1 //===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the CodeGenDAGPatterns class, which is used to read and
11 // represent the patterns present in a .td file for instructions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
16 #define LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
17 
18 #include "CodeGenHwModes.h"
19 #include "CodeGenIntrinsics.h"
20 #include "CodeGenTarget.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/StringSet.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/MathExtras.h"
26 #include <algorithm>
27 #include <array>
28 #include <map>
29 #include <set>
30 #include <vector>
31 
32 namespace llvm {
33 
34 class Record;
35 class Init;
36 class ListInit;
37 class DagInit;
38 class SDNodeInfo;
39 class TreePattern;
40 class TreePatternNode;
41 class CodeGenDAGPatterns;
42 class ComplexPattern;
43 
44 /// This represents a set of MVTs. Since the underlying type for the MVT
45 /// is uint8_t, there are at most 256 values. To reduce the number of memory
46 /// allocations and deallocations, represent the set as a sequence of bits.
47 /// To reduce the allocations even further, make MachineValueTypeSet own
48 /// the storage and use std::array as the bit container.
49 struct MachineValueTypeSet {
50   static_assert(std::is_same<std::underlying_type<MVT::SimpleValueType>::type,
51                              uint8_t>::value,
52                 "Change uint8_t here to the SimpleValueType's type");
53   static unsigned constexpr Capacity = std::numeric_limits<uint8_t>::max()+1;
54   using WordType = uint64_t;
55   static unsigned constexpr WordWidth = CHAR_BIT*sizeof(WordType);
56   static unsigned constexpr NumWords = Capacity/WordWidth;
57   static_assert(NumWords*WordWidth == Capacity,
58                 "Capacity should be a multiple of WordWidth");
59 
60   LLVM_ATTRIBUTE_ALWAYS_INLINE
61   MachineValueTypeSet() {
62     clear();
63   }
64 
65   LLVM_ATTRIBUTE_ALWAYS_INLINE
66   unsigned size() const {
67     unsigned Count = 0;
68     for (WordType W : Words)
69       Count += countPopulation(W);
70     return Count;
71   }
72   LLVM_ATTRIBUTE_ALWAYS_INLINE
73   void clear() {
74     std::memset(Words.data(), 0, NumWords*sizeof(WordType));
75   }
76   LLVM_ATTRIBUTE_ALWAYS_INLINE
77   bool empty() const {
78     for (WordType W : Words)
79       if (W != 0)
80         return false;
81     return true;
82   }
83   LLVM_ATTRIBUTE_ALWAYS_INLINE
84   unsigned count(MVT T) const {
85     return (Words[T.SimpleTy / WordWidth] >> (T.SimpleTy % WordWidth)) & 1;
86   }
87   std::pair<MachineValueTypeSet&,bool> insert(MVT T) {
88     bool V = count(T.SimpleTy);
89     Words[T.SimpleTy / WordWidth] |= WordType(1) << (T.SimpleTy % WordWidth);
90     return {*this, V};
91   }
92   MachineValueTypeSet &insert(const MachineValueTypeSet &S) {
93     for (unsigned i = 0; i != NumWords; ++i)
94       Words[i] |= S.Words[i];
95     return *this;
96   }
97   LLVM_ATTRIBUTE_ALWAYS_INLINE
98   void erase(MVT T) {
99     Words[T.SimpleTy / WordWidth] &= ~(WordType(1) << (T.SimpleTy % WordWidth));
100   }
101 
102   struct const_iterator {
103     // Some implementations of the C++ library require these traits to be
104     // defined.
105     using iterator_category = std::forward_iterator_tag;
106     using value_type = MVT;
107     using difference_type = ptrdiff_t;
108     using pointer = const MVT*;
109     using reference = const MVT&;
110 
111     LLVM_ATTRIBUTE_ALWAYS_INLINE
112     MVT operator*() const {
113       assert(Pos != Capacity);
114       return MVT::SimpleValueType(Pos);
115     }
116     LLVM_ATTRIBUTE_ALWAYS_INLINE
117     const_iterator(const MachineValueTypeSet *S, bool End) : Set(S) {
118       Pos = End ? Capacity : find_from_pos(0);
119     }
120     LLVM_ATTRIBUTE_ALWAYS_INLINE
121     const_iterator &operator++() {
122       assert(Pos != Capacity);
123       Pos = find_from_pos(Pos+1);
124       return *this;
125     }
126 
127     LLVM_ATTRIBUTE_ALWAYS_INLINE
128     bool operator==(const const_iterator &It) const {
129       return Set == It.Set && Pos == It.Pos;
130     }
131     LLVM_ATTRIBUTE_ALWAYS_INLINE
132     bool operator!=(const const_iterator &It) const {
133       return !operator==(It);
134     }
135 
136   private:
137     unsigned find_from_pos(unsigned P) const {
138       unsigned SkipWords = P / WordWidth;
139       unsigned SkipBits = P % WordWidth;
140       unsigned Count = SkipWords * WordWidth;
141 
142       // If P is in the middle of a word, process it manually here, because
143       // the trailing bits need to be masked off to use findFirstSet.
144       if (SkipBits != 0) {
145         WordType W = Set->Words[SkipWords];
146         W &= maskLeadingOnes<WordType>(WordWidth-SkipBits);
147         if (W != 0)
148           return Count + findFirstSet(W);
149         Count += WordWidth;
150         SkipWords++;
151       }
152 
153       for (unsigned i = SkipWords; i != NumWords; ++i) {
154         WordType W = Set->Words[i];
155         if (W != 0)
156           return Count + findFirstSet(W);
157         Count += WordWidth;
158       }
159       return Capacity;
160     }
161 
162     const MachineValueTypeSet *Set;
163     unsigned Pos;
164   };
165 
166   LLVM_ATTRIBUTE_ALWAYS_INLINE
167   const_iterator begin() const { return const_iterator(this, false); }
168   LLVM_ATTRIBUTE_ALWAYS_INLINE
169   const_iterator end()   const { return const_iterator(this, true); }
170 
171   LLVM_ATTRIBUTE_ALWAYS_INLINE
172   bool operator==(const MachineValueTypeSet &S) const {
173     return Words == S.Words;
174   }
175   LLVM_ATTRIBUTE_ALWAYS_INLINE
176   bool operator!=(const MachineValueTypeSet &S) const {
177     return !operator==(S);
178   }
179 
180 private:
181   friend struct const_iterator;
182   std::array<WordType,NumWords> Words;
183 };
184 
185 struct TypeSetByHwMode : public InfoByHwMode<MachineValueTypeSet> {
186   using SetType = MachineValueTypeSet;
187 
188   TypeSetByHwMode() = default;
189   TypeSetByHwMode(const TypeSetByHwMode &VTS) = default;
190   TypeSetByHwMode(MVT::SimpleValueType VT)
191     : TypeSetByHwMode(ValueTypeByHwMode(VT)) {}
192   TypeSetByHwMode(ValueTypeByHwMode VT)
193     : TypeSetByHwMode(ArrayRef<ValueTypeByHwMode>(&VT, 1)) {}
194   TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList);
195 
196   SetType &getOrCreate(unsigned Mode) {
197     if (hasMode(Mode))
198       return get(Mode);
199     return Map.insert({Mode,SetType()}).first->second;
200   }
201 
202   bool isValueTypeByHwMode(bool AllowEmpty) const;
203   ValueTypeByHwMode getValueTypeByHwMode() const;
204 
205   LLVM_ATTRIBUTE_ALWAYS_INLINE
206   bool isMachineValueType() const {
207     return isDefaultOnly() && Map.begin()->second.size() == 1;
208   }
209 
210   LLVM_ATTRIBUTE_ALWAYS_INLINE
211   MVT getMachineValueType() const {
212     assert(isMachineValueType());
213     return *Map.begin()->second.begin();
214   }
215 
216   bool isPossible() const;
217 
218   LLVM_ATTRIBUTE_ALWAYS_INLINE
219   bool isDefaultOnly() const {
220     return Map.size() == 1 && Map.begin()->first == DefaultMode;
221   }
222 
223   bool insert(const ValueTypeByHwMode &VVT);
224   bool constrain(const TypeSetByHwMode &VTS);
225   template <typename Predicate> bool constrain(Predicate P);
226   template <typename Predicate>
227   bool assign_if(const TypeSetByHwMode &VTS, Predicate P);
228 
229   void writeToStream(raw_ostream &OS) const;
230   static void writeToStream(const SetType &S, raw_ostream &OS);
231 
232   bool operator==(const TypeSetByHwMode &VTS) const;
233   bool operator!=(const TypeSetByHwMode &VTS) const { return !(*this == VTS); }
234 
235   void dump() const;
236   void validate() const;
237 
238 private:
239   /// Intersect two sets. Return true if anything has changed.
240   bool intersect(SetType &Out, const SetType &In);
241 };
242 
243 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T);
244 
245 struct TypeInfer {
246   TypeInfer(TreePattern &T) : TP(T), ForceMode(0) {}
247 
248   bool isConcrete(const TypeSetByHwMode &VTS, bool AllowEmpty) const {
249     return VTS.isValueTypeByHwMode(AllowEmpty);
250   }
251   ValueTypeByHwMode getConcrete(const TypeSetByHwMode &VTS,
252                                 bool AllowEmpty) const {
253     assert(VTS.isValueTypeByHwMode(AllowEmpty));
254     return VTS.getValueTypeByHwMode();
255   }
256 
257   /// The protocol in the following functions (Merge*, force*, Enforce*,
258   /// expand*) is to return "true" if a change has been made, "false"
259   /// otherwise.
260 
261   bool MergeInTypeInfo(TypeSetByHwMode &Out, const TypeSetByHwMode &In);
262   bool MergeInTypeInfo(TypeSetByHwMode &Out, MVT::SimpleValueType InVT) {
263     return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
264   }
265   bool MergeInTypeInfo(TypeSetByHwMode &Out, ValueTypeByHwMode InVT) {
266     return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
267   }
268 
269   /// Reduce the set \p Out to have at most one element for each mode.
270   bool forceArbitrary(TypeSetByHwMode &Out);
271 
272   /// The following four functions ensure that upon return the set \p Out
273   /// will only contain types of the specified kind: integer, floating-point,
274   /// scalar, or vector.
275   /// If \p Out is empty, all legal types of the specified kind will be added
276   /// to it. Otherwise, all types that are not of the specified kind will be
277   /// removed from \p Out.
278   bool EnforceInteger(TypeSetByHwMode &Out);
279   bool EnforceFloatingPoint(TypeSetByHwMode &Out);
280   bool EnforceScalar(TypeSetByHwMode &Out);
281   bool EnforceVector(TypeSetByHwMode &Out);
282 
283   /// If \p Out is empty, fill it with all legal types. Otherwise, leave it
284   /// unchanged.
285   bool EnforceAny(TypeSetByHwMode &Out);
286   /// Make sure that for each type in \p Small, there exists a larger type
287   /// in \p Big.
288   bool EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big);
289   /// 1. Ensure that for each type T in \p Vec, T is a vector type, and that
290   ///    for each type U in \p Elem, U is a scalar type.
291   /// 2. Ensure that for each (scalar) type U in \p Elem, there exists a
292   ///    (vector) type T in \p Vec, such that U is the element type of T.
293   bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, TypeSetByHwMode &Elem);
294   bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
295                               const ValueTypeByHwMode &VVT);
296   /// Ensure that for each type T in \p Sub, T is a vector type, and there
297   /// exists a type U in \p Vec such that U is a vector type with the same
298   /// element type as T and at least as many elements as T.
299   bool EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
300                                     TypeSetByHwMode &Sub);
301   /// 1. Ensure that \p V has a scalar type iff \p W has a scalar type.
302   /// 2. Ensure that for each vector type T in \p V, there exists a vector
303   ///    type U in \p W, such that T and U have the same number of elements.
304   /// 3. Ensure that for each vector type U in \p W, there exists a vector
305   ///    type T in \p V, such that T and U have the same number of elements
306   ///    (reverse of 2).
307   bool EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W);
308   /// 1. Ensure that for each type T in \p A, there exists a type U in \p B,
309   ///    such that T and U have equal size in bits.
310   /// 2. Ensure that for each type U in \p B, there exists a type T in \p A
311   ///    such that T and U have equal size in bits (reverse of 1).
312   bool EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B);
313 
314   /// For each overloaded type (i.e. of form *Any), replace it with the
315   /// corresponding subset of legal, specific types.
316   void expandOverloads(TypeSetByHwMode &VTS);
317   void expandOverloads(TypeSetByHwMode::SetType &Out,
318                        const TypeSetByHwMode::SetType &Legal);
319 
320   struct ValidateOnExit {
321     ValidateOnExit(TypeSetByHwMode &T) : VTS(T) {}
322     ~ValidateOnExit() { VTS.validate(); }
323     TypeSetByHwMode &VTS;
324   };
325 
326   TreePattern &TP;
327   unsigned ForceMode;     // Mode to use when set.
328   bool CodeGen = false;   // Set during generation of matcher code.
329 
330 private:
331   TypeSetByHwMode getLegalTypes();
332 
333   /// Cached legal types.
334   bool LegalTypesCached = false;
335   TypeSetByHwMode::SetType LegalCache = {};
336 };
337 
338 /// Set type used to track multiply used variables in patterns
339 typedef StringSet<> MultipleUseVarSet;
340 
341 /// SDTypeConstraint - This is a discriminated union of constraints,
342 /// corresponding to the SDTypeConstraint tablegen class in Target.td.
343 struct SDTypeConstraint {
344   SDTypeConstraint(Record *R, const CodeGenHwModes &CGH);
345 
346   unsigned OperandNo;   // The operand # this constraint applies to.
347   enum {
348     SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs,
349     SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec,
350     SDTCisSubVecOfVec, SDTCVecEltisVT, SDTCisSameNumEltsAs, SDTCisSameSizeAs
351   } ConstraintType;
352 
353   union {   // The discriminated union.
354     struct {
355       unsigned OtherOperandNum;
356     } SDTCisSameAs_Info;
357     struct {
358       unsigned OtherOperandNum;
359     } SDTCisVTSmallerThanOp_Info;
360     struct {
361       unsigned BigOperandNum;
362     } SDTCisOpSmallerThanOp_Info;
363     struct {
364       unsigned OtherOperandNum;
365     } SDTCisEltOfVec_Info;
366     struct {
367       unsigned OtherOperandNum;
368     } SDTCisSubVecOfVec_Info;
369     struct {
370       unsigned OtherOperandNum;
371     } SDTCisSameNumEltsAs_Info;
372     struct {
373       unsigned OtherOperandNum;
374     } SDTCisSameSizeAs_Info;
375   } x;
376 
377   // The VT for SDTCisVT and SDTCVecEltisVT.
378   // Must not be in the union because it has a non-trivial destructor.
379   ValueTypeByHwMode VVT;
380 
381   /// ApplyTypeConstraint - Given a node in a pattern, apply this type
382   /// constraint to the nodes operands.  This returns true if it makes a
383   /// change, false otherwise.  If a type contradiction is found, an error
384   /// is flagged.
385   bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo,
386                            TreePattern &TP) const;
387 };
388 
389 /// SDNodeInfo - One of these records is created for each SDNode instance in
390 /// the target .td file.  This represents the various dag nodes we will be
391 /// processing.
392 class SDNodeInfo {
393   Record *Def;
394   StringRef EnumName;
395   StringRef SDClassName;
396   unsigned Properties;
397   unsigned NumResults;
398   int NumOperands;
399   std::vector<SDTypeConstraint> TypeConstraints;
400 public:
401   // Parse the specified record.
402   SDNodeInfo(Record *R, const CodeGenHwModes &CGH);
403 
404   unsigned getNumResults() const { return NumResults; }
405 
406   /// getNumOperands - This is the number of operands required or -1 if
407   /// variadic.
408   int getNumOperands() const { return NumOperands; }
409   Record *getRecord() const { return Def; }
410   StringRef getEnumName() const { return EnumName; }
411   StringRef getSDClassName() const { return SDClassName; }
412 
413   const std::vector<SDTypeConstraint> &getTypeConstraints() const {
414     return TypeConstraints;
415   }
416 
417   /// getKnownType - If the type constraints on this node imply a fixed type
418   /// (e.g. all stores return void, etc), then return it as an
419   /// MVT::SimpleValueType.  Otherwise, return MVT::Other.
420   MVT::SimpleValueType getKnownType(unsigned ResNo) const;
421 
422   /// hasProperty - Return true if this node has the specified property.
423   ///
424   bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }
425 
426   /// ApplyTypeConstraints - Given a node in a pattern, apply the type
427   /// constraints for this node to the operands of the node.  This returns
428   /// true if it makes a change, false otherwise.  If a type contradiction is
429   /// found, an error is flagged.
430   bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const;
431 };
432 
433 /// TreePredicateFn - This is an abstraction that represents the predicates on
434 /// a PatFrag node.  This is a simple one-word wrapper around a pointer to
435 /// provide nice accessors.
436 class TreePredicateFn {
437   /// PatFragRec - This is the TreePattern for the PatFrag that we
438   /// originally came from.
439   TreePattern *PatFragRec;
440 public:
441   /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
442   TreePredicateFn(TreePattern *N);
443 
444 
445   TreePattern *getOrigPatFragRecord() const { return PatFragRec; }
446 
447   /// isAlwaysTrue - Return true if this is a noop predicate.
448   bool isAlwaysTrue() const;
449 
450   bool isImmediatePattern() const { return hasImmCode(); }
451 
452   /// getImmediatePredicateCode - Return the code that evaluates this pattern if
453   /// this is an immediate predicate.  It is an error to call this on a
454   /// non-immediate pattern.
455   std::string getImmediatePredicateCode() const {
456     std::string Result = getImmCode();
457     assert(!Result.empty() && "Isn't an immediate pattern!");
458     return Result;
459   }
460 
461   bool operator==(const TreePredicateFn &RHS) const {
462     return PatFragRec == RHS.PatFragRec;
463   }
464 
465   bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); }
466 
467   /// Return the name to use in the generated code to reference this, this is
468   /// "Predicate_foo" if from a pattern fragment "foo".
469   std::string getFnName() const;
470 
471   /// getCodeToRunOnSDNode - Return the code for the function body that
472   /// evaluates this predicate.  The argument is expected to be in "Node",
473   /// not N.  This handles casting and conversion to a concrete node type as
474   /// appropriate.
475   std::string getCodeToRunOnSDNode() const;
476 
477   /// Get the data type of the argument to getImmediatePredicateCode().
478   StringRef getImmType() const;
479 
480   /// Get a string that describes the type returned by getImmType() but is
481   /// usable as part of an identifier.
482   StringRef getImmTypeIdentifier() const;
483 
484   // Is the desired predefined predicate for a load?
485   bool isLoad() const;
486   // Is the desired predefined predicate for a store?
487   bool isStore() const;
488 
489   /// Is this predicate the predefined unindexed load predicate?
490   /// Is this predicate the predefined unindexed store predicate?
491   bool isUnindexed() const;
492   /// Is this predicate the predefined non-extending load predicate?
493   bool isNonExtLoad() const;
494   /// Is this predicate the predefined any-extend load predicate?
495   bool isAnyExtLoad() const;
496   /// Is this predicate the predefined sign-extend load predicate?
497   bool isSignExtLoad() const;
498   /// Is this predicate the predefined zero-extend load predicate?
499   bool isZeroExtLoad() const;
500   /// Is this predicate the predefined non-truncating store predicate?
501   bool isNonTruncStore() const;
502   /// Is this predicate the predefined truncating store predicate?
503   bool isTruncStore() const;
504 
505   /// If non-null, indicates that this predicate is a predefined memory VT
506   /// predicate for a load/store and returns the ValueType record for the memory VT.
507   Record *getMemoryVT() const;
508   /// If non-null, indicates that this predicate is a predefined memory VT
509   /// predicate (checking only the scalar type) for load/store and returns the
510   /// ValueType record for the memory VT.
511   Record *getScalarMemoryVT() const;
512 
513 private:
514   bool hasPredCode() const;
515   bool hasImmCode() const;
516   std::string getPredCode() const;
517   std::string getImmCode() const;
518   bool immCodeUsesAPInt() const;
519   bool immCodeUsesAPFloat() const;
520 
521   bool isPredefinedPredicateEqualTo(StringRef Field, bool Value) const;
522 };
523 
524 
525 /// FIXME: TreePatternNode's can be shared in some cases (due to dag-shaped
526 /// patterns), and as such should be ref counted.  We currently just leak all
527 /// TreePatternNode objects!
528 class TreePatternNode {
529   /// The type of each node result.  Before and during type inference, each
530   /// result may be a set of possible types.  After (successful) type inference,
531   /// each is a single concrete type.
532   std::vector<TypeSetByHwMode> Types;
533 
534   /// Operator - The Record for the operator if this is an interior node (not
535   /// a leaf).
536   Record *Operator;
537 
538   /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf.
539   ///
540   Init *Val;
541 
542   /// Name - The name given to this node with the :$foo notation.
543   ///
544   std::string Name;
545 
546   /// PredicateFns - The predicate functions to execute on this node to check
547   /// for a match.  If this list is empty, no predicate is involved.
548   std::vector<TreePredicateFn> PredicateFns;
549 
550   /// TransformFn - The transformation function to execute on this node before
551   /// it can be substituted into the resulting instruction on a pattern match.
552   Record *TransformFn;
553 
554   std::vector<TreePatternNode*> Children;
555 public:
556   TreePatternNode(Record *Op, const std::vector<TreePatternNode*> &Ch,
557                   unsigned NumResults)
558     : Operator(Op), Val(nullptr), TransformFn(nullptr), Children(Ch) {
559     Types.resize(NumResults);
560   }
561   TreePatternNode(Init *val, unsigned NumResults)    // leaf ctor
562     : Operator(nullptr), Val(val), TransformFn(nullptr) {
563     Types.resize(NumResults);
564   }
565   ~TreePatternNode();
566 
567   bool hasName() const { return !Name.empty(); }
568   const std::string &getName() const { return Name; }
569   void setName(StringRef N) { Name.assign(N.begin(), N.end()); }
570 
571   bool isLeaf() const { return Val != nullptr; }
572 
573   // Type accessors.
574   unsigned getNumTypes() const { return Types.size(); }
575   ValueTypeByHwMode getType(unsigned ResNo) const {
576     return Types[ResNo].getValueTypeByHwMode();
577   }
578   const std::vector<TypeSetByHwMode> &getExtTypes() const { return Types; }
579   const TypeSetByHwMode &getExtType(unsigned ResNo) const {
580     return Types[ResNo];
581   }
582   TypeSetByHwMode &getExtType(unsigned ResNo) { return Types[ResNo]; }
583   void setType(unsigned ResNo, const TypeSetByHwMode &T) { Types[ResNo] = T; }
584   MVT::SimpleValueType getSimpleType(unsigned ResNo) const {
585     return Types[ResNo].getMachineValueType().SimpleTy;
586   }
587 
588   bool hasConcreteType(unsigned ResNo) const {
589     return Types[ResNo].isValueTypeByHwMode(false);
590   }
591   bool isTypeCompletelyUnknown(unsigned ResNo, TreePattern &TP) const {
592     return Types[ResNo].empty();
593   }
594 
595   Init *getLeafValue() const { assert(isLeaf()); return Val; }
596   Record *getOperator() const { assert(!isLeaf()); return Operator; }
597 
598   unsigned getNumChildren() const { return Children.size(); }
599   TreePatternNode *getChild(unsigned N) const { return Children[N]; }
600   void setChild(unsigned i, TreePatternNode *N) {
601     Children[i] = N;
602   }
603 
604   /// hasChild - Return true if N is any of our children.
605   bool hasChild(const TreePatternNode *N) const {
606     for (unsigned i = 0, e = Children.size(); i != e; ++i)
607       if (Children[i] == N) return true;
608     return false;
609   }
610 
611   bool hasProperTypeByHwMode() const;
612   bool hasPossibleType() const;
613   bool setDefaultMode(unsigned Mode);
614 
615   bool hasAnyPredicate() const { return !PredicateFns.empty(); }
616 
617   const std::vector<TreePredicateFn> &getPredicateFns() const {
618     return PredicateFns;
619   }
620   void clearPredicateFns() { PredicateFns.clear(); }
621   void setPredicateFns(const std::vector<TreePredicateFn> &Fns) {
622     assert(PredicateFns.empty() && "Overwriting non-empty predicate list!");
623     PredicateFns = Fns;
624   }
625   void addPredicateFn(const TreePredicateFn &Fn) {
626     assert(!Fn.isAlwaysTrue() && "Empty predicate string!");
627     if (!is_contained(PredicateFns, Fn))
628       PredicateFns.push_back(Fn);
629   }
630 
631   Record *getTransformFn() const { return TransformFn; }
632   void setTransformFn(Record *Fn) { TransformFn = Fn; }
633 
634   /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
635   /// CodeGenIntrinsic information for it, otherwise return a null pointer.
636   const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const;
637 
638   /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
639   /// return the ComplexPattern information, otherwise return null.
640   const ComplexPattern *
641   getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const;
642 
643   /// Returns the number of MachineInstr operands that would be produced by this
644   /// node if it mapped directly to an output Instruction's
645   /// operand. ComplexPattern specifies this explicitly; MIOperandInfo gives it
646   /// for Operands; otherwise 1.
647   unsigned getNumMIResults(const CodeGenDAGPatterns &CGP) const;
648 
649   /// NodeHasProperty - Return true if this node has the specified property.
650   bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
651 
652   /// TreeHasProperty - Return true if any node in this tree has the specified
653   /// property.
654   bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
655 
656   /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is
657   /// marked isCommutative.
658   bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const;
659 
660   void print(raw_ostream &OS) const;
661   void dump() const;
662 
663 public:   // Higher level manipulation routines.
664 
665   /// clone - Return a new copy of this tree.
666   ///
667   TreePatternNode *clone() const;
668 
669   /// RemoveAllTypes - Recursively strip all the types of this tree.
670   void RemoveAllTypes();
671 
672   /// isIsomorphicTo - Return true if this node is recursively isomorphic to
673   /// the specified node.  For this comparison, all of the state of the node
674   /// is considered, except for the assigned name.  Nodes with differing names
675   /// that are otherwise identical are considered isomorphic.
676   bool isIsomorphicTo(const TreePatternNode *N,
677                       const MultipleUseVarSet &DepVars) const;
678 
679   /// SubstituteFormalArguments - Replace the formal arguments in this tree
680   /// with actual values specified by ArgMap.
681   void SubstituteFormalArguments(std::map<std::string,
682                                           TreePatternNode*> &ArgMap);
683 
684   /// InlinePatternFragments - If this pattern refers to any pattern
685   /// fragments, inline them into place, giving us a pattern without any
686   /// PatFrag references.
687   TreePatternNode *InlinePatternFragments(TreePattern &TP);
688 
689   /// ApplyTypeConstraints - Apply all of the type constraints relevant to
690   /// this node and its children in the tree.  This returns true if it makes a
691   /// change, false otherwise.  If a type contradiction is found, flag an error.
692   bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters);
693 
694   /// UpdateNodeType - Set the node type of N to VT if VT contains
695   /// information.  If N already contains a conflicting type, then flag an
696   /// error.  This returns true if any information was updated.
697   ///
698   bool UpdateNodeType(unsigned ResNo, const TypeSetByHwMode &InTy,
699                       TreePattern &TP);
700   bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy,
701                       TreePattern &TP);
702   bool UpdateNodeType(unsigned ResNo, ValueTypeByHwMode InTy,
703                       TreePattern &TP);
704 
705   // Update node type with types inferred from an instruction operand or result
706   // def from the ins/outs lists.
707   // Return true if the type changed.
708   bool UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP);
709 
710   /// ContainsUnresolvedType - Return true if this tree contains any
711   /// unresolved types.
712   bool ContainsUnresolvedType(TreePattern &TP) const;
713 
714   /// canPatternMatch - If it is impossible for this pattern to match on this
715   /// target, fill in Reason and return false.  Otherwise, return true.
716   bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP);
717 };
718 
719 inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) {
720   TPN.print(OS);
721   return OS;
722 }
723 
724 
725 /// TreePattern - Represent a pattern, used for instructions, pattern
726 /// fragments, etc.
727 ///
728 class TreePattern {
729   /// Trees - The list of pattern trees which corresponds to this pattern.
730   /// Note that PatFrag's only have a single tree.
731   ///
732   std::vector<TreePatternNode*> Trees;
733 
734   /// NamedNodes - This is all of the nodes that have names in the trees in this
735   /// pattern.
736   StringMap<SmallVector<TreePatternNode*,1> > NamedNodes;
737 
738   /// TheRecord - The actual TableGen record corresponding to this pattern.
739   ///
740   Record *TheRecord;
741 
742   /// Args - This is a list of all of the arguments to this pattern (for
743   /// PatFrag patterns), which are the 'node' markers in this pattern.
744   std::vector<std::string> Args;
745 
746   /// CDP - the top-level object coordinating this madness.
747   ///
748   CodeGenDAGPatterns &CDP;
749 
750   /// isInputPattern - True if this is an input pattern, something to match.
751   /// False if this is an output pattern, something to emit.
752   bool isInputPattern;
753 
754   /// hasError - True if the currently processed nodes have unresolvable types
755   /// or other non-fatal errors
756   bool HasError;
757 
758   /// It's important that the usage of operands in ComplexPatterns is
759   /// consistent: each named operand can be defined by at most one
760   /// ComplexPattern. This records the ComplexPattern instance and the operand
761   /// number for each operand encountered in a ComplexPattern to aid in that
762   /// check.
763   StringMap<std::pair<Record *, unsigned>> ComplexPatternOperands;
764 
765   TypeInfer Infer;
766 
767 public:
768 
769   /// TreePattern constructor - Parse the specified DagInits into the
770   /// current record.
771   TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
772               CodeGenDAGPatterns &ise);
773   TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
774               CodeGenDAGPatterns &ise);
775   TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
776               CodeGenDAGPatterns &ise);
777 
778   /// getTrees - Return the tree patterns which corresponds to this pattern.
779   ///
780   const std::vector<TreePatternNode*> &getTrees() const { return Trees; }
781   unsigned getNumTrees() const { return Trees.size(); }
782   TreePatternNode *getTree(unsigned i) const { return Trees[i]; }
783   TreePatternNode *getOnlyTree() const {
784     assert(Trees.size() == 1 && "Doesn't have exactly one pattern!");
785     return Trees[0];
786   }
787 
788   const StringMap<SmallVector<TreePatternNode*,1> > &getNamedNodesMap() {
789     if (NamedNodes.empty())
790       ComputeNamedNodes();
791     return NamedNodes;
792   }
793 
794   /// getRecord - Return the actual TableGen record corresponding to this
795   /// pattern.
796   ///
797   Record *getRecord() const { return TheRecord; }
798 
799   unsigned getNumArgs() const { return Args.size(); }
800   const std::string &getArgName(unsigned i) const {
801     assert(i < Args.size() && "Argument reference out of range!");
802     return Args[i];
803   }
804   std::vector<std::string> &getArgList() { return Args; }
805 
806   CodeGenDAGPatterns &getDAGPatterns() const { return CDP; }
807 
808   /// InlinePatternFragments - If this pattern refers to any pattern
809   /// fragments, inline them into place, giving us a pattern without any
810   /// PatFrag references.
811   void InlinePatternFragments() {
812     for (unsigned i = 0, e = Trees.size(); i != e; ++i)
813       Trees[i] = Trees[i]->InlinePatternFragments(*this);
814   }
815 
816   /// InferAllTypes - Infer/propagate as many types throughout the expression
817   /// patterns as possible.  Return true if all types are inferred, false
818   /// otherwise.  Bail out if a type contradiction is found.
819   bool InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> >
820                           *NamedTypes=nullptr);
821 
822   /// error - If this is the first error in the current resolution step,
823   /// print it and set the error flag.  Otherwise, continue silently.
824   void error(const Twine &Msg);
825   bool hasError() const {
826     return HasError;
827   }
828   void resetError() {
829     HasError = false;
830   }
831 
832   TypeInfer &getInfer() { return Infer; }
833 
834   void print(raw_ostream &OS) const;
835   void dump() const;
836 
837 private:
838   TreePatternNode *ParseTreePattern(Init *DI, StringRef OpName);
839   void ComputeNamedNodes();
840   void ComputeNamedNodes(TreePatternNode *N);
841 };
842 
843 
844 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
845                                             const TypeSetByHwMode &InTy,
846                                             TreePattern &TP) {
847   TypeSetByHwMode VTS(InTy);
848   TP.getInfer().expandOverloads(VTS);
849   return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
850 }
851 
852 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
853                                             MVT::SimpleValueType InTy,
854                                             TreePattern &TP) {
855   TypeSetByHwMode VTS(InTy);
856   TP.getInfer().expandOverloads(VTS);
857   return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
858 }
859 
860 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
861                                             ValueTypeByHwMode InTy,
862                                             TreePattern &TP) {
863   TypeSetByHwMode VTS(InTy);
864   TP.getInfer().expandOverloads(VTS);
865   return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
866 }
867 
868 
869 /// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps
870 /// that has a set ExecuteAlways / DefaultOps field.
871 struct DAGDefaultOperand {
872   std::vector<TreePatternNode*> DefaultOps;
873 };
874 
875 class DAGInstruction {
876   TreePattern *Pattern;
877   std::vector<Record*> Results;
878   std::vector<Record*> Operands;
879   std::vector<Record*> ImpResults;
880   TreePatternNode *ResultPattern;
881 public:
882   DAGInstruction(TreePattern *TP,
883                  const std::vector<Record*> &results,
884                  const std::vector<Record*> &operands,
885                  const std::vector<Record*> &impresults)
886     : Pattern(TP), Results(results), Operands(operands),
887       ImpResults(impresults), ResultPattern(nullptr) {}
888 
889   TreePattern *getPattern() const { return Pattern; }
890   unsigned getNumResults() const { return Results.size(); }
891   unsigned getNumOperands() const { return Operands.size(); }
892   unsigned getNumImpResults() const { return ImpResults.size(); }
893   const std::vector<Record*>& getImpResults() const { return ImpResults; }
894 
895   void setResultPattern(TreePatternNode *R) { ResultPattern = R; }
896 
897   Record *getResult(unsigned RN) const {
898     assert(RN < Results.size());
899     return Results[RN];
900   }
901 
902   Record *getOperand(unsigned ON) const {
903     assert(ON < Operands.size());
904     return Operands[ON];
905   }
906 
907   Record *getImpResult(unsigned RN) const {
908     assert(RN < ImpResults.size());
909     return ImpResults[RN];
910   }
911 
912   TreePatternNode *getResultPattern() const { return ResultPattern; }
913 };
914 
915 /// This class represents a condition that has to be satisfied for a pattern
916 /// to be tried. It is a generalization of a class "Pattern" from Target.td:
917 /// in addition to the Target.td's predicates, this class can also represent
918 /// conditions associated with HW modes. Both types will eventually become
919 /// strings containing C++ code to be executed, the difference is in how
920 /// these strings are generated.
921 class Predicate {
922 public:
923   Predicate(Record *R, bool C = true) : Def(R), IfCond(C), IsHwMode(false) {
924     assert(R->isSubClassOf("Predicate") &&
925            "Predicate objects should only be created for records derived"
926            "from Predicate class");
927   }
928   Predicate(StringRef FS, bool C = true) : Def(nullptr), Features(FS.str()),
929     IfCond(C), IsHwMode(true) {}
930 
931   /// Return a string which contains the C++ condition code that will serve
932   /// as a predicate during instruction selection.
933   std::string getCondString() const {
934     // The string will excute in a subclass of SelectionDAGISel.
935     // Cast to std::string explicitly to avoid ambiguity with StringRef.
936     std::string C = IsHwMode
937         ? std::string("MF->getSubtarget().checkFeatures(\"" + Features + "\")")
938         : std::string(Def->getValueAsString("CondString"));
939     return IfCond ? C : "!("+C+')';
940   }
941   bool operator==(const Predicate &P) const {
942     return IfCond == P.IfCond && IsHwMode == P.IsHwMode && Def == P.Def;
943   }
944   bool operator<(const Predicate &P) const {
945     if (IsHwMode != P.IsHwMode)
946       return IsHwMode < P.IsHwMode;
947     assert(!Def == !P.Def && "Inconsistency between Def and IsHwMode");
948     if (IfCond != P.IfCond)
949       return IfCond < P.IfCond;
950     if (Def)
951       return LessRecord()(Def, P.Def);
952     return Features < P.Features;
953   }
954   Record *Def;            ///< Predicate definition from .td file, null for
955                           ///< HW modes.
956   std::string Features;   ///< Feature string for HW mode.
957   bool IfCond;            ///< The boolean value that the condition has to
958                           ///< evaluate to for this predicate to be true.
959   bool IsHwMode;          ///< Does this predicate correspond to a HW mode?
960 };
961 
962 /// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns
963 /// processed to produce isel.
964 class PatternToMatch {
965 public:
966   PatternToMatch(Record *srcrecord, const std::vector<Predicate> &preds,
967                  TreePatternNode *src, TreePatternNode *dst,
968                  const std::vector<Record*> &dstregs,
969                  int complexity, unsigned uid, unsigned setmode = 0)
970     : SrcRecord(srcrecord), SrcPattern(src), DstPattern(dst),
971       Predicates(preds), Dstregs(std::move(dstregs)),
972       AddedComplexity(complexity), ID(uid), ForceMode(setmode) {}
973 
974   PatternToMatch(Record *srcrecord, std::vector<Predicate> &&preds,
975                  TreePatternNode *src, TreePatternNode *dst,
976                  std::vector<Record*> &&dstregs,
977                  int complexity, unsigned uid, unsigned setmode = 0)
978     : SrcRecord(srcrecord), SrcPattern(src), DstPattern(dst),
979       Predicates(preds), Dstregs(std::move(dstregs)),
980       AddedComplexity(complexity), ID(uid), ForceMode(setmode) {}
981 
982   Record          *SrcRecord;   // Originating Record for the pattern.
983   TreePatternNode *SrcPattern;  // Source pattern to match.
984   TreePatternNode *DstPattern;  // Resulting pattern.
985   std::vector<Predicate> Predicates;  // Top level predicate conditions
986                                       // to match.
987   std::vector<Record*> Dstregs; // Physical register defs being matched.
988   int              AddedComplexity; // Add to matching pattern complexity.
989   unsigned         ID;          // Unique ID for the record.
990   unsigned         ForceMode;   // Force this mode in type inference when set.
991 
992   Record          *getSrcRecord()  const { return SrcRecord; }
993   TreePatternNode *getSrcPattern() const { return SrcPattern; }
994   TreePatternNode *getDstPattern() const { return DstPattern; }
995   const std::vector<Record*> &getDstRegs() const { return Dstregs; }
996   int         getAddedComplexity() const { return AddedComplexity; }
997   const std::vector<Predicate> &getPredicates() const { return Predicates; }
998 
999   std::string getPredicateCheck() const;
1000 
1001   /// Compute the complexity metric for the input pattern.  This roughly
1002   /// corresponds to the number of nodes that are covered.
1003   int getPatternComplexity(const CodeGenDAGPatterns &CGP) const;
1004 };
1005 
1006 class CodeGenDAGPatterns {
1007   RecordKeeper &Records;
1008   CodeGenTarget Target;
1009   CodeGenIntrinsicTable Intrinsics;
1010   CodeGenIntrinsicTable TgtIntrinsics;
1011 
1012   std::map<Record*, SDNodeInfo, LessRecordByID> SDNodes;
1013   std::map<Record*, std::pair<Record*, std::string>, LessRecordByID>
1014       SDNodeXForms;
1015   std::map<Record*, ComplexPattern, LessRecordByID> ComplexPatterns;
1016   std::map<Record *, std::unique_ptr<TreePattern>, LessRecordByID>
1017       PatternFragments;
1018   std::map<Record*, DAGDefaultOperand, LessRecordByID> DefaultOperands;
1019   std::map<Record*, DAGInstruction, LessRecordByID> Instructions;
1020 
1021   // Specific SDNode definitions:
1022   Record *intrinsic_void_sdnode;
1023   Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode;
1024 
1025   /// PatternsToMatch - All of the things we are matching on the DAG.  The first
1026   /// value is the pattern to match, the second pattern is the result to
1027   /// emit.
1028   std::vector<PatternToMatch> PatternsToMatch;
1029 
1030   TypeSetByHwMode LegalVTS;
1031 
1032 public:
1033   CodeGenDAGPatterns(RecordKeeper &R);
1034 
1035   CodeGenTarget &getTargetInfo() { return Target; }
1036   const CodeGenTarget &getTargetInfo() const { return Target; }
1037   const TypeSetByHwMode &getLegalTypes() const { return LegalVTS; }
1038 
1039   Record *getSDNodeNamed(const std::string &Name) const;
1040 
1041   const SDNodeInfo &getSDNodeInfo(Record *R) const {
1042     auto F = SDNodes.find(R);
1043     assert(F != SDNodes.end() && "Unknown node!");
1044     return F->second;
1045   }
1046 
1047   // Node transformation lookups.
1048   typedef std::pair<Record*, std::string> NodeXForm;
1049   const NodeXForm &getSDNodeTransform(Record *R) const {
1050     auto F = SDNodeXForms.find(R);
1051     assert(F != SDNodeXForms.end() && "Invalid transform!");
1052     return F->second;
1053   }
1054 
1055   typedef std::map<Record*, NodeXForm, LessRecordByID>::const_iterator
1056           nx_iterator;
1057   nx_iterator nx_begin() const { return SDNodeXForms.begin(); }
1058   nx_iterator nx_end() const { return SDNodeXForms.end(); }
1059 
1060 
1061   const ComplexPattern &getComplexPattern(Record *R) const {
1062     auto F = ComplexPatterns.find(R);
1063     assert(F != ComplexPatterns.end() && "Unknown addressing mode!");
1064     return F->second;
1065   }
1066 
1067   const CodeGenIntrinsic &getIntrinsic(Record *R) const {
1068     for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
1069       if (Intrinsics[i].TheDef == R) return Intrinsics[i];
1070     for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i)
1071       if (TgtIntrinsics[i].TheDef == R) return TgtIntrinsics[i];
1072     llvm_unreachable("Unknown intrinsic!");
1073   }
1074 
1075   const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const {
1076     if (IID-1 < Intrinsics.size())
1077       return Intrinsics[IID-1];
1078     if (IID-Intrinsics.size()-1 < TgtIntrinsics.size())
1079       return TgtIntrinsics[IID-Intrinsics.size()-1];
1080     llvm_unreachable("Bad intrinsic ID!");
1081   }
1082 
1083   unsigned getIntrinsicID(Record *R) const {
1084     for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
1085       if (Intrinsics[i].TheDef == R) return i;
1086     for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i)
1087       if (TgtIntrinsics[i].TheDef == R) return i + Intrinsics.size();
1088     llvm_unreachable("Unknown intrinsic!");
1089   }
1090 
1091   const DAGDefaultOperand &getDefaultOperand(Record *R) const {
1092     auto F = DefaultOperands.find(R);
1093     assert(F != DefaultOperands.end() &&"Isn't an analyzed default operand!");
1094     return F->second;
1095   }
1096 
1097   // Pattern Fragment information.
1098   TreePattern *getPatternFragment(Record *R) const {
1099     auto F = PatternFragments.find(R);
1100     assert(F != PatternFragments.end() && "Invalid pattern fragment request!");
1101     return F->second.get();
1102   }
1103   TreePattern *getPatternFragmentIfRead(Record *R) const {
1104     auto F = PatternFragments.find(R);
1105     if (F == PatternFragments.end())
1106       return nullptr;
1107     return F->second.get();
1108   }
1109 
1110   typedef std::map<Record *, std::unique_ptr<TreePattern>,
1111                    LessRecordByID>::const_iterator pf_iterator;
1112   pf_iterator pf_begin() const { return PatternFragments.begin(); }
1113   pf_iterator pf_end() const { return PatternFragments.end(); }
1114   iterator_range<pf_iterator> ptfs() const { return PatternFragments; }
1115 
1116   // Patterns to match information.
1117   typedef std::vector<PatternToMatch>::const_iterator ptm_iterator;
1118   ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); }
1119   ptm_iterator ptm_end() const { return PatternsToMatch.end(); }
1120   iterator_range<ptm_iterator> ptms() const { return PatternsToMatch; }
1121 
1122   /// Parse the Pattern for an instruction, and insert the result in DAGInsts.
1123   typedef std::map<Record*, DAGInstruction, LessRecordByID> DAGInstMap;
1124   const DAGInstruction &parseInstructionPattern(
1125       CodeGenInstruction &CGI, ListInit *Pattern,
1126       DAGInstMap &DAGInsts);
1127 
1128   const DAGInstruction &getInstruction(Record *R) const {
1129     auto F = Instructions.find(R);
1130     assert(F != Instructions.end() && "Unknown instruction!");
1131     return F->second;
1132   }
1133 
1134   Record *get_intrinsic_void_sdnode() const {
1135     return intrinsic_void_sdnode;
1136   }
1137   Record *get_intrinsic_w_chain_sdnode() const {
1138     return intrinsic_w_chain_sdnode;
1139   }
1140   Record *get_intrinsic_wo_chain_sdnode() const {
1141     return intrinsic_wo_chain_sdnode;
1142   }
1143 
1144   bool hasTargetIntrinsics() { return !TgtIntrinsics.empty(); }
1145 
1146 private:
1147   void ParseNodeInfo();
1148   void ParseNodeTransforms();
1149   void ParseComplexPatterns();
1150   void ParsePatternFragments(bool OutFrags = false);
1151   void ParseDefaultOperands();
1152   void ParseInstructions();
1153   void ParsePatterns();
1154   void ExpandHwModeBasedTypes();
1155   void InferInstructionFlags();
1156   void GenerateVariants();
1157   void VerifyInstructionFlags();
1158 
1159   std::vector<Predicate> makePredList(ListInit *L);
1160 
1161   void AddPatternToMatch(TreePattern *Pattern, PatternToMatch &&PTM);
1162   void FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
1163                                    std::map<std::string,
1164                                    TreePatternNode*> &InstInputs,
1165                                    std::map<std::string,
1166                                    TreePatternNode*> &InstResults,
1167                                    std::vector<Record*> &InstImpResults);
1168 };
1169 
1170 
1171 inline bool SDNodeInfo::ApplyTypeConstraints(TreePatternNode *N,
1172                                              TreePattern &TP) const {
1173     bool MadeChange = false;
1174     for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i)
1175       MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP);
1176     return MadeChange;
1177   }
1178 } // end namespace llvm
1179 
1180 #endif
1181