1 //===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file declares the CodeGenDAGPatterns class, which is used to read and 11 // represent the patterns present in a .td file for instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H 16 #define LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H 17 18 #include "CodeGenHwModes.h" 19 #include "CodeGenIntrinsics.h" 20 #include "CodeGenTarget.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/StringSet.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/MathExtras.h" 26 #include <algorithm> 27 #include <array> 28 #include <map> 29 #include <set> 30 #include <vector> 31 32 namespace llvm { 33 34 class Record; 35 class Init; 36 class ListInit; 37 class DagInit; 38 class SDNodeInfo; 39 class TreePattern; 40 class TreePatternNode; 41 class CodeGenDAGPatterns; 42 class ComplexPattern; 43 44 /// This represents a set of MVTs. Since the underlying type for the MVT 45 /// is uint8_t, there are at most 256 values. To reduce the number of memory 46 /// allocations and deallocations, represent the set as a sequence of bits. 47 /// To reduce the allocations even further, make MachineValueTypeSet own 48 /// the storage and use std::array as the bit container. 49 struct MachineValueTypeSet { 50 static_assert(std::is_same<std::underlying_type<MVT::SimpleValueType>::type, 51 uint8_t>::value, 52 "Change uint8_t here to the SimpleValueType's type"); 53 static unsigned constexpr Capacity = std::numeric_limits<uint8_t>::max()+1; 54 using WordType = uint64_t; 55 static unsigned constexpr WordWidth = CHAR_BIT*sizeof(WordType); 56 static unsigned constexpr NumWords = Capacity/WordWidth; 57 static_assert(NumWords*WordWidth == Capacity, 58 "Capacity should be a multiple of WordWidth"); 59 60 LLVM_ATTRIBUTE_ALWAYS_INLINE 61 MachineValueTypeSet() { 62 clear(); 63 } 64 65 LLVM_ATTRIBUTE_ALWAYS_INLINE 66 unsigned size() const { 67 unsigned Count = 0; 68 for (WordType W : Words) 69 Count += countPopulation(W); 70 return Count; 71 } 72 LLVM_ATTRIBUTE_ALWAYS_INLINE 73 void clear() { 74 std::memset(Words.data(), 0, NumWords*sizeof(WordType)); 75 } 76 LLVM_ATTRIBUTE_ALWAYS_INLINE 77 bool empty() const { 78 for (WordType W : Words) 79 if (W != 0) 80 return false; 81 return true; 82 } 83 LLVM_ATTRIBUTE_ALWAYS_INLINE 84 unsigned count(MVT T) const { 85 return (Words[T.SimpleTy / WordWidth] >> (T.SimpleTy % WordWidth)) & 1; 86 } 87 std::pair<MachineValueTypeSet&,bool> insert(MVT T) { 88 bool V = count(T.SimpleTy); 89 Words[T.SimpleTy / WordWidth] |= WordType(1) << (T.SimpleTy % WordWidth); 90 return {*this, V}; 91 } 92 MachineValueTypeSet &insert(const MachineValueTypeSet &S) { 93 for (unsigned i = 0; i != NumWords; ++i) 94 Words[i] |= S.Words[i]; 95 return *this; 96 } 97 LLVM_ATTRIBUTE_ALWAYS_INLINE 98 void erase(MVT T) { 99 Words[T.SimpleTy / WordWidth] &= ~(WordType(1) << (T.SimpleTy % WordWidth)); 100 } 101 102 struct const_iterator { 103 // Some implementations of the C++ library require these traits to be 104 // defined. 105 using iterator_category = std::forward_iterator_tag; 106 using value_type = MVT; 107 using difference_type = ptrdiff_t; 108 using pointer = const MVT*; 109 using reference = const MVT&; 110 111 LLVM_ATTRIBUTE_ALWAYS_INLINE 112 MVT operator*() const { 113 assert(Pos != Capacity); 114 return MVT::SimpleValueType(Pos); 115 } 116 LLVM_ATTRIBUTE_ALWAYS_INLINE 117 const_iterator(const MachineValueTypeSet *S, bool End) : Set(S) { 118 Pos = End ? Capacity : find_from_pos(0); 119 } 120 LLVM_ATTRIBUTE_ALWAYS_INLINE 121 const_iterator &operator++() { 122 assert(Pos != Capacity); 123 Pos = find_from_pos(Pos+1); 124 return *this; 125 } 126 127 LLVM_ATTRIBUTE_ALWAYS_INLINE 128 bool operator==(const const_iterator &It) const { 129 return Set == It.Set && Pos == It.Pos; 130 } 131 LLVM_ATTRIBUTE_ALWAYS_INLINE 132 bool operator!=(const const_iterator &It) const { 133 return !operator==(It); 134 } 135 136 private: 137 unsigned find_from_pos(unsigned P) const { 138 unsigned SkipWords = P / WordWidth; 139 unsigned SkipBits = P % WordWidth; 140 unsigned Count = SkipWords * WordWidth; 141 142 // If P is in the middle of a word, process it manually here, because 143 // the trailing bits need to be masked off to use findFirstSet. 144 if (SkipBits != 0) { 145 WordType W = Set->Words[SkipWords]; 146 W &= maskLeadingOnes<WordType>(WordWidth-SkipBits); 147 if (W != 0) 148 return Count + findFirstSet(W); 149 Count += WordWidth; 150 SkipWords++; 151 } 152 153 for (unsigned i = SkipWords; i != NumWords; ++i) { 154 WordType W = Set->Words[i]; 155 if (W != 0) 156 return Count + findFirstSet(W); 157 Count += WordWidth; 158 } 159 return Capacity; 160 } 161 162 const MachineValueTypeSet *Set; 163 unsigned Pos; 164 }; 165 166 LLVM_ATTRIBUTE_ALWAYS_INLINE 167 const_iterator begin() const { return const_iterator(this, false); } 168 LLVM_ATTRIBUTE_ALWAYS_INLINE 169 const_iterator end() const { return const_iterator(this, true); } 170 171 LLVM_ATTRIBUTE_ALWAYS_INLINE 172 bool operator==(const MachineValueTypeSet &S) const { 173 return Words == S.Words; 174 } 175 LLVM_ATTRIBUTE_ALWAYS_INLINE 176 bool operator!=(const MachineValueTypeSet &S) const { 177 return !operator==(S); 178 } 179 180 private: 181 friend struct const_iterator; 182 std::array<WordType,NumWords> Words; 183 }; 184 185 struct TypeSetByHwMode : public InfoByHwMode<MachineValueTypeSet> { 186 using SetType = MachineValueTypeSet; 187 188 TypeSetByHwMode() = default; 189 TypeSetByHwMode(const TypeSetByHwMode &VTS) = default; 190 TypeSetByHwMode(MVT::SimpleValueType VT) 191 : TypeSetByHwMode(ValueTypeByHwMode(VT)) {} 192 TypeSetByHwMode(ValueTypeByHwMode VT) 193 : TypeSetByHwMode(ArrayRef<ValueTypeByHwMode>(&VT, 1)) {} 194 TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList); 195 196 SetType &getOrCreate(unsigned Mode) { 197 if (hasMode(Mode)) 198 return get(Mode); 199 return Map.insert({Mode,SetType()}).first->second; 200 } 201 202 bool isValueTypeByHwMode(bool AllowEmpty) const; 203 ValueTypeByHwMode getValueTypeByHwMode() const; 204 205 LLVM_ATTRIBUTE_ALWAYS_INLINE 206 bool isMachineValueType() const { 207 return isDefaultOnly() && Map.begin()->second.size() == 1; 208 } 209 210 LLVM_ATTRIBUTE_ALWAYS_INLINE 211 MVT getMachineValueType() const { 212 assert(isMachineValueType()); 213 return *Map.begin()->second.begin(); 214 } 215 216 bool isPossible() const; 217 218 LLVM_ATTRIBUTE_ALWAYS_INLINE 219 bool isDefaultOnly() const { 220 return Map.size() == 1 && Map.begin()->first == DefaultMode; 221 } 222 223 bool insert(const ValueTypeByHwMode &VVT); 224 bool constrain(const TypeSetByHwMode &VTS); 225 template <typename Predicate> bool constrain(Predicate P); 226 template <typename Predicate> 227 bool assign_if(const TypeSetByHwMode &VTS, Predicate P); 228 229 void writeToStream(raw_ostream &OS) const; 230 static void writeToStream(const SetType &S, raw_ostream &OS); 231 232 bool operator==(const TypeSetByHwMode &VTS) const; 233 bool operator!=(const TypeSetByHwMode &VTS) const { return !(*this == VTS); } 234 235 void dump() const; 236 void validate() const; 237 238 private: 239 /// Intersect two sets. Return true if anything has changed. 240 bool intersect(SetType &Out, const SetType &In); 241 }; 242 243 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T); 244 245 struct TypeInfer { 246 TypeInfer(TreePattern &T) : TP(T), ForceMode(0) {} 247 248 bool isConcrete(const TypeSetByHwMode &VTS, bool AllowEmpty) const { 249 return VTS.isValueTypeByHwMode(AllowEmpty); 250 } 251 ValueTypeByHwMode getConcrete(const TypeSetByHwMode &VTS, 252 bool AllowEmpty) const { 253 assert(VTS.isValueTypeByHwMode(AllowEmpty)); 254 return VTS.getValueTypeByHwMode(); 255 } 256 257 /// The protocol in the following functions (Merge*, force*, Enforce*, 258 /// expand*) is to return "true" if a change has been made, "false" 259 /// otherwise. 260 261 bool MergeInTypeInfo(TypeSetByHwMode &Out, const TypeSetByHwMode &In); 262 bool MergeInTypeInfo(TypeSetByHwMode &Out, MVT::SimpleValueType InVT) { 263 return MergeInTypeInfo(Out, TypeSetByHwMode(InVT)); 264 } 265 bool MergeInTypeInfo(TypeSetByHwMode &Out, ValueTypeByHwMode InVT) { 266 return MergeInTypeInfo(Out, TypeSetByHwMode(InVT)); 267 } 268 269 /// Reduce the set \p Out to have at most one element for each mode. 270 bool forceArbitrary(TypeSetByHwMode &Out); 271 272 /// The following four functions ensure that upon return the set \p Out 273 /// will only contain types of the specified kind: integer, floating-point, 274 /// scalar, or vector. 275 /// If \p Out is empty, all legal types of the specified kind will be added 276 /// to it. Otherwise, all types that are not of the specified kind will be 277 /// removed from \p Out. 278 bool EnforceInteger(TypeSetByHwMode &Out); 279 bool EnforceFloatingPoint(TypeSetByHwMode &Out); 280 bool EnforceScalar(TypeSetByHwMode &Out); 281 bool EnforceVector(TypeSetByHwMode &Out); 282 283 /// If \p Out is empty, fill it with all legal types. Otherwise, leave it 284 /// unchanged. 285 bool EnforceAny(TypeSetByHwMode &Out); 286 /// Make sure that for each type in \p Small, there exists a larger type 287 /// in \p Big. 288 bool EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big); 289 /// 1. Ensure that for each type T in \p Vec, T is a vector type, and that 290 /// for each type U in \p Elem, U is a scalar type. 291 /// 2. Ensure that for each (scalar) type U in \p Elem, there exists a 292 /// (vector) type T in \p Vec, such that U is the element type of T. 293 bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, TypeSetByHwMode &Elem); 294 bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 295 const ValueTypeByHwMode &VVT); 296 /// Ensure that for each type T in \p Sub, T is a vector type, and there 297 /// exists a type U in \p Vec such that U is a vector type with the same 298 /// element type as T and at least as many elements as T. 299 bool EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec, 300 TypeSetByHwMode &Sub); 301 /// 1. Ensure that \p V has a scalar type iff \p W has a scalar type. 302 /// 2. Ensure that for each vector type T in \p V, there exists a vector 303 /// type U in \p W, such that T and U have the same number of elements. 304 /// 3. Ensure that for each vector type U in \p W, there exists a vector 305 /// type T in \p V, such that T and U have the same number of elements 306 /// (reverse of 2). 307 bool EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W); 308 /// 1. Ensure that for each type T in \p A, there exists a type U in \p B, 309 /// such that T and U have equal size in bits. 310 /// 2. Ensure that for each type U in \p B, there exists a type T in \p A 311 /// such that T and U have equal size in bits (reverse of 1). 312 bool EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B); 313 314 /// For each overloaded type (i.e. of form *Any), replace it with the 315 /// corresponding subset of legal, specific types. 316 void expandOverloads(TypeSetByHwMode &VTS); 317 void expandOverloads(TypeSetByHwMode::SetType &Out, 318 const TypeSetByHwMode::SetType &Legal); 319 320 struct ValidateOnExit { 321 ValidateOnExit(TypeSetByHwMode &T) : VTS(T) {} 322 ~ValidateOnExit() { VTS.validate(); } 323 TypeSetByHwMode &VTS; 324 }; 325 326 TreePattern &TP; 327 unsigned ForceMode; // Mode to use when set. 328 bool CodeGen = false; // Set during generation of matcher code. 329 330 private: 331 TypeSetByHwMode getLegalTypes(); 332 333 /// Cached legal types. 334 bool LegalTypesCached = false; 335 TypeSetByHwMode::SetType LegalCache = {}; 336 }; 337 338 /// Set type used to track multiply used variables in patterns 339 typedef StringSet<> MultipleUseVarSet; 340 341 /// SDTypeConstraint - This is a discriminated union of constraints, 342 /// corresponding to the SDTypeConstraint tablegen class in Target.td. 343 struct SDTypeConstraint { 344 SDTypeConstraint(Record *R, const CodeGenHwModes &CGH); 345 346 unsigned OperandNo; // The operand # this constraint applies to. 347 enum { 348 SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs, 349 SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec, 350 SDTCisSubVecOfVec, SDTCVecEltisVT, SDTCisSameNumEltsAs, SDTCisSameSizeAs 351 } ConstraintType; 352 353 union { // The discriminated union. 354 struct { 355 unsigned OtherOperandNum; 356 } SDTCisSameAs_Info; 357 struct { 358 unsigned OtherOperandNum; 359 } SDTCisVTSmallerThanOp_Info; 360 struct { 361 unsigned BigOperandNum; 362 } SDTCisOpSmallerThanOp_Info; 363 struct { 364 unsigned OtherOperandNum; 365 } SDTCisEltOfVec_Info; 366 struct { 367 unsigned OtherOperandNum; 368 } SDTCisSubVecOfVec_Info; 369 struct { 370 unsigned OtherOperandNum; 371 } SDTCisSameNumEltsAs_Info; 372 struct { 373 unsigned OtherOperandNum; 374 } SDTCisSameSizeAs_Info; 375 } x; 376 377 // The VT for SDTCisVT and SDTCVecEltisVT. 378 // Must not be in the union because it has a non-trivial destructor. 379 ValueTypeByHwMode VVT; 380 381 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 382 /// constraint to the nodes operands. This returns true if it makes a 383 /// change, false otherwise. If a type contradiction is found, an error 384 /// is flagged. 385 bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo, 386 TreePattern &TP) const; 387 }; 388 389 /// SDNodeInfo - One of these records is created for each SDNode instance in 390 /// the target .td file. This represents the various dag nodes we will be 391 /// processing. 392 class SDNodeInfo { 393 Record *Def; 394 StringRef EnumName; 395 StringRef SDClassName; 396 unsigned Properties; 397 unsigned NumResults; 398 int NumOperands; 399 std::vector<SDTypeConstraint> TypeConstraints; 400 public: 401 // Parse the specified record. 402 SDNodeInfo(Record *R, const CodeGenHwModes &CGH); 403 404 unsigned getNumResults() const { return NumResults; } 405 406 /// getNumOperands - This is the number of operands required or -1 if 407 /// variadic. 408 int getNumOperands() const { return NumOperands; } 409 Record *getRecord() const { return Def; } 410 StringRef getEnumName() const { return EnumName; } 411 StringRef getSDClassName() const { return SDClassName; } 412 413 const std::vector<SDTypeConstraint> &getTypeConstraints() const { 414 return TypeConstraints; 415 } 416 417 /// getKnownType - If the type constraints on this node imply a fixed type 418 /// (e.g. all stores return void, etc), then return it as an 419 /// MVT::SimpleValueType. Otherwise, return MVT::Other. 420 MVT::SimpleValueType getKnownType(unsigned ResNo) const; 421 422 /// hasProperty - Return true if this node has the specified property. 423 /// 424 bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); } 425 426 /// ApplyTypeConstraints - Given a node in a pattern, apply the type 427 /// constraints for this node to the operands of the node. This returns 428 /// true if it makes a change, false otherwise. If a type contradiction is 429 /// found, an error is flagged. 430 bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const; 431 }; 432 433 /// TreePredicateFn - This is an abstraction that represents the predicates on 434 /// a PatFrag node. This is a simple one-word wrapper around a pointer to 435 /// provide nice accessors. 436 class TreePredicateFn { 437 /// PatFragRec - This is the TreePattern for the PatFrag that we 438 /// originally came from. 439 TreePattern *PatFragRec; 440 public: 441 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 442 TreePredicateFn(TreePattern *N); 443 444 445 TreePattern *getOrigPatFragRecord() const { return PatFragRec; } 446 447 /// isAlwaysTrue - Return true if this is a noop predicate. 448 bool isAlwaysTrue() const; 449 450 bool isImmediatePattern() const { return hasImmCode(); } 451 452 /// getImmediatePredicateCode - Return the code that evaluates this pattern if 453 /// this is an immediate predicate. It is an error to call this on a 454 /// non-immediate pattern. 455 std::string getImmediatePredicateCode() const { 456 std::string Result = getImmCode(); 457 assert(!Result.empty() && "Isn't an immediate pattern!"); 458 return Result; 459 } 460 461 bool operator==(const TreePredicateFn &RHS) const { 462 return PatFragRec == RHS.PatFragRec; 463 } 464 465 bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); } 466 467 /// Return the name to use in the generated code to reference this, this is 468 /// "Predicate_foo" if from a pattern fragment "foo". 469 std::string getFnName() const; 470 471 /// getCodeToRunOnSDNode - Return the code for the function body that 472 /// evaluates this predicate. The argument is expected to be in "Node", 473 /// not N. This handles casting and conversion to a concrete node type as 474 /// appropriate. 475 std::string getCodeToRunOnSDNode() const; 476 477 /// Get the data type of the argument to getImmediatePredicateCode(). 478 StringRef getImmType() const; 479 480 /// Get a string that describes the type returned by getImmType() but is 481 /// usable as part of an identifier. 482 StringRef getImmTypeIdentifier() const; 483 484 // Is the desired predefined predicate for a load? 485 bool isLoad() const; 486 // Is the desired predefined predicate for a store? 487 bool isStore() const; 488 489 /// Is this predicate the predefined unindexed load predicate? 490 /// Is this predicate the predefined unindexed store predicate? 491 bool isUnindexed() const; 492 /// Is this predicate the predefined non-extending load predicate? 493 bool isNonExtLoad() const; 494 /// Is this predicate the predefined any-extend load predicate? 495 bool isAnyExtLoad() const; 496 /// Is this predicate the predefined sign-extend load predicate? 497 bool isSignExtLoad() const; 498 /// Is this predicate the predefined zero-extend load predicate? 499 bool isZeroExtLoad() const; 500 /// Is this predicate the predefined non-truncating store predicate? 501 bool isNonTruncStore() const; 502 /// Is this predicate the predefined truncating store predicate? 503 bool isTruncStore() const; 504 505 /// If non-null, indicates that this predicate is a predefined memory VT 506 /// predicate for a load/store and returns the ValueType record for the memory VT. 507 Record *getMemoryVT() const; 508 /// If non-null, indicates that this predicate is a predefined memory VT 509 /// predicate (checking only the scalar type) for load/store and returns the 510 /// ValueType record for the memory VT. 511 Record *getScalarMemoryVT() const; 512 513 private: 514 bool hasPredCode() const; 515 bool hasImmCode() const; 516 std::string getPredCode() const; 517 std::string getImmCode() const; 518 bool immCodeUsesAPInt() const; 519 bool immCodeUsesAPFloat() const; 520 521 bool isPredefinedPredicateEqualTo(StringRef Field, bool Value) const; 522 }; 523 524 525 /// FIXME: TreePatternNode's can be shared in some cases (due to dag-shaped 526 /// patterns), and as such should be ref counted. We currently just leak all 527 /// TreePatternNode objects! 528 class TreePatternNode { 529 /// The type of each node result. Before and during type inference, each 530 /// result may be a set of possible types. After (successful) type inference, 531 /// each is a single concrete type. 532 std::vector<TypeSetByHwMode> Types; 533 534 /// Operator - The Record for the operator if this is an interior node (not 535 /// a leaf). 536 Record *Operator; 537 538 /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf. 539 /// 540 Init *Val; 541 542 /// Name - The name given to this node with the :$foo notation. 543 /// 544 std::string Name; 545 546 /// PredicateFns - The predicate functions to execute on this node to check 547 /// for a match. If this list is empty, no predicate is involved. 548 std::vector<TreePredicateFn> PredicateFns; 549 550 /// TransformFn - The transformation function to execute on this node before 551 /// it can be substituted into the resulting instruction on a pattern match. 552 Record *TransformFn; 553 554 std::vector<TreePatternNode*> Children; 555 public: 556 TreePatternNode(Record *Op, const std::vector<TreePatternNode*> &Ch, 557 unsigned NumResults) 558 : Operator(Op), Val(nullptr), TransformFn(nullptr), Children(Ch) { 559 Types.resize(NumResults); 560 } 561 TreePatternNode(Init *val, unsigned NumResults) // leaf ctor 562 : Operator(nullptr), Val(val), TransformFn(nullptr) { 563 Types.resize(NumResults); 564 } 565 ~TreePatternNode(); 566 567 bool hasName() const { return !Name.empty(); } 568 const std::string &getName() const { return Name; } 569 void setName(StringRef N) { Name.assign(N.begin(), N.end()); } 570 571 bool isLeaf() const { return Val != nullptr; } 572 573 // Type accessors. 574 unsigned getNumTypes() const { return Types.size(); } 575 ValueTypeByHwMode getType(unsigned ResNo) const { 576 return Types[ResNo].getValueTypeByHwMode(); 577 } 578 const std::vector<TypeSetByHwMode> &getExtTypes() const { return Types; } 579 const TypeSetByHwMode &getExtType(unsigned ResNo) const { 580 return Types[ResNo]; 581 } 582 TypeSetByHwMode &getExtType(unsigned ResNo) { return Types[ResNo]; } 583 void setType(unsigned ResNo, const TypeSetByHwMode &T) { Types[ResNo] = T; } 584 MVT::SimpleValueType getSimpleType(unsigned ResNo) const { 585 return Types[ResNo].getMachineValueType().SimpleTy; 586 } 587 588 bool hasConcreteType(unsigned ResNo) const { 589 return Types[ResNo].isValueTypeByHwMode(false); 590 } 591 bool isTypeCompletelyUnknown(unsigned ResNo, TreePattern &TP) const { 592 return Types[ResNo].empty(); 593 } 594 595 Init *getLeafValue() const { assert(isLeaf()); return Val; } 596 Record *getOperator() const { assert(!isLeaf()); return Operator; } 597 598 unsigned getNumChildren() const { return Children.size(); } 599 TreePatternNode *getChild(unsigned N) const { return Children[N]; } 600 void setChild(unsigned i, TreePatternNode *N) { 601 Children[i] = N; 602 } 603 604 /// hasChild - Return true if N is any of our children. 605 bool hasChild(const TreePatternNode *N) const { 606 for (unsigned i = 0, e = Children.size(); i != e; ++i) 607 if (Children[i] == N) return true; 608 return false; 609 } 610 611 bool hasProperTypeByHwMode() const; 612 bool hasPossibleType() const; 613 bool setDefaultMode(unsigned Mode); 614 615 bool hasAnyPredicate() const { return !PredicateFns.empty(); } 616 617 const std::vector<TreePredicateFn> &getPredicateFns() const { 618 return PredicateFns; 619 } 620 void clearPredicateFns() { PredicateFns.clear(); } 621 void setPredicateFns(const std::vector<TreePredicateFn> &Fns) { 622 assert(PredicateFns.empty() && "Overwriting non-empty predicate list!"); 623 PredicateFns = Fns; 624 } 625 void addPredicateFn(const TreePredicateFn &Fn) { 626 assert(!Fn.isAlwaysTrue() && "Empty predicate string!"); 627 if (!is_contained(PredicateFns, Fn)) 628 PredicateFns.push_back(Fn); 629 } 630 631 Record *getTransformFn() const { return TransformFn; } 632 void setTransformFn(Record *Fn) { TransformFn = Fn; } 633 634 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 635 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 636 const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const; 637 638 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 639 /// return the ComplexPattern information, otherwise return null. 640 const ComplexPattern * 641 getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const; 642 643 /// Returns the number of MachineInstr operands that would be produced by this 644 /// node if it mapped directly to an output Instruction's 645 /// operand. ComplexPattern specifies this explicitly; MIOperandInfo gives it 646 /// for Operands; otherwise 1. 647 unsigned getNumMIResults(const CodeGenDAGPatterns &CGP) const; 648 649 /// NodeHasProperty - Return true if this node has the specified property. 650 bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const; 651 652 /// TreeHasProperty - Return true if any node in this tree has the specified 653 /// property. 654 bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const; 655 656 /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is 657 /// marked isCommutative. 658 bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const; 659 660 void print(raw_ostream &OS) const; 661 void dump() const; 662 663 public: // Higher level manipulation routines. 664 665 /// clone - Return a new copy of this tree. 666 /// 667 TreePatternNode *clone() const; 668 669 /// RemoveAllTypes - Recursively strip all the types of this tree. 670 void RemoveAllTypes(); 671 672 /// isIsomorphicTo - Return true if this node is recursively isomorphic to 673 /// the specified node. For this comparison, all of the state of the node 674 /// is considered, except for the assigned name. Nodes with differing names 675 /// that are otherwise identical are considered isomorphic. 676 bool isIsomorphicTo(const TreePatternNode *N, 677 const MultipleUseVarSet &DepVars) const; 678 679 /// SubstituteFormalArguments - Replace the formal arguments in this tree 680 /// with actual values specified by ArgMap. 681 void SubstituteFormalArguments(std::map<std::string, 682 TreePatternNode*> &ArgMap); 683 684 /// InlinePatternFragments - If this pattern refers to any pattern 685 /// fragments, inline them into place, giving us a pattern without any 686 /// PatFrag references. 687 TreePatternNode *InlinePatternFragments(TreePattern &TP); 688 689 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 690 /// this node and its children in the tree. This returns true if it makes a 691 /// change, false otherwise. If a type contradiction is found, flag an error. 692 bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters); 693 694 /// UpdateNodeType - Set the node type of N to VT if VT contains 695 /// information. If N already contains a conflicting type, then flag an 696 /// error. This returns true if any information was updated. 697 /// 698 bool UpdateNodeType(unsigned ResNo, const TypeSetByHwMode &InTy, 699 TreePattern &TP); 700 bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy, 701 TreePattern &TP); 702 bool UpdateNodeType(unsigned ResNo, ValueTypeByHwMode InTy, 703 TreePattern &TP); 704 705 // Update node type with types inferred from an instruction operand or result 706 // def from the ins/outs lists. 707 // Return true if the type changed. 708 bool UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP); 709 710 /// ContainsUnresolvedType - Return true if this tree contains any 711 /// unresolved types. 712 bool ContainsUnresolvedType(TreePattern &TP) const; 713 714 /// canPatternMatch - If it is impossible for this pattern to match on this 715 /// target, fill in Reason and return false. Otherwise, return true. 716 bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP); 717 }; 718 719 inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) { 720 TPN.print(OS); 721 return OS; 722 } 723 724 725 /// TreePattern - Represent a pattern, used for instructions, pattern 726 /// fragments, etc. 727 /// 728 class TreePattern { 729 /// Trees - The list of pattern trees which corresponds to this pattern. 730 /// Note that PatFrag's only have a single tree. 731 /// 732 std::vector<TreePatternNode*> Trees; 733 734 /// NamedNodes - This is all of the nodes that have names in the trees in this 735 /// pattern. 736 StringMap<SmallVector<TreePatternNode*,1> > NamedNodes; 737 738 /// TheRecord - The actual TableGen record corresponding to this pattern. 739 /// 740 Record *TheRecord; 741 742 /// Args - This is a list of all of the arguments to this pattern (for 743 /// PatFrag patterns), which are the 'node' markers in this pattern. 744 std::vector<std::string> Args; 745 746 /// CDP - the top-level object coordinating this madness. 747 /// 748 CodeGenDAGPatterns &CDP; 749 750 /// isInputPattern - True if this is an input pattern, something to match. 751 /// False if this is an output pattern, something to emit. 752 bool isInputPattern; 753 754 /// hasError - True if the currently processed nodes have unresolvable types 755 /// or other non-fatal errors 756 bool HasError; 757 758 /// It's important that the usage of operands in ComplexPatterns is 759 /// consistent: each named operand can be defined by at most one 760 /// ComplexPattern. This records the ComplexPattern instance and the operand 761 /// number for each operand encountered in a ComplexPattern to aid in that 762 /// check. 763 StringMap<std::pair<Record *, unsigned>> ComplexPatternOperands; 764 765 TypeInfer Infer; 766 767 public: 768 769 /// TreePattern constructor - Parse the specified DagInits into the 770 /// current record. 771 TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 772 CodeGenDAGPatterns &ise); 773 TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 774 CodeGenDAGPatterns &ise); 775 TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, 776 CodeGenDAGPatterns &ise); 777 778 /// getTrees - Return the tree patterns which corresponds to this pattern. 779 /// 780 const std::vector<TreePatternNode*> &getTrees() const { return Trees; } 781 unsigned getNumTrees() const { return Trees.size(); } 782 TreePatternNode *getTree(unsigned i) const { return Trees[i]; } 783 TreePatternNode *getOnlyTree() const { 784 assert(Trees.size() == 1 && "Doesn't have exactly one pattern!"); 785 return Trees[0]; 786 } 787 788 const StringMap<SmallVector<TreePatternNode*,1> > &getNamedNodesMap() { 789 if (NamedNodes.empty()) 790 ComputeNamedNodes(); 791 return NamedNodes; 792 } 793 794 /// getRecord - Return the actual TableGen record corresponding to this 795 /// pattern. 796 /// 797 Record *getRecord() const { return TheRecord; } 798 799 unsigned getNumArgs() const { return Args.size(); } 800 const std::string &getArgName(unsigned i) const { 801 assert(i < Args.size() && "Argument reference out of range!"); 802 return Args[i]; 803 } 804 std::vector<std::string> &getArgList() { return Args; } 805 806 CodeGenDAGPatterns &getDAGPatterns() const { return CDP; } 807 808 /// InlinePatternFragments - If this pattern refers to any pattern 809 /// fragments, inline them into place, giving us a pattern without any 810 /// PatFrag references. 811 void InlinePatternFragments() { 812 for (unsigned i = 0, e = Trees.size(); i != e; ++i) 813 Trees[i] = Trees[i]->InlinePatternFragments(*this); 814 } 815 816 /// InferAllTypes - Infer/propagate as many types throughout the expression 817 /// patterns as possible. Return true if all types are inferred, false 818 /// otherwise. Bail out if a type contradiction is found. 819 bool InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > 820 *NamedTypes=nullptr); 821 822 /// error - If this is the first error in the current resolution step, 823 /// print it and set the error flag. Otherwise, continue silently. 824 void error(const Twine &Msg); 825 bool hasError() const { 826 return HasError; 827 } 828 void resetError() { 829 HasError = false; 830 } 831 832 TypeInfer &getInfer() { return Infer; } 833 834 void print(raw_ostream &OS) const; 835 void dump() const; 836 837 private: 838 TreePatternNode *ParseTreePattern(Init *DI, StringRef OpName); 839 void ComputeNamedNodes(); 840 void ComputeNamedNodes(TreePatternNode *N); 841 }; 842 843 844 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo, 845 const TypeSetByHwMode &InTy, 846 TreePattern &TP) { 847 TypeSetByHwMode VTS(InTy); 848 TP.getInfer().expandOverloads(VTS); 849 return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS); 850 } 851 852 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo, 853 MVT::SimpleValueType InTy, 854 TreePattern &TP) { 855 TypeSetByHwMode VTS(InTy); 856 TP.getInfer().expandOverloads(VTS); 857 return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS); 858 } 859 860 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo, 861 ValueTypeByHwMode InTy, 862 TreePattern &TP) { 863 TypeSetByHwMode VTS(InTy); 864 TP.getInfer().expandOverloads(VTS); 865 return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS); 866 } 867 868 869 /// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps 870 /// that has a set ExecuteAlways / DefaultOps field. 871 struct DAGDefaultOperand { 872 std::vector<TreePatternNode*> DefaultOps; 873 }; 874 875 class DAGInstruction { 876 TreePattern *Pattern; 877 std::vector<Record*> Results; 878 std::vector<Record*> Operands; 879 std::vector<Record*> ImpResults; 880 TreePatternNode *ResultPattern; 881 public: 882 DAGInstruction(TreePattern *TP, 883 const std::vector<Record*> &results, 884 const std::vector<Record*> &operands, 885 const std::vector<Record*> &impresults) 886 : Pattern(TP), Results(results), Operands(operands), 887 ImpResults(impresults), ResultPattern(nullptr) {} 888 889 TreePattern *getPattern() const { return Pattern; } 890 unsigned getNumResults() const { return Results.size(); } 891 unsigned getNumOperands() const { return Operands.size(); } 892 unsigned getNumImpResults() const { return ImpResults.size(); } 893 const std::vector<Record*>& getImpResults() const { return ImpResults; } 894 895 void setResultPattern(TreePatternNode *R) { ResultPattern = R; } 896 897 Record *getResult(unsigned RN) const { 898 assert(RN < Results.size()); 899 return Results[RN]; 900 } 901 902 Record *getOperand(unsigned ON) const { 903 assert(ON < Operands.size()); 904 return Operands[ON]; 905 } 906 907 Record *getImpResult(unsigned RN) const { 908 assert(RN < ImpResults.size()); 909 return ImpResults[RN]; 910 } 911 912 TreePatternNode *getResultPattern() const { return ResultPattern; } 913 }; 914 915 /// This class represents a condition that has to be satisfied for a pattern 916 /// to be tried. It is a generalization of a class "Pattern" from Target.td: 917 /// in addition to the Target.td's predicates, this class can also represent 918 /// conditions associated with HW modes. Both types will eventually become 919 /// strings containing C++ code to be executed, the difference is in how 920 /// these strings are generated. 921 class Predicate { 922 public: 923 Predicate(Record *R, bool C = true) : Def(R), IfCond(C), IsHwMode(false) { 924 assert(R->isSubClassOf("Predicate") && 925 "Predicate objects should only be created for records derived" 926 "from Predicate class"); 927 } 928 Predicate(StringRef FS, bool C = true) : Def(nullptr), Features(FS.str()), 929 IfCond(C), IsHwMode(true) {} 930 931 /// Return a string which contains the C++ condition code that will serve 932 /// as a predicate during instruction selection. 933 std::string getCondString() const { 934 // The string will excute in a subclass of SelectionDAGISel. 935 // Cast to std::string explicitly to avoid ambiguity with StringRef. 936 std::string C = IsHwMode 937 ? std::string("MF->getSubtarget().checkFeatures(\"" + Features + "\")") 938 : std::string(Def->getValueAsString("CondString")); 939 return IfCond ? C : "!("+C+')'; 940 } 941 bool operator==(const Predicate &P) const { 942 return IfCond == P.IfCond && IsHwMode == P.IsHwMode && Def == P.Def; 943 } 944 bool operator<(const Predicate &P) const { 945 if (IsHwMode != P.IsHwMode) 946 return IsHwMode < P.IsHwMode; 947 assert(!Def == !P.Def && "Inconsistency between Def and IsHwMode"); 948 if (IfCond != P.IfCond) 949 return IfCond < P.IfCond; 950 if (Def) 951 return LessRecord()(Def, P.Def); 952 return Features < P.Features; 953 } 954 Record *Def; ///< Predicate definition from .td file, null for 955 ///< HW modes. 956 std::string Features; ///< Feature string for HW mode. 957 bool IfCond; ///< The boolean value that the condition has to 958 ///< evaluate to for this predicate to be true. 959 bool IsHwMode; ///< Does this predicate correspond to a HW mode? 960 }; 961 962 /// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns 963 /// processed to produce isel. 964 class PatternToMatch { 965 public: 966 PatternToMatch(Record *srcrecord, const std::vector<Predicate> &preds, 967 TreePatternNode *src, TreePatternNode *dst, 968 const std::vector<Record*> &dstregs, 969 int complexity, unsigned uid, unsigned setmode = 0) 970 : SrcRecord(srcrecord), SrcPattern(src), DstPattern(dst), 971 Predicates(preds), Dstregs(std::move(dstregs)), 972 AddedComplexity(complexity), ID(uid), ForceMode(setmode) {} 973 974 PatternToMatch(Record *srcrecord, std::vector<Predicate> &&preds, 975 TreePatternNode *src, TreePatternNode *dst, 976 std::vector<Record*> &&dstregs, 977 int complexity, unsigned uid, unsigned setmode = 0) 978 : SrcRecord(srcrecord), SrcPattern(src), DstPattern(dst), 979 Predicates(preds), Dstregs(std::move(dstregs)), 980 AddedComplexity(complexity), ID(uid), ForceMode(setmode) {} 981 982 Record *SrcRecord; // Originating Record for the pattern. 983 TreePatternNode *SrcPattern; // Source pattern to match. 984 TreePatternNode *DstPattern; // Resulting pattern. 985 std::vector<Predicate> Predicates; // Top level predicate conditions 986 // to match. 987 std::vector<Record*> Dstregs; // Physical register defs being matched. 988 int AddedComplexity; // Add to matching pattern complexity. 989 unsigned ID; // Unique ID for the record. 990 unsigned ForceMode; // Force this mode in type inference when set. 991 992 Record *getSrcRecord() const { return SrcRecord; } 993 TreePatternNode *getSrcPattern() const { return SrcPattern; } 994 TreePatternNode *getDstPattern() const { return DstPattern; } 995 const std::vector<Record*> &getDstRegs() const { return Dstregs; } 996 int getAddedComplexity() const { return AddedComplexity; } 997 const std::vector<Predicate> &getPredicates() const { return Predicates; } 998 999 std::string getPredicateCheck() const; 1000 1001 /// Compute the complexity metric for the input pattern. This roughly 1002 /// corresponds to the number of nodes that are covered. 1003 int getPatternComplexity(const CodeGenDAGPatterns &CGP) const; 1004 }; 1005 1006 class CodeGenDAGPatterns { 1007 RecordKeeper &Records; 1008 CodeGenTarget Target; 1009 CodeGenIntrinsicTable Intrinsics; 1010 CodeGenIntrinsicTable TgtIntrinsics; 1011 1012 std::map<Record*, SDNodeInfo, LessRecordByID> SDNodes; 1013 std::map<Record*, std::pair<Record*, std::string>, LessRecordByID> 1014 SDNodeXForms; 1015 std::map<Record*, ComplexPattern, LessRecordByID> ComplexPatterns; 1016 std::map<Record *, std::unique_ptr<TreePattern>, LessRecordByID> 1017 PatternFragments; 1018 std::map<Record*, DAGDefaultOperand, LessRecordByID> DefaultOperands; 1019 std::map<Record*, DAGInstruction, LessRecordByID> Instructions; 1020 1021 // Specific SDNode definitions: 1022 Record *intrinsic_void_sdnode; 1023 Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode; 1024 1025 /// PatternsToMatch - All of the things we are matching on the DAG. The first 1026 /// value is the pattern to match, the second pattern is the result to 1027 /// emit. 1028 std::vector<PatternToMatch> PatternsToMatch; 1029 1030 TypeSetByHwMode LegalVTS; 1031 1032 public: 1033 CodeGenDAGPatterns(RecordKeeper &R); 1034 1035 CodeGenTarget &getTargetInfo() { return Target; } 1036 const CodeGenTarget &getTargetInfo() const { return Target; } 1037 const TypeSetByHwMode &getLegalTypes() const { return LegalVTS; } 1038 1039 Record *getSDNodeNamed(const std::string &Name) const; 1040 1041 const SDNodeInfo &getSDNodeInfo(Record *R) const { 1042 auto F = SDNodes.find(R); 1043 assert(F != SDNodes.end() && "Unknown node!"); 1044 return F->second; 1045 } 1046 1047 // Node transformation lookups. 1048 typedef std::pair<Record*, std::string> NodeXForm; 1049 const NodeXForm &getSDNodeTransform(Record *R) const { 1050 auto F = SDNodeXForms.find(R); 1051 assert(F != SDNodeXForms.end() && "Invalid transform!"); 1052 return F->second; 1053 } 1054 1055 typedef std::map<Record*, NodeXForm, LessRecordByID>::const_iterator 1056 nx_iterator; 1057 nx_iterator nx_begin() const { return SDNodeXForms.begin(); } 1058 nx_iterator nx_end() const { return SDNodeXForms.end(); } 1059 1060 1061 const ComplexPattern &getComplexPattern(Record *R) const { 1062 auto F = ComplexPatterns.find(R); 1063 assert(F != ComplexPatterns.end() && "Unknown addressing mode!"); 1064 return F->second; 1065 } 1066 1067 const CodeGenIntrinsic &getIntrinsic(Record *R) const { 1068 for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i) 1069 if (Intrinsics[i].TheDef == R) return Intrinsics[i]; 1070 for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i) 1071 if (TgtIntrinsics[i].TheDef == R) return TgtIntrinsics[i]; 1072 llvm_unreachable("Unknown intrinsic!"); 1073 } 1074 1075 const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const { 1076 if (IID-1 < Intrinsics.size()) 1077 return Intrinsics[IID-1]; 1078 if (IID-Intrinsics.size()-1 < TgtIntrinsics.size()) 1079 return TgtIntrinsics[IID-Intrinsics.size()-1]; 1080 llvm_unreachable("Bad intrinsic ID!"); 1081 } 1082 1083 unsigned getIntrinsicID(Record *R) const { 1084 for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i) 1085 if (Intrinsics[i].TheDef == R) return i; 1086 for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i) 1087 if (TgtIntrinsics[i].TheDef == R) return i + Intrinsics.size(); 1088 llvm_unreachable("Unknown intrinsic!"); 1089 } 1090 1091 const DAGDefaultOperand &getDefaultOperand(Record *R) const { 1092 auto F = DefaultOperands.find(R); 1093 assert(F != DefaultOperands.end() &&"Isn't an analyzed default operand!"); 1094 return F->second; 1095 } 1096 1097 // Pattern Fragment information. 1098 TreePattern *getPatternFragment(Record *R) const { 1099 auto F = PatternFragments.find(R); 1100 assert(F != PatternFragments.end() && "Invalid pattern fragment request!"); 1101 return F->second.get(); 1102 } 1103 TreePattern *getPatternFragmentIfRead(Record *R) const { 1104 auto F = PatternFragments.find(R); 1105 if (F == PatternFragments.end()) 1106 return nullptr; 1107 return F->second.get(); 1108 } 1109 1110 typedef std::map<Record *, std::unique_ptr<TreePattern>, 1111 LessRecordByID>::const_iterator pf_iterator; 1112 pf_iterator pf_begin() const { return PatternFragments.begin(); } 1113 pf_iterator pf_end() const { return PatternFragments.end(); } 1114 iterator_range<pf_iterator> ptfs() const { return PatternFragments; } 1115 1116 // Patterns to match information. 1117 typedef std::vector<PatternToMatch>::const_iterator ptm_iterator; 1118 ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); } 1119 ptm_iterator ptm_end() const { return PatternsToMatch.end(); } 1120 iterator_range<ptm_iterator> ptms() const { return PatternsToMatch; } 1121 1122 /// Parse the Pattern for an instruction, and insert the result in DAGInsts. 1123 typedef std::map<Record*, DAGInstruction, LessRecordByID> DAGInstMap; 1124 const DAGInstruction &parseInstructionPattern( 1125 CodeGenInstruction &CGI, ListInit *Pattern, 1126 DAGInstMap &DAGInsts); 1127 1128 const DAGInstruction &getInstruction(Record *R) const { 1129 auto F = Instructions.find(R); 1130 assert(F != Instructions.end() && "Unknown instruction!"); 1131 return F->second; 1132 } 1133 1134 Record *get_intrinsic_void_sdnode() const { 1135 return intrinsic_void_sdnode; 1136 } 1137 Record *get_intrinsic_w_chain_sdnode() const { 1138 return intrinsic_w_chain_sdnode; 1139 } 1140 Record *get_intrinsic_wo_chain_sdnode() const { 1141 return intrinsic_wo_chain_sdnode; 1142 } 1143 1144 bool hasTargetIntrinsics() { return !TgtIntrinsics.empty(); } 1145 1146 private: 1147 void ParseNodeInfo(); 1148 void ParseNodeTransforms(); 1149 void ParseComplexPatterns(); 1150 void ParsePatternFragments(bool OutFrags = false); 1151 void ParseDefaultOperands(); 1152 void ParseInstructions(); 1153 void ParsePatterns(); 1154 void ExpandHwModeBasedTypes(); 1155 void InferInstructionFlags(); 1156 void GenerateVariants(); 1157 void VerifyInstructionFlags(); 1158 1159 std::vector<Predicate> makePredList(ListInit *L); 1160 1161 void AddPatternToMatch(TreePattern *Pattern, PatternToMatch &&PTM); 1162 void FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, 1163 std::map<std::string, 1164 TreePatternNode*> &InstInputs, 1165 std::map<std::string, 1166 TreePatternNode*> &InstResults, 1167 std::vector<Record*> &InstImpResults); 1168 }; 1169 1170 1171 inline bool SDNodeInfo::ApplyTypeConstraints(TreePatternNode *N, 1172 TreePattern &TP) const { 1173 bool MadeChange = false; 1174 for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) 1175 MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP); 1176 return MadeChange; 1177 } 1178 } // end namespace llvm 1179 1180 #endif 1181