CodeGenSchedModels::inferSchedClasses() { 944 DEBUG(dbgs() << "\n+++ INFERRING SCHED CLASSES (inferSchedClasses) +++\n"); 945 DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n"); 946 947 // Visit all existing classes and newly created classes. 948 for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) { 949 assert(SchedClasses[Idx].Index == Idx && "bad SCIdx"); 950 951 if (SchedClasses[Idx].ItinClassDef) 952 inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx); 953 if (!SchedClasses[Idx].InstRWs.empty()) 954 inferFromInstRWs(Idx); 955 if (!SchedClasses[Idx].Writes.empty()) { 956 inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads, 957 Idx, SchedClasses[Idx].ProcIndices); 958 } 959 assert(SchedClasses.size() < (NumInstrSchedClasses*6) && 960 "too many SchedVariants"); 961 } 962 } 963 964 /// Infer classes from per-processor itinerary resources. 965 void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef, 966 unsigned FromClassIdx) { 967 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 968 const CodeGenProcModel &PM = ProcModels[PIdx]; 969 // For all ItinRW entries. 970 bool HasMatch = false; 971 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); 972 II != IE; ++II) { 973 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); 974 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) 975 continue; 976 if (HasMatch) 977 PrintFatalError((*II)->getLoc(), "Duplicate itinerary class " 978 + ItinClassDef->getName() 979 + " in ItinResources for " + PM.ModelName); 980 HasMatch = true; 981 IdxVec Writes, Reads; 982 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 983 inferFromRW(Writes, Reads, FromClassIdx, PIdx); 984 } 985 } 986 } 987 988 /// Infer classes from per-processor InstReadWrite definitions. 989 void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) { 990 for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) { 991 assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!"); 992 Record *Rec = SchedClasses[SCIdx].InstRWs[I]; 993 const RecVec *InstDefs = Sets.expand(Rec); 994 RecIter II = InstDefs->begin(), IE = InstDefs->end(); 995 for (; II != IE; ++II) { 996 if (InstrClassMap[*II] == SCIdx) 997 break; 998 } 999 // If this class no longer has any instructions mapped to it, it has become 1000 // irrelevant. 1001 if (II == IE) 1002 continue; 1003 IdxVec Writes, Reads; 1004 findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 1005 unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index; 1006 inferFromRW(Writes, Reads, SCIdx, PIdx); // May mutate SchedClasses. 1007 } 1008 } 1009 1010 namespace { 1011 1012 // Helper for substituteVariantOperand. 1013 struct TransVariant { 1014 Record *VarOrSeqDef; // Variant or sequence. 1015 unsigned RWIdx; // Index of this variant or sequence's matched type. 1016 unsigned ProcIdx; // Processor model index or zero for any. 1017 unsigned TransVecIdx; // Index into PredTransitions::TransVec. 1018 1019 TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti): 1020 VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {} 1021 }; 1022 1023 // Associate a predicate with the SchedReadWrite that it guards. 1024 // RWIdx is the index of the read/write variant. 1025 struct PredCheck { 1026 bool IsRead; 1027 unsigned RWIdx; 1028 Record *Predicate; 1029 1030 PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {} 1031 }; 1032 1033 // A Predicate transition is a list of RW sequences guarded by a PredTerm. 1034 struct PredTransition { 1035 // A predicate term is a conjunction of PredChecks. 1036 SmallVector<PredCheck, 4> PredTerm; 1037 SmallVector<SmallVector<unsigned,4>, 16> WriteSequences; 1038 SmallVector<SmallVector<unsigned,4>, 16> ReadSequences; 1039 SmallVector<unsigned, 4> ProcIndices; 1040 }; 1041 1042 // Encapsulate a set of partially constructed transitions. 1043 // The results are built by repeated calls to substituteVariants. 1044 class PredTransitions { 1045 CodeGenSchedModels &SchedModels; 1046 1047 public: 1048 std::vector<PredTransition> TransVec; 1049 1050 PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {} 1051 1052 void substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq, 1053 bool IsRead, unsigned StartIdx); 1054 1055 void substituteVariants(const PredTransition &Trans); 1056 1057 #ifndef NDEBUG 1058 void dump() const; 1059 #endif 1060 1061 private: 1062 bool mutuallyExclusive(Record *PredDef, ArrayRef<PredCheck> Term); 1063 void getIntersectingVariants( 1064 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 1065 std::vector<TransVariant> &IntersectingVariants); 1066 void pushVariant(const TransVariant &VInfo, bool IsRead); 1067 }; 1068 1069 } // end anonymous namespace 1070 1071 // Return true if this predicate is mutually exclusive with a PredTerm. This 1072 // degenerates into checking if the predicate is mutually exclusive with any 1073 // predicate in the Term's conjunction. 1074 // 1075 // All predicates associated with a given SchedRW are considered mutually 1076 // exclusive. This should work even if the conditions expressed by the 1077 // predicates are not exclusive because the predicates for a given SchedWrite 1078 // are always checked in the order they are defined in the .td file. Later 1079 // conditions implicitly negate any prior condition. 1080 bool PredTransitions::mutuallyExclusive(Record *PredDef, 1081 ArrayRef<PredCheck> Term) { 1082 for (const PredCheck &PC: Term) { 1083 if (PC.Predicate == PredDef) 1084 return false; 1085 1086 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(PC.RWIdx, PC.IsRead); 1087 assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant"); 1088 RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 1089 for (RecIter VI = Variants.begin(), VE = Variants.end(); VI != VE; ++VI) { 1090 if ((*VI)->getValueAsDef("Predicate") == PredDef) 1091 return true; 1092 } 1093 } 1094 return false; 1095 } 1096 1097 static bool hasAliasedVariants(const CodeGenSchedRW &RW, 1098 CodeGenSchedModels &SchedModels) { 1099 if (RW.HasVariants) 1100 return true; 1101 1102 for (Record *Alias : RW.Aliases) { 1103 const CodeGenSchedRW &AliasRW = 1104 SchedModels.getSchedRW(Alias->getValueAsDef("AliasRW")); 1105 if (AliasRW.HasVariants) 1106 return true; 1107 if (AliasRW.IsSequence) { 1108 IdxVec ExpandedRWs; 1109 SchedModels.expandRWSequence(AliasRW.Index, ExpandedRWs, AliasRW.IsRead); 1110 for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end(); 1111 SI != SE; ++SI) { 1112 if (hasAliasedVariants(SchedModels.getSchedRW(*SI, AliasRW.IsRead), 1113 SchedModels)) { 1114 return true; 1115 } 1116 } 1117 } 1118 } 1119 return false; 1120 } 1121 1122 static bool hasVariant(ArrayRef<PredTransition> Transitions, 1123 CodeGenSchedModels &SchedModels) { 1124 for (ArrayRef<PredTransition>::iterator 1125 PTI = Transitions.begin(), PTE = Transitions.end(); 1126 PTI != PTE; ++PTI) { 1127 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1128 WSI = PTI->WriteSequences.begin(), WSE = PTI->WriteSequences.end(); 1129 WSI != WSE; ++WSI) { 1130 for (SmallVectorImpl<unsigned>::const_iterator 1131 WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) { 1132 if (hasAliasedVariants(SchedModels.getSchedWrite(*WI), SchedModels)) 1133 return true; 1134 } 1135 } 1136 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1137 RSI = PTI->ReadSequences.begin(), RSE = PTI->ReadSequences.end(); 1138 RSI != RSE; ++RSI) { 1139 for (SmallVectorImpl<unsigned>::const_iterator 1140 RI = RSI->begin(), RE = RSI->end(); RI != RE; ++RI) { 1141 if (hasAliasedVariants(SchedModels.getSchedRead(*RI), SchedModels)) 1142 return true; 1143 } 1144 } 1145 } 1146 return false; 1147 } 1148 1149 // Populate IntersectingVariants with any variants or aliased sequences of the 1150 // given SchedRW whose processor indices and predicates are not mutually 1151 // exclusive with the given transition. 1152 void PredTransitions::getIntersectingVariants( 1153 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 1154 std::vector<TransVariant> &IntersectingVariants) { 1155 1156 bool GenericRW = false; 1157 1158 std::vector<TransVariant> Variants; 1159 if (SchedRW.HasVariants) { 1160 unsigned VarProcIdx = 0; 1161 if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) { 1162 Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel"); 1163 VarProcIdx = SchedModels.getProcModel(ModelDef).Index; 1164 } 1165 // Push each variant. Assign TransVecIdx later. 1166 const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 1167 for (Record *VarDef : VarDefs) 1168 Variants.push_back(TransVariant(VarDef, SchedRW.Index, VarProcIdx, 0)); 1169 if (VarProcIdx == 0) 1170 GenericRW = true; 1171 } 1172 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1173 AI != AE; ++AI) { 1174 // If either the SchedAlias itself or the SchedReadWrite that it aliases 1175 // to is defined within a processor model, constrain all variants to 1176 // that processor. 1177 unsigned AliasProcIdx = 0; 1178 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1179 Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); 1180 AliasProcIdx = SchedModels.getProcModel(ModelDef).Index; 1181 } 1182 const CodeGenSchedRW &AliasRW = 1183 SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW")); 1184 1185 if (AliasRW.HasVariants) { 1186 const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants"); 1187 for (Record *VD : VarDefs) 1188 Variants.push_back(TransVariant(VD, AliasRW.Index, AliasProcIdx, 0)); 1189 } 1190 if (AliasRW.IsSequence) { 1191 Variants.push_back( 1192 TransVariant(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0)); 1193 } 1194 if (AliasProcIdx == 0) 1195 GenericRW = true; 1196 } 1197 for (TransVariant &Variant : Variants) { 1198 // Don't expand variants if the processor models don't intersect. 1199 // A zero processor index means any processor. 1200 SmallVectorImpl<unsigned> &ProcIndices = TransVec[TransIdx].ProcIndices; 1201 if (ProcIndices[0] && Variant.ProcIdx) { 1202 unsigned Cnt = std::count(ProcIndices.begin(), ProcIndices.end(), 1203 Variant.ProcIdx); 1204 if (!Cnt) 1205 continue; 1206 if (Cnt > 1) { 1207 const CodeGenProcModel &PM = 1208 *(SchedModels.procModelBegin() + Variant.ProcIdx); 1209 PrintFatalError(Variant.VarOrSeqDef->getLoc(), 1210 "Multiple variants defined for processor " + 1211 PM.ModelName + 1212 " Ensure only one SchedAlias exists per RW."); 1213 } 1214 } 1215 if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) { 1216 Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate"); 1217 if (mutuallyExclusive(PredDef, TransVec[TransIdx].PredTerm)) 1218 continue; 1219 } 1220 if (IntersectingVariants.empty()) { 1221 // The first variant builds on the existing transition. 1222 Variant.TransVecIdx = TransIdx; 1223 IntersectingVariants.push_back(Variant); 1224 } 1225 else { 1226 // Push another copy of the current transition for more variants. 1227 Variant.TransVecIdx = TransVec.size(); 1228 IntersectingVariants.push_back(Variant); 1229 TransVec.push_back(TransVec[TransIdx]); 1230 } 1231 } 1232 if (GenericRW && IntersectingVariants.empty()) { 1233 PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has " 1234 "a matching predicate on any processor"); 1235 } 1236 } 1237 1238 // Push the Reads/Writes selected by this variant onto the PredTransition 1239 // specified by VInfo. 1240 void PredTransitions:: 1241 pushVariant(const TransVariant &VInfo, bool IsRead) { 1242 PredTransition &Trans = TransVec[VInfo.TransVecIdx]; 1243 1244 // If this operand transition is reached through a processor-specific alias, 1245 // then the whole transition is specific to this processor. 1246 if (VInfo.ProcIdx != 0) 1247 Trans.ProcIndices.assign(1, VInfo.ProcIdx); 1248 1249 IdxVec SelectedRWs; 1250 if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) { 1251 Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate"); 1252 Trans.PredTerm.push_back(PredCheck(IsRead, VInfo.RWIdx,PredDef)); 1253 RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected"); 1254 SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead); 1255 } 1256 else { 1257 assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") && 1258 "variant must be a SchedVariant or aliased WriteSequence"); 1259 SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead)); 1260 } 1261 1262 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead); 1263 1264 SmallVectorImpl<SmallVector<unsigned,4>> &RWSequences = IsRead 1265 ? Trans.ReadSequences : Trans.WriteSequences; 1266 if (SchedRW.IsVariadic) { 1267 unsigned OperIdx = RWSequences.size()-1; 1268 // Make N-1 copies of this transition's last sequence. 1269 for (unsigned i = 1, e = SelectedRWs.size(); i != e; ++i) { 1270 // Create a temporary copy the vector could reallocate. 1271 RWSequences.reserve(RWSequences.size() + 1); 1272 RWSequences.push_back(RWSequences[OperIdx]); 1273 } 1274 // Push each of the N elements of the SelectedRWs onto a copy of the last 1275 // sequence (split the current operand into N operands). 1276 // Note that write sequences should be expanded within this loop--the entire 1277 // sequence belongs to a single operand. 1278 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); 1279 RWI != RWE; ++RWI, ++OperIdx) { 1280 IdxVec ExpandedRWs; 1281 if (IsRead) 1282 ExpandedRWs.push_back(*RWI); 1283 else 1284 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1285 RWSequences[OperIdx].insert(RWSequences[OperIdx].end(), 1286 ExpandedRWs.begin(), ExpandedRWs.end()); 1287 } 1288 assert(OperIdx == RWSequences.size() && "missed a sequence"); 1289 } 1290 else { 1291 // Push this transition's expanded sequence onto this transition's last 1292 // sequence (add to the current operand's sequence). 1293 SmallVectorImpl<unsigned> &Seq = RWSequences.back(); 1294 IdxVec ExpandedRWs; 1295 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); 1296 RWI != RWE; ++RWI) { 1297 if (IsRead) 1298 ExpandedRWs.push_back(*RWI); 1299 else 1300 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1301 } 1302 Seq.insert(Seq.end(), ExpandedRWs.begin(), ExpandedRWs.end()); 1303 } 1304 } 1305 1306 // RWSeq is a sequence of all Reads or all Writes for the next read or write 1307 // operand. StartIdx is an index into TransVec where partial results 1308 // starts. RWSeq must be applied to all transitions between StartIdx and the end 1309 // of TransVec. 1310 void PredTransitions::substituteVariantOperand( 1311 const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) { 1312 1313 // Visit each original RW within the current sequence. 1314 for (SmallVectorImpl<unsigned>::const_iterator 1315 RWI = RWSeq.begin(), RWE = RWSeq.end(); RWI != RWE; ++RWI) { 1316 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(*RWI, IsRead); 1317 // Push this RW on all partial PredTransitions or distribute variants. 1318 // New PredTransitions may be pushed within this loop which should not be 1319 // revisited (TransEnd must be loop invariant). 1320 for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size(); 1321 TransIdx != TransEnd; ++TransIdx) { 1322 // In the common case, push RW onto the current operand's sequence. 1323 if (!hasAliasedVariants(SchedRW, SchedModels)) { 1324 if (IsRead) 1325 TransVec[TransIdx].ReadSequences.back().push_back(*RWI); 1326 else 1327 TransVec[TransIdx].WriteSequences.back().push_back(*RWI); 1328 continue; 1329 } 1330 // Distribute this partial PredTransition across intersecting variants. 1331 // This will push a copies of TransVec[TransIdx] on the back of TransVec. 1332 std::vector<TransVariant> IntersectingVariants; 1333 getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants); 1334 // Now expand each variant on top of its copy of the transition. 1335 for (std::vector<TransVariant>::const_iterator 1336 IVI = IntersectingVariants.begin(), 1337 IVE = IntersectingVariants.end(); 1338 IVI != IVE; ++IVI) { 1339 pushVariant(*IVI, IsRead); 1340 } 1341 } 1342 } 1343 } 1344 1345 // For each variant of a Read/Write in Trans, substitute the sequence of 1346 // Read/Writes guarded by the variant. This is exponential in the number of 1347 // variant Read/Writes, but in practice detection of mutually exclusive 1348 // predicates should result in linear growth in the total number variants. 1349 // 1350 // This is one step in a breadth-first search of nested variants. 1351 void PredTransitions::substituteVariants(const PredTransition &Trans) { 1352 // Build up a set of partial results starting at the back of 1353 // PredTransitions. Remember the first new transition. 1354 unsigned StartIdx = TransVec.size(); 1355 TransVec.emplace_back(); 1356 TransVec.back().PredTerm = Trans.PredTerm; 1357 TransVec.back().ProcIndices = Trans.ProcIndices; 1358 1359 // Visit each original write sequence. 1360 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1361 WSI = Trans.WriteSequences.begin(), WSE = Trans.WriteSequences.end(); 1362 WSI != WSE; ++WSI) { 1363 // Push a new (empty) write sequence onto all partial Transitions. 1364 for (std::vector<PredTransition>::iterator I = 1365 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { 1366 I->WriteSequences.emplace_back(); 1367 } 1368 substituteVariantOperand(*WSI, /*IsRead=*/false, StartIdx); 1369 } 1370 // Visit each original read sequence. 1371 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1372 RSI = Trans.ReadSequences.begin(), RSE = Trans.ReadSequences.end(); 1373 RSI != RSE; ++RSI) { 1374 // Push a new (empty) read sequence onto all partial Transitions. 1375 for (std::vector<PredTransition>::iterator I = 1376 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { 1377 I->ReadSequences.emplace_back(); 1378 } 1379 substituteVariantOperand(*RSI, /*IsRead=*/true, StartIdx); 1380 } 1381 } 1382 1383 // Create a new SchedClass for each variant found by inferFromRW. Pass 1384 static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions, 1385 unsigned FromClassIdx, 1386 CodeGenSchedModels &SchedModels) { 1387 // For each PredTransition, create a new CodeGenSchedTransition, which usually 1388 // requires creating a new SchedClass. 1389 for (ArrayRef<PredTransition>::iterator 1390 I = LastTransitions.begin(), E = LastTransitions.end(); I != E; ++I) { 1391 IdxVec OperWritesVariant; 1392 transform(I->WriteSequences, std::back_inserter(OperWritesVariant), 1393 [&SchedModels](ArrayRef<unsigned> WS) { 1394 return SchedModels.findOrInsertRW(WS, /*IsRead=*/false); 1395 }); 1396 IdxVec OperReadsVariant; 1397 transform(I->ReadSequences, std::back_inserter(OperReadsVariant), 1398 [&SchedModels](ArrayRef<unsigned> RS) { 1399 return SchedModels.findOrInsertRW(RS, /*IsRead=*/true); 1400 }); 1401 CodeGenSchedTransition SCTrans; 1402 SCTrans.ToClassIdx = 1403 SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant, 1404 OperReadsVariant, I->ProcIndices); 1405 SCTrans.ProcIndices.assign(I->ProcIndices.begin(), I->ProcIndices.end()); 1406 // The final PredTerm is unique set of predicates guarding the transition. 1407 RecVec Preds; 1408 transform(I->PredTerm, std::back_inserter(Preds), 1409 [](const PredCheck &P) { 1410 return P.Predicate; 1411 }); 1412 Preds.erase(std::unique(Preds.begin(), Preds.end()), Preds.end()); 1413 SCTrans.PredTerm = std::move(Preds); 1414 SchedModels.getSchedClass(FromClassIdx) 1415 .Transitions.push_back(std::move(SCTrans)); 1416 } 1417 } 1418 1419 // Create new SchedClasses for the given ReadWrite list. If any of the 1420 // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant 1421 // of the ReadWrite list, following Aliases if necessary. 1422 void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites, 1423 ArrayRef<unsigned> OperReads, 1424 unsigned FromClassIdx, 1425 ArrayRef<unsigned> ProcIndices) { 1426 DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices); dbgs() << ") "); 1427 1428 // Create a seed transition with an empty PredTerm and the expanded sequences 1429 // of SchedWrites for the current SchedClass. 1430 std::vector<PredTransition> LastTransitions; 1431 LastTransitions.emplace_back(); 1432 LastTransitions.back().ProcIndices.append(ProcIndices.begin(), 1433 ProcIndices.end()); 1434 1435 for (unsigned WriteIdx : OperWrites) { 1436 IdxVec WriteSeq; 1437 expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false); 1438 LastTransitions[0].WriteSequences.emplace_back(); 1439 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences.back(); 1440 Seq.append(WriteSeq.begin(), WriteSeq.end()); 1441 DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1442 } 1443 DEBUG(dbgs() << " Reads: "); 1444 for (unsigned ReadIdx : OperReads) { 1445 IdxVec ReadSeq; 1446 expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true); 1447 LastTransitions[0].ReadSequences.emplace_back(); 1448 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences.back(); 1449 Seq.append(ReadSeq.begin(), ReadSeq.end()); 1450 DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1451 } 1452 DEBUG(dbgs() << '\n'); 1453 1454 // Collect all PredTransitions for individual operands. 1455 // Iterate until no variant writes remain. 1456 while (hasVariant(LastTransitions, *this)) { 1457 PredTransitions Transitions(*this); 1458 for (const PredTransition &Trans : LastTransitions) 1459 Transitions.substituteVariants(Trans); 1460 DEBUG(Transitions.dump()); 1461 LastTransitions.swap(Transitions.TransVec); 1462 } 1463 // If the first transition has no variants, nothing to do. 1464 if (LastTransitions[0].PredTerm.empty()) 1465 return; 1466 1467 // WARNING: We are about to mutate the SchedClasses vector. Do not refer to 1468 // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions. 1469 inferFromTransitions(LastTransitions, FromClassIdx, *this); 1470 } 1471 1472 // Check if any processor resource group contains all resource records in 1473 // SubUnits. 1474 bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) { 1475 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { 1476 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) 1477 continue; 1478 RecVec SuperUnits = 1479 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); 1480 RecIter RI = SubUnits.begin(), RE = SubUnits.end(); 1481 for ( ; RI != RE; ++RI) { 1482 if (!is_contained(SuperUnits, *RI)) { 1483 break; 1484 } 1485 } 1486 if (RI == RE) 1487 return true; 1488 } 1489 return false; 1490 } 1491 1492 // Verify that overlapping groups have a common supergroup. 1493 void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) { 1494 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { 1495 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) 1496 continue; 1497 RecVec CheckUnits = 1498 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); 1499 for (unsigned j = i+1; j < e; ++j) { 1500 if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup")) 1501 continue; 1502 RecVec OtherUnits = 1503 PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources"); 1504 if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(), 1505 OtherUnits.begin(), OtherUnits.end()) 1506 != CheckUnits.end()) { 1507 // CheckUnits and OtherUnits overlap 1508 OtherUnits.insert(OtherUnits.end(), CheckUnits.begin(), 1509 CheckUnits.end()); 1510 if (!hasSuperGroup(OtherUnits, PM)) { 1511 PrintFatalError((PM.ProcResourceDefs[i])->getLoc(), 1512 "proc resource group overlaps with " 1513 + PM.ProcResourceDefs[j]->getName() 1514 + " but no supergroup contains both."); 1515 } 1516 } 1517 } 1518 } 1519 } 1520 1521 // Collect all the RegisterFile definitions available in this target. 1522 void CodeGenSchedModels::collectRegisterFiles() { 1523 RecVec RegisterFileDefs = Records.getAllDerivedDefinitions("RegisterFile"); 1524 1525 // RegisterFiles is the vector of CodeGenRegisterFile. 1526 for (Record *RF : RegisterFileDefs) { 1527 // For each register file definition, construct a CodeGenRegisterFile object 1528 // and add it to the appropriate scheduling model. 1529 CodeGenProcModel &PM = getProcModel(RF->getValueAsDef("SchedModel")); 1530 PM.RegisterFiles.emplace_back(CodeGenRegisterFile(RF->getName(),RF)); 1531 CodeGenRegisterFile &CGRF = PM.RegisterFiles.back(); 1532 1533 // Now set the number of physical registers as well as the cost of registers 1534 // in each register class. 1535 CGRF.NumPhysRegs = RF->getValueAsInt("NumPhysRegs"); 1536 RecVec RegisterClasses = RF->getValueAsListOfDefs("RegClasses"); 1537 std::vector<int64_t> RegisterCosts = RF->getValueAsListOfInts("RegCosts"); 1538 for (unsigned I = 0, E = RegisterClasses.size(); I < E; ++I) { 1539 int Cost = RegisterCosts.size() > I ? RegisterCosts[I] : 1; 1540 CGRF.Costs.emplace_back(RegisterClasses[I], Cost); 1541 } 1542 } 1543 } 1544 1545 // Collect all the RegisterFile definitions available in this target. 1546 void CodeGenSchedModels::collectPfmCounters() { 1547 for (Record *Def : Records.getAllDerivedDefinitions("PfmIssueCounter")) { 1548 CodeGenProcModel &PM = getProcModel(Def->getValueAsDef("SchedModel")); 1549 PM.PfmIssueCounterDefs.emplace_back(Def); 1550 } 1551 for (Record *Def : Records.getAllDerivedDefinitions("PfmCycleCounter")) { 1552 CodeGenProcModel &PM = getProcModel(Def->getValueAsDef("SchedModel")); 1553 if (PM.PfmCycleCounterDef) { 1554 PrintFatalError(Def->getLoc(), 1555 "multiple cycle counters for " + 1556 Def->getValueAsDef("SchedModel")->getName()); 1557 } 1558 PM.PfmCycleCounterDef = Def; 1559 } 1560 } 1561 1562 // Collect and sort WriteRes, ReadAdvance, and ProcResources. 1563 void CodeGenSchedModels::collectProcResources() { 1564 ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits"); 1565 ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); 1566 1567 // Add any subtarget-specific SchedReadWrites that are directly associated 1568 // with processor resources. Refer to the parent SchedClass's ProcIndices to 1569 // determine which processors they apply to. 1570 for (SchedClassIter SCI = schedClassBegin(), SCE = schedClassEnd(); 1571 SCI != SCE; ++SCI) { 1572 if (SCI->ItinClassDef) 1573 collectItinProcResources(SCI->ItinClassDef); 1574 else { 1575 // This class may have a default ReadWrite list which can be overriden by 1576 // InstRW definitions. 1577 if (!SCI->InstRWs.empty()) { 1578 for (RecIter RWI = SCI->InstRWs.begin(), RWE = SCI->InstRWs.end(); 1579 RWI != RWE; ++RWI) { 1580 Record *RWModelDef = (*RWI)->getValueAsDef("SchedModel"); 1581 unsigned PIdx = getProcModel(RWModelDef).Index; 1582 IdxVec Writes, Reads; 1583 findRWs((*RWI)->getValueAsListOfDefs("OperandReadWrites"), 1584 Writes, Reads); 1585 collectRWResources(Writes, Reads, PIdx); 1586 } 1587 } 1588 collectRWResources(SCI->Writes, SCI->Reads, SCI->ProcIndices); 1589 } 1590 } 1591 // Add resources separately defined by each subtarget. 1592 RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes"); 1593 for (Record *WR : WRDefs) { 1594 Record *ModelDef = WR->getValueAsDef("SchedModel"); 1595 addWriteRes(WR, getProcModel(ModelDef).Index); 1596 } 1597 RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes"); 1598 for (Record *SWR : SWRDefs) { 1599 Record *ModelDef = SWR->getValueAsDef("SchedModel"); 1600 addWriteRes(SWR, getProcModel(ModelDef).Index); 1601 } 1602 RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance"); 1603 for (Record *RA : RADefs) { 1604 Record *ModelDef = RA->getValueAsDef("SchedModel"); 1605 addReadAdvance(RA, getProcModel(ModelDef).Index); 1606 } 1607 RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance"); 1608 for (Record *SRA : SRADefs) { 1609 if (SRA->getValueInit("SchedModel")->isComplete()) { 1610 Record *ModelDef = SRA->getValueAsDef("SchedModel"); 1611 addReadAdvance(SRA, getProcModel(ModelDef).Index); 1612 } 1613 } 1614 // Add ProcResGroups that are defined within this processor model, which may 1615 // not be directly referenced but may directly specify a buffer size. 1616 RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); 1617 for (Record *PRG : ProcResGroups) { 1618 if (!PRG->getValueInit("SchedModel")->isComplete()) 1619 continue; 1620 CodeGenProcModel &PM = getProcModel(PRG->getValueAsDef("SchedModel")); 1621 if (!is_contained(PM.ProcResourceDefs, PRG)) 1622 PM.ProcResourceDefs.push_back(PRG); 1623 } 1624 // Add ProcResourceUnits unconditionally. 1625 for (Record *PRU : Records.getAllDerivedDefinitions("ProcResourceUnits")) { 1626 if (!PRU->getValueInit("SchedModel")->isComplete()) 1627 continue; 1628 CodeGenProcModel &PM = getProcModel(PRU->getValueAsDef("SchedModel")); 1629 if (!is_contained(PM.ProcResourceDefs, PRU)) 1630 PM.ProcResourceDefs.push_back(PRU); 1631 } 1632 // Finalize each ProcModel by sorting the record arrays. 1633 for (CodeGenProcModel &PM : ProcModels) { 1634 llvm::sort(PM.WriteResDefs.begin(), PM.WriteResDefs.end(), 1635 LessRecord()); 1636 llvm::sort(PM.ReadAdvanceDefs.begin(), PM.ReadAdvanceDefs.end(), 1637 LessRecord()); 1638 llvm::sort(PM.ProcResourceDefs.begin(), PM.ProcResourceDefs.end(), 1639 LessRecord()); 1640 DEBUG( 1641 PM.dump(); 1642 dbgs() << "WriteResDefs: "; 1643 for (RecIter RI = PM.WriteResDefs.begin(), 1644 RE = PM.WriteResDefs.end(); RI != RE; ++RI) { 1645 if ((*RI)->isSubClassOf("WriteRes")) 1646 dbgs() << (*RI)->getValueAsDef("WriteType")->getName() << " "; 1647 else 1648 dbgs() << (*RI)->getName() << " "; 1649 } 1650 dbgs() << "\nReadAdvanceDefs: "; 1651 for (RecIter RI = PM.ReadAdvanceDefs.begin(), 1652 RE = PM.ReadAdvanceDefs.end(); RI != RE; ++RI) { 1653 if ((*RI)->isSubClassOf("ReadAdvance")) 1654 dbgs() << (*RI)->getValueAsDef("ReadType")->getName() << " "; 1655 else 1656 dbgs() << (*RI)->getName() << " "; 1657 } 1658 dbgs() << "\nProcResourceDefs: "; 1659 for (RecIter RI = PM.ProcResourceDefs.begin(), 1660 RE = PM.ProcResourceDefs.end(); RI != RE; ++RI) { 1661 dbgs() << (*RI)->getName() << " "; 1662 } 1663 dbgs() << '\n'); 1664 verifyProcResourceGroups(PM); 1665 } 1666 1667 ProcResourceDefs.clear(); 1668 ProcResGroups.clear(); 1669 } 1670 1671 void CodeGenSchedModels::checkCompleteness() { 1672 bool Complete = true; 1673 bool HadCompleteModel = false; 1674 for (const CodeGenProcModel &ProcModel : procModels()) { 1675 const bool HasItineraries = ProcModel.hasItineraries(); 1676 if (!ProcModel.ModelDef->getValueAsBit("CompleteModel")) 1677 continue; 1678 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 1679 if (Inst->hasNoSchedulingInfo) 1680 continue; 1681 if (ProcModel.isUnsupported(*Inst)) 1682 continue; 1683 unsigned SCIdx = getSchedClassIdx(*Inst); 1684 if (!SCIdx) { 1685 if (Inst->TheDef->isValueUnset("SchedRW") && !HadCompleteModel) { 1686 PrintError("No schedule information for instruction '" 1687 + Inst->TheDef->getName() + "'"); 1688 Complete = false; 1689 } 1690 continue; 1691 } 1692 1693 const CodeGenSchedClass &SC = getSchedClass(SCIdx); 1694 if (!SC.Writes.empty()) 1695 continue; 1696 if (HasItineraries && SC.ItinClassDef != nullptr && 1697 SC.ItinClassDef->getName() != "NoItinerary") 1698 continue; 1699 1700 const RecVec &InstRWs = SC.InstRWs; 1701 auto I = find_if(InstRWs, [&ProcModel](const Record *R) { 1702 return R->getValueAsDef("SchedModel") == ProcModel.ModelDef; 1703 }); 1704 if (I == InstRWs.end()) { 1705 PrintError("'" + ProcModel.ModelName + "' lacks information for '" + 1706 Inst->TheDef->getName() + "'"); 1707 Complete = false; 1708 } 1709 } 1710 HadCompleteModel = true; 1711 } 1712 if (!Complete) { 1713 errs() << "\n\nIncomplete schedule models found.\n" 1714 << "- Consider setting 'CompleteModel = 0' while developing new models.\n" 1715 << "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = 1'.\n" 1716 << "- Instructions should usually have Sched<[...]> as a superclass, " 1717 "you may temporarily use an empty list.\n" 1718 << "- Instructions related to unsupported features can be excluded with " 1719 "list<Predicate> UnsupportedFeatures = [HasA,..,HasY]; in the " 1720 "processor model.\n\n"; 1721 PrintFatalError("Incomplete schedule model"); 1722 } 1723 } 1724 1725 // Collect itinerary class resources for each processor. 1726 void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) { 1727 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 1728 const CodeGenProcModel &PM = ProcModels[PIdx]; 1729 // For all ItinRW entries. 1730 bool HasMatch = false; 1731 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); 1732 II != IE; ++II) { 1733 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); 1734 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) 1735 continue; 1736 if (HasMatch) 1737 PrintFatalError((*II)->getLoc(), "Duplicate itinerary class " 1738 + ItinClassDef->getName() 1739 + " in ItinResources for " + PM.ModelName); 1740 HasMatch = true; 1741 IdxVec Writes, Reads; 1742 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 1743 collectRWResources(Writes, Reads, PIdx); 1744 } 1745 } 1746 } 1747 1748 void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead, 1749 ArrayRef<unsigned> ProcIndices) { 1750 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 1751 if (SchedRW.TheDef) { 1752 if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) { 1753 for (unsigned Idx : ProcIndices) 1754 addWriteRes(SchedRW.TheDef, Idx); 1755 } 1756 else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) { 1757 for (unsigned Idx : ProcIndices) 1758 addReadAdvance(SchedRW.TheDef, Idx); 1759 } 1760 } 1761 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1762 AI != AE; ++AI) { 1763 IdxVec AliasProcIndices; 1764 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1765 AliasProcIndices.push_back( 1766 getProcModel((*AI)->getValueAsDef("SchedModel")).Index); 1767 } 1768 else 1769 AliasProcIndices = ProcIndices; 1770 const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW")); 1771 assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes"); 1772 1773 IdxVec ExpandedRWs; 1774 expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead); 1775 for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end(); 1776 SI != SE; ++SI) { 1777 collectRWResources(*SI, IsRead, AliasProcIndices); 1778 } 1779 } 1780 } 1781 1782 // Collect resources for a set of read/write types and processor indices. 1783 void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes, 1784 ArrayRef<unsigned> Reads, 1785 ArrayRef<unsigned> ProcIndices) { 1786 for (unsigned Idx : Writes) 1787 collectRWResources(Idx, /*IsRead=*/false, ProcIndices); 1788 1789 for (unsigned Idx : Reads) 1790 collectRWResources(Idx, /*IsRead=*/true, ProcIndices); 1791 } 1792 1793 // Find the processor's resource units for this kind of resource. 1794 Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind, 1795 const CodeGenProcModel &PM, 1796 ArrayRef<SMLoc> Loc) const { 1797 if (ProcResKind->isSubClassOf("ProcResourceUnits")) 1798 return ProcResKind; 1799 1800 Record *ProcUnitDef = nullptr; 1801 assert(!ProcResourceDefs.empty()); 1802 assert(!ProcResGroups.empty()); 1803 1804 for (Record *ProcResDef : ProcResourceDefs) { 1805 if (ProcResDef->getValueAsDef("Kind") == ProcResKind 1806 && ProcResDef->getValueAsDef("SchedModel") == PM.ModelDef) { 1807 if (ProcUnitDef) { 1808 PrintFatalError(Loc, 1809 "Multiple ProcessorResourceUnits associated with " 1810 + ProcResKind->getName()); 1811 } 1812 ProcUnitDef = ProcResDef; 1813 } 1814 } 1815 for (Record *ProcResGroup : ProcResGroups) { 1816 if (ProcResGroup == ProcResKind 1817 && ProcResGroup->getValueAsDef("SchedModel") == PM.ModelDef) { 1818 if (ProcUnitDef) { 1819 PrintFatalError(Loc, 1820 "Multiple ProcessorResourceUnits associated with " 1821 + ProcResKind->getName()); 1822 } 1823 ProcUnitDef = ProcResGroup; 1824 } 1825 } 1826 if (!ProcUnitDef) { 1827 PrintFatalError(Loc, 1828 "No ProcessorResources associated with " 1829 + ProcResKind->getName()); 1830 } 1831 return ProcUnitDef; 1832 } 1833 1834 // Iteratively add a resource and its super resources. 1835 void CodeGenSchedModels::addProcResource(Record *ProcResKind, 1836 CodeGenProcModel &PM, 1837 ArrayRef<SMLoc> Loc) { 1838 while (true) { 1839 Record *ProcResUnits = findProcResUnits(ProcResKind, PM, Loc); 1840 1841 // See if this ProcResource is already associated with this processor. 1842 if (is_contained(PM.ProcResourceDefs, ProcResUnits)) 1843 return; 1844 1845 PM.ProcResourceDefs.push_back(ProcResUnits); 1846 if (ProcResUnits->isSubClassOf("ProcResGroup")) 1847 return; 1848 1849 if (!ProcResUnits->getValueInit("Super")->isComplete()) 1850 return; 1851 1852 ProcResKind = ProcResUnits->getValueAsDef("Super"); 1853 } 1854 } 1855 1856 // Add resources for a SchedWrite to this processor if they don't exist. 1857 void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) { 1858 assert(PIdx && "don't add resources to an invalid Processor model"); 1859 1860 RecVec &WRDefs = ProcModels[PIdx].WriteResDefs; 1861 if (is_contained(WRDefs, ProcWriteResDef)) 1862 return; 1863 WRDefs.push_back(ProcWriteResDef); 1864 1865 // Visit ProcResourceKinds referenced by the newly discovered WriteRes. 1866 RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources"); 1867 for (RecIter WritePRI = ProcResDefs.begin(), WritePRE = ProcResDefs.end(); 1868 WritePRI != WritePRE; ++WritePRI) { 1869 addProcResource(*WritePRI, ProcModels[PIdx], ProcWriteResDef->getLoc()); 1870 } 1871 } 1872 1873 // Add resources for a ReadAdvance to this processor if they don't exist. 1874 void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef, 1875 unsigned PIdx) { 1876 RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs; 1877 if (is_contained(RADefs, ProcReadAdvanceDef)) 1878 return; 1879 RADefs.push_back(ProcReadAdvanceDef); 1880 } 1881 1882 unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const { 1883 RecIter PRPos = find(ProcResourceDefs, PRDef); 1884 if (PRPos == ProcResourceDefs.end()) 1885 PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in " 1886 "the ProcResources list for " + ModelName); 1887 // Idx=0 is reserved for invalid. 1888 return 1 + (PRPos - ProcResourceDefs.begin()); 1889 } 1890 1891 bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const { 1892 for (const Record *TheDef : UnsupportedFeaturesDefs) { 1893 for (const Record *PredDef : Inst.TheDef->getValueAsListOfDefs("Predicates")) { 1894 if (TheDef->getName() == PredDef->getName()) 1895 return true; 1896 } 1897 } 1898 return false; 1899 } 1900 1901 #ifndef NDEBUG 1902 void CodeGenProcModel::dump() const { 1903 dbgs() << Index << ": " << ModelName << " " 1904 << (ModelDef ? ModelDef->getName() : "inferred") << " " 1905 << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n'; 1906 } 1907 1908 void CodeGenSchedRW::dump() const { 1909 dbgs() << Name << (IsVariadic ? " (V) " : " "); 1910 if (IsSequence) { 1911 dbgs() << "("; 1912 dumpIdxVec(Sequence); 1913 dbgs() << ")"; 1914 } 1915 } 1916 1917 void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const { 1918 dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n' 1919 << " Writes: "; 1920 for (unsigned i = 0, N = Writes.size(); i < N; ++i) { 1921 SchedModels->getSchedWrite(Writes[i]).dump(); 1922 if (i < N-1) { 1923 dbgs() << '\n'; 1924 dbgs().indent(10); 1925 } 1926 } 1927 dbgs() << "\n Reads: "; 1928 for (unsigned i = 0, N = Reads.size(); i < N; ++i) { 1929 SchedModels->getSchedRead(Reads[i]).dump(); 1930 if (i < N-1) { 1931 dbgs() << '\n'; 1932 dbgs().indent(10); 1933 } 1934 } 1935 dbgs() << "\n ProcIdx: "; dumpIdxVec(ProcIndices); dbgs() << '\n'; 1936 if (!Transitions.empty()) { 1937 dbgs() << "\n Transitions for Proc "; 1938 for (const CodeGenSchedTransition &Transition : Transitions) { 1939 dumpIdxVec(Transition.ProcIndices); 1940 } 1941 } 1942 } 1943 1944 void PredTransitions::dump() const { 1945 dbgs() << "Expanded Variants:\n"; 1946 for (std::vector<PredTransition>::const_iterator 1947 TI = TransVec.begin(), TE = TransVec.end(); TI != TE; ++TI) { 1948 dbgs() << "{"; 1949 for (SmallVectorImpl<PredCheck>::const_iterator 1950 PCI = TI->PredTerm.begin(), PCE = TI->PredTerm.end(); 1951 PCI != PCE; ++PCI) { 1952 if (PCI != TI->PredTerm.begin()) 1953 dbgs() << ", "; 1954 dbgs() << SchedModels.getSchedRW(PCI->RWIdx, PCI->IsRead).Name 1955 << ":" << PCI->Predicate->getName(); 1956 } 1957 dbgs() << "},\n => {"; 1958 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1959 WSI = TI->WriteSequences.begin(), WSE = TI->WriteSequences.end(); 1960 WSI != WSE; ++WSI) { 1961 dbgs() << "("; 1962 for (SmallVectorImpl<unsigned>::const_iterator 1963 WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) { 1964 if (WI != WSI->begin()) 1965 dbgs() << ", "; 1966 dbgs() << SchedModels.getSchedWrite(*WI).Name; 1967 } 1968 dbgs() << "),"; 1969 } 1970 dbgs() << "}\n"; 1971 } 1972 } 1973 #endif // NDEBUG 1974