1 //===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file declares the CodeGenDAGPatterns class, which is used to read and 10 // represent the patterns present in a .td file for instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H 15 #define LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H 16 17 #include "CodeGenIntrinsics.h" 18 #include "CodeGenTarget.h" 19 #include "SDNodeProperties.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/StringSet.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/MathExtras.h" 26 #include <algorithm> 27 #include <array> 28 #include <functional> 29 #include <map> 30 #include <numeric> 31 #include <set> 32 #include <vector> 33 34 namespace llvm { 35 36 class Record; 37 class Init; 38 class ListInit; 39 class DagInit; 40 class SDNodeInfo; 41 class TreePattern; 42 class TreePatternNode; 43 class CodeGenDAGPatterns; 44 45 /// Shared pointer for TreePatternNode. 46 using TreePatternNodePtr = std::shared_ptr<TreePatternNode>; 47 48 /// This represents a set of MVTs. Since the underlying type for the MVT 49 /// is uint8_t, there are at most 256 values. To reduce the number of memory 50 /// allocations and deallocations, represent the set as a sequence of bits. 51 /// To reduce the allocations even further, make MachineValueTypeSet own 52 /// the storage and use std::array as the bit container. 53 struct MachineValueTypeSet { 54 static_assert(std::is_same<std::underlying_type<MVT::SimpleValueType>::type, 55 uint8_t>::value, 56 "Change uint8_t here to the SimpleValueType's type"); 57 static unsigned constexpr Capacity = std::numeric_limits<uint8_t>::max()+1; 58 using WordType = uint64_t; 59 static unsigned constexpr WordWidth = CHAR_BIT*sizeof(WordType); 60 static unsigned constexpr NumWords = Capacity/WordWidth; 61 static_assert(NumWords*WordWidth == Capacity, 62 "Capacity should be a multiple of WordWidth"); 63 64 LLVM_ATTRIBUTE_ALWAYS_INLINE 65 MachineValueTypeSet() { 66 clear(); 67 } 68 69 LLVM_ATTRIBUTE_ALWAYS_INLINE 70 unsigned size() const { 71 unsigned Count = 0; 72 for (WordType W : Words) 73 Count += countPopulation(W); 74 return Count; 75 } 76 LLVM_ATTRIBUTE_ALWAYS_INLINE 77 void clear() { 78 std::memset(Words.data(), 0, NumWords*sizeof(WordType)); 79 } 80 LLVM_ATTRIBUTE_ALWAYS_INLINE 81 bool empty() const { 82 for (WordType W : Words) 83 if (W != 0) 84 return false; 85 return true; 86 } 87 LLVM_ATTRIBUTE_ALWAYS_INLINE 88 unsigned count(MVT T) const { 89 return (Words[T.SimpleTy / WordWidth] >> (T.SimpleTy % WordWidth)) & 1; 90 } 91 std::pair<MachineValueTypeSet&,bool> insert(MVT T) { 92 bool V = count(T.SimpleTy); 93 Words[T.SimpleTy / WordWidth] |= WordType(1) << (T.SimpleTy % WordWidth); 94 return {*this, V}; 95 } 96 MachineValueTypeSet &insert(const MachineValueTypeSet &S) { 97 for (unsigned i = 0; i != NumWords; ++i) 98 Words[i] |= S.Words[i]; 99 return *this; 100 } 101 LLVM_ATTRIBUTE_ALWAYS_INLINE 102 void erase(MVT T) { 103 Words[T.SimpleTy / WordWidth] &= ~(WordType(1) << (T.SimpleTy % WordWidth)); 104 } 105 106 struct const_iterator { 107 // Some implementations of the C++ library require these traits to be 108 // defined. 109 using iterator_category = std::forward_iterator_tag; 110 using value_type = MVT; 111 using difference_type = ptrdiff_t; 112 using pointer = const MVT*; 113 using reference = const MVT&; 114 115 LLVM_ATTRIBUTE_ALWAYS_INLINE 116 MVT operator*() const { 117 assert(Pos != Capacity); 118 return MVT::SimpleValueType(Pos); 119 } 120 LLVM_ATTRIBUTE_ALWAYS_INLINE 121 const_iterator(const MachineValueTypeSet *S, bool End) : Set(S) { 122 Pos = End ? Capacity : find_from_pos(0); 123 } 124 LLVM_ATTRIBUTE_ALWAYS_INLINE 125 const_iterator &operator++() { 126 assert(Pos != Capacity); 127 Pos = find_from_pos(Pos+1); 128 return *this; 129 } 130 131 LLVM_ATTRIBUTE_ALWAYS_INLINE 132 bool operator==(const const_iterator &It) const { 133 return Set == It.Set && Pos == It.Pos; 134 } 135 LLVM_ATTRIBUTE_ALWAYS_INLINE 136 bool operator!=(const const_iterator &It) const { 137 return !operator==(It); 138 } 139 140 private: 141 unsigned find_from_pos(unsigned P) const { 142 unsigned SkipWords = P / WordWidth; 143 unsigned SkipBits = P % WordWidth; 144 unsigned Count = SkipWords * WordWidth; 145 146 // If P is in the middle of a word, process it manually here, because 147 // the trailing bits need to be masked off to use findFirstSet. 148 if (SkipBits != 0) { 149 WordType W = Set->Words[SkipWords]; 150 W &= maskLeadingOnes<WordType>(WordWidth-SkipBits); 151 if (W != 0) 152 return Count + findFirstSet(W); 153 Count += WordWidth; 154 SkipWords++; 155 } 156 157 for (unsigned i = SkipWords; i != NumWords; ++i) { 158 WordType W = Set->Words[i]; 159 if (W != 0) 160 return Count + findFirstSet(W); 161 Count += WordWidth; 162 } 163 return Capacity; 164 } 165 166 const MachineValueTypeSet *Set; 167 unsigned Pos; 168 }; 169 170 LLVM_ATTRIBUTE_ALWAYS_INLINE 171 const_iterator begin() const { return const_iterator(this, false); } 172 LLVM_ATTRIBUTE_ALWAYS_INLINE 173 const_iterator end() const { return const_iterator(this, true); } 174 175 LLVM_ATTRIBUTE_ALWAYS_INLINE 176 bool operator==(const MachineValueTypeSet &S) const { 177 return Words == S.Words; 178 } 179 LLVM_ATTRIBUTE_ALWAYS_INLINE 180 bool operator!=(const MachineValueTypeSet &S) const { 181 return !operator==(S); 182 } 183 184 private: 185 friend struct const_iterator; 186 std::array<WordType,NumWords> Words; 187 }; 188 189 struct TypeSetByHwMode : public InfoByHwMode<MachineValueTypeSet> { 190 using SetType = MachineValueTypeSet; 191 SmallVector<unsigned, 16> AddrSpaces; 192 193 TypeSetByHwMode() = default; 194 TypeSetByHwMode(const TypeSetByHwMode &VTS) = default; 195 TypeSetByHwMode &operator=(const TypeSetByHwMode &) = default; 196 TypeSetByHwMode(MVT::SimpleValueType VT) 197 : TypeSetByHwMode(ValueTypeByHwMode(VT)) {} 198 TypeSetByHwMode(ValueTypeByHwMode VT) 199 : TypeSetByHwMode(ArrayRef<ValueTypeByHwMode>(&VT, 1)) {} 200 TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList); 201 202 SetType &getOrCreate(unsigned Mode) { 203 return Map[Mode]; 204 } 205 206 bool isValueTypeByHwMode(bool AllowEmpty) const; 207 ValueTypeByHwMode getValueTypeByHwMode() const; 208 209 LLVM_ATTRIBUTE_ALWAYS_INLINE 210 bool isMachineValueType() const { 211 return isDefaultOnly() && Map.begin()->second.size() == 1; 212 } 213 214 LLVM_ATTRIBUTE_ALWAYS_INLINE 215 MVT getMachineValueType() const { 216 assert(isMachineValueType()); 217 return *Map.begin()->second.begin(); 218 } 219 220 bool isPossible() const; 221 222 LLVM_ATTRIBUTE_ALWAYS_INLINE 223 bool isDefaultOnly() const { 224 return Map.size() == 1 && Map.begin()->first == DefaultMode; 225 } 226 227 bool isPointer() const { 228 return getValueTypeByHwMode().isPointer(); 229 } 230 231 unsigned getPtrAddrSpace() const { 232 assert(isPointer()); 233 return getValueTypeByHwMode().PtrAddrSpace; 234 } 235 236 bool insert(const ValueTypeByHwMode &VVT); 237 bool constrain(const TypeSetByHwMode &VTS); 238 template <typename Predicate> bool constrain(Predicate P); 239 template <typename Predicate> 240 bool assign_if(const TypeSetByHwMode &VTS, Predicate P); 241 242 void writeToStream(raw_ostream &OS) const; 243 static void writeToStream(const SetType &S, raw_ostream &OS); 244 245 bool operator==(const TypeSetByHwMode &VTS) const; 246 bool operator!=(const TypeSetByHwMode &VTS) const { return !(*this == VTS); } 247 248 void dump() const; 249 bool validate() const; 250 251 private: 252 unsigned PtrAddrSpace = std::numeric_limits<unsigned>::max(); 253 /// Intersect two sets. Return true if anything has changed. 254 bool intersect(SetType &Out, const SetType &In); 255 }; 256 257 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T); 258 259 struct TypeInfer { 260 TypeInfer(TreePattern &T) : TP(T), ForceMode(0) {} 261 262 bool isConcrete(const TypeSetByHwMode &VTS, bool AllowEmpty) const { 263 return VTS.isValueTypeByHwMode(AllowEmpty); 264 } 265 ValueTypeByHwMode getConcrete(const TypeSetByHwMode &VTS, 266 bool AllowEmpty) const { 267 assert(VTS.isValueTypeByHwMode(AllowEmpty)); 268 return VTS.getValueTypeByHwMode(); 269 } 270 271 /// The protocol in the following functions (Merge*, force*, Enforce*, 272 /// expand*) is to return "true" if a change has been made, "false" 273 /// otherwise. 274 275 bool MergeInTypeInfo(TypeSetByHwMode &Out, const TypeSetByHwMode &In); 276 bool MergeInTypeInfo(TypeSetByHwMode &Out, MVT::SimpleValueType InVT) { 277 return MergeInTypeInfo(Out, TypeSetByHwMode(InVT)); 278 } 279 bool MergeInTypeInfo(TypeSetByHwMode &Out, ValueTypeByHwMode InVT) { 280 return MergeInTypeInfo(Out, TypeSetByHwMode(InVT)); 281 } 282 283 /// Reduce the set \p Out to have at most one element for each mode. 284 bool forceArbitrary(TypeSetByHwMode &Out); 285 286 /// The following four functions ensure that upon return the set \p Out 287 /// will only contain types of the specified kind: integer, floating-point, 288 /// scalar, or vector. 289 /// If \p Out is empty, all legal types of the specified kind will be added 290 /// to it. Otherwise, all types that are not of the specified kind will be 291 /// removed from \p Out. 292 bool EnforceInteger(TypeSetByHwMode &Out); 293 bool EnforceFloatingPoint(TypeSetByHwMode &Out); 294 bool EnforceScalar(TypeSetByHwMode &Out); 295 bool EnforceVector(TypeSetByHwMode &Out); 296 297 /// If \p Out is empty, fill it with all legal types. Otherwise, leave it 298 /// unchanged. 299 bool EnforceAny(TypeSetByHwMode &Out); 300 /// Make sure that for each type in \p Small, there exists a larger type 301 /// in \p Big. 302 bool EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big); 303 /// 1. Ensure that for each type T in \p Vec, T is a vector type, and that 304 /// for each type U in \p Elem, U is a scalar type. 305 /// 2. Ensure that for each (scalar) type U in \p Elem, there exists a 306 /// (vector) type T in \p Vec, such that U is the element type of T. 307 bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, TypeSetByHwMode &Elem); 308 bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 309 const ValueTypeByHwMode &VVT); 310 /// Ensure that for each type T in \p Sub, T is a vector type, and there 311 /// exists a type U in \p Vec such that U is a vector type with the same 312 /// element type as T and at least as many elements as T. 313 bool EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec, 314 TypeSetByHwMode &Sub); 315 /// 1. Ensure that \p V has a scalar type iff \p W has a scalar type. 316 /// 2. Ensure that for each vector type T in \p V, there exists a vector 317 /// type U in \p W, such that T and U have the same number of elements. 318 /// 3. Ensure that for each vector type U in \p W, there exists a vector 319 /// type T in \p V, such that T and U have the same number of elements 320 /// (reverse of 2). 321 bool EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W); 322 /// 1. Ensure that for each type T in \p A, there exists a type U in \p B, 323 /// such that T and U have equal size in bits. 324 /// 2. Ensure that for each type U in \p B, there exists a type T in \p A 325 /// such that T and U have equal size in bits (reverse of 1). 326 bool EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B); 327 328 /// For each overloaded type (i.e. of form *Any), replace it with the 329 /// corresponding subset of legal, specific types. 330 void expandOverloads(TypeSetByHwMode &VTS); 331 void expandOverloads(TypeSetByHwMode::SetType &Out, 332 const TypeSetByHwMode::SetType &Legal); 333 334 struct ValidateOnExit { 335 ValidateOnExit(TypeSetByHwMode &T, TypeInfer &TI) : Infer(TI), VTS(T) {} 336 #ifndef NDEBUG 337 ~ValidateOnExit(); 338 #else 339 ~ValidateOnExit() {} // Empty destructor with NDEBUG. 340 #endif 341 TypeInfer &Infer; 342 TypeSetByHwMode &VTS; 343 }; 344 345 struct SuppressValidation { 346 SuppressValidation(TypeInfer &TI) : Infer(TI), SavedValidate(TI.Validate) { 347 Infer.Validate = false; 348 } 349 ~SuppressValidation() { 350 Infer.Validate = SavedValidate; 351 } 352 TypeInfer &Infer; 353 bool SavedValidate; 354 }; 355 356 TreePattern &TP; 357 unsigned ForceMode; // Mode to use when set. 358 bool CodeGen = false; // Set during generation of matcher code. 359 bool Validate = true; // Indicate whether to validate types. 360 361 private: 362 const TypeSetByHwMode &getLegalTypes(); 363 364 /// Cached legal types (in default mode). 365 bool LegalTypesCached = false; 366 TypeSetByHwMode LegalCache; 367 }; 368 369 /// Set type used to track multiply used variables in patterns 370 typedef StringSet<> MultipleUseVarSet; 371 372 /// SDTypeConstraint - This is a discriminated union of constraints, 373 /// corresponding to the SDTypeConstraint tablegen class in Target.td. 374 struct SDTypeConstraint { 375 SDTypeConstraint(Record *R, const CodeGenHwModes &CGH); 376 377 unsigned OperandNo; // The operand # this constraint applies to. 378 enum { 379 SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs, 380 SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec, 381 SDTCisSubVecOfVec, SDTCVecEltisVT, SDTCisSameNumEltsAs, SDTCisSameSizeAs 382 } ConstraintType; 383 384 union { // The discriminated union. 385 struct { 386 unsigned OtherOperandNum; 387 } SDTCisSameAs_Info; 388 struct { 389 unsigned OtherOperandNum; 390 } SDTCisVTSmallerThanOp_Info; 391 struct { 392 unsigned BigOperandNum; 393 } SDTCisOpSmallerThanOp_Info; 394 struct { 395 unsigned OtherOperandNum; 396 } SDTCisEltOfVec_Info; 397 struct { 398 unsigned OtherOperandNum; 399 } SDTCisSubVecOfVec_Info; 400 struct { 401 unsigned OtherOperandNum; 402 } SDTCisSameNumEltsAs_Info; 403 struct { 404 unsigned OtherOperandNum; 405 } SDTCisSameSizeAs_Info; 406 } x; 407 408 // The VT for SDTCisVT and SDTCVecEltisVT. 409 // Must not be in the union because it has a non-trivial destructor. 410 ValueTypeByHwMode VVT; 411 412 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 413 /// constraint to the nodes operands. This returns true if it makes a 414 /// change, false otherwise. If a type contradiction is found, an error 415 /// is flagged. 416 bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo, 417 TreePattern &TP) const; 418 }; 419 420 /// ScopedName - A name of a node associated with a "scope" that indicates 421 /// the context (e.g. instance of Pattern or PatFrag) in which the name was 422 /// used. This enables substitution of pattern fragments while keeping track 423 /// of what name(s) were originally given to various nodes in the tree. 424 class ScopedName { 425 unsigned Scope; 426 std::string Identifier; 427 public: 428 ScopedName(unsigned Scope, StringRef Identifier) 429 : Scope(Scope), Identifier(std::string(Identifier)) { 430 assert(Scope != 0 && 431 "Scope == 0 is used to indicate predicates without arguments"); 432 } 433 434 unsigned getScope() const { return Scope; } 435 const std::string &getIdentifier() const { return Identifier; } 436 437 bool operator==(const ScopedName &o) const; 438 bool operator!=(const ScopedName &o) const; 439 }; 440 441 /// SDNodeInfo - One of these records is created for each SDNode instance in 442 /// the target .td file. This represents the various dag nodes we will be 443 /// processing. 444 class SDNodeInfo { 445 Record *Def; 446 StringRef EnumName; 447 StringRef SDClassName; 448 unsigned Properties; 449 unsigned NumResults; 450 int NumOperands; 451 std::vector<SDTypeConstraint> TypeConstraints; 452 public: 453 // Parse the specified record. 454 SDNodeInfo(Record *R, const CodeGenHwModes &CGH); 455 456 unsigned getNumResults() const { return NumResults; } 457 458 /// getNumOperands - This is the number of operands required or -1 if 459 /// variadic. 460 int getNumOperands() const { return NumOperands; } 461 Record *getRecord() const { return Def; } 462 StringRef getEnumName() const { return EnumName; } 463 StringRef getSDClassName() const { return SDClassName; } 464 465 const std::vector<SDTypeConstraint> &getTypeConstraints() const { 466 return TypeConstraints; 467 } 468 469 /// getKnownType - If the type constraints on this node imply a fixed type 470 /// (e.g. all stores return void, etc), then return it as an 471 /// MVT::SimpleValueType. Otherwise, return MVT::Other. 472 MVT::SimpleValueType getKnownType(unsigned ResNo) const; 473 474 /// hasProperty - Return true if this node has the specified property. 475 /// 476 bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); } 477 478 /// ApplyTypeConstraints - Given a node in a pattern, apply the type 479 /// constraints for this node to the operands of the node. This returns 480 /// true if it makes a change, false otherwise. If a type contradiction is 481 /// found, an error is flagged. 482 bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const; 483 }; 484 485 /// TreePredicateFn - This is an abstraction that represents the predicates on 486 /// a PatFrag node. This is a simple one-word wrapper around a pointer to 487 /// provide nice accessors. 488 class TreePredicateFn { 489 /// PatFragRec - This is the TreePattern for the PatFrag that we 490 /// originally came from. 491 TreePattern *PatFragRec; 492 public: 493 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 494 TreePredicateFn(TreePattern *N); 495 496 497 TreePattern *getOrigPatFragRecord() const { return PatFragRec; } 498 499 /// isAlwaysTrue - Return true if this is a noop predicate. 500 bool isAlwaysTrue() const; 501 502 bool isImmediatePattern() const { return hasImmCode(); } 503 504 /// getImmediatePredicateCode - Return the code that evaluates this pattern if 505 /// this is an immediate predicate. It is an error to call this on a 506 /// non-immediate pattern. 507 std::string getImmediatePredicateCode() const { 508 std::string Result = getImmCode(); 509 assert(!Result.empty() && "Isn't an immediate pattern!"); 510 return Result; 511 } 512 513 bool operator==(const TreePredicateFn &RHS) const { 514 return PatFragRec == RHS.PatFragRec; 515 } 516 517 bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); } 518 519 /// Return the name to use in the generated code to reference this, this is 520 /// "Predicate_foo" if from a pattern fragment "foo". 521 std::string getFnName() const; 522 523 /// getCodeToRunOnSDNode - Return the code for the function body that 524 /// evaluates this predicate. The argument is expected to be in "Node", 525 /// not N. This handles casting and conversion to a concrete node type as 526 /// appropriate. 527 std::string getCodeToRunOnSDNode() const; 528 529 /// Get the data type of the argument to getImmediatePredicateCode(). 530 StringRef getImmType() const; 531 532 /// Get a string that describes the type returned by getImmType() but is 533 /// usable as part of an identifier. 534 StringRef getImmTypeIdentifier() const; 535 536 // Predicate code uses the PatFrag's captured operands. 537 bool usesOperands() const; 538 539 // Is the desired predefined predicate for a load? 540 bool isLoad() const; 541 // Is the desired predefined predicate for a store? 542 bool isStore() const; 543 // Is the desired predefined predicate for an atomic? 544 bool isAtomic() const; 545 546 /// Is this predicate the predefined unindexed load predicate? 547 /// Is this predicate the predefined unindexed store predicate? 548 bool isUnindexed() const; 549 /// Is this predicate the predefined non-extending load predicate? 550 bool isNonExtLoad() const; 551 /// Is this predicate the predefined any-extend load predicate? 552 bool isAnyExtLoad() const; 553 /// Is this predicate the predefined sign-extend load predicate? 554 bool isSignExtLoad() const; 555 /// Is this predicate the predefined zero-extend load predicate? 556 bool isZeroExtLoad() const; 557 /// Is this predicate the predefined non-truncating store predicate? 558 bool isNonTruncStore() const; 559 /// Is this predicate the predefined truncating store predicate? 560 bool isTruncStore() const; 561 562 /// Is this predicate the predefined monotonic atomic predicate? 563 bool isAtomicOrderingMonotonic() const; 564 /// Is this predicate the predefined acquire atomic predicate? 565 bool isAtomicOrderingAcquire() const; 566 /// Is this predicate the predefined release atomic predicate? 567 bool isAtomicOrderingRelease() const; 568 /// Is this predicate the predefined acquire-release atomic predicate? 569 bool isAtomicOrderingAcquireRelease() const; 570 /// Is this predicate the predefined sequentially consistent atomic predicate? 571 bool isAtomicOrderingSequentiallyConsistent() const; 572 573 /// Is this predicate the predefined acquire-or-stronger atomic predicate? 574 bool isAtomicOrderingAcquireOrStronger() const; 575 /// Is this predicate the predefined weaker-than-acquire atomic predicate? 576 bool isAtomicOrderingWeakerThanAcquire() const; 577 578 /// Is this predicate the predefined release-or-stronger atomic predicate? 579 bool isAtomicOrderingReleaseOrStronger() const; 580 /// Is this predicate the predefined weaker-than-release atomic predicate? 581 bool isAtomicOrderingWeakerThanRelease() const; 582 583 /// If non-null, indicates that this predicate is a predefined memory VT 584 /// predicate for a load/store and returns the ValueType record for the memory VT. 585 Record *getMemoryVT() const; 586 /// If non-null, indicates that this predicate is a predefined memory VT 587 /// predicate (checking only the scalar type) for load/store and returns the 588 /// ValueType record for the memory VT. 589 Record *getScalarMemoryVT() const; 590 591 ListInit *getAddressSpaces() const; 592 int64_t getMinAlignment() const; 593 594 // If true, indicates that GlobalISel-based C++ code was supplied. 595 bool hasGISelPredicateCode() const; 596 std::string getGISelPredicateCode() const; 597 598 private: 599 bool hasPredCode() const; 600 bool hasImmCode() const; 601 std::string getPredCode() const; 602 std::string getImmCode() const; 603 bool immCodeUsesAPInt() const; 604 bool immCodeUsesAPFloat() const; 605 606 bool isPredefinedPredicateEqualTo(StringRef Field, bool Value) const; 607 }; 608 609 struct TreePredicateCall { 610 TreePredicateFn Fn; 611 612 // Scope -- unique identifier for retrieving named arguments. 0 is used when 613 // the predicate does not use named arguments. 614 unsigned Scope; 615 616 TreePredicateCall(const TreePredicateFn &Fn, unsigned Scope) 617 : Fn(Fn), Scope(Scope) {} 618 619 bool operator==(const TreePredicateCall &o) const { 620 return Fn == o.Fn && Scope == o.Scope; 621 } 622 bool operator!=(const TreePredicateCall &o) const { 623 return !(*this == o); 624 } 625 }; 626 627 class TreePatternNode { 628 /// The type of each node result. Before and during type inference, each 629 /// result may be a set of possible types. After (successful) type inference, 630 /// each is a single concrete type. 631 std::vector<TypeSetByHwMode> Types; 632 633 /// The index of each result in results of the pattern. 634 std::vector<unsigned> ResultPerm; 635 636 /// Operator - The Record for the operator if this is an interior node (not 637 /// a leaf). 638 Record *Operator; 639 640 /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf. 641 /// 642 Init *Val; 643 644 /// Name - The name given to this node with the :$foo notation. 645 /// 646 std::string Name; 647 648 std::vector<ScopedName> NamesAsPredicateArg; 649 650 /// PredicateCalls - The predicate functions to execute on this node to check 651 /// for a match. If this list is empty, no predicate is involved. 652 std::vector<TreePredicateCall> PredicateCalls; 653 654 /// TransformFn - The transformation function to execute on this node before 655 /// it can be substituted into the resulting instruction on a pattern match. 656 Record *TransformFn; 657 658 std::vector<TreePatternNodePtr> Children; 659 660 public: 661 TreePatternNode(Record *Op, std::vector<TreePatternNodePtr> Ch, 662 unsigned NumResults) 663 : Operator(Op), Val(nullptr), TransformFn(nullptr), 664 Children(std::move(Ch)) { 665 Types.resize(NumResults); 666 ResultPerm.resize(NumResults); 667 std::iota(ResultPerm.begin(), ResultPerm.end(), 0); 668 } 669 TreePatternNode(Init *val, unsigned NumResults) // leaf ctor 670 : Operator(nullptr), Val(val), TransformFn(nullptr) { 671 Types.resize(NumResults); 672 ResultPerm.resize(NumResults); 673 std::iota(ResultPerm.begin(), ResultPerm.end(), 0); 674 } 675 676 bool hasName() const { return !Name.empty(); } 677 const std::string &getName() const { return Name; } 678 void setName(StringRef N) { Name.assign(N.begin(), N.end()); } 679 680 const std::vector<ScopedName> &getNamesAsPredicateArg() const { 681 return NamesAsPredicateArg; 682 } 683 void setNamesAsPredicateArg(const std::vector<ScopedName>& Names) { 684 NamesAsPredicateArg = Names; 685 } 686 void addNameAsPredicateArg(const ScopedName &N) { 687 NamesAsPredicateArg.push_back(N); 688 } 689 690 bool isLeaf() const { return Val != nullptr; } 691 692 // Type accessors. 693 unsigned getNumTypes() const { return Types.size(); } 694 ValueTypeByHwMode getType(unsigned ResNo) const { 695 return Types[ResNo].getValueTypeByHwMode(); 696 } 697 const std::vector<TypeSetByHwMode> &getExtTypes() const { return Types; } 698 const TypeSetByHwMode &getExtType(unsigned ResNo) const { 699 return Types[ResNo]; 700 } 701 TypeSetByHwMode &getExtType(unsigned ResNo) { return Types[ResNo]; } 702 void setType(unsigned ResNo, const TypeSetByHwMode &T) { Types[ResNo] = T; } 703 MVT::SimpleValueType getSimpleType(unsigned ResNo) const { 704 return Types[ResNo].getMachineValueType().SimpleTy; 705 } 706 707 bool hasConcreteType(unsigned ResNo) const { 708 return Types[ResNo].isValueTypeByHwMode(false); 709 } 710 bool isTypeCompletelyUnknown(unsigned ResNo, TreePattern &TP) const { 711 return Types[ResNo].empty(); 712 } 713 714 unsigned getNumResults() const { return ResultPerm.size(); } 715 unsigned getResultIndex(unsigned ResNo) const { return ResultPerm[ResNo]; } 716 void setResultIndex(unsigned ResNo, unsigned RI) { ResultPerm[ResNo] = RI; } 717 718 Init *getLeafValue() const { assert(isLeaf()); return Val; } 719 Record *getOperator() const { assert(!isLeaf()); return Operator; } 720 721 unsigned getNumChildren() const { return Children.size(); } 722 TreePatternNode *getChild(unsigned N) const { return Children[N].get(); } 723 const TreePatternNodePtr &getChildShared(unsigned N) const { 724 return Children[N]; 725 } 726 void setChild(unsigned i, TreePatternNodePtr N) { Children[i] = N; } 727 728 /// hasChild - Return true if N is any of our children. 729 bool hasChild(const TreePatternNode *N) const { 730 for (unsigned i = 0, e = Children.size(); i != e; ++i) 731 if (Children[i].get() == N) 732 return true; 733 return false; 734 } 735 736 bool hasProperTypeByHwMode() const; 737 bool hasPossibleType() const; 738 bool setDefaultMode(unsigned Mode); 739 740 bool hasAnyPredicate() const { return !PredicateCalls.empty(); } 741 742 const std::vector<TreePredicateCall> &getPredicateCalls() const { 743 return PredicateCalls; 744 } 745 void clearPredicateCalls() { PredicateCalls.clear(); } 746 void setPredicateCalls(const std::vector<TreePredicateCall> &Calls) { 747 assert(PredicateCalls.empty() && "Overwriting non-empty predicate list!"); 748 PredicateCalls = Calls; 749 } 750 void addPredicateCall(const TreePredicateCall &Call) { 751 assert(!Call.Fn.isAlwaysTrue() && "Empty predicate string!"); 752 assert(!is_contained(PredicateCalls, Call) && "predicate applied recursively"); 753 PredicateCalls.push_back(Call); 754 } 755 void addPredicateCall(const TreePredicateFn &Fn, unsigned Scope) { 756 assert((Scope != 0) == Fn.usesOperands()); 757 addPredicateCall(TreePredicateCall(Fn, Scope)); 758 } 759 760 Record *getTransformFn() const { return TransformFn; } 761 void setTransformFn(Record *Fn) { TransformFn = Fn; } 762 763 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 764 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 765 const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const; 766 767 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 768 /// return the ComplexPattern information, otherwise return null. 769 const ComplexPattern * 770 getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const; 771 772 /// Returns the number of MachineInstr operands that would be produced by this 773 /// node if it mapped directly to an output Instruction's 774 /// operand. ComplexPattern specifies this explicitly; MIOperandInfo gives it 775 /// for Operands; otherwise 1. 776 unsigned getNumMIResults(const CodeGenDAGPatterns &CGP) const; 777 778 /// NodeHasProperty - Return true if this node has the specified property. 779 bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const; 780 781 /// TreeHasProperty - Return true if any node in this tree has the specified 782 /// property. 783 bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const; 784 785 /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is 786 /// marked isCommutative. 787 bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const; 788 789 void print(raw_ostream &OS) const; 790 void dump() const; 791 792 public: // Higher level manipulation routines. 793 794 /// clone - Return a new copy of this tree. 795 /// 796 TreePatternNodePtr clone() const; 797 798 /// RemoveAllTypes - Recursively strip all the types of this tree. 799 void RemoveAllTypes(); 800 801 /// isIsomorphicTo - Return true if this node is recursively isomorphic to 802 /// the specified node. For this comparison, all of the state of the node 803 /// is considered, except for the assigned name. Nodes with differing names 804 /// that are otherwise identical are considered isomorphic. 805 bool isIsomorphicTo(const TreePatternNode *N, 806 const MultipleUseVarSet &DepVars) const; 807 808 /// SubstituteFormalArguments - Replace the formal arguments in this tree 809 /// with actual values specified by ArgMap. 810 void 811 SubstituteFormalArguments(std::map<std::string, TreePatternNodePtr> &ArgMap); 812 813 /// InlinePatternFragments - If this pattern refers to any pattern 814 /// fragments, return the set of inlined versions (this can be more than 815 /// one if a PatFrags record has multiple alternatives). 816 void InlinePatternFragments(TreePatternNodePtr T, 817 TreePattern &TP, 818 std::vector<TreePatternNodePtr> &OutAlternatives); 819 820 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 821 /// this node and its children in the tree. This returns true if it makes a 822 /// change, false otherwise. If a type contradiction is found, flag an error. 823 bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters); 824 825 /// UpdateNodeType - Set the node type of N to VT if VT contains 826 /// information. If N already contains a conflicting type, then flag an 827 /// error. This returns true if any information was updated. 828 /// 829 bool UpdateNodeType(unsigned ResNo, const TypeSetByHwMode &InTy, 830 TreePattern &TP); 831 bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy, 832 TreePattern &TP); 833 bool UpdateNodeType(unsigned ResNo, ValueTypeByHwMode InTy, 834 TreePattern &TP); 835 836 // Update node type with types inferred from an instruction operand or result 837 // def from the ins/outs lists. 838 // Return true if the type changed. 839 bool UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP); 840 841 /// ContainsUnresolvedType - Return true if this tree contains any 842 /// unresolved types. 843 bool ContainsUnresolvedType(TreePattern &TP) const; 844 845 /// canPatternMatch - If it is impossible for this pattern to match on this 846 /// target, fill in Reason and return false. Otherwise, return true. 847 bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP); 848 }; 849 850 inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) { 851 TPN.print(OS); 852 return OS; 853 } 854 855 856 /// TreePattern - Represent a pattern, used for instructions, pattern 857 /// fragments, etc. 858 /// 859 class TreePattern { 860 /// Trees - The list of pattern trees which corresponds to this pattern. 861 /// Note that PatFrag's only have a single tree. 862 /// 863 std::vector<TreePatternNodePtr> Trees; 864 865 /// NamedNodes - This is all of the nodes that have names in the trees in this 866 /// pattern. 867 StringMap<SmallVector<TreePatternNode *, 1>> NamedNodes; 868 869 /// TheRecord - The actual TableGen record corresponding to this pattern. 870 /// 871 Record *TheRecord; 872 873 /// Args - This is a list of all of the arguments to this pattern (for 874 /// PatFrag patterns), which are the 'node' markers in this pattern. 875 std::vector<std::string> Args; 876 877 /// CDP - the top-level object coordinating this madness. 878 /// 879 CodeGenDAGPatterns &CDP; 880 881 /// isInputPattern - True if this is an input pattern, something to match. 882 /// False if this is an output pattern, something to emit. 883 bool isInputPattern; 884 885 /// hasError - True if the currently processed nodes have unresolvable types 886 /// or other non-fatal errors 887 bool HasError; 888 889 /// It's important that the usage of operands in ComplexPatterns is 890 /// consistent: each named operand can be defined by at most one 891 /// ComplexPattern. This records the ComplexPattern instance and the operand 892 /// number for each operand encountered in a ComplexPattern to aid in that 893 /// check. 894 StringMap<std::pair<Record *, unsigned>> ComplexPatternOperands; 895 896 TypeInfer Infer; 897 898 public: 899 900 /// TreePattern constructor - Parse the specified DagInits into the 901 /// current record. 902 TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 903 CodeGenDAGPatterns &ise); 904 TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 905 CodeGenDAGPatterns &ise); 906 TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput, 907 CodeGenDAGPatterns &ise); 908 909 /// getTrees - Return the tree patterns which corresponds to this pattern. 910 /// 911 const std::vector<TreePatternNodePtr> &getTrees() const { return Trees; } 912 unsigned getNumTrees() const { return Trees.size(); } 913 const TreePatternNodePtr &getTree(unsigned i) const { return Trees[i]; } 914 void setTree(unsigned i, TreePatternNodePtr Tree) { Trees[i] = Tree; } 915 const TreePatternNodePtr &getOnlyTree() const { 916 assert(Trees.size() == 1 && "Doesn't have exactly one pattern!"); 917 return Trees[0]; 918 } 919 920 const StringMap<SmallVector<TreePatternNode *, 1>> &getNamedNodesMap() { 921 if (NamedNodes.empty()) 922 ComputeNamedNodes(); 923 return NamedNodes; 924 } 925 926 /// getRecord - Return the actual TableGen record corresponding to this 927 /// pattern. 928 /// 929 Record *getRecord() const { return TheRecord; } 930 931 unsigned getNumArgs() const { return Args.size(); } 932 const std::string &getArgName(unsigned i) const { 933 assert(i < Args.size() && "Argument reference out of range!"); 934 return Args[i]; 935 } 936 std::vector<std::string> &getArgList() { return Args; } 937 938 CodeGenDAGPatterns &getDAGPatterns() const { return CDP; } 939 940 /// InlinePatternFragments - If this pattern refers to any pattern 941 /// fragments, inline them into place, giving us a pattern without any 942 /// PatFrags references. This may increase the number of trees in the 943 /// pattern if a PatFrags has multiple alternatives. 944 void InlinePatternFragments() { 945 std::vector<TreePatternNodePtr> Copy = Trees; 946 Trees.clear(); 947 for (unsigned i = 0, e = Copy.size(); i != e; ++i) 948 Copy[i]->InlinePatternFragments(Copy[i], *this, Trees); 949 } 950 951 /// InferAllTypes - Infer/propagate as many types throughout the expression 952 /// patterns as possible. Return true if all types are inferred, false 953 /// otherwise. Bail out if a type contradiction is found. 954 bool InferAllTypes( 955 const StringMap<SmallVector<TreePatternNode *, 1>> *NamedTypes = nullptr); 956 957 /// error - If this is the first error in the current resolution step, 958 /// print it and set the error flag. Otherwise, continue silently. 959 void error(const Twine &Msg); 960 bool hasError() const { 961 return HasError; 962 } 963 void resetError() { 964 HasError = false; 965 } 966 967 TypeInfer &getInfer() { return Infer; } 968 969 void print(raw_ostream &OS) const; 970 void dump() const; 971 972 private: 973 TreePatternNodePtr ParseTreePattern(Init *DI, StringRef OpName); 974 void ComputeNamedNodes(); 975 void ComputeNamedNodes(TreePatternNode *N); 976 }; 977 978 979 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo, 980 const TypeSetByHwMode &InTy, 981 TreePattern &TP) { 982 TypeSetByHwMode VTS(InTy); 983 TP.getInfer().expandOverloads(VTS); 984 return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS); 985 } 986 987 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo, 988 MVT::SimpleValueType InTy, 989 TreePattern &TP) { 990 TypeSetByHwMode VTS(InTy); 991 TP.getInfer().expandOverloads(VTS); 992 return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS); 993 } 994 995 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo, 996 ValueTypeByHwMode InTy, 997 TreePattern &TP) { 998 TypeSetByHwMode VTS(InTy); 999 TP.getInfer().expandOverloads(VTS); 1000 return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS); 1001 } 1002 1003 1004 /// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps 1005 /// that has a set ExecuteAlways / DefaultOps field. 1006 struct DAGDefaultOperand { 1007 std::vector<TreePatternNodePtr> DefaultOps; 1008 }; 1009 1010 class DAGInstruction { 1011 std::vector<Record*> Results; 1012 std::vector<Record*> Operands; 1013 std::vector<Record*> ImpResults; 1014 TreePatternNodePtr SrcPattern; 1015 TreePatternNodePtr ResultPattern; 1016 1017 public: 1018 DAGInstruction(const std::vector<Record*> &results, 1019 const std::vector<Record*> &operands, 1020 const std::vector<Record*> &impresults, 1021 TreePatternNodePtr srcpattern = nullptr, 1022 TreePatternNodePtr resultpattern = nullptr) 1023 : Results(results), Operands(operands), ImpResults(impresults), 1024 SrcPattern(srcpattern), ResultPattern(resultpattern) {} 1025 1026 unsigned getNumResults() const { return Results.size(); } 1027 unsigned getNumOperands() const { return Operands.size(); } 1028 unsigned getNumImpResults() const { return ImpResults.size(); } 1029 const std::vector<Record*>& getImpResults() const { return ImpResults; } 1030 1031 Record *getResult(unsigned RN) const { 1032 assert(RN < Results.size()); 1033 return Results[RN]; 1034 } 1035 1036 Record *getOperand(unsigned ON) const { 1037 assert(ON < Operands.size()); 1038 return Operands[ON]; 1039 } 1040 1041 Record *getImpResult(unsigned RN) const { 1042 assert(RN < ImpResults.size()); 1043 return ImpResults[RN]; 1044 } 1045 1046 TreePatternNodePtr getSrcPattern() const { return SrcPattern; } 1047 TreePatternNodePtr getResultPattern() const { return ResultPattern; } 1048 }; 1049 1050 /// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns 1051 /// processed to produce isel. 1052 class PatternToMatch { 1053 Record *SrcRecord; // Originating Record for the pattern. 1054 ListInit *Predicates; // Top level predicate conditions to match. 1055 TreePatternNodePtr SrcPattern; // Source pattern to match. 1056 TreePatternNodePtr DstPattern; // Resulting pattern. 1057 std::vector<Record*> Dstregs; // Physical register defs being matched. 1058 std::string HwModeFeatures; 1059 int AddedComplexity; // Add to matching pattern complexity. 1060 unsigned ID; // Unique ID for the record. 1061 unsigned ForceMode; // Force this mode in type inference when set. 1062 1063 public: 1064 PatternToMatch(Record *srcrecord, ListInit *preds, TreePatternNodePtr src, 1065 TreePatternNodePtr dst, std::vector<Record *> dstregs, 1066 int complexity, unsigned uid, unsigned setmode = 0, 1067 const Twine &hwmodefeatures = "") 1068 : SrcRecord(srcrecord), Predicates(preds), SrcPattern(src), 1069 DstPattern(dst), Dstregs(std::move(dstregs)), 1070 HwModeFeatures(hwmodefeatures.str()), AddedComplexity(complexity), 1071 ID(uid), ForceMode(setmode) {} 1072 1073 Record *getSrcRecord() const { return SrcRecord; } 1074 ListInit *getPredicates() const { return Predicates; } 1075 TreePatternNode *getSrcPattern() const { return SrcPattern.get(); } 1076 TreePatternNodePtr getSrcPatternShared() const { return SrcPattern; } 1077 TreePatternNode *getDstPattern() const { return DstPattern.get(); } 1078 TreePatternNodePtr getDstPatternShared() const { return DstPattern; } 1079 const std::vector<Record*> &getDstRegs() const { return Dstregs; } 1080 StringRef getHwModeFeatures() const { return HwModeFeatures; } 1081 int getAddedComplexity() const { return AddedComplexity; } 1082 unsigned getID() const { return ID; } 1083 unsigned getForceMode() const { return ForceMode; } 1084 1085 std::string getPredicateCheck() const; 1086 void getPredicateRecords(SmallVectorImpl<Record *> &PredicateRecs) const; 1087 1088 /// Compute the complexity metric for the input pattern. This roughly 1089 /// corresponds to the number of nodes that are covered. 1090 int getPatternComplexity(const CodeGenDAGPatterns &CGP) const; 1091 }; 1092 1093 class CodeGenDAGPatterns { 1094 RecordKeeper &Records; 1095 CodeGenTarget Target; 1096 CodeGenIntrinsicTable Intrinsics; 1097 1098 std::map<Record*, SDNodeInfo, LessRecordByID> SDNodes; 1099 std::map<Record*, std::pair<Record*, std::string>, LessRecordByID> 1100 SDNodeXForms; 1101 std::map<Record*, ComplexPattern, LessRecordByID> ComplexPatterns; 1102 std::map<Record *, std::unique_ptr<TreePattern>, LessRecordByID> 1103 PatternFragments; 1104 std::map<Record*, DAGDefaultOperand, LessRecordByID> DefaultOperands; 1105 std::map<Record*, DAGInstruction, LessRecordByID> Instructions; 1106 1107 // Specific SDNode definitions: 1108 Record *intrinsic_void_sdnode; 1109 Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode; 1110 1111 /// PatternsToMatch - All of the things we are matching on the DAG. The first 1112 /// value is the pattern to match, the second pattern is the result to 1113 /// emit. 1114 std::vector<PatternToMatch> PatternsToMatch; 1115 1116 TypeSetByHwMode LegalVTS; 1117 1118 using PatternRewriterFn = std::function<void (TreePattern *)>; 1119 PatternRewriterFn PatternRewriter; 1120 1121 unsigned NumScopes = 0; 1122 1123 public: 1124 CodeGenDAGPatterns(RecordKeeper &R, 1125 PatternRewriterFn PatternRewriter = nullptr); 1126 1127 CodeGenTarget &getTargetInfo() { return Target; } 1128 const CodeGenTarget &getTargetInfo() const { return Target; } 1129 const TypeSetByHwMode &getLegalTypes() const { return LegalVTS; } 1130 1131 Record *getSDNodeNamed(StringRef Name) const; 1132 1133 const SDNodeInfo &getSDNodeInfo(Record *R) const { 1134 auto F = SDNodes.find(R); 1135 assert(F != SDNodes.end() && "Unknown node!"); 1136 return F->second; 1137 } 1138 1139 // Node transformation lookups. 1140 typedef std::pair<Record*, std::string> NodeXForm; 1141 const NodeXForm &getSDNodeTransform(Record *R) const { 1142 auto F = SDNodeXForms.find(R); 1143 assert(F != SDNodeXForms.end() && "Invalid transform!"); 1144 return F->second; 1145 } 1146 1147 const ComplexPattern &getComplexPattern(Record *R) const { 1148 auto F = ComplexPatterns.find(R); 1149 assert(F != ComplexPatterns.end() && "Unknown addressing mode!"); 1150 return F->second; 1151 } 1152 1153 const CodeGenIntrinsic &getIntrinsic(Record *R) const { 1154 for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i) 1155 if (Intrinsics[i].TheDef == R) return Intrinsics[i]; 1156 llvm_unreachable("Unknown intrinsic!"); 1157 } 1158 1159 const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const { 1160 if (IID-1 < Intrinsics.size()) 1161 return Intrinsics[IID-1]; 1162 llvm_unreachable("Bad intrinsic ID!"); 1163 } 1164 1165 unsigned getIntrinsicID(Record *R) const { 1166 for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i) 1167 if (Intrinsics[i].TheDef == R) return i; 1168 llvm_unreachable("Unknown intrinsic!"); 1169 } 1170 1171 const DAGDefaultOperand &getDefaultOperand(Record *R) const { 1172 auto F = DefaultOperands.find(R); 1173 assert(F != DefaultOperands.end() &&"Isn't an analyzed default operand!"); 1174 return F->second; 1175 } 1176 1177 // Pattern Fragment information. 1178 TreePattern *getPatternFragment(Record *R) const { 1179 auto F = PatternFragments.find(R); 1180 assert(F != PatternFragments.end() && "Invalid pattern fragment request!"); 1181 return F->second.get(); 1182 } 1183 TreePattern *getPatternFragmentIfRead(Record *R) const { 1184 auto F = PatternFragments.find(R); 1185 if (F == PatternFragments.end()) 1186 return nullptr; 1187 return F->second.get(); 1188 } 1189 1190 typedef std::map<Record *, std::unique_ptr<TreePattern>, 1191 LessRecordByID>::const_iterator pf_iterator; 1192 pf_iterator pf_begin() const { return PatternFragments.begin(); } 1193 pf_iterator pf_end() const { return PatternFragments.end(); } 1194 iterator_range<pf_iterator> ptfs() const { return PatternFragments; } 1195 1196 // Patterns to match information. 1197 typedef std::vector<PatternToMatch>::const_iterator ptm_iterator; 1198 ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); } 1199 ptm_iterator ptm_end() const { return PatternsToMatch.end(); } 1200 iterator_range<ptm_iterator> ptms() const { return PatternsToMatch; } 1201 1202 /// Parse the Pattern for an instruction, and insert the result in DAGInsts. 1203 typedef std::map<Record*, DAGInstruction, LessRecordByID> DAGInstMap; 1204 void parseInstructionPattern( 1205 CodeGenInstruction &CGI, ListInit *Pattern, 1206 DAGInstMap &DAGInsts); 1207 1208 const DAGInstruction &getInstruction(Record *R) const { 1209 auto F = Instructions.find(R); 1210 assert(F != Instructions.end() && "Unknown instruction!"); 1211 return F->second; 1212 } 1213 1214 Record *get_intrinsic_void_sdnode() const { 1215 return intrinsic_void_sdnode; 1216 } 1217 Record *get_intrinsic_w_chain_sdnode() const { 1218 return intrinsic_w_chain_sdnode; 1219 } 1220 Record *get_intrinsic_wo_chain_sdnode() const { 1221 return intrinsic_wo_chain_sdnode; 1222 } 1223 1224 unsigned allocateScope() { return ++NumScopes; } 1225 1226 bool operandHasDefault(Record *Op) const { 1227 return Op->isSubClassOf("OperandWithDefaultOps") && 1228 !getDefaultOperand(Op).DefaultOps.empty(); 1229 } 1230 1231 private: 1232 void ParseNodeInfo(); 1233 void ParseNodeTransforms(); 1234 void ParseComplexPatterns(); 1235 void ParsePatternFragments(bool OutFrags = false); 1236 void ParseDefaultOperands(); 1237 void ParseInstructions(); 1238 void ParsePatterns(); 1239 void ExpandHwModeBasedTypes(); 1240 void InferInstructionFlags(); 1241 void GenerateVariants(); 1242 void VerifyInstructionFlags(); 1243 1244 void ParseOnePattern(Record *TheDef, 1245 TreePattern &Pattern, TreePattern &Result, 1246 const std::vector<Record *> &InstImpResults); 1247 void AddPatternToMatch(TreePattern *Pattern, PatternToMatch &&PTM); 1248 void FindPatternInputsAndOutputs( 1249 TreePattern &I, TreePatternNodePtr Pat, 1250 std::map<std::string, TreePatternNodePtr> &InstInputs, 1251 MapVector<std::string, TreePatternNodePtr, 1252 std::map<std::string, unsigned>> &InstResults, 1253 std::vector<Record *> &InstImpResults); 1254 }; 1255 1256 1257 inline bool SDNodeInfo::ApplyTypeConstraints(TreePatternNode *N, 1258 TreePattern &TP) const { 1259 bool MadeChange = false; 1260 for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) 1261 MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP); 1262 return MadeChange; 1263 } 1264 1265 } // end namespace llvm 1266 1267 #endif 1268