1 //===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file declares the CodeGenDAGPatterns class, which is used to read and 10 // represent the patterns present in a .td file for instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H 15 #define LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H 16 17 #include "CodeGenHwModes.h" 18 #include "CodeGenIntrinsics.h" 19 #include "CodeGenTarget.h" 20 #include "SDNodeProperties.h" 21 #include "llvm/ADT/MapVector.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/StringMap.h" 24 #include "llvm/ADT/StringSet.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/MathExtras.h" 27 #include <algorithm> 28 #include <array> 29 #include <functional> 30 #include <map> 31 #include <numeric> 32 #include <set> 33 #include <vector> 34 35 namespace llvm { 36 37 class Record; 38 class Init; 39 class ListInit; 40 class DagInit; 41 class SDNodeInfo; 42 class TreePattern; 43 class TreePatternNode; 44 class CodeGenDAGPatterns; 45 class ComplexPattern; 46 47 /// Shared pointer for TreePatternNode. 48 using TreePatternNodePtr = std::shared_ptr<TreePatternNode>; 49 50 /// This represents a set of MVTs. Since the underlying type for the MVT 51 /// is uint8_t, there are at most 256 values. To reduce the number of memory 52 /// allocations and deallocations, represent the set as a sequence of bits. 53 /// To reduce the allocations even further, make MachineValueTypeSet own 54 /// the storage and use std::array as the bit container. 55 struct MachineValueTypeSet { 56 static_assert(std::is_same<std::underlying_type<MVT::SimpleValueType>::type, 57 uint8_t>::value, 58 "Change uint8_t here to the SimpleValueType's type"); 59 static unsigned constexpr Capacity = std::numeric_limits<uint8_t>::max()+1; 60 using WordType = uint64_t; 61 static unsigned constexpr WordWidth = CHAR_BIT*sizeof(WordType); 62 static unsigned constexpr NumWords = Capacity/WordWidth; 63 static_assert(NumWords*WordWidth == Capacity, 64 "Capacity should be a multiple of WordWidth"); 65 66 LLVM_ATTRIBUTE_ALWAYS_INLINE 67 MachineValueTypeSet() { 68 clear(); 69 } 70 71 LLVM_ATTRIBUTE_ALWAYS_INLINE 72 unsigned size() const { 73 unsigned Count = 0; 74 for (WordType W : Words) 75 Count += countPopulation(W); 76 return Count; 77 } 78 LLVM_ATTRIBUTE_ALWAYS_INLINE 79 void clear() { 80 std::memset(Words.data(), 0, NumWords*sizeof(WordType)); 81 } 82 LLVM_ATTRIBUTE_ALWAYS_INLINE 83 bool empty() const { 84 for (WordType W : Words) 85 if (W != 0) 86 return false; 87 return true; 88 } 89 LLVM_ATTRIBUTE_ALWAYS_INLINE 90 unsigned count(MVT T) const { 91 return (Words[T.SimpleTy / WordWidth] >> (T.SimpleTy % WordWidth)) & 1; 92 } 93 std::pair<MachineValueTypeSet&,bool> insert(MVT T) { 94 bool V = count(T.SimpleTy); 95 Words[T.SimpleTy / WordWidth] |= WordType(1) << (T.SimpleTy % WordWidth); 96 return {*this, V}; 97 } 98 MachineValueTypeSet &insert(const MachineValueTypeSet &S) { 99 for (unsigned i = 0; i != NumWords; ++i) 100 Words[i] |= S.Words[i]; 101 return *this; 102 } 103 LLVM_ATTRIBUTE_ALWAYS_INLINE 104 void erase(MVT T) { 105 Words[T.SimpleTy / WordWidth] &= ~(WordType(1) << (T.SimpleTy % WordWidth)); 106 } 107 108 struct const_iterator { 109 // Some implementations of the C++ library require these traits to be 110 // defined. 111 using iterator_category = std::forward_iterator_tag; 112 using value_type = MVT; 113 using difference_type = ptrdiff_t; 114 using pointer = const MVT*; 115 using reference = const MVT&; 116 117 LLVM_ATTRIBUTE_ALWAYS_INLINE 118 MVT operator*() const { 119 assert(Pos != Capacity); 120 return MVT::SimpleValueType(Pos); 121 } 122 LLVM_ATTRIBUTE_ALWAYS_INLINE 123 const_iterator(const MachineValueTypeSet *S, bool End) : Set(S) { 124 Pos = End ? Capacity : find_from_pos(0); 125 } 126 LLVM_ATTRIBUTE_ALWAYS_INLINE 127 const_iterator &operator++() { 128 assert(Pos != Capacity); 129 Pos = find_from_pos(Pos+1); 130 return *this; 131 } 132 133 LLVM_ATTRIBUTE_ALWAYS_INLINE 134 bool operator==(const const_iterator &It) const { 135 return Set == It.Set && Pos == It.Pos; 136 } 137 LLVM_ATTRIBUTE_ALWAYS_INLINE 138 bool operator!=(const const_iterator &It) const { 139 return !operator==(It); 140 } 141 142 private: 143 unsigned find_from_pos(unsigned P) const { 144 unsigned SkipWords = P / WordWidth; 145 unsigned SkipBits = P % WordWidth; 146 unsigned Count = SkipWords * WordWidth; 147 148 // If P is in the middle of a word, process it manually here, because 149 // the trailing bits need to be masked off to use findFirstSet. 150 if (SkipBits != 0) { 151 WordType W = Set->Words[SkipWords]; 152 W &= maskLeadingOnes<WordType>(WordWidth-SkipBits); 153 if (W != 0) 154 return Count + findFirstSet(W); 155 Count += WordWidth; 156 SkipWords++; 157 } 158 159 for (unsigned i = SkipWords; i != NumWords; ++i) { 160 WordType W = Set->Words[i]; 161 if (W != 0) 162 return Count + findFirstSet(W); 163 Count += WordWidth; 164 } 165 return Capacity; 166 } 167 168 const MachineValueTypeSet *Set; 169 unsigned Pos; 170 }; 171 172 LLVM_ATTRIBUTE_ALWAYS_INLINE 173 const_iterator begin() const { return const_iterator(this, false); } 174 LLVM_ATTRIBUTE_ALWAYS_INLINE 175 const_iterator end() const { return const_iterator(this, true); } 176 177 LLVM_ATTRIBUTE_ALWAYS_INLINE 178 bool operator==(const MachineValueTypeSet &S) const { 179 return Words == S.Words; 180 } 181 LLVM_ATTRIBUTE_ALWAYS_INLINE 182 bool operator!=(const MachineValueTypeSet &S) const { 183 return !operator==(S); 184 } 185 186 private: 187 friend struct const_iterator; 188 std::array<WordType,NumWords> Words; 189 }; 190 191 struct TypeSetByHwMode : public InfoByHwMode<MachineValueTypeSet> { 192 using SetType = MachineValueTypeSet; 193 std::vector<unsigned> AddrSpaces; 194 195 TypeSetByHwMode() = default; 196 TypeSetByHwMode(const TypeSetByHwMode &VTS) = default; 197 TypeSetByHwMode(MVT::SimpleValueType VT) 198 : TypeSetByHwMode(ValueTypeByHwMode(VT)) {} 199 TypeSetByHwMode(ValueTypeByHwMode VT) 200 : TypeSetByHwMode(ArrayRef<ValueTypeByHwMode>(&VT, 1)) {} 201 TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList); 202 203 SetType &getOrCreate(unsigned Mode) { 204 if (hasMode(Mode)) 205 return get(Mode); 206 return Map.insert({Mode,SetType()}).first->second; 207 } 208 209 bool isValueTypeByHwMode(bool AllowEmpty) const; 210 ValueTypeByHwMode getValueTypeByHwMode() const; 211 212 LLVM_ATTRIBUTE_ALWAYS_INLINE 213 bool isMachineValueType() const { 214 return isDefaultOnly() && Map.begin()->second.size() == 1; 215 } 216 217 LLVM_ATTRIBUTE_ALWAYS_INLINE 218 MVT getMachineValueType() const { 219 assert(isMachineValueType()); 220 return *Map.begin()->second.begin(); 221 } 222 223 bool isPossible() const; 224 225 LLVM_ATTRIBUTE_ALWAYS_INLINE 226 bool isDefaultOnly() const { 227 return Map.size() == 1 && Map.begin()->first == DefaultMode; 228 } 229 230 bool isPointer() const { 231 return getValueTypeByHwMode().isPointer(); 232 } 233 234 unsigned getPtrAddrSpace() const { 235 assert(isPointer()); 236 return getValueTypeByHwMode().PtrAddrSpace; 237 } 238 239 bool insert(const ValueTypeByHwMode &VVT); 240 bool constrain(const TypeSetByHwMode &VTS); 241 template <typename Predicate> bool constrain(Predicate P); 242 template <typename Predicate> 243 bool assign_if(const TypeSetByHwMode &VTS, Predicate P); 244 245 void writeToStream(raw_ostream &OS) const; 246 static void writeToStream(const SetType &S, raw_ostream &OS); 247 248 bool operator==(const TypeSetByHwMode &VTS) const; 249 bool operator!=(const TypeSetByHwMode &VTS) const { return !(*this == VTS); } 250 251 void dump() const; 252 bool validate() const; 253 254 private: 255 unsigned PtrAddrSpace = std::numeric_limits<unsigned>::max(); 256 /// Intersect two sets. Return true if anything has changed. 257 bool intersect(SetType &Out, const SetType &In); 258 }; 259 260 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T); 261 262 struct TypeInfer { 263 TypeInfer(TreePattern &T) : TP(T), ForceMode(0) {} 264 265 bool isConcrete(const TypeSetByHwMode &VTS, bool AllowEmpty) const { 266 return VTS.isValueTypeByHwMode(AllowEmpty); 267 } 268 ValueTypeByHwMode getConcrete(const TypeSetByHwMode &VTS, 269 bool AllowEmpty) const { 270 assert(VTS.isValueTypeByHwMode(AllowEmpty)); 271 return VTS.getValueTypeByHwMode(); 272 } 273 274 /// The protocol in the following functions (Merge*, force*, Enforce*, 275 /// expand*) is to return "true" if a change has been made, "false" 276 /// otherwise. 277 278 bool MergeInTypeInfo(TypeSetByHwMode &Out, const TypeSetByHwMode &In); 279 bool MergeInTypeInfo(TypeSetByHwMode &Out, MVT::SimpleValueType InVT) { 280 return MergeInTypeInfo(Out, TypeSetByHwMode(InVT)); 281 } 282 bool MergeInTypeInfo(TypeSetByHwMode &Out, ValueTypeByHwMode InVT) { 283 return MergeInTypeInfo(Out, TypeSetByHwMode(InVT)); 284 } 285 286 /// Reduce the set \p Out to have at most one element for each mode. 287 bool forceArbitrary(TypeSetByHwMode &Out); 288 289 /// The following four functions ensure that upon return the set \p Out 290 /// will only contain types of the specified kind: integer, floating-point, 291 /// scalar, or vector. 292 /// If \p Out is empty, all legal types of the specified kind will be added 293 /// to it. Otherwise, all types that are not of the specified kind will be 294 /// removed from \p Out. 295 bool EnforceInteger(TypeSetByHwMode &Out); 296 bool EnforceFloatingPoint(TypeSetByHwMode &Out); 297 bool EnforceScalar(TypeSetByHwMode &Out); 298 bool EnforceVector(TypeSetByHwMode &Out); 299 300 /// If \p Out is empty, fill it with all legal types. Otherwise, leave it 301 /// unchanged. 302 bool EnforceAny(TypeSetByHwMode &Out); 303 /// Make sure that for each type in \p Small, there exists a larger type 304 /// in \p Big. 305 bool EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big); 306 /// 1. Ensure that for each type T in \p Vec, T is a vector type, and that 307 /// for each type U in \p Elem, U is a scalar type. 308 /// 2. Ensure that for each (scalar) type U in \p Elem, there exists a 309 /// (vector) type T in \p Vec, such that U is the element type of T. 310 bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, TypeSetByHwMode &Elem); 311 bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 312 const ValueTypeByHwMode &VVT); 313 /// Ensure that for each type T in \p Sub, T is a vector type, and there 314 /// exists a type U in \p Vec such that U is a vector type with the same 315 /// element type as T and at least as many elements as T. 316 bool EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec, 317 TypeSetByHwMode &Sub); 318 /// 1. Ensure that \p V has a scalar type iff \p W has a scalar type. 319 /// 2. Ensure that for each vector type T in \p V, there exists a vector 320 /// type U in \p W, such that T and U have the same number of elements. 321 /// 3. Ensure that for each vector type U in \p W, there exists a vector 322 /// type T in \p V, such that T and U have the same number of elements 323 /// (reverse of 2). 324 bool EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W); 325 /// 1. Ensure that for each type T in \p A, there exists a type U in \p B, 326 /// such that T and U have equal size in bits. 327 /// 2. Ensure that for each type U in \p B, there exists a type T in \p A 328 /// such that T and U have equal size in bits (reverse of 1). 329 bool EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B); 330 331 /// For each overloaded type (i.e. of form *Any), replace it with the 332 /// corresponding subset of legal, specific types. 333 void expandOverloads(TypeSetByHwMode &VTS); 334 void expandOverloads(TypeSetByHwMode::SetType &Out, 335 const TypeSetByHwMode::SetType &Legal); 336 337 struct ValidateOnExit { 338 ValidateOnExit(TypeSetByHwMode &T, TypeInfer &TI) : Infer(TI), VTS(T) {} 339 #ifndef NDEBUG 340 ~ValidateOnExit(); 341 #else 342 ~ValidateOnExit() {} // Empty destructor with NDEBUG. 343 #endif 344 TypeInfer &Infer; 345 TypeSetByHwMode &VTS; 346 }; 347 348 struct SuppressValidation { 349 SuppressValidation(TypeInfer &TI) : Infer(TI), SavedValidate(TI.Validate) { 350 Infer.Validate = false; 351 } 352 ~SuppressValidation() { 353 Infer.Validate = SavedValidate; 354 } 355 TypeInfer &Infer; 356 bool SavedValidate; 357 }; 358 359 TreePattern &TP; 360 unsigned ForceMode; // Mode to use when set. 361 bool CodeGen = false; // Set during generation of matcher code. 362 bool Validate = true; // Indicate whether to validate types. 363 364 private: 365 const TypeSetByHwMode &getLegalTypes(); 366 367 /// Cached legal types (in default mode). 368 bool LegalTypesCached = false; 369 TypeSetByHwMode LegalCache; 370 }; 371 372 /// Set type used to track multiply used variables in patterns 373 typedef StringSet<> MultipleUseVarSet; 374 375 /// SDTypeConstraint - This is a discriminated union of constraints, 376 /// corresponding to the SDTypeConstraint tablegen class in Target.td. 377 struct SDTypeConstraint { 378 SDTypeConstraint(Record *R, const CodeGenHwModes &CGH); 379 380 unsigned OperandNo; // The operand # this constraint applies to. 381 enum { 382 SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs, 383 SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec, 384 SDTCisSubVecOfVec, SDTCVecEltisVT, SDTCisSameNumEltsAs, SDTCisSameSizeAs 385 } ConstraintType; 386 387 union { // The discriminated union. 388 struct { 389 unsigned OtherOperandNum; 390 } SDTCisSameAs_Info; 391 struct { 392 unsigned OtherOperandNum; 393 } SDTCisVTSmallerThanOp_Info; 394 struct { 395 unsigned BigOperandNum; 396 } SDTCisOpSmallerThanOp_Info; 397 struct { 398 unsigned OtherOperandNum; 399 } SDTCisEltOfVec_Info; 400 struct { 401 unsigned OtherOperandNum; 402 } SDTCisSubVecOfVec_Info; 403 struct { 404 unsigned OtherOperandNum; 405 } SDTCisSameNumEltsAs_Info; 406 struct { 407 unsigned OtherOperandNum; 408 } SDTCisSameSizeAs_Info; 409 } x; 410 411 // The VT for SDTCisVT and SDTCVecEltisVT. 412 // Must not be in the union because it has a non-trivial destructor. 413 ValueTypeByHwMode VVT; 414 415 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 416 /// constraint to the nodes operands. This returns true if it makes a 417 /// change, false otherwise. If a type contradiction is found, an error 418 /// is flagged. 419 bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo, 420 TreePattern &TP) const; 421 }; 422 423 /// ScopedName - A name of a node associated with a "scope" that indicates 424 /// the context (e.g. instance of Pattern or PatFrag) in which the name was 425 /// used. This enables substitution of pattern fragments while keeping track 426 /// of what name(s) were originally given to various nodes in the tree. 427 class ScopedName { 428 unsigned Scope; 429 std::string Identifier; 430 public: 431 ScopedName(unsigned Scope, StringRef Identifier) 432 : Scope(Scope), Identifier(Identifier) { 433 assert(Scope != 0 && 434 "Scope == 0 is used to indicate predicates without arguments"); 435 } 436 437 unsigned getScope() const { return Scope; } 438 const std::string &getIdentifier() const { return Identifier; } 439 440 std::string getFullName() const; 441 442 bool operator==(const ScopedName &o) const; 443 bool operator!=(const ScopedName &o) const; 444 }; 445 446 /// SDNodeInfo - One of these records is created for each SDNode instance in 447 /// the target .td file. This represents the various dag nodes we will be 448 /// processing. 449 class SDNodeInfo { 450 Record *Def; 451 StringRef EnumName; 452 StringRef SDClassName; 453 unsigned Properties; 454 unsigned NumResults; 455 int NumOperands; 456 std::vector<SDTypeConstraint> TypeConstraints; 457 public: 458 // Parse the specified record. 459 SDNodeInfo(Record *R, const CodeGenHwModes &CGH); 460 461 unsigned getNumResults() const { return NumResults; } 462 463 /// getNumOperands - This is the number of operands required or -1 if 464 /// variadic. 465 int getNumOperands() const { return NumOperands; } 466 Record *getRecord() const { return Def; } 467 StringRef getEnumName() const { return EnumName; } 468 StringRef getSDClassName() const { return SDClassName; } 469 470 const std::vector<SDTypeConstraint> &getTypeConstraints() const { 471 return TypeConstraints; 472 } 473 474 /// getKnownType - If the type constraints on this node imply a fixed type 475 /// (e.g. all stores return void, etc), then return it as an 476 /// MVT::SimpleValueType. Otherwise, return MVT::Other. 477 MVT::SimpleValueType getKnownType(unsigned ResNo) const; 478 479 /// hasProperty - Return true if this node has the specified property. 480 /// 481 bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); } 482 483 /// ApplyTypeConstraints - Given a node in a pattern, apply the type 484 /// constraints for this node to the operands of the node. This returns 485 /// true if it makes a change, false otherwise. If a type contradiction is 486 /// found, an error is flagged. 487 bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const; 488 }; 489 490 /// TreePredicateFn - This is an abstraction that represents the predicates on 491 /// a PatFrag node. This is a simple one-word wrapper around a pointer to 492 /// provide nice accessors. 493 class TreePredicateFn { 494 /// PatFragRec - This is the TreePattern for the PatFrag that we 495 /// originally came from. 496 TreePattern *PatFragRec; 497 public: 498 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 499 TreePredicateFn(TreePattern *N); 500 501 502 TreePattern *getOrigPatFragRecord() const { return PatFragRec; } 503 504 /// isAlwaysTrue - Return true if this is a noop predicate. 505 bool isAlwaysTrue() const; 506 507 bool isImmediatePattern() const { return hasImmCode(); } 508 509 /// getImmediatePredicateCode - Return the code that evaluates this pattern if 510 /// this is an immediate predicate. It is an error to call this on a 511 /// non-immediate pattern. 512 std::string getImmediatePredicateCode() const { 513 std::string Result = getImmCode(); 514 assert(!Result.empty() && "Isn't an immediate pattern!"); 515 return Result; 516 } 517 518 bool operator==(const TreePredicateFn &RHS) const { 519 return PatFragRec == RHS.PatFragRec; 520 } 521 522 bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); } 523 524 /// Return the name to use in the generated code to reference this, this is 525 /// "Predicate_foo" if from a pattern fragment "foo". 526 std::string getFnName() const; 527 528 /// getCodeToRunOnSDNode - Return the code for the function body that 529 /// evaluates this predicate. The argument is expected to be in "Node", 530 /// not N. This handles casting and conversion to a concrete node type as 531 /// appropriate. 532 std::string getCodeToRunOnSDNode() const; 533 534 /// Get the data type of the argument to getImmediatePredicateCode(). 535 StringRef getImmType() const; 536 537 /// Get a string that describes the type returned by getImmType() but is 538 /// usable as part of an identifier. 539 StringRef getImmTypeIdentifier() const; 540 541 // Predicate code uses the PatFrag's captured operands. 542 bool usesOperands() const; 543 544 // Is the desired predefined predicate for a load? 545 bool isLoad() const; 546 // Is the desired predefined predicate for a store? 547 bool isStore() const; 548 // Is the desired predefined predicate for an atomic? 549 bool isAtomic() const; 550 551 /// Is this predicate the predefined unindexed load predicate? 552 /// Is this predicate the predefined unindexed store predicate? 553 bool isUnindexed() const; 554 /// Is this predicate the predefined non-extending load predicate? 555 bool isNonExtLoad() const; 556 /// Is this predicate the predefined any-extend load predicate? 557 bool isAnyExtLoad() const; 558 /// Is this predicate the predefined sign-extend load predicate? 559 bool isSignExtLoad() const; 560 /// Is this predicate the predefined zero-extend load predicate? 561 bool isZeroExtLoad() const; 562 /// Is this predicate the predefined non-truncating store predicate? 563 bool isNonTruncStore() const; 564 /// Is this predicate the predefined truncating store predicate? 565 bool isTruncStore() const; 566 567 /// Is this predicate the predefined monotonic atomic predicate? 568 bool isAtomicOrderingMonotonic() const; 569 /// Is this predicate the predefined acquire atomic predicate? 570 bool isAtomicOrderingAcquire() const; 571 /// Is this predicate the predefined release atomic predicate? 572 bool isAtomicOrderingRelease() const; 573 /// Is this predicate the predefined acquire-release atomic predicate? 574 bool isAtomicOrderingAcquireRelease() const; 575 /// Is this predicate the predefined sequentially consistent atomic predicate? 576 bool isAtomicOrderingSequentiallyConsistent() const; 577 578 /// Is this predicate the predefined acquire-or-stronger atomic predicate? 579 bool isAtomicOrderingAcquireOrStronger() const; 580 /// Is this predicate the predefined weaker-than-acquire atomic predicate? 581 bool isAtomicOrderingWeakerThanAcquire() const; 582 583 /// Is this predicate the predefined release-or-stronger atomic predicate? 584 bool isAtomicOrderingReleaseOrStronger() const; 585 /// Is this predicate the predefined weaker-than-release atomic predicate? 586 bool isAtomicOrderingWeakerThanRelease() const; 587 588 /// If non-null, indicates that this predicate is a predefined memory VT 589 /// predicate for a load/store and returns the ValueType record for the memory VT. 590 Record *getMemoryVT() const; 591 /// If non-null, indicates that this predicate is a predefined memory VT 592 /// predicate (checking only the scalar type) for load/store and returns the 593 /// ValueType record for the memory VT. 594 Record *getScalarMemoryVT() const; 595 596 ListInit *getAddressSpaces() const; 597 598 // If true, indicates that GlobalISel-based C++ code was supplied. 599 bool hasGISelPredicateCode() const; 600 std::string getGISelPredicateCode() const; 601 602 private: 603 bool hasPredCode() const; 604 bool hasImmCode() const; 605 std::string getPredCode() const; 606 std::string getImmCode() const; 607 bool immCodeUsesAPInt() const; 608 bool immCodeUsesAPFloat() const; 609 610 bool isPredefinedPredicateEqualTo(StringRef Field, bool Value) const; 611 }; 612 613 struct TreePredicateCall { 614 TreePredicateFn Fn; 615 616 // Scope -- unique identifier for retrieving named arguments. 0 is used when 617 // the predicate does not use named arguments. 618 unsigned Scope; 619 620 TreePredicateCall(const TreePredicateFn &Fn, unsigned Scope) 621 : Fn(Fn), Scope(Scope) {} 622 623 bool operator==(const TreePredicateCall &o) const { 624 return Fn == o.Fn && Scope == o.Scope; 625 } 626 bool operator!=(const TreePredicateCall &o) const { 627 return !(*this == o); 628 } 629 }; 630 631 class TreePatternNode { 632 /// The type of each node result. Before and during type inference, each 633 /// result may be a set of possible types. After (successful) type inference, 634 /// each is a single concrete type. 635 std::vector<TypeSetByHwMode> Types; 636 637 /// The index of each result in results of the pattern. 638 std::vector<unsigned> ResultPerm; 639 640 /// Operator - The Record for the operator if this is an interior node (not 641 /// a leaf). 642 Record *Operator; 643 644 /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf. 645 /// 646 Init *Val; 647 648 /// Name - The name given to this node with the :$foo notation. 649 /// 650 std::string Name; 651 652 std::vector<ScopedName> NamesAsPredicateArg; 653 654 /// PredicateCalls - The predicate functions to execute on this node to check 655 /// for a match. If this list is empty, no predicate is involved. 656 std::vector<TreePredicateCall> PredicateCalls; 657 658 /// TransformFn - The transformation function to execute on this node before 659 /// it can be substituted into the resulting instruction on a pattern match. 660 Record *TransformFn; 661 662 std::vector<TreePatternNodePtr> Children; 663 664 public: 665 TreePatternNode(Record *Op, std::vector<TreePatternNodePtr> Ch, 666 unsigned NumResults) 667 : Operator(Op), Val(nullptr), TransformFn(nullptr), 668 Children(std::move(Ch)) { 669 Types.resize(NumResults); 670 ResultPerm.resize(NumResults); 671 std::iota(ResultPerm.begin(), ResultPerm.end(), 0); 672 } 673 TreePatternNode(Init *val, unsigned NumResults) // leaf ctor 674 : Operator(nullptr), Val(val), TransformFn(nullptr) { 675 Types.resize(NumResults); 676 ResultPerm.resize(NumResults); 677 std::iota(ResultPerm.begin(), ResultPerm.end(), 0); 678 } 679 680 bool hasName() const { return !Name.empty(); } 681 const std::string &getName() const { return Name; } 682 void setName(StringRef N) { Name.assign(N.begin(), N.end()); } 683 684 const std::vector<ScopedName> &getNamesAsPredicateArg() const { 685 return NamesAsPredicateArg; 686 } 687 void setNamesAsPredicateArg(const std::vector<ScopedName>& Names) { 688 NamesAsPredicateArg = Names; 689 } 690 void addNameAsPredicateArg(const ScopedName &N) { 691 NamesAsPredicateArg.push_back(N); 692 } 693 694 bool isLeaf() const { return Val != nullptr; } 695 696 // Type accessors. 697 unsigned getNumTypes() const { return Types.size(); } 698 ValueTypeByHwMode getType(unsigned ResNo) const { 699 return Types[ResNo].getValueTypeByHwMode(); 700 } 701 const std::vector<TypeSetByHwMode> &getExtTypes() const { return Types; } 702 const TypeSetByHwMode &getExtType(unsigned ResNo) const { 703 return Types[ResNo]; 704 } 705 TypeSetByHwMode &getExtType(unsigned ResNo) { return Types[ResNo]; } 706 void setType(unsigned ResNo, const TypeSetByHwMode &T) { Types[ResNo] = T; } 707 MVT::SimpleValueType getSimpleType(unsigned ResNo) const { 708 return Types[ResNo].getMachineValueType().SimpleTy; 709 } 710 711 bool hasConcreteType(unsigned ResNo) const { 712 return Types[ResNo].isValueTypeByHwMode(false); 713 } 714 bool isTypeCompletelyUnknown(unsigned ResNo, TreePattern &TP) const { 715 return Types[ResNo].empty(); 716 } 717 718 unsigned getNumResults() const { return ResultPerm.size(); } 719 unsigned getResultIndex(unsigned ResNo) const { return ResultPerm[ResNo]; } 720 void setResultIndex(unsigned ResNo, unsigned RI) { ResultPerm[ResNo] = RI; } 721 722 Init *getLeafValue() const { assert(isLeaf()); return Val; } 723 Record *getOperator() const { assert(!isLeaf()); return Operator; } 724 725 unsigned getNumChildren() const { return Children.size(); } 726 TreePatternNode *getChild(unsigned N) const { return Children[N].get(); } 727 const TreePatternNodePtr &getChildShared(unsigned N) const { 728 return Children[N]; 729 } 730 void setChild(unsigned i, TreePatternNodePtr N) { Children[i] = N; } 731 732 /// hasChild - Return true if N is any of our children. 733 bool hasChild(const TreePatternNode *N) const { 734 for (unsigned i = 0, e = Children.size(); i != e; ++i) 735 if (Children[i].get() == N) 736 return true; 737 return false; 738 } 739 740 bool hasProperTypeByHwMode() const; 741 bool hasPossibleType() const; 742 bool setDefaultMode(unsigned Mode); 743 744 bool hasAnyPredicate() const { return !PredicateCalls.empty(); } 745 746 const std::vector<TreePredicateCall> &getPredicateCalls() const { 747 return PredicateCalls; 748 } 749 void clearPredicateCalls() { PredicateCalls.clear(); } 750 void setPredicateCalls(const std::vector<TreePredicateCall> &Calls) { 751 assert(PredicateCalls.empty() && "Overwriting non-empty predicate list!"); 752 PredicateCalls = Calls; 753 } 754 void addPredicateCall(const TreePredicateCall &Call) { 755 assert(!Call.Fn.isAlwaysTrue() && "Empty predicate string!"); 756 assert(!is_contained(PredicateCalls, Call) && "predicate applied recursively"); 757 PredicateCalls.push_back(Call); 758 } 759 void addPredicateCall(const TreePredicateFn &Fn, unsigned Scope) { 760 assert((Scope != 0) == Fn.usesOperands()); 761 addPredicateCall(TreePredicateCall(Fn, Scope)); 762 } 763 764 Record *getTransformFn() const { return TransformFn; } 765 void setTransformFn(Record *Fn) { TransformFn = Fn; } 766 767 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 768 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 769 const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const; 770 771 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 772 /// return the ComplexPattern information, otherwise return null. 773 const ComplexPattern * 774 getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const; 775 776 /// Returns the number of MachineInstr operands that would be produced by this 777 /// node if it mapped directly to an output Instruction's 778 /// operand. ComplexPattern specifies this explicitly; MIOperandInfo gives it 779 /// for Operands; otherwise 1. 780 unsigned getNumMIResults(const CodeGenDAGPatterns &CGP) const; 781 782 /// NodeHasProperty - Return true if this node has the specified property. 783 bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const; 784 785 /// TreeHasProperty - Return true if any node in this tree has the specified 786 /// property. 787 bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const; 788 789 /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is 790 /// marked isCommutative. 791 bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const; 792 793 void print(raw_ostream &OS) const; 794 void dump() const; 795 796 public: // Higher level manipulation routines. 797 798 /// clone - Return a new copy of this tree. 799 /// 800 TreePatternNodePtr clone() const; 801 802 /// RemoveAllTypes - Recursively strip all the types of this tree. 803 void RemoveAllTypes(); 804 805 /// isIsomorphicTo - Return true if this node is recursively isomorphic to 806 /// the specified node. For this comparison, all of the state of the node 807 /// is considered, except for the assigned name. Nodes with differing names 808 /// that are otherwise identical are considered isomorphic. 809 bool isIsomorphicTo(const TreePatternNode *N, 810 const MultipleUseVarSet &DepVars) const; 811 812 /// SubstituteFormalArguments - Replace the formal arguments in this tree 813 /// with actual values specified by ArgMap. 814 void 815 SubstituteFormalArguments(std::map<std::string, TreePatternNodePtr> &ArgMap); 816 817 /// InlinePatternFragments - If this pattern refers to any pattern 818 /// fragments, return the set of inlined versions (this can be more than 819 /// one if a PatFrags record has multiple alternatives). 820 void InlinePatternFragments(TreePatternNodePtr T, 821 TreePattern &TP, 822 std::vector<TreePatternNodePtr> &OutAlternatives); 823 824 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 825 /// this node and its children in the tree. This returns true if it makes a 826 /// change, false otherwise. If a type contradiction is found, flag an error. 827 bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters); 828 829 /// UpdateNodeType - Set the node type of N to VT if VT contains 830 /// information. If N already contains a conflicting type, then flag an 831 /// error. This returns true if any information was updated. 832 /// 833 bool UpdateNodeType(unsigned ResNo, const TypeSetByHwMode &InTy, 834 TreePattern &TP); 835 bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy, 836 TreePattern &TP); 837 bool UpdateNodeType(unsigned ResNo, ValueTypeByHwMode InTy, 838 TreePattern &TP); 839 840 // Update node type with types inferred from an instruction operand or result 841 // def from the ins/outs lists. 842 // Return true if the type changed. 843 bool UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP); 844 845 /// ContainsUnresolvedType - Return true if this tree contains any 846 /// unresolved types. 847 bool ContainsUnresolvedType(TreePattern &TP) const; 848 849 /// canPatternMatch - If it is impossible for this pattern to match on this 850 /// target, fill in Reason and return false. Otherwise, return true. 851 bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP); 852 }; 853 854 inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) { 855 TPN.print(OS); 856 return OS; 857 } 858 859 860 /// TreePattern - Represent a pattern, used for instructions, pattern 861 /// fragments, etc. 862 /// 863 class TreePattern { 864 /// Trees - The list of pattern trees which corresponds to this pattern. 865 /// Note that PatFrag's only have a single tree. 866 /// 867 std::vector<TreePatternNodePtr> Trees; 868 869 /// NamedNodes - This is all of the nodes that have names in the trees in this 870 /// pattern. 871 StringMap<SmallVector<TreePatternNode *, 1>> NamedNodes; 872 873 /// TheRecord - The actual TableGen record corresponding to this pattern. 874 /// 875 Record *TheRecord; 876 877 /// Args - This is a list of all of the arguments to this pattern (for 878 /// PatFrag patterns), which are the 'node' markers in this pattern. 879 std::vector<std::string> Args; 880 881 /// CDP - the top-level object coordinating this madness. 882 /// 883 CodeGenDAGPatterns &CDP; 884 885 /// isInputPattern - True if this is an input pattern, something to match. 886 /// False if this is an output pattern, something to emit. 887 bool isInputPattern; 888 889 /// hasError - True if the currently processed nodes have unresolvable types 890 /// or other non-fatal errors 891 bool HasError; 892 893 /// It's important that the usage of operands in ComplexPatterns is 894 /// consistent: each named operand can be defined by at most one 895 /// ComplexPattern. This records the ComplexPattern instance and the operand 896 /// number for each operand encountered in a ComplexPattern to aid in that 897 /// check. 898 StringMap<std::pair<Record *, unsigned>> ComplexPatternOperands; 899 900 TypeInfer Infer; 901 902 public: 903 904 /// TreePattern constructor - Parse the specified DagInits into the 905 /// current record. 906 TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 907 CodeGenDAGPatterns &ise); 908 TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 909 CodeGenDAGPatterns &ise); 910 TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput, 911 CodeGenDAGPatterns &ise); 912 913 /// getTrees - Return the tree patterns which corresponds to this pattern. 914 /// 915 const std::vector<TreePatternNodePtr> &getTrees() const { return Trees; } 916 unsigned getNumTrees() const { return Trees.size(); } 917 const TreePatternNodePtr &getTree(unsigned i) const { return Trees[i]; } 918 void setTree(unsigned i, TreePatternNodePtr Tree) { Trees[i] = Tree; } 919 const TreePatternNodePtr &getOnlyTree() const { 920 assert(Trees.size() == 1 && "Doesn't have exactly one pattern!"); 921 return Trees[0]; 922 } 923 924 const StringMap<SmallVector<TreePatternNode *, 1>> &getNamedNodesMap() { 925 if (NamedNodes.empty()) 926 ComputeNamedNodes(); 927 return NamedNodes; 928 } 929 930 /// getRecord - Return the actual TableGen record corresponding to this 931 /// pattern. 932 /// 933 Record *getRecord() const { return TheRecord; } 934 935 unsigned getNumArgs() const { return Args.size(); } 936 const std::string &getArgName(unsigned i) const { 937 assert(i < Args.size() && "Argument reference out of range!"); 938 return Args[i]; 939 } 940 std::vector<std::string> &getArgList() { return Args; } 941 942 CodeGenDAGPatterns &getDAGPatterns() const { return CDP; } 943 944 /// InlinePatternFragments - If this pattern refers to any pattern 945 /// fragments, inline them into place, giving us a pattern without any 946 /// PatFrags references. This may increase the number of trees in the 947 /// pattern if a PatFrags has multiple alternatives. 948 void InlinePatternFragments() { 949 std::vector<TreePatternNodePtr> Copy = Trees; 950 Trees.clear(); 951 for (unsigned i = 0, e = Copy.size(); i != e; ++i) 952 Copy[i]->InlinePatternFragments(Copy[i], *this, Trees); 953 } 954 955 /// InferAllTypes - Infer/propagate as many types throughout the expression 956 /// patterns as possible. Return true if all types are inferred, false 957 /// otherwise. Bail out if a type contradiction is found. 958 bool InferAllTypes( 959 const StringMap<SmallVector<TreePatternNode *, 1>> *NamedTypes = nullptr); 960 961 /// error - If this is the first error in the current resolution step, 962 /// print it and set the error flag. Otherwise, continue silently. 963 void error(const Twine &Msg); 964 bool hasError() const { 965 return HasError; 966 } 967 void resetError() { 968 HasError = false; 969 } 970 971 TypeInfer &getInfer() { return Infer; } 972 973 void print(raw_ostream &OS) const; 974 void dump() const; 975 976 private: 977 TreePatternNodePtr ParseTreePattern(Init *DI, StringRef OpName); 978 void ComputeNamedNodes(); 979 void ComputeNamedNodes(TreePatternNode *N); 980 }; 981 982 983 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo, 984 const TypeSetByHwMode &InTy, 985 TreePattern &TP) { 986 TypeSetByHwMode VTS(InTy); 987 TP.getInfer().expandOverloads(VTS); 988 return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS); 989 } 990 991 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo, 992 MVT::SimpleValueType InTy, 993 TreePattern &TP) { 994 TypeSetByHwMode VTS(InTy); 995 TP.getInfer().expandOverloads(VTS); 996 return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS); 997 } 998 999 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo, 1000 ValueTypeByHwMode InTy, 1001 TreePattern &TP) { 1002 TypeSetByHwMode VTS(InTy); 1003 TP.getInfer().expandOverloads(VTS); 1004 return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS); 1005 } 1006 1007 1008 /// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps 1009 /// that has a set ExecuteAlways / DefaultOps field. 1010 struct DAGDefaultOperand { 1011 std::vector<TreePatternNodePtr> DefaultOps; 1012 }; 1013 1014 class DAGInstruction { 1015 std::vector<Record*> Results; 1016 std::vector<Record*> Operands; 1017 std::vector<Record*> ImpResults; 1018 TreePatternNodePtr SrcPattern; 1019 TreePatternNodePtr ResultPattern; 1020 1021 public: 1022 DAGInstruction(const std::vector<Record*> &results, 1023 const std::vector<Record*> &operands, 1024 const std::vector<Record*> &impresults, 1025 TreePatternNodePtr srcpattern = nullptr, 1026 TreePatternNodePtr resultpattern = nullptr) 1027 : Results(results), Operands(operands), ImpResults(impresults), 1028 SrcPattern(srcpattern), ResultPattern(resultpattern) {} 1029 1030 unsigned getNumResults() const { return Results.size(); } 1031 unsigned getNumOperands() const { return Operands.size(); } 1032 unsigned getNumImpResults() const { return ImpResults.size(); } 1033 const std::vector<Record*>& getImpResults() const { return ImpResults; } 1034 1035 Record *getResult(unsigned RN) const { 1036 assert(RN < Results.size()); 1037 return Results[RN]; 1038 } 1039 1040 Record *getOperand(unsigned ON) const { 1041 assert(ON < Operands.size()); 1042 return Operands[ON]; 1043 } 1044 1045 Record *getImpResult(unsigned RN) const { 1046 assert(RN < ImpResults.size()); 1047 return ImpResults[RN]; 1048 } 1049 1050 TreePatternNodePtr getSrcPattern() const { return SrcPattern; } 1051 TreePatternNodePtr getResultPattern() const { return ResultPattern; } 1052 }; 1053 1054 /// This class represents a condition that has to be satisfied for a pattern 1055 /// to be tried. It is a generalization of a class "Pattern" from Target.td: 1056 /// in addition to the Target.td's predicates, this class can also represent 1057 /// conditions associated with HW modes. Both types will eventually become 1058 /// strings containing C++ code to be executed, the difference is in how 1059 /// these strings are generated. 1060 class Predicate { 1061 public: 1062 Predicate(Record *R, bool C = true) : Def(R), IfCond(C), IsHwMode(false) { 1063 assert(R->isSubClassOf("Predicate") && 1064 "Predicate objects should only be created for records derived" 1065 "from Predicate class"); 1066 } 1067 Predicate(StringRef FS, bool C = true) : Def(nullptr), Features(FS.str()), 1068 IfCond(C), IsHwMode(true) {} 1069 1070 /// Return a string which contains the C++ condition code that will serve 1071 /// as a predicate during instruction selection. 1072 std::string getCondString() const { 1073 // The string will excute in a subclass of SelectionDAGISel. 1074 // Cast to std::string explicitly to avoid ambiguity with StringRef. 1075 std::string C = IsHwMode 1076 ? std::string("MF->getSubtarget().checkFeatures(\"" + Features + "\")") 1077 : std::string(Def->getValueAsString("CondString")); 1078 return IfCond ? C : "!("+C+')'; 1079 } 1080 bool operator==(const Predicate &P) const { 1081 return IfCond == P.IfCond && IsHwMode == P.IsHwMode && Def == P.Def; 1082 } 1083 bool operator<(const Predicate &P) const { 1084 if (IsHwMode != P.IsHwMode) 1085 return IsHwMode < P.IsHwMode; 1086 assert(!Def == !P.Def && "Inconsistency between Def and IsHwMode"); 1087 if (IfCond != P.IfCond) 1088 return IfCond < P.IfCond; 1089 if (Def) 1090 return LessRecord()(Def, P.Def); 1091 return Features < P.Features; 1092 } 1093 Record *Def; ///< Predicate definition from .td file, null for 1094 ///< HW modes. 1095 std::string Features; ///< Feature string for HW mode. 1096 bool IfCond; ///< The boolean value that the condition has to 1097 ///< evaluate to for this predicate to be true. 1098 bool IsHwMode; ///< Does this predicate correspond to a HW mode? 1099 }; 1100 1101 /// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns 1102 /// processed to produce isel. 1103 class PatternToMatch { 1104 public: 1105 PatternToMatch(Record *srcrecord, std::vector<Predicate> preds, 1106 TreePatternNodePtr src, TreePatternNodePtr dst, 1107 std::vector<Record *> dstregs, int complexity, 1108 unsigned uid, unsigned setmode = 0) 1109 : SrcRecord(srcrecord), SrcPattern(src), DstPattern(dst), 1110 Predicates(std::move(preds)), Dstregs(std::move(dstregs)), 1111 AddedComplexity(complexity), ID(uid), ForceMode(setmode) {} 1112 1113 Record *SrcRecord; // Originating Record for the pattern. 1114 TreePatternNodePtr SrcPattern; // Source pattern to match. 1115 TreePatternNodePtr DstPattern; // Resulting pattern. 1116 std::vector<Predicate> Predicates; // Top level predicate conditions 1117 // to match. 1118 std::vector<Record*> Dstregs; // Physical register defs being matched. 1119 int AddedComplexity; // Add to matching pattern complexity. 1120 unsigned ID; // Unique ID for the record. 1121 unsigned ForceMode; // Force this mode in type inference when set. 1122 1123 Record *getSrcRecord() const { return SrcRecord; } 1124 TreePatternNode *getSrcPattern() const { return SrcPattern.get(); } 1125 TreePatternNodePtr getSrcPatternShared() const { return SrcPattern; } 1126 TreePatternNode *getDstPattern() const { return DstPattern.get(); } 1127 TreePatternNodePtr getDstPatternShared() const { return DstPattern; } 1128 const std::vector<Record*> &getDstRegs() const { return Dstregs; } 1129 int getAddedComplexity() const { return AddedComplexity; } 1130 const std::vector<Predicate> &getPredicates() const { return Predicates; } 1131 1132 std::string getPredicateCheck() const; 1133 1134 /// Compute the complexity metric for the input pattern. This roughly 1135 /// corresponds to the number of nodes that are covered. 1136 int getPatternComplexity(const CodeGenDAGPatterns &CGP) const; 1137 }; 1138 1139 class CodeGenDAGPatterns { 1140 RecordKeeper &Records; 1141 CodeGenTarget Target; 1142 CodeGenIntrinsicTable Intrinsics; 1143 CodeGenIntrinsicTable TgtIntrinsics; 1144 1145 std::map<Record*, SDNodeInfo, LessRecordByID> SDNodes; 1146 std::map<Record*, std::pair<Record*, std::string>, LessRecordByID> 1147 SDNodeXForms; 1148 std::map<Record*, ComplexPattern, LessRecordByID> ComplexPatterns; 1149 std::map<Record *, std::unique_ptr<TreePattern>, LessRecordByID> 1150 PatternFragments; 1151 std::map<Record*, DAGDefaultOperand, LessRecordByID> DefaultOperands; 1152 std::map<Record*, DAGInstruction, LessRecordByID> Instructions; 1153 1154 // Specific SDNode definitions: 1155 Record *intrinsic_void_sdnode; 1156 Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode; 1157 1158 /// PatternsToMatch - All of the things we are matching on the DAG. The first 1159 /// value is the pattern to match, the second pattern is the result to 1160 /// emit. 1161 std::vector<PatternToMatch> PatternsToMatch; 1162 1163 TypeSetByHwMode LegalVTS; 1164 1165 using PatternRewriterFn = std::function<void (TreePattern *)>; 1166 PatternRewriterFn PatternRewriter; 1167 1168 unsigned NumScopes = 0; 1169 1170 public: 1171 CodeGenDAGPatterns(RecordKeeper &R, 1172 PatternRewriterFn PatternRewriter = nullptr); 1173 1174 CodeGenTarget &getTargetInfo() { return Target; } 1175 const CodeGenTarget &getTargetInfo() const { return Target; } 1176 const TypeSetByHwMode &getLegalTypes() const { return LegalVTS; } 1177 1178 Record *getSDNodeNamed(const std::string &Name) const; 1179 1180 const SDNodeInfo &getSDNodeInfo(Record *R) const { 1181 auto F = SDNodes.find(R); 1182 assert(F != SDNodes.end() && "Unknown node!"); 1183 return F->second; 1184 } 1185 1186 // Node transformation lookups. 1187 typedef std::pair<Record*, std::string> NodeXForm; 1188 const NodeXForm &getSDNodeTransform(Record *R) const { 1189 auto F = SDNodeXForms.find(R); 1190 assert(F != SDNodeXForms.end() && "Invalid transform!"); 1191 return F->second; 1192 } 1193 1194 typedef std::map<Record*, NodeXForm, LessRecordByID>::const_iterator 1195 nx_iterator; 1196 nx_iterator nx_begin() const { return SDNodeXForms.begin(); } 1197 nx_iterator nx_end() const { return SDNodeXForms.end(); } 1198 1199 1200 const ComplexPattern &getComplexPattern(Record *R) const { 1201 auto F = ComplexPatterns.find(R); 1202 assert(F != ComplexPatterns.end() && "Unknown addressing mode!"); 1203 return F->second; 1204 } 1205 1206 const CodeGenIntrinsic &getIntrinsic(Record *R) const { 1207 for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i) 1208 if (Intrinsics[i].TheDef == R) return Intrinsics[i]; 1209 for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i) 1210 if (TgtIntrinsics[i].TheDef == R) return TgtIntrinsics[i]; 1211 llvm_unreachable("Unknown intrinsic!"); 1212 } 1213 1214 const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const { 1215 if (IID-1 < Intrinsics.size()) 1216 return Intrinsics[IID-1]; 1217 if (IID-Intrinsics.size()-1 < TgtIntrinsics.size()) 1218 return TgtIntrinsics[IID-Intrinsics.size()-1]; 1219 llvm_unreachable("Bad intrinsic ID!"); 1220 } 1221 1222 unsigned getIntrinsicID(Record *R) const { 1223 for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i) 1224 if (Intrinsics[i].TheDef == R) return i; 1225 for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i) 1226 if (TgtIntrinsics[i].TheDef == R) return i + Intrinsics.size(); 1227 llvm_unreachable("Unknown intrinsic!"); 1228 } 1229 1230 const DAGDefaultOperand &getDefaultOperand(Record *R) const { 1231 auto F = DefaultOperands.find(R); 1232 assert(F != DefaultOperands.end() &&"Isn't an analyzed default operand!"); 1233 return F->second; 1234 } 1235 1236 // Pattern Fragment information. 1237 TreePattern *getPatternFragment(Record *R) const { 1238 auto F = PatternFragments.find(R); 1239 assert(F != PatternFragments.end() && "Invalid pattern fragment request!"); 1240 return F->second.get(); 1241 } 1242 TreePattern *getPatternFragmentIfRead(Record *R) const { 1243 auto F = PatternFragments.find(R); 1244 if (F == PatternFragments.end()) 1245 return nullptr; 1246 return F->second.get(); 1247 } 1248 1249 typedef std::map<Record *, std::unique_ptr<TreePattern>, 1250 LessRecordByID>::const_iterator pf_iterator; 1251 pf_iterator pf_begin() const { return PatternFragments.begin(); } 1252 pf_iterator pf_end() const { return PatternFragments.end(); } 1253 iterator_range<pf_iterator> ptfs() const { return PatternFragments; } 1254 1255 // Patterns to match information. 1256 typedef std::vector<PatternToMatch>::const_iterator ptm_iterator; 1257 ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); } 1258 ptm_iterator ptm_end() const { return PatternsToMatch.end(); } 1259 iterator_range<ptm_iterator> ptms() const { return PatternsToMatch; } 1260 1261 /// Parse the Pattern for an instruction, and insert the result in DAGInsts. 1262 typedef std::map<Record*, DAGInstruction, LessRecordByID> DAGInstMap; 1263 void parseInstructionPattern( 1264 CodeGenInstruction &CGI, ListInit *Pattern, 1265 DAGInstMap &DAGInsts); 1266 1267 const DAGInstruction &getInstruction(Record *R) const { 1268 auto F = Instructions.find(R); 1269 assert(F != Instructions.end() && "Unknown instruction!"); 1270 return F->second; 1271 } 1272 1273 Record *get_intrinsic_void_sdnode() const { 1274 return intrinsic_void_sdnode; 1275 } 1276 Record *get_intrinsic_w_chain_sdnode() const { 1277 return intrinsic_w_chain_sdnode; 1278 } 1279 Record *get_intrinsic_wo_chain_sdnode() const { 1280 return intrinsic_wo_chain_sdnode; 1281 } 1282 1283 bool hasTargetIntrinsics() { return !TgtIntrinsics.empty(); } 1284 1285 unsigned allocateScope() { return ++NumScopes; } 1286 1287 bool operandHasDefault(Record *Op) const { 1288 return Op->isSubClassOf("OperandWithDefaultOps") && 1289 !getDefaultOperand(Op).DefaultOps.empty(); 1290 } 1291 1292 private: 1293 void ParseNodeInfo(); 1294 void ParseNodeTransforms(); 1295 void ParseComplexPatterns(); 1296 void ParsePatternFragments(bool OutFrags = false); 1297 void ParseDefaultOperands(); 1298 void ParseInstructions(); 1299 void ParsePatterns(); 1300 void ExpandHwModeBasedTypes(); 1301 void InferInstructionFlags(); 1302 void GenerateVariants(); 1303 void VerifyInstructionFlags(); 1304 1305 std::vector<Predicate> makePredList(ListInit *L); 1306 1307 void ParseOnePattern(Record *TheDef, 1308 TreePattern &Pattern, TreePattern &Result, 1309 const std::vector<Record *> &InstImpResults); 1310 void AddPatternToMatch(TreePattern *Pattern, PatternToMatch &&PTM); 1311 void FindPatternInputsAndOutputs( 1312 TreePattern &I, TreePatternNodePtr Pat, 1313 std::map<std::string, TreePatternNodePtr> &InstInputs, 1314 MapVector<std::string, TreePatternNodePtr, 1315 std::map<std::string, unsigned>> &InstResults, 1316 std::vector<Record *> &InstImpResults); 1317 }; 1318 1319 1320 inline bool SDNodeInfo::ApplyTypeConstraints(TreePatternNode *N, 1321 TreePattern &TP) const { 1322 bool MadeChange = false; 1323 for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) 1324 MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP); 1325 return MadeChange; 1326 } 1327 1328 } // end namespace llvm 1329 1330 #endif 1331