1 //===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file declares the CodeGenDAGPatterns class, which is used to read and 10 // represent the patterns present in a .td file for instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H 15 #define LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H 16 17 #include "CodeGenIntrinsics.h" 18 #include "CodeGenTarget.h" 19 #include "SDNodeProperties.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/StringSet.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/MathExtras.h" 26 #include <algorithm> 27 #include <array> 28 #include <functional> 29 #include <map> 30 #include <numeric> 31 #include <vector> 32 33 namespace llvm { 34 35 class Record; 36 class Init; 37 class ListInit; 38 class DagInit; 39 class SDNodeInfo; 40 class TreePattern; 41 class TreePatternNode; 42 class CodeGenDAGPatterns; 43 44 /// Shared pointer for TreePatternNode. 45 using TreePatternNodePtr = std::shared_ptr<TreePatternNode>; 46 47 /// This represents a set of MVTs. Since the underlying type for the MVT 48 /// is uint8_t, there are at most 256 values. To reduce the number of memory 49 /// allocations and deallocations, represent the set as a sequence of bits. 50 /// To reduce the allocations even further, make MachineValueTypeSet own 51 /// the storage and use std::array as the bit container. 52 struct MachineValueTypeSet { 53 static_assert(std::is_same<std::underlying_type<MVT::SimpleValueType>::type, 54 uint8_t>::value, 55 "Change uint8_t here to the SimpleValueType's type"); 56 static unsigned constexpr Capacity = std::numeric_limits<uint8_t>::max()+1; 57 using WordType = uint64_t; 58 static unsigned constexpr WordWidth = CHAR_BIT*sizeof(WordType); 59 static unsigned constexpr NumWords = Capacity/WordWidth; 60 static_assert(NumWords*WordWidth == Capacity, 61 "Capacity should be a multiple of WordWidth"); 62 63 LLVM_ATTRIBUTE_ALWAYS_INLINE 64 MachineValueTypeSet() { 65 clear(); 66 } 67 68 LLVM_ATTRIBUTE_ALWAYS_INLINE 69 unsigned size() const { 70 unsigned Count = 0; 71 for (WordType W : Words) 72 Count += countPopulation(W); 73 return Count; 74 } 75 LLVM_ATTRIBUTE_ALWAYS_INLINE 76 void clear() { 77 std::memset(Words.data(), 0, NumWords*sizeof(WordType)); 78 } 79 LLVM_ATTRIBUTE_ALWAYS_INLINE 80 bool empty() const { 81 for (WordType W : Words) 82 if (W != 0) 83 return false; 84 return true; 85 } 86 LLVM_ATTRIBUTE_ALWAYS_INLINE 87 unsigned count(MVT T) const { 88 return (Words[T.SimpleTy / WordWidth] >> (T.SimpleTy % WordWidth)) & 1; 89 } 90 std::pair<MachineValueTypeSet&,bool> insert(MVT T) { 91 bool V = count(T.SimpleTy); 92 Words[T.SimpleTy / WordWidth] |= WordType(1) << (T.SimpleTy % WordWidth); 93 return {*this, V}; 94 } 95 MachineValueTypeSet &insert(const MachineValueTypeSet &S) { 96 for (unsigned i = 0; i != NumWords; ++i) 97 Words[i] |= S.Words[i]; 98 return *this; 99 } 100 LLVM_ATTRIBUTE_ALWAYS_INLINE 101 void erase(MVT T) { 102 Words[T.SimpleTy / WordWidth] &= ~(WordType(1) << (T.SimpleTy % WordWidth)); 103 } 104 105 void writeToStream(raw_ostream &OS) const; 106 107 struct const_iterator { 108 // Some implementations of the C++ library require these traits to be 109 // defined. 110 using iterator_category = std::forward_iterator_tag; 111 using value_type = MVT; 112 using difference_type = ptrdiff_t; 113 using pointer = const MVT*; 114 using reference = const MVT&; 115 116 LLVM_ATTRIBUTE_ALWAYS_INLINE 117 MVT operator*() const { 118 assert(Pos != Capacity); 119 return MVT::SimpleValueType(Pos); 120 } 121 LLVM_ATTRIBUTE_ALWAYS_INLINE 122 const_iterator(const MachineValueTypeSet *S, bool End) : Set(S) { 123 Pos = End ? Capacity : find_from_pos(0); 124 } 125 LLVM_ATTRIBUTE_ALWAYS_INLINE 126 const_iterator &operator++() { 127 assert(Pos != Capacity); 128 Pos = find_from_pos(Pos+1); 129 return *this; 130 } 131 132 LLVM_ATTRIBUTE_ALWAYS_INLINE 133 bool operator==(const const_iterator &It) const { 134 return Set == It.Set && Pos == It.Pos; 135 } 136 LLVM_ATTRIBUTE_ALWAYS_INLINE 137 bool operator!=(const const_iterator &It) const { 138 return !operator==(It); 139 } 140 141 private: 142 unsigned find_from_pos(unsigned P) const { 143 unsigned SkipWords = P / WordWidth; 144 unsigned SkipBits = P % WordWidth; 145 unsigned Count = SkipWords * WordWidth; 146 147 // If P is in the middle of a word, process it manually here, because 148 // the trailing bits need to be masked off to use findFirstSet. 149 if (SkipBits != 0) { 150 WordType W = Set->Words[SkipWords]; 151 W &= maskLeadingOnes<WordType>(WordWidth-SkipBits); 152 if (W != 0) 153 return Count + findFirstSet(W); 154 Count += WordWidth; 155 SkipWords++; 156 } 157 158 for (unsigned i = SkipWords; i != NumWords; ++i) { 159 WordType W = Set->Words[i]; 160 if (W != 0) 161 return Count + findFirstSet(W); 162 Count += WordWidth; 163 } 164 return Capacity; 165 } 166 167 const MachineValueTypeSet *Set; 168 unsigned Pos; 169 }; 170 171 LLVM_ATTRIBUTE_ALWAYS_INLINE 172 const_iterator begin() const { return const_iterator(this, false); } 173 LLVM_ATTRIBUTE_ALWAYS_INLINE 174 const_iterator end() const { return const_iterator(this, true); } 175 176 LLVM_ATTRIBUTE_ALWAYS_INLINE 177 bool operator==(const MachineValueTypeSet &S) const { 178 return Words == S.Words; 179 } 180 LLVM_ATTRIBUTE_ALWAYS_INLINE 181 bool operator!=(const MachineValueTypeSet &S) const { 182 return !operator==(S); 183 } 184 185 private: 186 friend struct const_iterator; 187 std::array<WordType,NumWords> Words; 188 }; 189 190 raw_ostream &operator<<(raw_ostream &OS, const MachineValueTypeSet &T); 191 192 struct TypeSetByHwMode : public InfoByHwMode<MachineValueTypeSet> { 193 using SetType = MachineValueTypeSet; 194 SmallVector<unsigned, 16> AddrSpaces; 195 196 TypeSetByHwMode() = default; 197 TypeSetByHwMode(const TypeSetByHwMode &VTS) = default; 198 TypeSetByHwMode &operator=(const TypeSetByHwMode &) = default; 199 TypeSetByHwMode(MVT::SimpleValueType VT) 200 : TypeSetByHwMode(ValueTypeByHwMode(VT)) {} 201 TypeSetByHwMode(ValueTypeByHwMode VT) 202 : TypeSetByHwMode(ArrayRef<ValueTypeByHwMode>(&VT, 1)) {} 203 TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList); 204 205 SetType &getOrCreate(unsigned Mode) { 206 return Map[Mode]; 207 } 208 209 bool isValueTypeByHwMode(bool AllowEmpty) const; 210 ValueTypeByHwMode getValueTypeByHwMode() const; 211 212 LLVM_ATTRIBUTE_ALWAYS_INLINE 213 bool isMachineValueType() const { 214 return isDefaultOnly() && Map.begin()->second.size() == 1; 215 } 216 217 LLVM_ATTRIBUTE_ALWAYS_INLINE 218 MVT getMachineValueType() const { 219 assert(isMachineValueType()); 220 return *Map.begin()->second.begin(); 221 } 222 223 bool isPossible() const; 224 225 LLVM_ATTRIBUTE_ALWAYS_INLINE 226 bool isDefaultOnly() const { 227 return Map.size() == 1 && Map.begin()->first == DefaultMode; 228 } 229 230 bool isPointer() const { 231 return getValueTypeByHwMode().isPointer(); 232 } 233 234 unsigned getPtrAddrSpace() const { 235 assert(isPointer()); 236 return getValueTypeByHwMode().PtrAddrSpace; 237 } 238 239 bool insert(const ValueTypeByHwMode &VVT); 240 bool constrain(const TypeSetByHwMode &VTS); 241 template <typename Predicate> bool constrain(Predicate P); 242 template <typename Predicate> 243 bool assign_if(const TypeSetByHwMode &VTS, Predicate P); 244 245 void writeToStream(raw_ostream &OS) const; 246 247 bool operator==(const TypeSetByHwMode &VTS) const; 248 bool operator!=(const TypeSetByHwMode &VTS) const { return !(*this == VTS); } 249 250 void dump() const; 251 bool validate() const; 252 253 private: 254 unsigned PtrAddrSpace = std::numeric_limits<unsigned>::max(); 255 /// Intersect two sets. Return true if anything has changed. 256 bool intersect(SetType &Out, const SetType &In); 257 }; 258 259 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T); 260 261 struct TypeInfer { 262 TypeInfer(TreePattern &T) : TP(T), ForceMode(0) {} 263 264 bool isConcrete(const TypeSetByHwMode &VTS, bool AllowEmpty) const { 265 return VTS.isValueTypeByHwMode(AllowEmpty); 266 } 267 ValueTypeByHwMode getConcrete(const TypeSetByHwMode &VTS, 268 bool AllowEmpty) const { 269 assert(VTS.isValueTypeByHwMode(AllowEmpty)); 270 return VTS.getValueTypeByHwMode(); 271 } 272 273 /// The protocol in the following functions (Merge*, force*, Enforce*, 274 /// expand*) is to return "true" if a change has been made, "false" 275 /// otherwise. 276 277 bool MergeInTypeInfo(TypeSetByHwMode &Out, const TypeSetByHwMode &In); 278 bool MergeInTypeInfo(TypeSetByHwMode &Out, MVT::SimpleValueType InVT) { 279 return MergeInTypeInfo(Out, TypeSetByHwMode(InVT)); 280 } 281 bool MergeInTypeInfo(TypeSetByHwMode &Out, ValueTypeByHwMode InVT) { 282 return MergeInTypeInfo(Out, TypeSetByHwMode(InVT)); 283 } 284 285 /// Reduce the set \p Out to have at most one element for each mode. 286 bool forceArbitrary(TypeSetByHwMode &Out); 287 288 /// The following four functions ensure that upon return the set \p Out 289 /// will only contain types of the specified kind: integer, floating-point, 290 /// scalar, or vector. 291 /// If \p Out is empty, all legal types of the specified kind will be added 292 /// to it. Otherwise, all types that are not of the specified kind will be 293 /// removed from \p Out. 294 bool EnforceInteger(TypeSetByHwMode &Out); 295 bool EnforceFloatingPoint(TypeSetByHwMode &Out); 296 bool EnforceScalar(TypeSetByHwMode &Out); 297 bool EnforceVector(TypeSetByHwMode &Out); 298 299 /// If \p Out is empty, fill it with all legal types. Otherwise, leave it 300 /// unchanged. 301 bool EnforceAny(TypeSetByHwMode &Out); 302 /// Make sure that for each type in \p Small, there exists a larger type 303 /// in \p Big. \p SmallIsVT indicates that this is being called for 304 /// SDTCisVTSmallerThanOp. In that case the TypeSetByHwMode is re-created for 305 /// each call and needs special consideration in how we detect changes. 306 bool EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big, 307 bool SmallIsVT = false); 308 /// 1. Ensure that for each type T in \p Vec, T is a vector type, and that 309 /// for each type U in \p Elem, U is a scalar type. 310 /// 2. Ensure that for each (scalar) type U in \p Elem, there exists a 311 /// (vector) type T in \p Vec, such that U is the element type of T. 312 bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, TypeSetByHwMode &Elem); 313 bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 314 const ValueTypeByHwMode &VVT); 315 /// Ensure that for each type T in \p Sub, T is a vector type, and there 316 /// exists a type U in \p Vec such that U is a vector type with the same 317 /// element type as T and at least as many elements as T. 318 bool EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec, 319 TypeSetByHwMode &Sub); 320 /// 1. Ensure that \p V has a scalar type iff \p W has a scalar type. 321 /// 2. Ensure that for each vector type T in \p V, there exists a vector 322 /// type U in \p W, such that T and U have the same number of elements. 323 /// 3. Ensure that for each vector type U in \p W, there exists a vector 324 /// type T in \p V, such that T and U have the same number of elements 325 /// (reverse of 2). 326 bool EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W); 327 /// 1. Ensure that for each type T in \p A, there exists a type U in \p B, 328 /// such that T and U have equal size in bits. 329 /// 2. Ensure that for each type U in \p B, there exists a type T in \p A 330 /// such that T and U have equal size in bits (reverse of 1). 331 bool EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B); 332 333 /// For each overloaded type (i.e. of form *Any), replace it with the 334 /// corresponding subset of legal, specific types. 335 void expandOverloads(TypeSetByHwMode &VTS); 336 void expandOverloads(TypeSetByHwMode::SetType &Out, 337 const TypeSetByHwMode::SetType &Legal); 338 339 struct ValidateOnExit { 340 ValidateOnExit(TypeSetByHwMode &T, TypeInfer &TI) : Infer(TI), VTS(T) {} 341 #ifndef NDEBUG 342 ~ValidateOnExit(); 343 #else 344 ~ValidateOnExit() {} // Empty destructor with NDEBUG. 345 #endif 346 TypeInfer &Infer; 347 TypeSetByHwMode &VTS; 348 }; 349 350 struct SuppressValidation { 351 SuppressValidation(TypeInfer &TI) : Infer(TI), SavedValidate(TI.Validate) { 352 Infer.Validate = false; 353 } 354 ~SuppressValidation() { 355 Infer.Validate = SavedValidate; 356 } 357 TypeInfer &Infer; 358 bool SavedValidate; 359 }; 360 361 TreePattern &TP; 362 unsigned ForceMode; // Mode to use when set. 363 bool CodeGen = false; // Set during generation of matcher code. 364 bool Validate = true; // Indicate whether to validate types. 365 366 private: 367 const TypeSetByHwMode &getLegalTypes(); 368 369 /// Cached legal types (in default mode). 370 bool LegalTypesCached = false; 371 TypeSetByHwMode LegalCache; 372 }; 373 374 /// Set type used to track multiply used variables in patterns 375 typedef StringSet<> MultipleUseVarSet; 376 377 /// SDTypeConstraint - This is a discriminated union of constraints, 378 /// corresponding to the SDTypeConstraint tablegen class in Target.td. 379 struct SDTypeConstraint { 380 SDTypeConstraint(Record *R, const CodeGenHwModes &CGH); 381 382 unsigned OperandNo; // The operand # this constraint applies to. 383 enum { 384 SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs, 385 SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec, 386 SDTCisSubVecOfVec, SDTCVecEltisVT, SDTCisSameNumEltsAs, SDTCisSameSizeAs 387 } ConstraintType; 388 389 union { // The discriminated union. 390 struct { 391 unsigned OtherOperandNum; 392 } SDTCisSameAs_Info; 393 struct { 394 unsigned OtherOperandNum; 395 } SDTCisVTSmallerThanOp_Info; 396 struct { 397 unsigned BigOperandNum; 398 } SDTCisOpSmallerThanOp_Info; 399 struct { 400 unsigned OtherOperandNum; 401 } SDTCisEltOfVec_Info; 402 struct { 403 unsigned OtherOperandNum; 404 } SDTCisSubVecOfVec_Info; 405 struct { 406 unsigned OtherOperandNum; 407 } SDTCisSameNumEltsAs_Info; 408 struct { 409 unsigned OtherOperandNum; 410 } SDTCisSameSizeAs_Info; 411 } x; 412 413 // The VT for SDTCisVT and SDTCVecEltisVT. 414 // Must not be in the union because it has a non-trivial destructor. 415 ValueTypeByHwMode VVT; 416 417 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 418 /// constraint to the nodes operands. This returns true if it makes a 419 /// change, false otherwise. If a type contradiction is found, an error 420 /// is flagged. 421 bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo, 422 TreePattern &TP) const; 423 }; 424 425 /// ScopedName - A name of a node associated with a "scope" that indicates 426 /// the context (e.g. instance of Pattern or PatFrag) in which the name was 427 /// used. This enables substitution of pattern fragments while keeping track 428 /// of what name(s) were originally given to various nodes in the tree. 429 class ScopedName { 430 unsigned Scope; 431 std::string Identifier; 432 public: 433 ScopedName(unsigned Scope, StringRef Identifier) 434 : Scope(Scope), Identifier(std::string(Identifier)) { 435 assert(Scope != 0 && 436 "Scope == 0 is used to indicate predicates without arguments"); 437 } 438 439 unsigned getScope() const { return Scope; } 440 const std::string &getIdentifier() const { return Identifier; } 441 442 bool operator==(const ScopedName &o) const; 443 bool operator!=(const ScopedName &o) const; 444 }; 445 446 /// SDNodeInfo - One of these records is created for each SDNode instance in 447 /// the target .td file. This represents the various dag nodes we will be 448 /// processing. 449 class SDNodeInfo { 450 Record *Def; 451 StringRef EnumName; 452 StringRef SDClassName; 453 unsigned Properties; 454 unsigned NumResults; 455 int NumOperands; 456 std::vector<SDTypeConstraint> TypeConstraints; 457 public: 458 // Parse the specified record. 459 SDNodeInfo(Record *R, const CodeGenHwModes &CGH); 460 461 unsigned getNumResults() const { return NumResults; } 462 463 /// getNumOperands - This is the number of operands required or -1 if 464 /// variadic. 465 int getNumOperands() const { return NumOperands; } 466 Record *getRecord() const { return Def; } 467 StringRef getEnumName() const { return EnumName; } 468 StringRef getSDClassName() const { return SDClassName; } 469 470 const std::vector<SDTypeConstraint> &getTypeConstraints() const { 471 return TypeConstraints; 472 } 473 474 /// getKnownType - If the type constraints on this node imply a fixed type 475 /// (e.g. all stores return void, etc), then return it as an 476 /// MVT::SimpleValueType. Otherwise, return MVT::Other. 477 MVT::SimpleValueType getKnownType(unsigned ResNo) const; 478 479 /// hasProperty - Return true if this node has the specified property. 480 /// 481 bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); } 482 483 /// ApplyTypeConstraints - Given a node in a pattern, apply the type 484 /// constraints for this node to the operands of the node. This returns 485 /// true if it makes a change, false otherwise. If a type contradiction is 486 /// found, an error is flagged. 487 bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const; 488 }; 489 490 /// TreePredicateFn - This is an abstraction that represents the predicates on 491 /// a PatFrag node. This is a simple one-word wrapper around a pointer to 492 /// provide nice accessors. 493 class TreePredicateFn { 494 /// PatFragRec - This is the TreePattern for the PatFrag that we 495 /// originally came from. 496 TreePattern *PatFragRec; 497 public: 498 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 499 TreePredicateFn(TreePattern *N); 500 501 502 TreePattern *getOrigPatFragRecord() const { return PatFragRec; } 503 504 /// isAlwaysTrue - Return true if this is a noop predicate. 505 bool isAlwaysTrue() const; 506 507 bool isImmediatePattern() const { return hasImmCode(); } 508 509 /// getImmediatePredicateCode - Return the code that evaluates this pattern if 510 /// this is an immediate predicate. It is an error to call this on a 511 /// non-immediate pattern. 512 std::string getImmediatePredicateCode() const { 513 std::string Result = getImmCode(); 514 assert(!Result.empty() && "Isn't an immediate pattern!"); 515 return Result; 516 } 517 518 bool operator==(const TreePredicateFn &RHS) const { 519 return PatFragRec == RHS.PatFragRec; 520 } 521 522 bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); } 523 524 /// Return the name to use in the generated code to reference this, this is 525 /// "Predicate_foo" if from a pattern fragment "foo". 526 std::string getFnName() const; 527 528 /// getCodeToRunOnSDNode - Return the code for the function body that 529 /// evaluates this predicate. The argument is expected to be in "Node", 530 /// not N. This handles casting and conversion to a concrete node type as 531 /// appropriate. 532 std::string getCodeToRunOnSDNode() const; 533 534 /// Get the data type of the argument to getImmediatePredicateCode(). 535 StringRef getImmType() const; 536 537 /// Get a string that describes the type returned by getImmType() but is 538 /// usable as part of an identifier. 539 StringRef getImmTypeIdentifier() const; 540 541 // Predicate code uses the PatFrag's captured operands. 542 bool usesOperands() const; 543 544 // Is the desired predefined predicate for a load? 545 bool isLoad() const; 546 // Is the desired predefined predicate for a store? 547 bool isStore() const; 548 // Is the desired predefined predicate for an atomic? 549 bool isAtomic() const; 550 551 /// Is this predicate the predefined unindexed load predicate? 552 /// Is this predicate the predefined unindexed store predicate? 553 bool isUnindexed() const; 554 /// Is this predicate the predefined non-extending load predicate? 555 bool isNonExtLoad() const; 556 /// Is this predicate the predefined any-extend load predicate? 557 bool isAnyExtLoad() const; 558 /// Is this predicate the predefined sign-extend load predicate? 559 bool isSignExtLoad() const; 560 /// Is this predicate the predefined zero-extend load predicate? 561 bool isZeroExtLoad() const; 562 /// Is this predicate the predefined non-truncating store predicate? 563 bool isNonTruncStore() const; 564 /// Is this predicate the predefined truncating store predicate? 565 bool isTruncStore() const; 566 567 /// Is this predicate the predefined monotonic atomic predicate? 568 bool isAtomicOrderingMonotonic() const; 569 /// Is this predicate the predefined acquire atomic predicate? 570 bool isAtomicOrderingAcquire() const; 571 /// Is this predicate the predefined release atomic predicate? 572 bool isAtomicOrderingRelease() const; 573 /// Is this predicate the predefined acquire-release atomic predicate? 574 bool isAtomicOrderingAcquireRelease() const; 575 /// Is this predicate the predefined sequentially consistent atomic predicate? 576 bool isAtomicOrderingSequentiallyConsistent() const; 577 578 /// Is this predicate the predefined acquire-or-stronger atomic predicate? 579 bool isAtomicOrderingAcquireOrStronger() const; 580 /// Is this predicate the predefined weaker-than-acquire atomic predicate? 581 bool isAtomicOrderingWeakerThanAcquire() const; 582 583 /// Is this predicate the predefined release-or-stronger atomic predicate? 584 bool isAtomicOrderingReleaseOrStronger() const; 585 /// Is this predicate the predefined weaker-than-release atomic predicate? 586 bool isAtomicOrderingWeakerThanRelease() const; 587 588 /// If non-null, indicates that this predicate is a predefined memory VT 589 /// predicate for a load/store and returns the ValueType record for the memory VT. 590 Record *getMemoryVT() const; 591 /// If non-null, indicates that this predicate is a predefined memory VT 592 /// predicate (checking only the scalar type) for load/store and returns the 593 /// ValueType record for the memory VT. 594 Record *getScalarMemoryVT() const; 595 596 ListInit *getAddressSpaces() const; 597 int64_t getMinAlignment() const; 598 599 // If true, indicates that GlobalISel-based C++ code was supplied. 600 bool hasGISelPredicateCode() const; 601 std::string getGISelPredicateCode() const; 602 603 private: 604 bool hasPredCode() const; 605 bool hasImmCode() const; 606 std::string getPredCode() const; 607 std::string getImmCode() const; 608 bool immCodeUsesAPInt() const; 609 bool immCodeUsesAPFloat() const; 610 611 bool isPredefinedPredicateEqualTo(StringRef Field, bool Value) const; 612 }; 613 614 struct TreePredicateCall { 615 TreePredicateFn Fn; 616 617 // Scope -- unique identifier for retrieving named arguments. 0 is used when 618 // the predicate does not use named arguments. 619 unsigned Scope; 620 621 TreePredicateCall(const TreePredicateFn &Fn, unsigned Scope) 622 : Fn(Fn), Scope(Scope) {} 623 624 bool operator==(const TreePredicateCall &o) const { 625 return Fn == o.Fn && Scope == o.Scope; 626 } 627 bool operator!=(const TreePredicateCall &o) const { 628 return !(*this == o); 629 } 630 }; 631 632 class TreePatternNode { 633 /// The type of each node result. Before and during type inference, each 634 /// result may be a set of possible types. After (successful) type inference, 635 /// each is a single concrete type. 636 std::vector<TypeSetByHwMode> Types; 637 638 /// The index of each result in results of the pattern. 639 std::vector<unsigned> ResultPerm; 640 641 /// Operator - The Record for the operator if this is an interior node (not 642 /// a leaf). 643 Record *Operator; 644 645 /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf. 646 /// 647 Init *Val; 648 649 /// Name - The name given to this node with the :$foo notation. 650 /// 651 std::string Name; 652 653 std::vector<ScopedName> NamesAsPredicateArg; 654 655 /// PredicateCalls - The predicate functions to execute on this node to check 656 /// for a match. If this list is empty, no predicate is involved. 657 std::vector<TreePredicateCall> PredicateCalls; 658 659 /// TransformFn - The transformation function to execute on this node before 660 /// it can be substituted into the resulting instruction on a pattern match. 661 Record *TransformFn; 662 663 std::vector<TreePatternNodePtr> Children; 664 665 public: 666 TreePatternNode(Record *Op, std::vector<TreePatternNodePtr> Ch, 667 unsigned NumResults) 668 : Operator(Op), Val(nullptr), TransformFn(nullptr), 669 Children(std::move(Ch)) { 670 Types.resize(NumResults); 671 ResultPerm.resize(NumResults); 672 std::iota(ResultPerm.begin(), ResultPerm.end(), 0); 673 } 674 TreePatternNode(Init *val, unsigned NumResults) // leaf ctor 675 : Operator(nullptr), Val(val), TransformFn(nullptr) { 676 Types.resize(NumResults); 677 ResultPerm.resize(NumResults); 678 std::iota(ResultPerm.begin(), ResultPerm.end(), 0); 679 } 680 681 bool hasName() const { return !Name.empty(); } 682 const std::string &getName() const { return Name; } 683 void setName(StringRef N) { Name.assign(N.begin(), N.end()); } 684 685 const std::vector<ScopedName> &getNamesAsPredicateArg() const { 686 return NamesAsPredicateArg; 687 } 688 void setNamesAsPredicateArg(const std::vector<ScopedName>& Names) { 689 NamesAsPredicateArg = Names; 690 } 691 void addNameAsPredicateArg(const ScopedName &N) { 692 NamesAsPredicateArg.push_back(N); 693 } 694 695 bool isLeaf() const { return Val != nullptr; } 696 697 // Type accessors. 698 unsigned getNumTypes() const { return Types.size(); } 699 ValueTypeByHwMode getType(unsigned ResNo) const { 700 return Types[ResNo].getValueTypeByHwMode(); 701 } 702 const std::vector<TypeSetByHwMode> &getExtTypes() const { return Types; } 703 const TypeSetByHwMode &getExtType(unsigned ResNo) const { 704 return Types[ResNo]; 705 } 706 TypeSetByHwMode &getExtType(unsigned ResNo) { return Types[ResNo]; } 707 void setType(unsigned ResNo, const TypeSetByHwMode &T) { Types[ResNo] = T; } 708 MVT::SimpleValueType getSimpleType(unsigned ResNo) const { 709 return Types[ResNo].getMachineValueType().SimpleTy; 710 } 711 712 bool hasConcreteType(unsigned ResNo) const { 713 return Types[ResNo].isValueTypeByHwMode(false); 714 } 715 bool isTypeCompletelyUnknown(unsigned ResNo, TreePattern &TP) const { 716 return Types[ResNo].empty(); 717 } 718 719 unsigned getNumResults() const { return ResultPerm.size(); } 720 unsigned getResultIndex(unsigned ResNo) const { return ResultPerm[ResNo]; } 721 void setResultIndex(unsigned ResNo, unsigned RI) { ResultPerm[ResNo] = RI; } 722 723 Init *getLeafValue() const { assert(isLeaf()); return Val; } 724 Record *getOperator() const { assert(!isLeaf()); return Operator; } 725 726 unsigned getNumChildren() const { return Children.size(); } 727 TreePatternNode *getChild(unsigned N) const { return Children[N].get(); } 728 const TreePatternNodePtr &getChildShared(unsigned N) const { 729 return Children[N]; 730 } 731 void setChild(unsigned i, TreePatternNodePtr N) { Children[i] = N; } 732 733 /// hasChild - Return true if N is any of our children. 734 bool hasChild(const TreePatternNode *N) const { 735 for (unsigned i = 0, e = Children.size(); i != e; ++i) 736 if (Children[i].get() == N) 737 return true; 738 return false; 739 } 740 741 bool hasProperTypeByHwMode() const; 742 bool hasPossibleType() const; 743 bool setDefaultMode(unsigned Mode); 744 745 bool hasAnyPredicate() const { return !PredicateCalls.empty(); } 746 747 const std::vector<TreePredicateCall> &getPredicateCalls() const { 748 return PredicateCalls; 749 } 750 void clearPredicateCalls() { PredicateCalls.clear(); } 751 void setPredicateCalls(const std::vector<TreePredicateCall> &Calls) { 752 assert(PredicateCalls.empty() && "Overwriting non-empty predicate list!"); 753 PredicateCalls = Calls; 754 } 755 void addPredicateCall(const TreePredicateCall &Call) { 756 assert(!Call.Fn.isAlwaysTrue() && "Empty predicate string!"); 757 assert(!is_contained(PredicateCalls, Call) && "predicate applied recursively"); 758 PredicateCalls.push_back(Call); 759 } 760 void addPredicateCall(const TreePredicateFn &Fn, unsigned Scope) { 761 assert((Scope != 0) == Fn.usesOperands()); 762 addPredicateCall(TreePredicateCall(Fn, Scope)); 763 } 764 765 Record *getTransformFn() const { return TransformFn; } 766 void setTransformFn(Record *Fn) { TransformFn = Fn; } 767 768 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 769 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 770 const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const; 771 772 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 773 /// return the ComplexPattern information, otherwise return null. 774 const ComplexPattern * 775 getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const; 776 777 /// Returns the number of MachineInstr operands that would be produced by this 778 /// node if it mapped directly to an output Instruction's 779 /// operand. ComplexPattern specifies this explicitly; MIOperandInfo gives it 780 /// for Operands; otherwise 1. 781 unsigned getNumMIResults(const CodeGenDAGPatterns &CGP) const; 782 783 /// NodeHasProperty - Return true if this node has the specified property. 784 bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const; 785 786 /// TreeHasProperty - Return true if any node in this tree has the specified 787 /// property. 788 bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const; 789 790 /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is 791 /// marked isCommutative. 792 bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const; 793 794 void print(raw_ostream &OS) const; 795 void dump() const; 796 797 public: // Higher level manipulation routines. 798 799 /// clone - Return a new copy of this tree. 800 /// 801 TreePatternNodePtr clone() const; 802 803 /// RemoveAllTypes - Recursively strip all the types of this tree. 804 void RemoveAllTypes(); 805 806 /// isIsomorphicTo - Return true if this node is recursively isomorphic to 807 /// the specified node. For this comparison, all of the state of the node 808 /// is considered, except for the assigned name. Nodes with differing names 809 /// that are otherwise identical are considered isomorphic. 810 bool isIsomorphicTo(const TreePatternNode *N, 811 const MultipleUseVarSet &DepVars) const; 812 813 /// SubstituteFormalArguments - Replace the formal arguments in this tree 814 /// with actual values specified by ArgMap. 815 void 816 SubstituteFormalArguments(std::map<std::string, TreePatternNodePtr> &ArgMap); 817 818 /// InlinePatternFragments - If this pattern refers to any pattern 819 /// fragments, return the set of inlined versions (this can be more than 820 /// one if a PatFrags record has multiple alternatives). 821 void InlinePatternFragments(TreePatternNodePtr T, 822 TreePattern &TP, 823 std::vector<TreePatternNodePtr> &OutAlternatives); 824 825 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 826 /// this node and its children in the tree. This returns true if it makes a 827 /// change, false otherwise. If a type contradiction is found, flag an error. 828 bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters); 829 830 /// UpdateNodeType - Set the node type of N to VT if VT contains 831 /// information. If N already contains a conflicting type, then flag an 832 /// error. This returns true if any information was updated. 833 /// 834 bool UpdateNodeType(unsigned ResNo, const TypeSetByHwMode &InTy, 835 TreePattern &TP); 836 bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy, 837 TreePattern &TP); 838 bool UpdateNodeType(unsigned ResNo, ValueTypeByHwMode InTy, 839 TreePattern &TP); 840 841 // Update node type with types inferred from an instruction operand or result 842 // def from the ins/outs lists. 843 // Return true if the type changed. 844 bool UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP); 845 846 /// ContainsUnresolvedType - Return true if this tree contains any 847 /// unresolved types. 848 bool ContainsUnresolvedType(TreePattern &TP) const; 849 850 /// canPatternMatch - If it is impossible for this pattern to match on this 851 /// target, fill in Reason and return false. Otherwise, return true. 852 bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP); 853 }; 854 855 inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) { 856 TPN.print(OS); 857 return OS; 858 } 859 860 861 /// TreePattern - Represent a pattern, used for instructions, pattern 862 /// fragments, etc. 863 /// 864 class TreePattern { 865 /// Trees - The list of pattern trees which corresponds to this pattern. 866 /// Note that PatFrag's only have a single tree. 867 /// 868 std::vector<TreePatternNodePtr> Trees; 869 870 /// NamedNodes - This is all of the nodes that have names in the trees in this 871 /// pattern. 872 StringMap<SmallVector<TreePatternNode *, 1>> NamedNodes; 873 874 /// TheRecord - The actual TableGen record corresponding to this pattern. 875 /// 876 Record *TheRecord; 877 878 /// Args - This is a list of all of the arguments to this pattern (for 879 /// PatFrag patterns), which are the 'node' markers in this pattern. 880 std::vector<std::string> Args; 881 882 /// CDP - the top-level object coordinating this madness. 883 /// 884 CodeGenDAGPatterns &CDP; 885 886 /// isInputPattern - True if this is an input pattern, something to match. 887 /// False if this is an output pattern, something to emit. 888 bool isInputPattern; 889 890 /// hasError - True if the currently processed nodes have unresolvable types 891 /// or other non-fatal errors 892 bool HasError; 893 894 /// It's important that the usage of operands in ComplexPatterns is 895 /// consistent: each named operand can be defined by at most one 896 /// ComplexPattern. This records the ComplexPattern instance and the operand 897 /// number for each operand encountered in a ComplexPattern to aid in that 898 /// check. 899 StringMap<std::pair<Record *, unsigned>> ComplexPatternOperands; 900 901 TypeInfer Infer; 902 903 public: 904 905 /// TreePattern constructor - Parse the specified DagInits into the 906 /// current record. 907 TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 908 CodeGenDAGPatterns &ise); 909 TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 910 CodeGenDAGPatterns &ise); 911 TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput, 912 CodeGenDAGPatterns &ise); 913 914 /// getTrees - Return the tree patterns which corresponds to this pattern. 915 /// 916 const std::vector<TreePatternNodePtr> &getTrees() const { return Trees; } 917 unsigned getNumTrees() const { return Trees.size(); } 918 const TreePatternNodePtr &getTree(unsigned i) const { return Trees[i]; } 919 void setTree(unsigned i, TreePatternNodePtr Tree) { Trees[i] = Tree; } 920 const TreePatternNodePtr &getOnlyTree() const { 921 assert(Trees.size() == 1 && "Doesn't have exactly one pattern!"); 922 return Trees[0]; 923 } 924 925 const StringMap<SmallVector<TreePatternNode *, 1>> &getNamedNodesMap() { 926 if (NamedNodes.empty()) 927 ComputeNamedNodes(); 928 return NamedNodes; 929 } 930 931 /// getRecord - Return the actual TableGen record corresponding to this 932 /// pattern. 933 /// 934 Record *getRecord() const { return TheRecord; } 935 936 unsigned getNumArgs() const { return Args.size(); } 937 const std::string &getArgName(unsigned i) const { 938 assert(i < Args.size() && "Argument reference out of range!"); 939 return Args[i]; 940 } 941 std::vector<std::string> &getArgList() { return Args; } 942 943 CodeGenDAGPatterns &getDAGPatterns() const { return CDP; } 944 945 /// InlinePatternFragments - If this pattern refers to any pattern 946 /// fragments, inline them into place, giving us a pattern without any 947 /// PatFrags references. This may increase the number of trees in the 948 /// pattern if a PatFrags has multiple alternatives. 949 void InlinePatternFragments() { 950 std::vector<TreePatternNodePtr> Copy = Trees; 951 Trees.clear(); 952 for (unsigned i = 0, e = Copy.size(); i != e; ++i) 953 Copy[i]->InlinePatternFragments(Copy[i], *this, Trees); 954 } 955 956 /// InferAllTypes - Infer/propagate as many types throughout the expression 957 /// patterns as possible. Return true if all types are inferred, false 958 /// otherwise. Bail out if a type contradiction is found. 959 bool InferAllTypes( 960 const StringMap<SmallVector<TreePatternNode *, 1>> *NamedTypes = nullptr); 961 962 /// error - If this is the first error in the current resolution step, 963 /// print it and set the error flag. Otherwise, continue silently. 964 void error(const Twine &Msg); 965 bool hasError() const { 966 return HasError; 967 } 968 void resetError() { 969 HasError = false; 970 } 971 972 TypeInfer &getInfer() { return Infer; } 973 974 void print(raw_ostream &OS) const; 975 void dump() const; 976 977 private: 978 TreePatternNodePtr ParseTreePattern(Init *DI, StringRef OpName); 979 void ComputeNamedNodes(); 980 void ComputeNamedNodes(TreePatternNode *N); 981 }; 982 983 984 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo, 985 const TypeSetByHwMode &InTy, 986 TreePattern &TP) { 987 TypeSetByHwMode VTS(InTy); 988 TP.getInfer().expandOverloads(VTS); 989 return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS); 990 } 991 992 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo, 993 MVT::SimpleValueType InTy, 994 TreePattern &TP) { 995 TypeSetByHwMode VTS(InTy); 996 TP.getInfer().expandOverloads(VTS); 997 return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS); 998 } 999 1000 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo, 1001 ValueTypeByHwMode InTy, 1002 TreePattern &TP) { 1003 TypeSetByHwMode VTS(InTy); 1004 TP.getInfer().expandOverloads(VTS); 1005 return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS); 1006 } 1007 1008 1009 /// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps 1010 /// that has a set ExecuteAlways / DefaultOps field. 1011 struct DAGDefaultOperand { 1012 std::vector<TreePatternNodePtr> DefaultOps; 1013 }; 1014 1015 class DAGInstruction { 1016 std::vector<Record*> Results; 1017 std::vector<Record*> Operands; 1018 std::vector<Record*> ImpResults; 1019 TreePatternNodePtr SrcPattern; 1020 TreePatternNodePtr ResultPattern; 1021 1022 public: 1023 DAGInstruction(const std::vector<Record*> &results, 1024 const std::vector<Record*> &operands, 1025 const std::vector<Record*> &impresults, 1026 TreePatternNodePtr srcpattern = nullptr, 1027 TreePatternNodePtr resultpattern = nullptr) 1028 : Results(results), Operands(operands), ImpResults(impresults), 1029 SrcPattern(srcpattern), ResultPattern(resultpattern) {} 1030 1031 unsigned getNumResults() const { return Results.size(); } 1032 unsigned getNumOperands() const { return Operands.size(); } 1033 unsigned getNumImpResults() const { return ImpResults.size(); } 1034 const std::vector<Record*>& getImpResults() const { return ImpResults; } 1035 1036 Record *getResult(unsigned RN) const { 1037 assert(RN < Results.size()); 1038 return Results[RN]; 1039 } 1040 1041 Record *getOperand(unsigned ON) const { 1042 assert(ON < Operands.size()); 1043 return Operands[ON]; 1044 } 1045 1046 Record *getImpResult(unsigned RN) const { 1047 assert(RN < ImpResults.size()); 1048 return ImpResults[RN]; 1049 } 1050 1051 TreePatternNodePtr getSrcPattern() const { return SrcPattern; } 1052 TreePatternNodePtr getResultPattern() const { return ResultPattern; } 1053 }; 1054 1055 /// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns 1056 /// processed to produce isel. 1057 class PatternToMatch { 1058 Record *SrcRecord; // Originating Record for the pattern. 1059 ListInit *Predicates; // Top level predicate conditions to match. 1060 TreePatternNodePtr SrcPattern; // Source pattern to match. 1061 TreePatternNodePtr DstPattern; // Resulting pattern. 1062 std::vector<Record*> Dstregs; // Physical register defs being matched. 1063 std::string HwModeFeatures; 1064 int AddedComplexity; // Add to matching pattern complexity. 1065 unsigned ID; // Unique ID for the record. 1066 unsigned ForceMode; // Force this mode in type inference when set. 1067 1068 public: 1069 PatternToMatch(Record *srcrecord, ListInit *preds, TreePatternNodePtr src, 1070 TreePatternNodePtr dst, std::vector<Record *> dstregs, 1071 int complexity, unsigned uid, unsigned setmode = 0, 1072 const Twine &hwmodefeatures = "") 1073 : SrcRecord(srcrecord), Predicates(preds), SrcPattern(src), 1074 DstPattern(dst), Dstregs(std::move(dstregs)), 1075 HwModeFeatures(hwmodefeatures.str()), AddedComplexity(complexity), 1076 ID(uid), ForceMode(setmode) {} 1077 1078 Record *getSrcRecord() const { return SrcRecord; } 1079 ListInit *getPredicates() const { return Predicates; } 1080 TreePatternNode *getSrcPattern() const { return SrcPattern.get(); } 1081 TreePatternNodePtr getSrcPatternShared() const { return SrcPattern; } 1082 TreePatternNode *getDstPattern() const { return DstPattern.get(); } 1083 TreePatternNodePtr getDstPatternShared() const { return DstPattern; } 1084 const std::vector<Record*> &getDstRegs() const { return Dstregs; } 1085 StringRef getHwModeFeatures() const { return HwModeFeatures; } 1086 int getAddedComplexity() const { return AddedComplexity; } 1087 unsigned getID() const { return ID; } 1088 unsigned getForceMode() const { return ForceMode; } 1089 1090 std::string getPredicateCheck() const; 1091 void getPredicateRecords(SmallVectorImpl<Record *> &PredicateRecs) const; 1092 1093 /// Compute the complexity metric for the input pattern. This roughly 1094 /// corresponds to the number of nodes that are covered. 1095 int getPatternComplexity(const CodeGenDAGPatterns &CGP) const; 1096 }; 1097 1098 class CodeGenDAGPatterns { 1099 RecordKeeper &Records; 1100 CodeGenTarget Target; 1101 CodeGenIntrinsicTable Intrinsics; 1102 1103 std::map<Record*, SDNodeInfo, LessRecordByID> SDNodes; 1104 std::map<Record*, std::pair<Record*, std::string>, LessRecordByID> 1105 SDNodeXForms; 1106 std::map<Record*, ComplexPattern, LessRecordByID> ComplexPatterns; 1107 std::map<Record *, std::unique_ptr<TreePattern>, LessRecordByID> 1108 PatternFragments; 1109 std::map<Record*, DAGDefaultOperand, LessRecordByID> DefaultOperands; 1110 std::map<Record*, DAGInstruction, LessRecordByID> Instructions; 1111 1112 // Specific SDNode definitions: 1113 Record *intrinsic_void_sdnode; 1114 Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode; 1115 1116 /// PatternsToMatch - All of the things we are matching on the DAG. The first 1117 /// value is the pattern to match, the second pattern is the result to 1118 /// emit. 1119 std::vector<PatternToMatch> PatternsToMatch; 1120 1121 TypeSetByHwMode LegalVTS; 1122 1123 using PatternRewriterFn = std::function<void (TreePattern *)>; 1124 PatternRewriterFn PatternRewriter; 1125 1126 unsigned NumScopes = 0; 1127 1128 public: 1129 CodeGenDAGPatterns(RecordKeeper &R, 1130 PatternRewriterFn PatternRewriter = nullptr); 1131 1132 CodeGenTarget &getTargetInfo() { return Target; } 1133 const CodeGenTarget &getTargetInfo() const { return Target; } 1134 const TypeSetByHwMode &getLegalTypes() const { return LegalVTS; } 1135 1136 Record *getSDNodeNamed(StringRef Name) const; 1137 1138 const SDNodeInfo &getSDNodeInfo(Record *R) const { 1139 auto F = SDNodes.find(R); 1140 assert(F != SDNodes.end() && "Unknown node!"); 1141 return F->second; 1142 } 1143 1144 // Node transformation lookups. 1145 typedef std::pair<Record*, std::string> NodeXForm; 1146 const NodeXForm &getSDNodeTransform(Record *R) const { 1147 auto F = SDNodeXForms.find(R); 1148 assert(F != SDNodeXForms.end() && "Invalid transform!"); 1149 return F->second; 1150 } 1151 1152 const ComplexPattern &getComplexPattern(Record *R) const { 1153 auto F = ComplexPatterns.find(R); 1154 assert(F != ComplexPatterns.end() && "Unknown addressing mode!"); 1155 return F->second; 1156 } 1157 1158 const CodeGenIntrinsic &getIntrinsic(Record *R) const { 1159 for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i) 1160 if (Intrinsics[i].TheDef == R) return Intrinsics[i]; 1161 llvm_unreachable("Unknown intrinsic!"); 1162 } 1163 1164 const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const { 1165 if (IID-1 < Intrinsics.size()) 1166 return Intrinsics[IID-1]; 1167 llvm_unreachable("Bad intrinsic ID!"); 1168 } 1169 1170 unsigned getIntrinsicID(Record *R) const { 1171 for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i) 1172 if (Intrinsics[i].TheDef == R) return i; 1173 llvm_unreachable("Unknown intrinsic!"); 1174 } 1175 1176 const DAGDefaultOperand &getDefaultOperand(Record *R) const { 1177 auto F = DefaultOperands.find(R); 1178 assert(F != DefaultOperands.end() &&"Isn't an analyzed default operand!"); 1179 return F->second; 1180 } 1181 1182 // Pattern Fragment information. 1183 TreePattern *getPatternFragment(Record *R) const { 1184 auto F = PatternFragments.find(R); 1185 assert(F != PatternFragments.end() && "Invalid pattern fragment request!"); 1186 return F->second.get(); 1187 } 1188 TreePattern *getPatternFragmentIfRead(Record *R) const { 1189 auto F = PatternFragments.find(R); 1190 if (F == PatternFragments.end()) 1191 return nullptr; 1192 return F->second.get(); 1193 } 1194 1195 typedef std::map<Record *, std::unique_ptr<TreePattern>, 1196 LessRecordByID>::const_iterator pf_iterator; 1197 pf_iterator pf_begin() const { return PatternFragments.begin(); } 1198 pf_iterator pf_end() const { return PatternFragments.end(); } 1199 iterator_range<pf_iterator> ptfs() const { return PatternFragments; } 1200 1201 // Patterns to match information. 1202 typedef std::vector<PatternToMatch>::const_iterator ptm_iterator; 1203 ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); } 1204 ptm_iterator ptm_end() const { return PatternsToMatch.end(); } 1205 iterator_range<ptm_iterator> ptms() const { return PatternsToMatch; } 1206 1207 /// Parse the Pattern for an instruction, and insert the result in DAGInsts. 1208 typedef std::map<Record*, DAGInstruction, LessRecordByID> DAGInstMap; 1209 void parseInstructionPattern( 1210 CodeGenInstruction &CGI, ListInit *Pattern, 1211 DAGInstMap &DAGInsts); 1212 1213 const DAGInstruction &getInstruction(Record *R) const { 1214 auto F = Instructions.find(R); 1215 assert(F != Instructions.end() && "Unknown instruction!"); 1216 return F->second; 1217 } 1218 1219 Record *get_intrinsic_void_sdnode() const { 1220 return intrinsic_void_sdnode; 1221 } 1222 Record *get_intrinsic_w_chain_sdnode() const { 1223 return intrinsic_w_chain_sdnode; 1224 } 1225 Record *get_intrinsic_wo_chain_sdnode() const { 1226 return intrinsic_wo_chain_sdnode; 1227 } 1228 1229 unsigned allocateScope() { return ++NumScopes; } 1230 1231 bool operandHasDefault(Record *Op) const { 1232 return Op->isSubClassOf("OperandWithDefaultOps") && 1233 !getDefaultOperand(Op).DefaultOps.empty(); 1234 } 1235 1236 private: 1237 void ParseNodeInfo(); 1238 void ParseNodeTransforms(); 1239 void ParseComplexPatterns(); 1240 void ParsePatternFragments(bool OutFrags = false); 1241 void ParseDefaultOperands(); 1242 void ParseInstructions(); 1243 void ParsePatterns(); 1244 void ExpandHwModeBasedTypes(); 1245 void InferInstructionFlags(); 1246 void GenerateVariants(); 1247 void VerifyInstructionFlags(); 1248 1249 void ParseOnePattern(Record *TheDef, 1250 TreePattern &Pattern, TreePattern &Result, 1251 const std::vector<Record *> &InstImpResults); 1252 void AddPatternToMatch(TreePattern *Pattern, PatternToMatch &&PTM); 1253 void FindPatternInputsAndOutputs( 1254 TreePattern &I, TreePatternNodePtr Pat, 1255 std::map<std::string, TreePatternNodePtr> &InstInputs, 1256 MapVector<std::string, TreePatternNodePtr, 1257 std::map<std::string, unsigned>> &InstResults, 1258 std::vector<Record *> &InstImpResults); 1259 }; 1260 1261 1262 inline bool SDNodeInfo::ApplyTypeConstraints(TreePatternNode *N, 1263 TreePattern &TP) const { 1264 bool MadeChange = false; 1265 for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) 1266 MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP); 1267 return MadeChange; 1268 } 1269 1270 } // end namespace llvm 1271 1272 #endif 1273