1 //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This tablegen backend emits a target specifier matcher for converting parsed
11 // assembly operands in the MCInst structures. It also emits a matcher for
12 // custom operand parsing.
13 //
14 // Converting assembly operands into MCInst structures
15 // ---------------------------------------------------
16 //
17 // The input to the target specific matcher is a list of literal tokens and
18 // operands. The target specific parser should generally eliminate any syntax
19 // which is not relevant for matching; for example, comma tokens should have
20 // already been consumed and eliminated by the parser. Most instructions will
21 // end up with a single literal token (the instruction name) and some number of
22 // operands.
23 //
24 // Some example inputs, for X86:
25 //   'addl' (immediate ...) (register ...)
26 //   'add' (immediate ...) (memory ...)
27 //   'call' '*' %epc
28 //
29 // The assembly matcher is responsible for converting this input into a precise
30 // machine instruction (i.e., an instruction with a well defined encoding). This
31 // mapping has several properties which complicate matching:
32 //
33 //  - It may be ambiguous; many architectures can legally encode particular
34 //    variants of an instruction in different ways (for example, using a smaller
35 //    encoding for small immediates). Such ambiguities should never be
36 //    arbitrarily resolved by the assembler, the assembler is always responsible
37 //    for choosing the "best" available instruction.
38 //
39 //  - It may depend on the subtarget or the assembler context. Instructions
40 //    which are invalid for the current mode, but otherwise unambiguous (e.g.,
41 //    an SSE instruction in a file being assembled for i486) should be accepted
42 //    and rejected by the assembler front end. However, if the proper encoding
43 //    for an instruction is dependent on the assembler context then the matcher
44 //    is responsible for selecting the correct machine instruction for the
45 //    current mode.
46 //
47 // The core matching algorithm attempts to exploit the regularity in most
48 // instruction sets to quickly determine the set of possibly matching
49 // instructions, and the simplify the generated code. Additionally, this helps
50 // to ensure that the ambiguities are intentionally resolved by the user.
51 //
52 // The matching is divided into two distinct phases:
53 //
54 //   1. Classification: Each operand is mapped to the unique set which (a)
55 //      contains it, and (b) is the largest such subset for which a single
56 //      instruction could match all members.
57 //
58 //      For register classes, we can generate these subgroups automatically. For
59 //      arbitrary operands, we expect the user to define the classes and their
60 //      relations to one another (for example, 8-bit signed immediates as a
61 //      subset of 32-bit immediates).
62 //
63 //      By partitioning the operands in this way, we guarantee that for any
64 //      tuple of classes, any single instruction must match either all or none
65 //      of the sets of operands which could classify to that tuple.
66 //
67 //      In addition, the subset relation amongst classes induces a partial order
68 //      on such tuples, which we use to resolve ambiguities.
69 //
70 //   2. The input can now be treated as a tuple of classes (static tokens are
71 //      simple singleton sets). Each such tuple should generally map to a single
72 //      instruction (we currently ignore cases where this isn't true, whee!!!),
73 //      which we can emit a simple matcher for.
74 //
75 // Custom Operand Parsing
76 // ----------------------
77 //
78 //  Some targets need a custom way to parse operands, some specific instructions
79 //  can contain arguments that can represent processor flags and other kinds of
80 //  identifiers that need to be mapped to specific values in the final encoded
81 //  instructions. The target specific custom operand parsing works in the
82 //  following way:
83 //
84 //   1. A operand match table is built, each entry contains a mnemonic, an
85 //      operand class, a mask for all operand positions for that same
86 //      class/mnemonic and target features to be checked while trying to match.
87 //
88 //   2. The operand matcher will try every possible entry with the same
89 //      mnemonic and will check if the target feature for this mnemonic also
90 //      matches. After that, if the operand to be matched has its index
91 //      present in the mask, a successful match occurs. Otherwise, fallback
92 //      to the regular operand parsing.
93 //
94 //   3. For a match success, each operand class that has a 'ParserMethod'
95 //      becomes part of a switch from where the custom method is called.
96 //
97 //===----------------------------------------------------------------------===//
98 
99 #include "CodeGenTarget.h"
100 #include "SubtargetFeatureInfo.h"
101 #include "Types.h"
102 #include "llvm/ADT/CachedHashString.h"
103 #include "llvm/ADT/PointerUnion.h"
104 #include "llvm/ADT/STLExtras.h"
105 #include "llvm/ADT/SmallPtrSet.h"
106 #include "llvm/ADT/SmallVector.h"
107 #include "llvm/ADT/StringExtras.h"
108 #include "llvm/Config/llvm-config.h"
109 #include "llvm/Support/CommandLine.h"
110 #include "llvm/Support/Debug.h"
111 #include "llvm/Support/ErrorHandling.h"
112 #include "llvm/TableGen/Error.h"
113 #include "llvm/TableGen/Record.h"
114 #include "llvm/TableGen/StringMatcher.h"
115 #include "llvm/TableGen/StringToOffsetTable.h"
116 #include "llvm/TableGen/TableGenBackend.h"
117 #include <cassert>
118 #include <cctype>
119 #include <forward_list>
120 #include <map>
121 #include <set>
122 
123 using namespace llvm;
124 
125 #define DEBUG_TYPE "asm-matcher-emitter"
126 
127 cl::OptionCategory AsmMatcherEmitterCat("Options for -gen-asm-matcher");
128 
129 static cl::opt<std::string>
130     MatchPrefix("match-prefix", cl::init(""),
131                 cl::desc("Only match instructions with the given prefix"),
132                 cl::cat(AsmMatcherEmitterCat));
133 
134 namespace {
135 class AsmMatcherInfo;
136 
137 // Register sets are used as keys in some second-order sets TableGen creates
138 // when generating its data structures. This means that the order of two
139 // RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and
140 // can even affect compiler output (at least seen in diagnostics produced when
141 // all matches fail). So we use a type that sorts them consistently.
142 typedef std::set<Record*, LessRecordByID> RegisterSet;
143 
144 class AsmMatcherEmitter {
145   RecordKeeper &Records;
146 public:
147   AsmMatcherEmitter(RecordKeeper &R) : Records(R) {}
148 
149   void run(raw_ostream &o);
150 };
151 
152 /// ClassInfo - Helper class for storing the information about a particular
153 /// class of operands which can be matched.
154 struct ClassInfo {
155   enum ClassInfoKind {
156     /// Invalid kind, for use as a sentinel value.
157     Invalid = 0,
158 
159     /// The class for a particular token.
160     Token,
161 
162     /// The (first) register class, subsequent register classes are
163     /// RegisterClass0+1, and so on.
164     RegisterClass0,
165 
166     /// The (first) user defined class, subsequent user defined classes are
167     /// UserClass0+1, and so on.
168     UserClass0 = 1<<16
169   };
170 
171   /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
172   /// N) for the Nth user defined class.
173   unsigned Kind;
174 
175   /// SuperClasses - The super classes of this class. Note that for simplicities
176   /// sake user operands only record their immediate super class, while register
177   /// operands include all superclasses.
178   std::vector<ClassInfo*> SuperClasses;
179 
180   /// Name - The full class name, suitable for use in an enum.
181   std::string Name;
182 
183   /// ClassName - The unadorned generic name for this class (e.g., Token).
184   std::string ClassName;
185 
186   /// ValueName - The name of the value this class represents; for a token this
187   /// is the literal token string, for an operand it is the TableGen class (or
188   /// empty if this is a derived class).
189   std::string ValueName;
190 
191   /// PredicateMethod - The name of the operand method to test whether the
192   /// operand matches this class; this is not valid for Token or register kinds.
193   std::string PredicateMethod;
194 
195   /// RenderMethod - The name of the operand method to add this operand to an
196   /// MCInst; this is not valid for Token or register kinds.
197   std::string RenderMethod;
198 
199   /// ParserMethod - The name of the operand method to do a target specific
200   /// parsing on the operand.
201   std::string ParserMethod;
202 
203   /// For register classes: the records for all the registers in this class.
204   RegisterSet Registers;
205 
206   /// For custom match classes: the diagnostic kind for when the predicate fails.
207   std::string DiagnosticType;
208 
209   /// For custom match classes: the diagnostic string for when the predicate fails.
210   std::string DiagnosticString;
211 
212   /// Is this operand optional and not always required.
213   bool IsOptional;
214 
215   /// DefaultMethod - The name of the method that returns the default operand
216   /// for optional operand
217   std::string DefaultMethod;
218 
219 public:
220   /// isRegisterClass() - Check if this is a register class.
221   bool isRegisterClass() const {
222     return Kind >= RegisterClass0 && Kind < UserClass0;
223   }
224 
225   /// isUserClass() - Check if this is a user defined class.
226   bool isUserClass() const {
227     return Kind >= UserClass0;
228   }
229 
230   /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes
231   /// are related if they are in the same class hierarchy.
232   bool isRelatedTo(const ClassInfo &RHS) const {
233     // Tokens are only related to tokens.
234     if (Kind == Token || RHS.Kind == Token)
235       return Kind == Token && RHS.Kind == Token;
236 
237     // Registers classes are only related to registers classes, and only if
238     // their intersection is non-empty.
239     if (isRegisterClass() || RHS.isRegisterClass()) {
240       if (!isRegisterClass() || !RHS.isRegisterClass())
241         return false;
242 
243       RegisterSet Tmp;
244       std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin());
245       std::set_intersection(Registers.begin(), Registers.end(),
246                             RHS.Registers.begin(), RHS.Registers.end(),
247                             II, LessRecordByID());
248 
249       return !Tmp.empty();
250     }
251 
252     // Otherwise we have two users operands; they are related if they are in the
253     // same class hierarchy.
254     //
255     // FIXME: This is an oversimplification, they should only be related if they
256     // intersect, however we don't have that information.
257     assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
258     const ClassInfo *Root = this;
259     while (!Root->SuperClasses.empty())
260       Root = Root->SuperClasses.front();
261 
262     const ClassInfo *RHSRoot = &RHS;
263     while (!RHSRoot->SuperClasses.empty())
264       RHSRoot = RHSRoot->SuperClasses.front();
265 
266     return Root == RHSRoot;
267   }
268 
269   /// isSubsetOf - Test whether this class is a subset of \p RHS.
270   bool isSubsetOf(const ClassInfo &RHS) const {
271     // This is a subset of RHS if it is the same class...
272     if (this == &RHS)
273       return true;
274 
275     // ... or if any of its super classes are a subset of RHS.
276     for (const ClassInfo *CI : SuperClasses)
277       if (CI->isSubsetOf(RHS))
278         return true;
279 
280     return false;
281   }
282 
283   int getTreeDepth() const {
284     int Depth = 0;
285     const ClassInfo *Root = this;
286     while (!Root->SuperClasses.empty()) {
287       Depth++;
288       Root = Root->SuperClasses.front();
289     }
290     return Depth;
291   }
292 
293   const ClassInfo *findRoot() const {
294     const ClassInfo *Root = this;
295     while (!Root->SuperClasses.empty())
296       Root = Root->SuperClasses.front();
297     return Root;
298   }
299 
300   /// Compare two classes. This does not produce a total ordering, but does
301   /// guarantee that subclasses are sorted before their parents, and that the
302   /// ordering is transitive.
303   bool operator<(const ClassInfo &RHS) const {
304     if (this == &RHS)
305       return false;
306 
307     // First, enforce the ordering between the three different types of class.
308     // Tokens sort before registers, which sort before user classes.
309     if (Kind == Token) {
310       if (RHS.Kind != Token)
311         return true;
312       assert(RHS.Kind == Token);
313     } else if (isRegisterClass()) {
314       if (RHS.Kind == Token)
315         return false;
316       else if (RHS.isUserClass())
317         return true;
318       assert(RHS.isRegisterClass());
319     } else if (isUserClass()) {
320       if (!RHS.isUserClass())
321         return false;
322       assert(RHS.isUserClass());
323     } else {
324       llvm_unreachable("Unknown ClassInfoKind");
325     }
326 
327     if (Kind == Token || isUserClass()) {
328       // Related tokens and user classes get sorted by depth in the inheritence
329       // tree (so that subclasses are before their parents).
330       if (isRelatedTo(RHS)) {
331         if (getTreeDepth() > RHS.getTreeDepth())
332           return true;
333         if (getTreeDepth() < RHS.getTreeDepth())
334           return false;
335       } else {
336         // Unrelated tokens and user classes are ordered by the name of their
337         // root nodes, so that there is a consistent ordering between
338         // unconnected trees.
339         return findRoot()->ValueName < RHS.findRoot()->ValueName;
340       }
341     } else if (isRegisterClass()) {
342       // For register sets, sort by number of registers. This guarantees that
343       // a set will always sort before all of it's strict supersets.
344       if (Registers.size() != RHS.Registers.size())
345         return Registers.size() < RHS.Registers.size();
346     } else {
347       llvm_unreachable("Unknown ClassInfoKind");
348     }
349 
350     // FIXME: We should be able to just return false here, as we only need a
351     // partial order (we use stable sorts, so this is deterministic) and the
352     // name of a class shouldn't be significant. However, some of the backends
353     // accidentally rely on this behaviour, so it will have to stay like this
354     // until they are fixed.
355     return ValueName < RHS.ValueName;
356   }
357 };
358 
359 class AsmVariantInfo {
360 public:
361   StringRef RegisterPrefix;
362   StringRef TokenizingCharacters;
363   StringRef SeparatorCharacters;
364   StringRef BreakCharacters;
365   StringRef Name;
366   int AsmVariantNo;
367 };
368 
369 /// MatchableInfo - Helper class for storing the necessary information for an
370 /// instruction or alias which is capable of being matched.
371 struct MatchableInfo {
372   struct AsmOperand {
373     /// Token - This is the token that the operand came from.
374     StringRef Token;
375 
376     /// The unique class instance this operand should match.
377     ClassInfo *Class;
378 
379     /// The operand name this is, if anything.
380     StringRef SrcOpName;
381 
382     /// The operand name this is, before renaming for tied operands.
383     StringRef OrigSrcOpName;
384 
385     /// The suboperand index within SrcOpName, or -1 for the entire operand.
386     int SubOpIdx;
387 
388     /// Whether the token is "isolated", i.e., it is preceded and followed
389     /// by separators.
390     bool IsIsolatedToken;
391 
392     /// Register record if this token is singleton register.
393     Record *SingletonReg;
394 
395     explicit AsmOperand(bool IsIsolatedToken, StringRef T)
396         : Token(T), Class(nullptr), SubOpIdx(-1),
397           IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {}
398   };
399 
400   /// ResOperand - This represents a single operand in the result instruction
401   /// generated by the match.  In cases (like addressing modes) where a single
402   /// assembler operand expands to multiple MCOperands, this represents the
403   /// single assembler operand, not the MCOperand.
404   struct ResOperand {
405     enum {
406       /// RenderAsmOperand - This represents an operand result that is
407       /// generated by calling the render method on the assembly operand.  The
408       /// corresponding AsmOperand is specified by AsmOperandNum.
409       RenderAsmOperand,
410 
411       /// TiedOperand - This represents a result operand that is a duplicate of
412       /// a previous result operand.
413       TiedOperand,
414 
415       /// ImmOperand - This represents an immediate value that is dumped into
416       /// the operand.
417       ImmOperand,
418 
419       /// RegOperand - This represents a fixed register that is dumped in.
420       RegOperand
421     } Kind;
422 
423     /// Tuple containing the index of the (earlier) result operand that should
424     /// be copied from, as well as the indices of the corresponding (parsed)
425     /// operands in the asm string.
426     struct TiedOperandsTuple {
427       unsigned ResOpnd;
428       unsigned SrcOpnd1Idx;
429       unsigned SrcOpnd2Idx;
430     };
431 
432     union {
433       /// This is the operand # in the AsmOperands list that this should be
434       /// copied from.
435       unsigned AsmOperandNum;
436 
437       /// Description of tied operands.
438       TiedOperandsTuple TiedOperands;
439 
440       /// ImmVal - This is the immediate value added to the instruction.
441       int64_t ImmVal;
442 
443       /// Register - This is the register record.
444       Record *Register;
445     };
446 
447     /// MINumOperands - The number of MCInst operands populated by this
448     /// operand.
449     unsigned MINumOperands;
450 
451     static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
452       ResOperand X;
453       X.Kind = RenderAsmOperand;
454       X.AsmOperandNum = AsmOpNum;
455       X.MINumOperands = NumOperands;
456       return X;
457     }
458 
459     static ResOperand getTiedOp(unsigned TiedOperandNum, unsigned SrcOperand1,
460                                 unsigned SrcOperand2) {
461       ResOperand X;
462       X.Kind = TiedOperand;
463       X.TiedOperands = { TiedOperandNum, SrcOperand1, SrcOperand2 };
464       X.MINumOperands = 1;
465       return X;
466     }
467 
468     static ResOperand getImmOp(int64_t Val) {
469       ResOperand X;
470       X.Kind = ImmOperand;
471       X.ImmVal = Val;
472       X.MINumOperands = 1;
473       return X;
474     }
475 
476     static ResOperand getRegOp(Record *Reg) {
477       ResOperand X;
478       X.Kind = RegOperand;
479       X.Register = Reg;
480       X.MINumOperands = 1;
481       return X;
482     }
483   };
484 
485   /// AsmVariantID - Target's assembly syntax variant no.
486   int AsmVariantID;
487 
488   /// AsmString - The assembly string for this instruction (with variants
489   /// removed), e.g. "movsx $src, $dst".
490   std::string AsmString;
491 
492   /// TheDef - This is the definition of the instruction or InstAlias that this
493   /// matchable came from.
494   Record *const TheDef;
495 
496   /// DefRec - This is the definition that it came from.
497   PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
498 
499   const CodeGenInstruction *getResultInst() const {
500     if (DefRec.is<const CodeGenInstruction*>())
501       return DefRec.get<const CodeGenInstruction*>();
502     return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
503   }
504 
505   /// ResOperands - This is the operand list that should be built for the result
506   /// MCInst.
507   SmallVector<ResOperand, 8> ResOperands;
508 
509   /// Mnemonic - This is the first token of the matched instruction, its
510   /// mnemonic.
511   StringRef Mnemonic;
512 
513   /// AsmOperands - The textual operands that this instruction matches,
514   /// annotated with a class and where in the OperandList they were defined.
515   /// This directly corresponds to the tokenized AsmString after the mnemonic is
516   /// removed.
517   SmallVector<AsmOperand, 8> AsmOperands;
518 
519   /// AsmOperandEqualityConstraints - an array of pairs holding operand
520   /// constraints.
521   /// Each constraint is represented as a pair holding position of the token of
522   /// the operand asm name.
523   /// For example, an "AsmString" "add $Vd.s, $Vn.s, $Xn" would be
524   /// split in the following list of tokens:
525   ///
526   ///    ['add', '$Vd', '.s', '$Vn', '.s', '$Xn']
527   ///
528   /// A constraint "$Vd = $Vn" (e.g. for a destructive operation) is rendered
529   /// as the pair {1,3} into this set (note that tokens are numbered starting
530   /// from 0).
531   SmallVector<std::pair<unsigned,unsigned>, 1> AsmOperandTiedConstraints;
532 
533   /// Predicates - The required subtarget features to match this instruction.
534   SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures;
535 
536   /// ConversionFnKind - The enum value which is passed to the generated
537   /// convertToMCInst to convert parsed operands into an MCInst for this
538   /// function.
539   std::string ConversionFnKind;
540 
541   /// If this instruction is deprecated in some form.
542   bool HasDeprecation;
543 
544   /// If this is an alias, this is use to determine whether or not to using
545   /// the conversion function defined by the instruction's AsmMatchConverter
546   /// or to use the function generated by the alias.
547   bool UseInstAsmMatchConverter;
548 
549   MatchableInfo(const CodeGenInstruction &CGI)
550     : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI),
551       UseInstAsmMatchConverter(true) {
552   }
553 
554   MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias)
555     : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef),
556       DefRec(Alias.release()),
557       UseInstAsmMatchConverter(
558         TheDef->getValueAsBit("UseInstAsmMatchConverter")) {
559   }
560 
561   // Could remove this and the dtor if PointerUnion supported unique_ptr
562   // elements with a dynamic failure/assertion (like the one below) in the case
563   // where it was copied while being in an owning state.
564   MatchableInfo(const MatchableInfo &RHS)
565       : AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString),
566         TheDef(RHS.TheDef), DefRec(RHS.DefRec), ResOperands(RHS.ResOperands),
567         Mnemonic(RHS.Mnemonic), AsmOperands(RHS.AsmOperands),
568         RequiredFeatures(RHS.RequiredFeatures),
569         ConversionFnKind(RHS.ConversionFnKind),
570         HasDeprecation(RHS.HasDeprecation),
571         UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) {
572     assert(!DefRec.is<const CodeGenInstAlias *>());
573   }
574 
575   ~MatchableInfo() {
576     delete DefRec.dyn_cast<const CodeGenInstAlias*>();
577   }
578 
579   // Two-operand aliases clone from the main matchable, but mark the second
580   // operand as a tied operand of the first for purposes of the assembler.
581   void formTwoOperandAlias(StringRef Constraint);
582 
583   void initialize(const AsmMatcherInfo &Info,
584                   SmallPtrSetImpl<Record*> &SingletonRegisters,
585                   AsmVariantInfo const &Variant,
586                   bool HasMnemonicFirst);
587 
588   /// validate - Return true if this matchable is a valid thing to match against
589   /// and perform a bunch of validity checking.
590   bool validate(StringRef CommentDelimiter, bool IsAlias) const;
591 
592   /// findAsmOperand - Find the AsmOperand with the specified name and
593   /// suboperand index.
594   int findAsmOperand(StringRef N, int SubOpIdx) const {
595     auto I = find_if(AsmOperands, [&](const AsmOperand &Op) {
596       return Op.SrcOpName == N && Op.SubOpIdx == SubOpIdx;
597     });
598     return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
599   }
600 
601   /// findAsmOperandNamed - Find the first AsmOperand with the specified name.
602   /// This does not check the suboperand index.
603   int findAsmOperandNamed(StringRef N, int LastIdx = -1) const {
604     auto I = std::find_if(AsmOperands.begin() + LastIdx + 1, AsmOperands.end(),
605                      [&](const AsmOperand &Op) { return Op.SrcOpName == N; });
606     return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
607   }
608 
609   int findAsmOperandOriginallyNamed(StringRef N) const {
610     auto I =
611         find_if(AsmOperands,
612                 [&](const AsmOperand &Op) { return Op.OrigSrcOpName == N; });
613     return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
614   }
615 
616   void buildInstructionResultOperands();
617   void buildAliasResultOperands(bool AliasConstraintsAreChecked);
618 
619   /// operator< - Compare two matchables.
620   bool operator<(const MatchableInfo &RHS) const {
621     // The primary comparator is the instruction mnemonic.
622     if (int Cmp = Mnemonic.compare(RHS.Mnemonic))
623       return Cmp == -1;
624 
625     if (AsmOperands.size() != RHS.AsmOperands.size())
626       return AsmOperands.size() < RHS.AsmOperands.size();
627 
628     // Compare lexicographically by operand. The matcher validates that other
629     // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith().
630     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
631       if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
632         return true;
633       if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
634         return false;
635     }
636 
637     // Give matches that require more features higher precedence. This is useful
638     // because we cannot define AssemblerPredicates with the negation of
639     // processor features. For example, ARM v6 "nop" may be either a HINT or
640     // MOV. With v6, we want to match HINT. The assembler has no way to
641     // predicate MOV under "NoV6", but HINT will always match first because it
642     // requires V6 while MOV does not.
643     if (RequiredFeatures.size() != RHS.RequiredFeatures.size())
644       return RequiredFeatures.size() > RHS.RequiredFeatures.size();
645 
646     return false;
647   }
648 
649   /// couldMatchAmbiguouslyWith - Check whether this matchable could
650   /// ambiguously match the same set of operands as \p RHS (without being a
651   /// strictly superior match).
652   bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const {
653     // The primary comparator is the instruction mnemonic.
654     if (Mnemonic != RHS.Mnemonic)
655       return false;
656 
657     // Different variants can't conflict.
658     if (AsmVariantID != RHS.AsmVariantID)
659       return false;
660 
661     // The number of operands is unambiguous.
662     if (AsmOperands.size() != RHS.AsmOperands.size())
663       return false;
664 
665     // Otherwise, make sure the ordering of the two instructions is unambiguous
666     // by checking that either (a) a token or operand kind discriminates them,
667     // or (b) the ordering among equivalent kinds is consistent.
668 
669     // Tokens and operand kinds are unambiguous (assuming a correct target
670     // specific parser).
671     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
672       if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
673           AsmOperands[i].Class->Kind == ClassInfo::Token)
674         if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
675             *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
676           return false;
677 
678     // Otherwise, this operand could commute if all operands are equivalent, or
679     // there is a pair of operands that compare less than and a pair that
680     // compare greater than.
681     bool HasLT = false, HasGT = false;
682     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
683       if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
684         HasLT = true;
685       if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
686         HasGT = true;
687     }
688 
689     return HasLT == HasGT;
690   }
691 
692   void dump() const;
693 
694 private:
695   void tokenizeAsmString(AsmMatcherInfo const &Info,
696                          AsmVariantInfo const &Variant);
697   void addAsmOperand(StringRef Token, bool IsIsolatedToken = false);
698 };
699 
700 struct OperandMatchEntry {
701   unsigned OperandMask;
702   const MatchableInfo* MI;
703   ClassInfo *CI;
704 
705   static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci,
706                                   unsigned opMask) {
707     OperandMatchEntry X;
708     X.OperandMask = opMask;
709     X.CI = ci;
710     X.MI = mi;
711     return X;
712   }
713 };
714 
715 class AsmMatcherInfo {
716 public:
717   /// Tracked Records
718   RecordKeeper &Records;
719 
720   /// The tablegen AsmParser record.
721   Record *AsmParser;
722 
723   /// Target - The target information.
724   CodeGenTarget &Target;
725 
726   /// The classes which are needed for matching.
727   std::forward_list<ClassInfo> Classes;
728 
729   /// The information on the matchables to match.
730   std::vector<std::unique_ptr<MatchableInfo>> Matchables;
731 
732   /// Info for custom matching operands by user defined methods.
733   std::vector<OperandMatchEntry> OperandMatchInfo;
734 
735   /// Map of Register records to their class information.
736   typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy;
737   RegisterClassesTy RegisterClasses;
738 
739   /// Map of Predicate records to their subtarget information.
740   std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures;
741 
742   /// Map of AsmOperandClass records to their class information.
743   std::map<Record*, ClassInfo*> AsmOperandClasses;
744 
745   /// Map of RegisterClass records to their class information.
746   std::map<Record*, ClassInfo*> RegisterClassClasses;
747 
748 private:
749   /// Map of token to class information which has already been constructed.
750   std::map<std::string, ClassInfo*> TokenClasses;
751 
752 private:
753   /// getTokenClass - Lookup or create the class for the given token.
754   ClassInfo *getTokenClass(StringRef Token);
755 
756   /// getOperandClass - Lookup or create the class for the given operand.
757   ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
758                              int SubOpIdx);
759   ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
760 
761   /// buildRegisterClasses - Build the ClassInfo* instances for register
762   /// classes.
763   void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters);
764 
765   /// buildOperandClasses - Build the ClassInfo* instances for user defined
766   /// operand classes.
767   void buildOperandClasses();
768 
769   void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
770                                         unsigned AsmOpIdx);
771   void buildAliasOperandReference(MatchableInfo *II, StringRef OpName,
772                                   MatchableInfo::AsmOperand &Op);
773 
774 public:
775   AsmMatcherInfo(Record *AsmParser,
776                  CodeGenTarget &Target,
777                  RecordKeeper &Records);
778 
779   /// Construct the various tables used during matching.
780   void buildInfo();
781 
782   /// buildOperandMatchInfo - Build the necessary information to handle user
783   /// defined operand parsing methods.
784   void buildOperandMatchInfo();
785 
786   /// getSubtargetFeature - Lookup or create the subtarget feature info for the
787   /// given operand.
788   const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
789     assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
790     const auto &I = SubtargetFeatures.find(Def);
791     return I == SubtargetFeatures.end() ? nullptr : &I->second;
792   }
793 
794   RecordKeeper &getRecords() const {
795     return Records;
796   }
797 
798   bool hasOptionalOperands() const {
799     return find_if(Classes, [](const ClassInfo &Class) {
800              return Class.IsOptional;
801            }) != Classes.end();
802   }
803 };
804 
805 } // end anonymous namespace
806 
807 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
808 LLVM_DUMP_METHOD void MatchableInfo::dump() const {
809   errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
810 
811   errs() << "  variant: " << AsmVariantID << "\n";
812 
813   for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
814     const AsmOperand &Op = AsmOperands[i];
815     errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
816     errs() << '\"' << Op.Token << "\"\n";
817   }
818 }
819 #endif
820 
821 static std::pair<StringRef, StringRef>
822 parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) {
823   // Split via the '='.
824   std::pair<StringRef, StringRef> Ops = S.split('=');
825   if (Ops.second == "")
826     PrintFatalError(Loc, "missing '=' in two-operand alias constraint");
827   // Trim whitespace and the leading '$' on the operand names.
828   size_t start = Ops.first.find_first_of('$');
829   if (start == std::string::npos)
830     PrintFatalError(Loc, "expected '$' prefix on asm operand name");
831   Ops.first = Ops.first.slice(start + 1, std::string::npos);
832   size_t end = Ops.first.find_last_of(" \t");
833   Ops.first = Ops.first.slice(0, end);
834   // Now the second operand.
835   start = Ops.second.find_first_of('$');
836   if (start == std::string::npos)
837     PrintFatalError(Loc, "expected '$' prefix on asm operand name");
838   Ops.second = Ops.second.slice(start + 1, std::string::npos);
839   end = Ops.second.find_last_of(" \t");
840   Ops.first = Ops.first.slice(0, end);
841   return Ops;
842 }
843 
844 void MatchableInfo::formTwoOperandAlias(StringRef Constraint) {
845   // Figure out which operands are aliased and mark them as tied.
846   std::pair<StringRef, StringRef> Ops =
847     parseTwoOperandConstraint(Constraint, TheDef->getLoc());
848 
849   // Find the AsmOperands that refer to the operands we're aliasing.
850   int SrcAsmOperand = findAsmOperandNamed(Ops.first);
851   int DstAsmOperand = findAsmOperandNamed(Ops.second);
852   if (SrcAsmOperand == -1)
853     PrintFatalError(TheDef->getLoc(),
854                     "unknown source two-operand alias operand '" + Ops.first +
855                     "'.");
856   if (DstAsmOperand == -1)
857     PrintFatalError(TheDef->getLoc(),
858                     "unknown destination two-operand alias operand '" +
859                     Ops.second + "'.");
860 
861   // Find the ResOperand that refers to the operand we're aliasing away
862   // and update it to refer to the combined operand instead.
863   for (ResOperand &Op : ResOperands) {
864     if (Op.Kind == ResOperand::RenderAsmOperand &&
865         Op.AsmOperandNum == (unsigned)SrcAsmOperand) {
866       Op.AsmOperandNum = DstAsmOperand;
867       break;
868     }
869   }
870   // Remove the AsmOperand for the alias operand.
871   AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand);
872   // Adjust the ResOperand references to any AsmOperands that followed
873   // the one we just deleted.
874   for (ResOperand &Op : ResOperands) {
875     switch(Op.Kind) {
876     default:
877       // Nothing to do for operands that don't reference AsmOperands.
878       break;
879     case ResOperand::RenderAsmOperand:
880       if (Op.AsmOperandNum > (unsigned)SrcAsmOperand)
881         --Op.AsmOperandNum;
882       break;
883     }
884   }
885 }
886 
887 /// extractSingletonRegisterForAsmOperand - Extract singleton register,
888 /// if present, from specified token.
889 static void
890 extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op,
891                                       const AsmMatcherInfo &Info,
892                                       StringRef RegisterPrefix) {
893   StringRef Tok = Op.Token;
894 
895   // If this token is not an isolated token, i.e., it isn't separated from
896   // other tokens (e.g. with whitespace), don't interpret it as a register name.
897   if (!Op.IsIsolatedToken)
898     return;
899 
900   if (RegisterPrefix.empty()) {
901     std::string LoweredTok = Tok.lower();
902     if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
903       Op.SingletonReg = Reg->TheDef;
904     return;
905   }
906 
907   if (!Tok.startswith(RegisterPrefix))
908     return;
909 
910   StringRef RegName = Tok.substr(RegisterPrefix.size());
911   if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
912     Op.SingletonReg = Reg->TheDef;
913 
914   // If there is no register prefix (i.e. "%" in "%eax"), then this may
915   // be some random non-register token, just ignore it.
916 }
917 
918 void MatchableInfo::initialize(const AsmMatcherInfo &Info,
919                                SmallPtrSetImpl<Record*> &SingletonRegisters,
920                                AsmVariantInfo const &Variant,
921                                bool HasMnemonicFirst) {
922   AsmVariantID = Variant.AsmVariantNo;
923   AsmString =
924     CodeGenInstruction::FlattenAsmStringVariants(AsmString,
925                                                  Variant.AsmVariantNo);
926 
927   tokenizeAsmString(Info, Variant);
928 
929   // The first token of the instruction is the mnemonic, which must be a
930   // simple string, not a $foo variable or a singleton register.
931   if (AsmOperands.empty())
932     PrintFatalError(TheDef->getLoc(),
933                   "Instruction '" + TheDef->getName() + "' has no tokens");
934 
935   assert(!AsmOperands[0].Token.empty());
936   if (HasMnemonicFirst) {
937     Mnemonic = AsmOperands[0].Token;
938     if (Mnemonic[0] == '$')
939       PrintFatalError(TheDef->getLoc(),
940                       "Invalid instruction mnemonic '" + Mnemonic + "'!");
941 
942     // Remove the first operand, it is tracked in the mnemonic field.
943     AsmOperands.erase(AsmOperands.begin());
944   } else if (AsmOperands[0].Token[0] != '$')
945     Mnemonic = AsmOperands[0].Token;
946 
947   // Compute the require features.
948   for (Record *Predicate : TheDef->getValueAsListOfDefs("Predicates"))
949     if (const SubtargetFeatureInfo *Feature =
950             Info.getSubtargetFeature(Predicate))
951       RequiredFeatures.push_back(Feature);
952 
953   // Collect singleton registers, if used.
954   for (MatchableInfo::AsmOperand &Op : AsmOperands) {
955     extractSingletonRegisterForAsmOperand(Op, Info, Variant.RegisterPrefix);
956     if (Record *Reg = Op.SingletonReg)
957       SingletonRegisters.insert(Reg);
958   }
959 
960   const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask");
961   if (!DepMask)
962     DepMask = TheDef->getValue("ComplexDeprecationPredicate");
963 
964   HasDeprecation =
965       DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false;
966 }
967 
968 /// Append an AsmOperand for the given substring of AsmString.
969 void MatchableInfo::addAsmOperand(StringRef Token, bool IsIsolatedToken) {
970   AsmOperands.push_back(AsmOperand(IsIsolatedToken, Token));
971 }
972 
973 /// tokenizeAsmString - Tokenize a simplified assembly string.
974 void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info,
975                                       AsmVariantInfo const &Variant) {
976   StringRef String = AsmString;
977   size_t Prev = 0;
978   bool InTok = false;
979   bool IsIsolatedToken = true;
980   for (size_t i = 0, e = String.size(); i != e; ++i) {
981     char Char = String[i];
982     if (Variant.BreakCharacters.find(Char) != std::string::npos) {
983       if (InTok) {
984         addAsmOperand(String.slice(Prev, i), false);
985         Prev = i;
986         IsIsolatedToken = false;
987       }
988       InTok = true;
989       continue;
990     }
991     if (Variant.TokenizingCharacters.find(Char) != std::string::npos) {
992       if (InTok) {
993         addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
994         InTok = false;
995         IsIsolatedToken = false;
996       }
997       addAsmOperand(String.slice(i, i + 1), IsIsolatedToken);
998       Prev = i + 1;
999       IsIsolatedToken = true;
1000       continue;
1001     }
1002     if (Variant.SeparatorCharacters.find(Char) != std::string::npos) {
1003       if (InTok) {
1004         addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
1005         InTok = false;
1006       }
1007       Prev = i + 1;
1008       IsIsolatedToken = true;
1009       continue;
1010     }
1011 
1012     switch (Char) {
1013     case '\\':
1014       if (InTok) {
1015         addAsmOperand(String.slice(Prev, i), false);
1016         InTok = false;
1017         IsIsolatedToken = false;
1018       }
1019       ++i;
1020       assert(i != String.size() && "Invalid quoted character");
1021       addAsmOperand(String.slice(i, i + 1), IsIsolatedToken);
1022       Prev = i + 1;
1023       IsIsolatedToken = false;
1024       break;
1025 
1026     case '$': {
1027       if (InTok) {
1028         addAsmOperand(String.slice(Prev, i), false);
1029         InTok = false;
1030         IsIsolatedToken = false;
1031       }
1032 
1033       // If this isn't "${", start new identifier looking like "$xxx"
1034       if (i + 1 == String.size() || String[i + 1] != '{') {
1035         Prev = i;
1036         break;
1037       }
1038 
1039       size_t EndPos = String.find('}', i);
1040       assert(EndPos != StringRef::npos &&
1041              "Missing brace in operand reference!");
1042       addAsmOperand(String.slice(i, EndPos+1), IsIsolatedToken);
1043       Prev = EndPos + 1;
1044       i = EndPos;
1045       IsIsolatedToken = false;
1046       break;
1047     }
1048 
1049     default:
1050       InTok = true;
1051       break;
1052     }
1053   }
1054   if (InTok && Prev != String.size())
1055     addAsmOperand(String.substr(Prev), IsIsolatedToken);
1056 }
1057 
1058 bool MatchableInfo::validate(StringRef CommentDelimiter, bool IsAlias) const {
1059   // Reject matchables with no .s string.
1060   if (AsmString.empty())
1061     PrintFatalError(TheDef->getLoc(), "instruction with empty asm string");
1062 
1063   // Reject any matchables with a newline in them, they should be marked
1064   // isCodeGenOnly if they are pseudo instructions.
1065   if (AsmString.find('\n') != std::string::npos)
1066     PrintFatalError(TheDef->getLoc(),
1067                   "multiline instruction is not valid for the asmparser, "
1068                   "mark it isCodeGenOnly");
1069 
1070   // Remove comments from the asm string.  We know that the asmstring only
1071   // has one line.
1072   if (!CommentDelimiter.empty() &&
1073       StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
1074     PrintFatalError(TheDef->getLoc(),
1075                   "asmstring for instruction has comment character in it, "
1076                   "mark it isCodeGenOnly");
1077 
1078   // Reject matchables with operand modifiers, these aren't something we can
1079   // handle, the target should be refactored to use operands instead of
1080   // modifiers.
1081   //
1082   // Also, check for instructions which reference the operand multiple times;
1083   // this implies a constraint we would not honor.
1084   std::set<std::string> OperandNames;
1085   for (const AsmOperand &Op : AsmOperands) {
1086     StringRef Tok = Op.Token;
1087     if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
1088       PrintFatalError(TheDef->getLoc(),
1089                       "matchable with operand modifier '" + Tok +
1090                       "' not supported by asm matcher.  Mark isCodeGenOnly!");
1091     // Verify that any operand is only mentioned once.
1092     // We reject aliases and ignore instructions for now.
1093     if (!IsAlias && Tok[0] == '$' && !OperandNames.insert(Tok).second) {
1094       DEBUG({
1095         errs() << "warning: '" << TheDef->getName() << "': "
1096                << "ignoring instruction with tied operand '"
1097                << Tok << "'\n";
1098       });
1099       return false;
1100     }
1101   }
1102 
1103   return true;
1104 }
1105 
1106 static std::string getEnumNameForToken(StringRef Str) {
1107   std::string Res;
1108 
1109   for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
1110     switch (*it) {
1111     case '*': Res += "_STAR_"; break;
1112     case '%': Res += "_PCT_"; break;
1113     case ':': Res += "_COLON_"; break;
1114     case '!': Res += "_EXCLAIM_"; break;
1115     case '.': Res += "_DOT_"; break;
1116     case '<': Res += "_LT_"; break;
1117     case '>': Res += "_GT_"; break;
1118     case '-': Res += "_MINUS_"; break;
1119     default:
1120       if ((*it >= 'A' && *it <= 'Z') ||
1121           (*it >= 'a' && *it <= 'z') ||
1122           (*it >= '0' && *it <= '9'))
1123         Res += *it;
1124       else
1125         Res += "_" + utostr((unsigned) *it) + "_";
1126     }
1127   }
1128 
1129   return Res;
1130 }
1131 
1132 ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
1133   ClassInfo *&Entry = TokenClasses[Token];
1134 
1135   if (!Entry) {
1136     Classes.emplace_front();
1137     Entry = &Classes.front();
1138     Entry->Kind = ClassInfo::Token;
1139     Entry->ClassName = "Token";
1140     Entry->Name = "MCK_" + getEnumNameForToken(Token);
1141     Entry->ValueName = Token;
1142     Entry->PredicateMethod = "<invalid>";
1143     Entry->RenderMethod = "<invalid>";
1144     Entry->ParserMethod = "";
1145     Entry->DiagnosticType = "";
1146     Entry->IsOptional = false;
1147     Entry->DefaultMethod = "<invalid>";
1148   }
1149 
1150   return Entry;
1151 }
1152 
1153 ClassInfo *
1154 AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
1155                                 int SubOpIdx) {
1156   Record *Rec = OI.Rec;
1157   if (SubOpIdx != -1)
1158     Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
1159   return getOperandClass(Rec, SubOpIdx);
1160 }
1161 
1162 ClassInfo *
1163 AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
1164   if (Rec->isSubClassOf("RegisterOperand")) {
1165     // RegisterOperand may have an associated ParserMatchClass. If it does,
1166     // use it, else just fall back to the underlying register class.
1167     const RecordVal *R = Rec->getValue("ParserMatchClass");
1168     if (!R || !R->getValue())
1169       PrintFatalError("Record `" + Rec->getName() +
1170         "' does not have a ParserMatchClass!\n");
1171 
1172     if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) {
1173       Record *MatchClass = DI->getDef();
1174       if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1175         return CI;
1176     }
1177 
1178     // No custom match class. Just use the register class.
1179     Record *ClassRec = Rec->getValueAsDef("RegClass");
1180     if (!ClassRec)
1181       PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
1182                     "' has no associated register class!\n");
1183     if (ClassInfo *CI = RegisterClassClasses[ClassRec])
1184       return CI;
1185     PrintFatalError(Rec->getLoc(), "register class has no class info!");
1186   }
1187 
1188   if (Rec->isSubClassOf("RegisterClass")) {
1189     if (ClassInfo *CI = RegisterClassClasses[Rec])
1190       return CI;
1191     PrintFatalError(Rec->getLoc(), "register class has no class info!");
1192   }
1193 
1194   if (!Rec->isSubClassOf("Operand"))
1195     PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() +
1196                   "' does not derive from class Operand!\n");
1197   Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1198   if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1199     return CI;
1200 
1201   PrintFatalError(Rec->getLoc(), "operand has no match class!");
1202 }
1203 
1204 struct LessRegisterSet {
1205   bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const {
1206     // std::set<T> defines its own compariso "operator<", but it
1207     // performs a lexicographical comparison by T's innate comparison
1208     // for some reason. We don't want non-deterministic pointer
1209     // comparisons so use this instead.
1210     return std::lexicographical_compare(LHS.begin(), LHS.end(),
1211                                         RHS.begin(), RHS.end(),
1212                                         LessRecordByID());
1213   }
1214 };
1215 
1216 void AsmMatcherInfo::
1217 buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) {
1218   const auto &Registers = Target.getRegBank().getRegisters();
1219   auto &RegClassList = Target.getRegBank().getRegClasses();
1220 
1221   typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet;
1222 
1223   // The register sets used for matching.
1224   RegisterSetSet RegisterSets;
1225 
1226   // Gather the defined sets.
1227   for (const CodeGenRegisterClass &RC : RegClassList)
1228     RegisterSets.insert(
1229         RegisterSet(RC.getOrder().begin(), RC.getOrder().end()));
1230 
1231   // Add any required singleton sets.
1232   for (Record *Rec : SingletonRegisters) {
1233     RegisterSets.insert(RegisterSet(&Rec, &Rec + 1));
1234   }
1235 
1236   // Introduce derived sets where necessary (when a register does not determine
1237   // a unique register set class), and build the mapping of registers to the set
1238   // they should classify to.
1239   std::map<Record*, RegisterSet> RegisterMap;
1240   for (const CodeGenRegister &CGR : Registers) {
1241     // Compute the intersection of all sets containing this register.
1242     RegisterSet ContainingSet;
1243 
1244     for (const RegisterSet &RS : RegisterSets) {
1245       if (!RS.count(CGR.TheDef))
1246         continue;
1247 
1248       if (ContainingSet.empty()) {
1249         ContainingSet = RS;
1250         continue;
1251       }
1252 
1253       RegisterSet Tmp;
1254       std::swap(Tmp, ContainingSet);
1255       std::insert_iterator<RegisterSet> II(ContainingSet,
1256                                            ContainingSet.begin());
1257       std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II,
1258                             LessRecordByID());
1259     }
1260 
1261     if (!ContainingSet.empty()) {
1262       RegisterSets.insert(ContainingSet);
1263       RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
1264     }
1265   }
1266 
1267   // Construct the register classes.
1268   std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses;
1269   unsigned Index = 0;
1270   for (const RegisterSet &RS : RegisterSets) {
1271     Classes.emplace_front();
1272     ClassInfo *CI = &Classes.front();
1273     CI->Kind = ClassInfo::RegisterClass0 + Index;
1274     CI->ClassName = "Reg" + utostr(Index);
1275     CI->Name = "MCK_Reg" + utostr(Index);
1276     CI->ValueName = "";
1277     CI->PredicateMethod = ""; // unused
1278     CI->RenderMethod = "addRegOperands";
1279     CI->Registers = RS;
1280     // FIXME: diagnostic type.
1281     CI->DiagnosticType = "";
1282     CI->IsOptional = false;
1283     CI->DefaultMethod = ""; // unused
1284     RegisterSetClasses.insert(std::make_pair(RS, CI));
1285     ++Index;
1286   }
1287 
1288   // Find the superclasses; we could compute only the subgroup lattice edges,
1289   // but there isn't really a point.
1290   for (const RegisterSet &RS : RegisterSets) {
1291     ClassInfo *CI = RegisterSetClasses[RS];
1292     for (const RegisterSet &RS2 : RegisterSets)
1293       if (RS != RS2 &&
1294           std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(),
1295                         LessRecordByID()))
1296         CI->SuperClasses.push_back(RegisterSetClasses[RS2]);
1297   }
1298 
1299   // Name the register classes which correspond to a user defined RegisterClass.
1300   for (const CodeGenRegisterClass &RC : RegClassList) {
1301     // Def will be NULL for non-user defined register classes.
1302     Record *Def = RC.getDef();
1303     if (!Def)
1304       continue;
1305     ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(),
1306                                                    RC.getOrder().end())];
1307     if (CI->ValueName.empty()) {
1308       CI->ClassName = RC.getName();
1309       CI->Name = "MCK_" + RC.getName();
1310       CI->ValueName = RC.getName();
1311     } else
1312       CI->ValueName = CI->ValueName + "," + RC.getName();
1313 
1314     Init *DiagnosticType = Def->getValueInit("DiagnosticType");
1315     if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
1316       CI->DiagnosticType = SI->getValue();
1317 
1318     Init *DiagnosticString = Def->getValueInit("DiagnosticString");
1319     if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString))
1320       CI->DiagnosticString = SI->getValue();
1321 
1322     // If we have a diagnostic string but the diagnostic type is not specified
1323     // explicitly, create an anonymous diagnostic type.
1324     if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty())
1325       CI->DiagnosticType = RC.getName();
1326 
1327     RegisterClassClasses.insert(std::make_pair(Def, CI));
1328   }
1329 
1330   // Populate the map for individual registers.
1331   for (std::map<Record*, RegisterSet>::iterator it = RegisterMap.begin(),
1332          ie = RegisterMap.end(); it != ie; ++it)
1333     RegisterClasses[it->first] = RegisterSetClasses[it->second];
1334 
1335   // Name the register classes which correspond to singleton registers.
1336   for (Record *Rec : SingletonRegisters) {
1337     ClassInfo *CI = RegisterClasses[Rec];
1338     assert(CI && "Missing singleton register class info!");
1339 
1340     if (CI->ValueName.empty()) {
1341       CI->ClassName = Rec->getName();
1342       CI->Name = "MCK_" + Rec->getName().str();
1343       CI->ValueName = Rec->getName();
1344     } else
1345       CI->ValueName = CI->ValueName + "," + Rec->getName().str();
1346   }
1347 }
1348 
1349 void AsmMatcherInfo::buildOperandClasses() {
1350   std::vector<Record*> AsmOperands =
1351     Records.getAllDerivedDefinitions("AsmOperandClass");
1352 
1353   // Pre-populate AsmOperandClasses map.
1354   for (Record *Rec : AsmOperands) {
1355     Classes.emplace_front();
1356     AsmOperandClasses[Rec] = &Classes.front();
1357   }
1358 
1359   unsigned Index = 0;
1360   for (Record *Rec : AsmOperands) {
1361     ClassInfo *CI = AsmOperandClasses[Rec];
1362     CI->Kind = ClassInfo::UserClass0 + Index;
1363 
1364     ListInit *Supers = Rec->getValueAsListInit("SuperClasses");
1365     for (Init *I : Supers->getValues()) {
1366       DefInit *DI = dyn_cast<DefInit>(I);
1367       if (!DI) {
1368         PrintError(Rec->getLoc(), "Invalid super class reference!");
1369         continue;
1370       }
1371 
1372       ClassInfo *SC = AsmOperandClasses[DI->getDef()];
1373       if (!SC)
1374         PrintError(Rec->getLoc(), "Invalid super class reference!");
1375       else
1376         CI->SuperClasses.push_back(SC);
1377     }
1378     CI->ClassName = Rec->getValueAsString("Name");
1379     CI->Name = "MCK_" + CI->ClassName;
1380     CI->ValueName = Rec->getName();
1381 
1382     // Get or construct the predicate method name.
1383     Init *PMName = Rec->getValueInit("PredicateMethod");
1384     if (StringInit *SI = dyn_cast<StringInit>(PMName)) {
1385       CI->PredicateMethod = SI->getValue();
1386     } else {
1387       assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!");
1388       CI->PredicateMethod = "is" + CI->ClassName;
1389     }
1390 
1391     // Get or construct the render method name.
1392     Init *RMName = Rec->getValueInit("RenderMethod");
1393     if (StringInit *SI = dyn_cast<StringInit>(RMName)) {
1394       CI->RenderMethod = SI->getValue();
1395     } else {
1396       assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!");
1397       CI->RenderMethod = "add" + CI->ClassName + "Operands";
1398     }
1399 
1400     // Get the parse method name or leave it as empty.
1401     Init *PRMName = Rec->getValueInit("ParserMethod");
1402     if (StringInit *SI = dyn_cast<StringInit>(PRMName))
1403       CI->ParserMethod = SI->getValue();
1404 
1405     // Get the diagnostic type and string or leave them as empty.
1406     Init *DiagnosticType = Rec->getValueInit("DiagnosticType");
1407     if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
1408       CI->DiagnosticType = SI->getValue();
1409     Init *DiagnosticString = Rec->getValueInit("DiagnosticString");
1410     if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString))
1411       CI->DiagnosticString = SI->getValue();
1412     // If we have a DiagnosticString, we need a DiagnosticType for use within
1413     // the matcher.
1414     if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty())
1415       CI->DiagnosticType = CI->ClassName;
1416 
1417     Init *IsOptional = Rec->getValueInit("IsOptional");
1418     if (BitInit *BI = dyn_cast<BitInit>(IsOptional))
1419       CI->IsOptional = BI->getValue();
1420 
1421     // Get or construct the default method name.
1422     Init *DMName = Rec->getValueInit("DefaultMethod");
1423     if (StringInit *SI = dyn_cast<StringInit>(DMName)) {
1424       CI->DefaultMethod = SI->getValue();
1425     } else {
1426       assert(isa<UnsetInit>(DMName) && "Unexpected DefaultMethod field!");
1427       CI->DefaultMethod = "default" + CI->ClassName + "Operands";
1428     }
1429 
1430     ++Index;
1431   }
1432 }
1433 
1434 AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
1435                                CodeGenTarget &target,
1436                                RecordKeeper &records)
1437   : Records(records), AsmParser(asmParser), Target(target) {
1438 }
1439 
1440 /// buildOperandMatchInfo - Build the necessary information to handle user
1441 /// defined operand parsing methods.
1442 void AsmMatcherInfo::buildOperandMatchInfo() {
1443 
1444   /// Map containing a mask with all operands indices that can be found for
1445   /// that class inside a instruction.
1446   typedef std::map<ClassInfo *, unsigned, less_ptr<ClassInfo>> OpClassMaskTy;
1447   OpClassMaskTy OpClassMask;
1448 
1449   for (const auto &MI : Matchables) {
1450     OpClassMask.clear();
1451 
1452     // Keep track of all operands of this instructions which belong to the
1453     // same class.
1454     for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
1455       const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
1456       if (Op.Class->ParserMethod.empty())
1457         continue;
1458       unsigned &OperandMask = OpClassMask[Op.Class];
1459       OperandMask |= (1 << i);
1460     }
1461 
1462     // Generate operand match info for each mnemonic/operand class pair.
1463     for (const auto &OCM : OpClassMask) {
1464       unsigned OpMask = OCM.second;
1465       ClassInfo *CI = OCM.first;
1466       OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI,
1467                                                            OpMask));
1468     }
1469   }
1470 }
1471 
1472 void AsmMatcherInfo::buildInfo() {
1473   // Build information about all of the AssemblerPredicates.
1474   const std::vector<std::pair<Record *, SubtargetFeatureInfo>>
1475       &SubtargetFeaturePairs = SubtargetFeatureInfo::getAll(Records);
1476   SubtargetFeatures.insert(SubtargetFeaturePairs.begin(),
1477                            SubtargetFeaturePairs.end());
1478 #ifndef NDEBUG
1479   for (const auto &Pair : SubtargetFeatures)
1480     DEBUG(Pair.second.dump());
1481 #endif // NDEBUG
1482   assert(SubtargetFeatures.size() <= 64 && "Too many subtarget features!");
1483 
1484   bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
1485   bool ReportMultipleNearMisses =
1486       AsmParser->getValueAsBit("ReportMultipleNearMisses");
1487 
1488   // Parse the instructions; we need to do this first so that we can gather the
1489   // singleton register classes.
1490   SmallPtrSet<Record*, 16> SingletonRegisters;
1491   unsigned VariantCount = Target.getAsmParserVariantCount();
1492   for (unsigned VC = 0; VC != VariantCount; ++VC) {
1493     Record *AsmVariant = Target.getAsmParserVariant(VC);
1494     StringRef CommentDelimiter =
1495         AsmVariant->getValueAsString("CommentDelimiter");
1496     AsmVariantInfo Variant;
1497     Variant.RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
1498     Variant.TokenizingCharacters =
1499         AsmVariant->getValueAsString("TokenizingCharacters");
1500     Variant.SeparatorCharacters =
1501         AsmVariant->getValueAsString("SeparatorCharacters");
1502     Variant.BreakCharacters =
1503         AsmVariant->getValueAsString("BreakCharacters");
1504     Variant.Name = AsmVariant->getValueAsString("Name");
1505     Variant.AsmVariantNo = AsmVariant->getValueAsInt("Variant");
1506 
1507     for (const CodeGenInstruction *CGI : Target.getInstructionsByEnumValue()) {
1508 
1509       // If the tblgen -match-prefix option is specified (for tblgen hackers),
1510       // filter the set of instructions we consider.
1511       if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix))
1512         continue;
1513 
1514       // Ignore "codegen only" instructions.
1515       if (CGI->TheDef->getValueAsBit("isCodeGenOnly"))
1516         continue;
1517 
1518       // Ignore instructions for different instructions
1519       StringRef V = CGI->TheDef->getValueAsString("AsmVariantName");
1520       if (!V.empty() && V != Variant.Name)
1521         continue;
1522 
1523       auto II = llvm::make_unique<MatchableInfo>(*CGI);
1524 
1525       II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);
1526 
1527       // Ignore instructions which shouldn't be matched and diagnose invalid
1528       // instruction definitions with an error.
1529       if (!II->validate(CommentDelimiter, false))
1530         continue;
1531 
1532       Matchables.push_back(std::move(II));
1533     }
1534 
1535     // Parse all of the InstAlias definitions and stick them in the list of
1536     // matchables.
1537     std::vector<Record*> AllInstAliases =
1538       Records.getAllDerivedDefinitions("InstAlias");
1539     for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
1540       auto Alias = llvm::make_unique<CodeGenInstAlias>(AllInstAliases[i],
1541                                                        Variant.AsmVariantNo,
1542                                                        Target);
1543 
1544       // If the tblgen -match-prefix option is specified (for tblgen hackers),
1545       // filter the set of instruction aliases we consider, based on the target
1546       // instruction.
1547       if (!StringRef(Alias->ResultInst->TheDef->getName())
1548             .startswith( MatchPrefix))
1549         continue;
1550 
1551       StringRef V = Alias->TheDef->getValueAsString("AsmVariantName");
1552       if (!V.empty() && V != Variant.Name)
1553         continue;
1554 
1555       auto II = llvm::make_unique<MatchableInfo>(std::move(Alias));
1556 
1557       II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);
1558 
1559       // Validate the alias definitions.
1560       II->validate(CommentDelimiter, true);
1561 
1562       Matchables.push_back(std::move(II));
1563     }
1564   }
1565 
1566   // Build info for the register classes.
1567   buildRegisterClasses(SingletonRegisters);
1568 
1569   // Build info for the user defined assembly operand classes.
1570   buildOperandClasses();
1571 
1572   // Build the information about matchables, now that we have fully formed
1573   // classes.
1574   std::vector<std::unique_ptr<MatchableInfo>> NewMatchables;
1575   for (auto &II : Matchables) {
1576     // Parse the tokens after the mnemonic.
1577     // Note: buildInstructionOperandReference may insert new AsmOperands, so
1578     // don't precompute the loop bound.
1579     for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
1580       MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
1581       StringRef Token = Op.Token;
1582 
1583       // Check for singleton registers.
1584       if (Record *RegRecord = Op.SingletonReg) {
1585         Op.Class = RegisterClasses[RegRecord];
1586         assert(Op.Class && Op.Class->Registers.size() == 1 &&
1587                "Unexpected class for singleton register");
1588         continue;
1589       }
1590 
1591       // Check for simple tokens.
1592       if (Token[0] != '$') {
1593         Op.Class = getTokenClass(Token);
1594         continue;
1595       }
1596 
1597       if (Token.size() > 1 && isdigit(Token[1])) {
1598         Op.Class = getTokenClass(Token);
1599         continue;
1600       }
1601 
1602       // Otherwise this is an operand reference.
1603       StringRef OperandName;
1604       if (Token[1] == '{')
1605         OperandName = Token.substr(2, Token.size() - 3);
1606       else
1607         OperandName = Token.substr(1);
1608 
1609       if (II->DefRec.is<const CodeGenInstruction*>())
1610         buildInstructionOperandReference(II.get(), OperandName, i);
1611       else
1612         buildAliasOperandReference(II.get(), OperandName, Op);
1613     }
1614 
1615     if (II->DefRec.is<const CodeGenInstruction*>()) {
1616       II->buildInstructionResultOperands();
1617       // If the instruction has a two-operand alias, build up the
1618       // matchable here. We'll add them in bulk at the end to avoid
1619       // confusing this loop.
1620       StringRef Constraint =
1621           II->TheDef->getValueAsString("TwoOperandAliasConstraint");
1622       if (Constraint != "") {
1623         // Start by making a copy of the original matchable.
1624         auto AliasII = llvm::make_unique<MatchableInfo>(*II);
1625 
1626         // Adjust it to be a two-operand alias.
1627         AliasII->formTwoOperandAlias(Constraint);
1628 
1629         // Add the alias to the matchables list.
1630         NewMatchables.push_back(std::move(AliasII));
1631       }
1632     } else
1633       // FIXME: The tied operands checking is not yet integrated with the
1634       // framework for reporting multiple near misses. To prevent invalid
1635       // formats from being matched with an alias if a tied-operands check
1636       // would otherwise have disallowed it, we just disallow such constructs
1637       // in TableGen completely.
1638       II->buildAliasResultOperands(!ReportMultipleNearMisses);
1639   }
1640   if (!NewMatchables.empty())
1641     Matchables.insert(Matchables.end(),
1642                       std::make_move_iterator(NewMatchables.begin()),
1643                       std::make_move_iterator(NewMatchables.end()));
1644 
1645   // Process token alias definitions and set up the associated superclass
1646   // information.
1647   std::vector<Record*> AllTokenAliases =
1648     Records.getAllDerivedDefinitions("TokenAlias");
1649   for (Record *Rec : AllTokenAliases) {
1650     ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
1651     ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
1652     if (FromClass == ToClass)
1653       PrintFatalError(Rec->getLoc(),
1654                     "error: Destination value identical to source value.");
1655     FromClass->SuperClasses.push_back(ToClass);
1656   }
1657 
1658   // Reorder classes so that classes precede super classes.
1659   Classes.sort();
1660 
1661 #ifdef EXPENSIVE_CHECKS
1662   // Verify that the table is sorted and operator < works transitively.
1663   for (auto I = Classes.begin(), E = Classes.end(); I != E; ++I) {
1664     for (auto J = I; J != E; ++J) {
1665       assert(!(*J < *I));
1666       assert(I == J || !J->isSubsetOf(*I));
1667     }
1668   }
1669 #endif
1670 }
1671 
1672 /// buildInstructionOperandReference - The specified operand is a reference to a
1673 /// named operand such as $src.  Resolve the Class and OperandInfo pointers.
1674 void AsmMatcherInfo::
1675 buildInstructionOperandReference(MatchableInfo *II,
1676                                  StringRef OperandName,
1677                                  unsigned AsmOpIdx) {
1678   const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
1679   const CGIOperandList &Operands = CGI.Operands;
1680   MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
1681 
1682   // Map this token to an operand.
1683   unsigned Idx;
1684   if (!Operands.hasOperandNamed(OperandName, Idx))
1685     PrintFatalError(II->TheDef->getLoc(),
1686                     "error: unable to find operand: '" + OperandName + "'");
1687 
1688   // If the instruction operand has multiple suboperands, but the parser
1689   // match class for the asm operand is still the default "ImmAsmOperand",
1690   // then handle each suboperand separately.
1691   if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
1692     Record *Rec = Operands[Idx].Rec;
1693     assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
1694     Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1695     if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
1696       // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
1697       StringRef Token = Op->Token; // save this in case Op gets moved
1698       for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
1699         MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token);
1700         NewAsmOp.SubOpIdx = SI;
1701         II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
1702       }
1703       // Replace Op with first suboperand.
1704       Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
1705       Op->SubOpIdx = 0;
1706     }
1707   }
1708 
1709   // Set up the operand class.
1710   Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
1711   Op->OrigSrcOpName = OperandName;
1712 
1713   // If the named operand is tied, canonicalize it to the untied operand.
1714   // For example, something like:
1715   //   (outs GPR:$dst), (ins GPR:$src)
1716   // with an asmstring of
1717   //   "inc $src"
1718   // we want to canonicalize to:
1719   //   "inc $dst"
1720   // so that we know how to provide the $dst operand when filling in the result.
1721   int OITied = -1;
1722   if (Operands[Idx].MINumOperands == 1)
1723     OITied = Operands[Idx].getTiedRegister();
1724   if (OITied != -1) {
1725     // The tied operand index is an MIOperand index, find the operand that
1726     // contains it.
1727     std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
1728     OperandName = Operands[Idx.first].Name;
1729     Op->SubOpIdx = Idx.second;
1730   }
1731 
1732   Op->SrcOpName = OperandName;
1733 }
1734 
1735 /// buildAliasOperandReference - When parsing an operand reference out of the
1736 /// matching string (e.g. "movsx $src, $dst"), determine what the class of the
1737 /// operand reference is by looking it up in the result pattern definition.
1738 void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II,
1739                                                 StringRef OperandName,
1740                                                 MatchableInfo::AsmOperand &Op) {
1741   const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
1742 
1743   // Set up the operand class.
1744   for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
1745     if (CGA.ResultOperands[i].isRecord() &&
1746         CGA.ResultOperands[i].getName() == OperandName) {
1747       // It's safe to go with the first one we find, because CodeGenInstAlias
1748       // validates that all operands with the same name have the same record.
1749       Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
1750       // Use the match class from the Alias definition, not the
1751       // destination instruction, as we may have an immediate that's
1752       // being munged by the match class.
1753       Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
1754                                  Op.SubOpIdx);
1755       Op.SrcOpName = OperandName;
1756       Op.OrigSrcOpName = OperandName;
1757       return;
1758     }
1759 
1760   PrintFatalError(II->TheDef->getLoc(),
1761                   "error: unable to find operand: '" + OperandName + "'");
1762 }
1763 
1764 void MatchableInfo::buildInstructionResultOperands() {
1765   const CodeGenInstruction *ResultInst = getResultInst();
1766 
1767   // Loop over all operands of the result instruction, determining how to
1768   // populate them.
1769   for (const CGIOperandList::OperandInfo &OpInfo : ResultInst->Operands) {
1770     // If this is a tied operand, just copy from the previously handled operand.
1771     int TiedOp = -1;
1772     if (OpInfo.MINumOperands == 1)
1773       TiedOp = OpInfo.getTiedRegister();
1774     if (TiedOp != -1) {
1775       int TiedSrcOperand = findAsmOperandOriginallyNamed(OpInfo.Name);
1776       if (TiedSrcOperand != -1 &&
1777           ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand)
1778         ResOperands.push_back(ResOperand::getTiedOp(
1779             TiedOp, ResOperands[TiedOp].AsmOperandNum, TiedSrcOperand));
1780       else
1781         ResOperands.push_back(ResOperand::getTiedOp(TiedOp, 0, 0));
1782       continue;
1783     }
1784 
1785     int SrcOperand = findAsmOperandNamed(OpInfo.Name);
1786     if (OpInfo.Name.empty() || SrcOperand == -1) {
1787       // This may happen for operands that are tied to a suboperand of a
1788       // complex operand.  Simply use a dummy value here; nobody should
1789       // use this operand slot.
1790       // FIXME: The long term goal is for the MCOperand list to not contain
1791       // tied operands at all.
1792       ResOperands.push_back(ResOperand::getImmOp(0));
1793       continue;
1794     }
1795 
1796     // Check if the one AsmOperand populates the entire operand.
1797     unsigned NumOperands = OpInfo.MINumOperands;
1798     if (AsmOperands[SrcOperand].SubOpIdx == -1) {
1799       ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
1800       continue;
1801     }
1802 
1803     // Add a separate ResOperand for each suboperand.
1804     for (unsigned AI = 0; AI < NumOperands; ++AI) {
1805       assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
1806              AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
1807              "unexpected AsmOperands for suboperands");
1808       ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
1809     }
1810   }
1811 }
1812 
1813 void MatchableInfo::buildAliasResultOperands(bool AliasConstraintsAreChecked) {
1814   const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
1815   const CodeGenInstruction *ResultInst = getResultInst();
1816 
1817   // Map of:  $reg -> #lastref
1818   //   where $reg is the name of the operand in the asm string
1819   //   where #lastref is the last processed index where $reg was referenced in
1820   //   the asm string.
1821   SmallDenseMap<StringRef, int> OperandRefs;
1822 
1823   // Loop over all operands of the result instruction, determining how to
1824   // populate them.
1825   unsigned AliasOpNo = 0;
1826   unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
1827   for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1828     const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
1829 
1830     // If this is a tied operand, just copy from the previously handled operand.
1831     int TiedOp = -1;
1832     if (OpInfo->MINumOperands == 1)
1833       TiedOp = OpInfo->getTiedRegister();
1834     if (TiedOp != -1) {
1835       unsigned SrcOp1 = 0;
1836       unsigned SrcOp2 = 0;
1837 
1838       // If an operand has been specified twice in the asm string,
1839       // add the two source operand's indices to the TiedOp so that
1840       // at runtime the 'tied' constraint is checked.
1841       if (ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) {
1842         SrcOp1 = ResOperands[TiedOp].AsmOperandNum;
1843 
1844         // Find the next operand (similarly named operand) in the string.
1845         StringRef Name = AsmOperands[SrcOp1].SrcOpName;
1846         auto Insert = OperandRefs.try_emplace(Name, SrcOp1);
1847         SrcOp2 = findAsmOperandNamed(Name, Insert.first->second);
1848 
1849         // Not updating the record in OperandRefs will cause TableGen
1850         // to fail with an error at the end of this function.
1851         if (AliasConstraintsAreChecked)
1852           Insert.first->second = SrcOp2;
1853 
1854         // In case it only has one reference in the asm string,
1855         // it doesn't need to be checked for tied constraints.
1856         SrcOp2 = (SrcOp2 == (unsigned)-1) ? SrcOp1 : SrcOp2;
1857       }
1858 
1859       ResOperands.push_back(ResOperand::getTiedOp(TiedOp, SrcOp1, SrcOp2));
1860       continue;
1861     }
1862 
1863     // Handle all the suboperands for this operand.
1864     const std::string &OpName = OpInfo->Name;
1865     for ( ; AliasOpNo <  LastOpNo &&
1866             CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
1867       int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1868 
1869       // Find out what operand from the asmparser that this MCInst operand
1870       // comes from.
1871       switch (CGA.ResultOperands[AliasOpNo].Kind) {
1872       case CodeGenInstAlias::ResultOperand::K_Record: {
1873         StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1874         int SrcOperand = findAsmOperand(Name, SubIdx);
1875         if (SrcOperand == -1)
1876           PrintFatalError(TheDef->getLoc(), "Instruction '" +
1877                         TheDef->getName() + "' has operand '" + OpName +
1878                         "' that doesn't appear in asm string!");
1879 
1880         // Add it to the operand references. If it is added a second time, the
1881         // record won't be updated and it will fail later on.
1882         OperandRefs.try_emplace(Name, SrcOperand);
1883 
1884         unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
1885         ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
1886                                                         NumOperands));
1887         break;
1888       }
1889       case CodeGenInstAlias::ResultOperand::K_Imm: {
1890         int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
1891         ResOperands.push_back(ResOperand::getImmOp(ImmVal));
1892         break;
1893       }
1894       case CodeGenInstAlias::ResultOperand::K_Reg: {
1895         Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
1896         ResOperands.push_back(ResOperand::getRegOp(Reg));
1897         break;
1898       }
1899       }
1900     }
1901   }
1902 
1903   // Check that operands are not repeated more times than is supported.
1904   for (auto &T : OperandRefs) {
1905     if (T.second != -1 && findAsmOperandNamed(T.first, T.second) != -1)
1906       PrintFatalError(TheDef->getLoc(),
1907                       "Operand '" + T.first + "' can never be matched");
1908   }
1909 }
1910 
1911 static unsigned
1912 getConverterOperandID(const std::string &Name,
1913                       SmallSetVector<CachedHashString, 16> &Table,
1914                       bool &IsNew) {
1915   IsNew = Table.insert(CachedHashString(Name));
1916 
1917   unsigned ID = IsNew ? Table.size() - 1 : find(Table, Name) - Table.begin();
1918 
1919   assert(ID < Table.size());
1920 
1921   return ID;
1922 }
1923 
1924 static void emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName,
1925                              std::vector<std::unique_ptr<MatchableInfo>> &Infos,
1926                              bool HasMnemonicFirst, bool HasOptionalOperands,
1927                              raw_ostream &OS) {
1928   SmallSetVector<CachedHashString, 16> OperandConversionKinds;
1929   SmallSetVector<CachedHashString, 16> InstructionConversionKinds;
1930   std::vector<std::vector<uint8_t> > ConversionTable;
1931   size_t MaxRowLength = 2; // minimum is custom converter plus terminator.
1932 
1933   // TargetOperandClass - This is the target's operand class, like X86Operand.
1934   std::string TargetOperandClass = Target.getName().str() + "Operand";
1935 
1936   // Write the convert function to a separate stream, so we can drop it after
1937   // the enum. We'll build up the conversion handlers for the individual
1938   // operand types opportunistically as we encounter them.
1939   std::string ConvertFnBody;
1940   raw_string_ostream CvtOS(ConvertFnBody);
1941   // Start the unified conversion function.
1942   if (HasOptionalOperands) {
1943     CvtOS << "void " << Target.getName() << ClassName << "::\n"
1944           << "convertToMCInst(unsigned Kind, MCInst &Inst, "
1945           << "unsigned Opcode,\n"
1946           << "                const OperandVector &Operands,\n"
1947           << "                const SmallBitVector &OptionalOperandsMask) {\n";
1948   } else {
1949     CvtOS << "void " << Target.getName() << ClassName << "::\n"
1950           << "convertToMCInst(unsigned Kind, MCInst &Inst, "
1951           << "unsigned Opcode,\n"
1952           << "                const OperandVector &Operands) {\n";
1953   }
1954   CvtOS << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n";
1955   CvtOS << "  const uint8_t *Converter = ConversionTable[Kind];\n";
1956   if (HasOptionalOperands) {
1957     size_t MaxNumOperands = 0;
1958     for (const auto &MI : Infos) {
1959       MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
1960     }
1961     CvtOS << "  unsigned DefaultsOffset[" << (MaxNumOperands + 1)
1962           << "] = { 0 };\n";
1963     CvtOS << "  assert(OptionalOperandsMask.size() == " << (MaxNumOperands)
1964           << ");\n";
1965     CvtOS << "  for (unsigned i = 0, NumDefaults = 0; i < " << (MaxNumOperands)
1966           << "; ++i) {\n";
1967     CvtOS << "    DefaultsOffset[i + 1] = NumDefaults;\n";
1968     CvtOS << "    NumDefaults += (OptionalOperandsMask[i] ? 1 : 0);\n";
1969     CvtOS << "  }\n";
1970   }
1971   CvtOS << "  unsigned OpIdx;\n";
1972   CvtOS << "  Inst.setOpcode(Opcode);\n";
1973   CvtOS << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n";
1974   if (HasOptionalOperands) {
1975     CvtOS << "    OpIdx = *(p + 1) - DefaultsOffset[*(p + 1)];\n";
1976   } else {
1977     CvtOS << "    OpIdx = *(p + 1);\n";
1978   }
1979   CvtOS << "    switch (*p) {\n";
1980   CvtOS << "    default: llvm_unreachable(\"invalid conversion entry!\");\n";
1981   CvtOS << "    case CVT_Reg:\n";
1982   CvtOS << "      static_cast<" << TargetOperandClass
1983         << "&>(*Operands[OpIdx]).addRegOperands(Inst, 1);\n";
1984   CvtOS << "      break;\n";
1985   CvtOS << "    case CVT_Tied: {\n";
1986   CvtOS << "      assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n";
1987   CvtOS << "                          std::begin(TiedAsmOperandTable)) &&\n";
1988   CvtOS << "             \"Tied operand not found\");\n";
1989   CvtOS << "      unsigned TiedResOpnd = TiedAsmOperandTable[OpIdx][0];\n";
1990   CvtOS << "      Inst.addOperand(Inst.getOperand(TiedResOpnd));\n";
1991   CvtOS << "      break;\n";
1992   CvtOS << "    }\n";
1993 
1994   std::string OperandFnBody;
1995   raw_string_ostream OpOS(OperandFnBody);
1996   // Start the operand number lookup function.
1997   OpOS << "void " << Target.getName() << ClassName << "::\n"
1998        << "convertToMapAndConstraints(unsigned Kind,\n";
1999   OpOS.indent(27);
2000   OpOS << "const OperandVector &Operands) {\n"
2001        << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
2002        << "  unsigned NumMCOperands = 0;\n"
2003        << "  const uint8_t *Converter = ConversionTable[Kind];\n"
2004        << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n"
2005        << "    switch (*p) {\n"
2006        << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
2007        << "    case CVT_Reg:\n"
2008        << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2009        << "      Operands[*(p + 1)]->setConstraint(\"r\");\n"
2010        << "      ++NumMCOperands;\n"
2011        << "      break;\n"
2012        << "    case CVT_Tied:\n"
2013        << "      ++NumMCOperands;\n"
2014        << "      break;\n";
2015 
2016   // Pre-populate the operand conversion kinds with the standard always
2017   // available entries.
2018   OperandConversionKinds.insert(CachedHashString("CVT_Done"));
2019   OperandConversionKinds.insert(CachedHashString("CVT_Reg"));
2020   OperandConversionKinds.insert(CachedHashString("CVT_Tied"));
2021   enum { CVT_Done, CVT_Reg, CVT_Tied };
2022 
2023   // Map of e.g. <0, 2, 3> -> "Tie_0_2_3" enum label.
2024   std::map<std::tuple<unsigned, unsigned, unsigned>, std::string>
2025   TiedOperandsEnumMap;
2026 
2027   for (auto &II : Infos) {
2028     // Check if we have a custom match function.
2029     StringRef AsmMatchConverter =
2030         II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
2031     if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) {
2032       std::string Signature = ("ConvertCustom_" + AsmMatchConverter).str();
2033       II->ConversionFnKind = Signature;
2034 
2035       // Check if we have already generated this signature.
2036       if (!InstructionConversionKinds.insert(CachedHashString(Signature)))
2037         continue;
2038 
2039       // Remember this converter for the kind enum.
2040       unsigned KindID = OperandConversionKinds.size();
2041       OperandConversionKinds.insert(
2042           CachedHashString("CVT_" + getEnumNameForToken(AsmMatchConverter)));
2043 
2044       // Add the converter row for this instruction.
2045       ConversionTable.emplace_back();
2046       ConversionTable.back().push_back(KindID);
2047       ConversionTable.back().push_back(CVT_Done);
2048 
2049       // Add the handler to the conversion driver function.
2050       CvtOS << "    case CVT_"
2051             << getEnumNameForToken(AsmMatchConverter) << ":\n"
2052             << "      " << AsmMatchConverter << "(Inst, Operands);\n"
2053             << "      break;\n";
2054 
2055       // FIXME: Handle the operand number lookup for custom match functions.
2056       continue;
2057     }
2058 
2059     // Build the conversion function signature.
2060     std::string Signature = "Convert";
2061 
2062     std::vector<uint8_t> ConversionRow;
2063 
2064     // Compute the convert enum and the case body.
2065     MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 );
2066 
2067     for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) {
2068       const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i];
2069 
2070       // Generate code to populate each result operand.
2071       switch (OpInfo.Kind) {
2072       case MatchableInfo::ResOperand::RenderAsmOperand: {
2073         // This comes from something we parsed.
2074         const MatchableInfo::AsmOperand &Op =
2075           II->AsmOperands[OpInfo.AsmOperandNum];
2076 
2077         // Registers are always converted the same, don't duplicate the
2078         // conversion function based on them.
2079         Signature += "__";
2080         std::string Class;
2081         Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName;
2082         Signature += Class;
2083         Signature += utostr(OpInfo.MINumOperands);
2084         Signature += "_" + itostr(OpInfo.AsmOperandNum);
2085 
2086         // Add the conversion kind, if necessary, and get the associated ID
2087         // the index of its entry in the vector).
2088         std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" :
2089                                      Op.Class->RenderMethod);
2090         if (Op.Class->IsOptional) {
2091           // For optional operands we must also care about DefaultMethod
2092           assert(HasOptionalOperands);
2093           Name += "_" + Op.Class->DefaultMethod;
2094         }
2095         Name = getEnumNameForToken(Name);
2096 
2097         bool IsNewConverter = false;
2098         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
2099                                             IsNewConverter);
2100 
2101         // Add the operand entry to the instruction kind conversion row.
2102         ConversionRow.push_back(ID);
2103         ConversionRow.push_back(OpInfo.AsmOperandNum + HasMnemonicFirst);
2104 
2105         if (!IsNewConverter)
2106           break;
2107 
2108         // This is a new operand kind. Add a handler for it to the
2109         // converter driver.
2110         CvtOS << "    case " << Name << ":\n";
2111         if (Op.Class->IsOptional) {
2112           // If optional operand is not present in actual instruction then we
2113           // should call its DefaultMethod before RenderMethod
2114           assert(HasOptionalOperands);
2115           CvtOS << "      if (OptionalOperandsMask[*(p + 1) - 1]) {\n"
2116                 << "        " << Op.Class->DefaultMethod << "()"
2117                 << "->" << Op.Class->RenderMethod << "(Inst, "
2118                 << OpInfo.MINumOperands << ");\n"
2119                 << "      } else {\n"
2120                 << "        static_cast<" << TargetOperandClass
2121                 << "&>(*Operands[OpIdx])." << Op.Class->RenderMethod
2122                 << "(Inst, " << OpInfo.MINumOperands << ");\n"
2123                 << "      }\n";
2124         } else {
2125           CvtOS << "      static_cast<" << TargetOperandClass
2126                 << "&>(*Operands[OpIdx])." << Op.Class->RenderMethod
2127                 << "(Inst, " << OpInfo.MINumOperands << ");\n";
2128         }
2129         CvtOS << "      break;\n";
2130 
2131         // Add a handler for the operand number lookup.
2132         OpOS << "    case " << Name << ":\n"
2133              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n";
2134 
2135         if (Op.Class->isRegisterClass())
2136           OpOS << "      Operands[*(p + 1)]->setConstraint(\"r\");\n";
2137         else
2138           OpOS << "      Operands[*(p + 1)]->setConstraint(\"m\");\n";
2139         OpOS << "      NumMCOperands += " << OpInfo.MINumOperands << ";\n"
2140              << "      break;\n";
2141         break;
2142       }
2143       case MatchableInfo::ResOperand::TiedOperand: {
2144         // If this operand is tied to a previous one, just copy the MCInst
2145         // operand from the earlier one.We can only tie single MCOperand values.
2146         assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
2147         unsigned TiedOp = OpInfo.TiedOperands.ResOpnd;
2148         unsigned SrcOp1 = OpInfo.TiedOperands.SrcOpnd1Idx + HasMnemonicFirst;
2149         unsigned SrcOp2 = OpInfo.TiedOperands.SrcOpnd2Idx + HasMnemonicFirst;
2150         assert(i > TiedOp && "Tied operand precedes its target!");
2151         auto TiedTupleName = std::string("Tie") + utostr(TiedOp) + '_' +
2152                              utostr(SrcOp1) + '_' + utostr(SrcOp2);
2153         Signature += "__" + TiedTupleName;
2154         ConversionRow.push_back(CVT_Tied);
2155         ConversionRow.push_back(TiedOp);
2156         ConversionRow.push_back(SrcOp1);
2157         ConversionRow.push_back(SrcOp2);
2158 
2159         // Also create an 'enum' for this combination of tied operands.
2160         auto Key = std::make_tuple(TiedOp, SrcOp1, SrcOp2);
2161         TiedOperandsEnumMap.emplace(Key, TiedTupleName);
2162         break;
2163       }
2164       case MatchableInfo::ResOperand::ImmOperand: {
2165         int64_t Val = OpInfo.ImmVal;
2166         std::string Ty = "imm_" + itostr(Val);
2167         Ty = getEnumNameForToken(Ty);
2168         Signature += "__" + Ty;
2169 
2170         std::string Name = "CVT_" + Ty;
2171         bool IsNewConverter = false;
2172         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
2173                                             IsNewConverter);
2174         // Add the operand entry to the instruction kind conversion row.
2175         ConversionRow.push_back(ID);
2176         ConversionRow.push_back(0);
2177 
2178         if (!IsNewConverter)
2179           break;
2180 
2181         CvtOS << "    case " << Name << ":\n"
2182               << "      Inst.addOperand(MCOperand::createImm(" << Val << "));\n"
2183               << "      break;\n";
2184 
2185         OpOS << "    case " << Name << ":\n"
2186              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2187              << "      Operands[*(p + 1)]->setConstraint(\"\");\n"
2188              << "      ++NumMCOperands;\n"
2189              << "      break;\n";
2190         break;
2191       }
2192       case MatchableInfo::ResOperand::RegOperand: {
2193         std::string Reg, Name;
2194         if (!OpInfo.Register) {
2195           Name = "reg0";
2196           Reg = "0";
2197         } else {
2198           Reg = getQualifiedName(OpInfo.Register);
2199           Name = "reg" + OpInfo.Register->getName().str();
2200         }
2201         Signature += "__" + Name;
2202         Name = "CVT_" + Name;
2203         bool IsNewConverter = false;
2204         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
2205                                             IsNewConverter);
2206         // Add the operand entry to the instruction kind conversion row.
2207         ConversionRow.push_back(ID);
2208         ConversionRow.push_back(0);
2209 
2210         if (!IsNewConverter)
2211           break;
2212         CvtOS << "    case " << Name << ":\n"
2213               << "      Inst.addOperand(MCOperand::createReg(" << Reg << "));\n"
2214               << "      break;\n";
2215 
2216         OpOS << "    case " << Name << ":\n"
2217              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2218              << "      Operands[*(p + 1)]->setConstraint(\"m\");\n"
2219              << "      ++NumMCOperands;\n"
2220              << "      break;\n";
2221       }
2222       }
2223     }
2224 
2225     // If there were no operands, add to the signature to that effect
2226     if (Signature == "Convert")
2227       Signature += "_NoOperands";
2228 
2229     II->ConversionFnKind = Signature;
2230 
2231     // Save the signature. If we already have it, don't add a new row
2232     // to the table.
2233     if (!InstructionConversionKinds.insert(CachedHashString(Signature)))
2234       continue;
2235 
2236     // Add the row to the table.
2237     ConversionTable.push_back(std::move(ConversionRow));
2238   }
2239 
2240   // Finish up the converter driver function.
2241   CvtOS << "    }\n  }\n}\n\n";
2242 
2243   // Finish up the operand number lookup function.
2244   OpOS << "    }\n  }\n}\n\n";
2245 
2246   // Output a static table for tied operands.
2247   if (TiedOperandsEnumMap.size()) {
2248     // The number of tied operand combinations will be small in practice,
2249     // but just add the assert to be sure.
2250     assert(TiedOperandsEnumMap.size() <= 255 &&
2251            "Too many tied-operand combinations to reference with "
2252            "an 8bit offset from the conversion table");
2253 
2254     OS << "enum {\n";
2255     for (auto &KV : TiedOperandsEnumMap) {
2256       OS << "  " << KV.second << ",\n";
2257     }
2258     OS << "};\n\n";
2259 
2260     OS << "const char TiedAsmOperandTable[][3] = {\n";
2261     for (auto &KV : TiedOperandsEnumMap) {
2262       OS << "  /* " << KV.second << " */ { " << std::get<0>(KV.first) << ", "
2263          << std::get<1>(KV.first) << ", " << std::get<2>(KV.first) << " },\n";
2264     }
2265     OS << "};\n\n";
2266   } else
2267     OS << "const char TiedAsmOperandTable[][3] = { /* empty  */ {0, 0, 0} "
2268           "};\n\n";
2269 
2270   OS << "namespace {\n";
2271 
2272   // Output the operand conversion kind enum.
2273   OS << "enum OperatorConversionKind {\n";
2274   for (const auto &Converter : OperandConversionKinds)
2275     OS << "  " << Converter << ",\n";
2276   OS << "  CVT_NUM_CONVERTERS\n";
2277   OS << "};\n\n";
2278 
2279   // Output the instruction conversion kind enum.
2280   OS << "enum InstructionConversionKind {\n";
2281   for (const auto &Signature : InstructionConversionKinds)
2282     OS << "  " << Signature << ",\n";
2283   OS << "  CVT_NUM_SIGNATURES\n";
2284   OS << "};\n\n";
2285 
2286   OS << "} // end anonymous namespace\n\n";
2287 
2288   // Output the conversion table.
2289   OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES]["
2290      << MaxRowLength << "] = {\n";
2291 
2292   for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) {
2293     assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!");
2294     OS << "  // " << InstructionConversionKinds[Row] << "\n";
2295     OS << "  { ";
2296     for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2) {
2297       OS << OperandConversionKinds[ConversionTable[Row][i]] << ", ";
2298       if (OperandConversionKinds[ConversionTable[Row][i]] !=
2299           CachedHashString("CVT_Tied")) {
2300         OS << (unsigned)(ConversionTable[Row][i + 1]) << ", ";
2301         continue;
2302       }
2303 
2304       // For a tied operand, emit a reference to the TiedAsmOperandTable
2305       // that contains the operand to copy, and the parsed operands to
2306       // check for their tied constraints.
2307       auto Key = std::make_tuple((unsigned)ConversionTable[Row][i + 1],
2308                                  (unsigned)ConversionTable[Row][i + 2],
2309                                  (unsigned)ConversionTable[Row][i + 3]);
2310       auto TiedOpndEnum = TiedOperandsEnumMap.find(Key);
2311       assert(TiedOpndEnum != TiedOperandsEnumMap.end() &&
2312              "No record for tied operand pair");
2313       OS << TiedOpndEnum->second << ", ";
2314       i += 2;
2315     }
2316     OS << "CVT_Done },\n";
2317   }
2318 
2319   OS << "};\n\n";
2320 
2321   // Spit out the conversion driver function.
2322   OS << CvtOS.str();
2323 
2324   // Spit out the operand number lookup function.
2325   OS << OpOS.str();
2326 }
2327 
2328 /// emitMatchClassEnumeration - Emit the enumeration for match class kinds.
2329 static void emitMatchClassEnumeration(CodeGenTarget &Target,
2330                                       std::forward_list<ClassInfo> &Infos,
2331                                       raw_ostream &OS) {
2332   OS << "namespace {\n\n";
2333 
2334   OS << "/// MatchClassKind - The kinds of classes which participate in\n"
2335      << "/// instruction matching.\n";
2336   OS << "enum MatchClassKind {\n";
2337   OS << "  InvalidMatchClass = 0,\n";
2338   OS << "  OptionalMatchClass = 1,\n";
2339   ClassInfo::ClassInfoKind LastKind = ClassInfo::Token;
2340   StringRef LastName = "OptionalMatchClass";
2341   for (const auto &CI : Infos) {
2342     if (LastKind == ClassInfo::Token && CI.Kind != ClassInfo::Token) {
2343       OS << "  MCK_LAST_TOKEN = " << LastName << ",\n";
2344     } else if (LastKind < ClassInfo::UserClass0 &&
2345                CI.Kind >= ClassInfo::UserClass0) {
2346       OS << "  MCK_LAST_REGISTER = " << LastName << ",\n";
2347     }
2348     LastKind = (ClassInfo::ClassInfoKind)CI.Kind;
2349     LastName = CI.Name;
2350 
2351     OS << "  " << CI.Name << ", // ";
2352     if (CI.Kind == ClassInfo::Token) {
2353       OS << "'" << CI.ValueName << "'\n";
2354     } else if (CI.isRegisterClass()) {
2355       if (!CI.ValueName.empty())
2356         OS << "register class '" << CI.ValueName << "'\n";
2357       else
2358         OS << "derived register class\n";
2359     } else {
2360       OS << "user defined class '" << CI.ValueName << "'\n";
2361     }
2362   }
2363   OS << "  NumMatchClassKinds\n";
2364   OS << "};\n\n";
2365 
2366   OS << "}\n\n";
2367 }
2368 
2369 /// emitMatchClassDiagStrings - Emit a function to get the diagnostic text to be
2370 /// used when an assembly operand does not match the expected operand class.
2371 static void emitOperandMatchErrorDiagStrings(AsmMatcherInfo &Info, raw_ostream &OS) {
2372   // If the target does not use DiagnosticString for any operands, don't emit
2373   // an unused function.
2374   if (std::all_of(
2375           Info.Classes.begin(), Info.Classes.end(),
2376           [](const ClassInfo &CI) { return CI.DiagnosticString.empty(); }))
2377     return;
2378 
2379   OS << "static const char *getMatchKindDiag(" << Info.Target.getName()
2380      << "AsmParser::" << Info.Target.getName()
2381      << "MatchResultTy MatchResult) {\n";
2382   OS << "  switch (MatchResult) {\n";
2383 
2384   for (const auto &CI: Info.Classes) {
2385     if (!CI.DiagnosticString.empty()) {
2386       assert(!CI.DiagnosticType.empty() &&
2387              "DiagnosticString set without DiagnosticType");
2388       OS << "  case " << Info.Target.getName()
2389          << "AsmParser::Match_" << CI.DiagnosticType << ":\n";
2390       OS << "    return \"" << CI.DiagnosticString << "\";\n";
2391     }
2392   }
2393 
2394   OS << "  default:\n";
2395   OS << "    return nullptr;\n";
2396 
2397   OS << "  }\n";
2398   OS << "}\n\n";
2399 }
2400 
2401 static void emitRegisterMatchErrorFunc(AsmMatcherInfo &Info, raw_ostream &OS) {
2402   OS << "static unsigned getDiagKindFromRegisterClass(MatchClassKind "
2403         "RegisterClass) {\n";
2404   if (std::none_of(Info.Classes.begin(), Info.Classes.end(),
2405                    [](const ClassInfo &CI) {
2406                      return CI.isRegisterClass() && !CI.DiagnosticType.empty();
2407                    })) {
2408     OS << "  return MCTargetAsmParser::Match_InvalidOperand;\n";
2409   } else {
2410     OS << "  switch (RegisterClass) {\n";
2411     for (const auto &CI: Info.Classes) {
2412       if (CI.isRegisterClass() && !CI.DiagnosticType.empty()) {
2413         OS << "  case " << CI.Name << ":\n";
2414         OS << "    return " << Info.Target.getName() << "AsmParser::Match_"
2415            << CI.DiagnosticType << ";\n";
2416       }
2417     }
2418 
2419     OS << "  default:\n";
2420     OS << "    return MCTargetAsmParser::Match_InvalidOperand;\n";
2421 
2422     OS << "  }\n";
2423   }
2424   OS << "}\n\n";
2425 }
2426 
2427 /// emitValidateOperandClass - Emit the function to validate an operand class.
2428 static void emitValidateOperandClass(AsmMatcherInfo &Info,
2429                                      raw_ostream &OS) {
2430   OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, "
2431      << "MatchClassKind Kind) {\n";
2432   OS << "  " << Info.Target.getName() << "Operand &Operand = ("
2433      << Info.Target.getName() << "Operand&)GOp;\n";
2434 
2435   // The InvalidMatchClass is not to match any operand.
2436   OS << "  if (Kind == InvalidMatchClass)\n";
2437   OS << "    return MCTargetAsmParser::Match_InvalidOperand;\n\n";
2438 
2439   // Check for Token operands first.
2440   // FIXME: Use a more specific diagnostic type.
2441   OS << "  if (Operand.isToken() && Kind <= MCK_LAST_TOKEN)\n";
2442   OS << "    return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n"
2443      << "             MCTargetAsmParser::Match_Success :\n"
2444      << "             MCTargetAsmParser::Match_InvalidOperand;\n\n";
2445 
2446   // Check the user classes. We don't care what order since we're only
2447   // actually matching against one of them.
2448   OS << "  switch (Kind) {\n"
2449         "  default: break;\n";
2450   for (const auto &CI : Info.Classes) {
2451     if (!CI.isUserClass())
2452       continue;
2453 
2454     OS << "  // '" << CI.ClassName << "' class\n";
2455     OS << "  case " << CI.Name << ": {\n";
2456     OS << "    DiagnosticPredicate DP(Operand." << CI.PredicateMethod
2457        << "());\n";
2458     OS << "    if (DP.isMatch())\n";
2459     OS << "      return MCTargetAsmParser::Match_Success;\n";
2460     if (!CI.DiagnosticType.empty()) {
2461       OS << "    if (DP.isNearMatch())\n";
2462       OS << "      return " << Info.Target.getName() << "AsmParser::Match_"
2463          << CI.DiagnosticType << ";\n";
2464       OS << "    break;\n";
2465     }
2466     else
2467       OS << "    break;\n";
2468     OS << "    }\n";
2469   }
2470   OS << "  } // end switch (Kind)\n\n";
2471 
2472   // Check for register operands, including sub-classes.
2473   OS << "  if (Operand.isReg()) {\n";
2474   OS << "    MatchClassKind OpKind;\n";
2475   OS << "    switch (Operand.getReg()) {\n";
2476   OS << "    default: OpKind = InvalidMatchClass; break;\n";
2477   for (const auto &RC : Info.RegisterClasses)
2478     OS << "    case " << RC.first->getValueAsString("Namespace") << "::"
2479        << RC.first->getName() << ": OpKind = " << RC.second->Name
2480        << "; break;\n";
2481   OS << "    }\n";
2482   OS << "    return isSubclass(OpKind, Kind) ? "
2483      << "(unsigned)MCTargetAsmParser::Match_Success :\n                     "
2484      << "                 getDiagKindFromRegisterClass(Kind);\n  }\n\n";
2485 
2486   // Expected operand is a register, but actual is not.
2487   OS << "  if (Kind > MCK_LAST_TOKEN && Kind <= MCK_LAST_REGISTER)\n";
2488   OS << "    return getDiagKindFromRegisterClass(Kind);\n\n";
2489 
2490   // Generic fallthrough match failure case for operands that don't have
2491   // specialized diagnostic types.
2492   OS << "  return MCTargetAsmParser::Match_InvalidOperand;\n";
2493   OS << "}\n\n";
2494 }
2495 
2496 /// emitIsSubclass - Emit the subclass predicate function.
2497 static void emitIsSubclass(CodeGenTarget &Target,
2498                            std::forward_list<ClassInfo> &Infos,
2499                            raw_ostream &OS) {
2500   OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n";
2501   OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
2502   OS << "  if (A == B)\n";
2503   OS << "    return true;\n\n";
2504 
2505   bool EmittedSwitch = false;
2506   for (const auto &A : Infos) {
2507     std::vector<StringRef> SuperClasses;
2508     if (A.IsOptional)
2509       SuperClasses.push_back("OptionalMatchClass");
2510     for (const auto &B : Infos) {
2511       if (&A != &B && A.isSubsetOf(B))
2512         SuperClasses.push_back(B.Name);
2513     }
2514 
2515     if (SuperClasses.empty())
2516       continue;
2517 
2518     // If this is the first SuperClass, emit the switch header.
2519     if (!EmittedSwitch) {
2520       OS << "  switch (A) {\n";
2521       OS << "  default:\n";
2522       OS << "    return false;\n";
2523       EmittedSwitch = true;
2524     }
2525 
2526     OS << "\n  case " << A.Name << ":\n";
2527 
2528     if (SuperClasses.size() == 1) {
2529       OS << "    return B == " << SuperClasses.back() << ";\n";
2530       continue;
2531     }
2532 
2533     if (!SuperClasses.empty()) {
2534       OS << "    switch (B) {\n";
2535       OS << "    default: return false;\n";
2536       for (StringRef SC : SuperClasses)
2537         OS << "    case " << SC << ": return true;\n";
2538       OS << "    }\n";
2539     } else {
2540       // No case statement to emit
2541       OS << "    return false;\n";
2542     }
2543   }
2544 
2545   // If there were case statements emitted into the string stream write the
2546   // default.
2547   if (EmittedSwitch)
2548     OS << "  }\n";
2549   else
2550     OS << "  return false;\n";
2551 
2552   OS << "}\n\n";
2553 }
2554 
2555 /// emitMatchTokenString - Emit the function to match a token string to the
2556 /// appropriate match class value.
2557 static void emitMatchTokenString(CodeGenTarget &Target,
2558                                  std::forward_list<ClassInfo> &Infos,
2559                                  raw_ostream &OS) {
2560   // Construct the match list.
2561   std::vector<StringMatcher::StringPair> Matches;
2562   for (const auto &CI : Infos) {
2563     if (CI.Kind == ClassInfo::Token)
2564       Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";");
2565   }
2566 
2567   OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
2568 
2569   StringMatcher("Name", Matches, OS).Emit();
2570 
2571   OS << "  return InvalidMatchClass;\n";
2572   OS << "}\n\n";
2573 }
2574 
2575 /// emitMatchRegisterName - Emit the function to match a string to the target
2576 /// specific register enum.
2577 static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
2578                                   raw_ostream &OS) {
2579   // Construct the match list.
2580   std::vector<StringMatcher::StringPair> Matches;
2581   const auto &Regs = Target.getRegBank().getRegisters();
2582   for (const CodeGenRegister &Reg : Regs) {
2583     if (Reg.TheDef->getValueAsString("AsmName").empty())
2584       continue;
2585 
2586     Matches.emplace_back(Reg.TheDef->getValueAsString("AsmName"),
2587                          "return " + utostr(Reg.EnumValue) + ";");
2588   }
2589 
2590   OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
2591 
2592   bool IgnoreDuplicates =
2593       AsmParser->getValueAsBit("AllowDuplicateRegisterNames");
2594   StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates);
2595 
2596   OS << "  return 0;\n";
2597   OS << "}\n\n";
2598 }
2599 
2600 /// Emit the function to match a string to the target
2601 /// specific register enum.
2602 static void emitMatchRegisterAltName(CodeGenTarget &Target, Record *AsmParser,
2603                                      raw_ostream &OS) {
2604   // Construct the match list.
2605   std::vector<StringMatcher::StringPair> Matches;
2606   const auto &Regs = Target.getRegBank().getRegisters();
2607   for (const CodeGenRegister &Reg : Regs) {
2608 
2609     auto AltNames = Reg.TheDef->getValueAsListOfStrings("AltNames");
2610 
2611     for (auto AltName : AltNames) {
2612       AltName = StringRef(AltName).trim();
2613 
2614       // don't handle empty alternative names
2615       if (AltName.empty())
2616         continue;
2617 
2618       Matches.emplace_back(AltName,
2619                            "return " + utostr(Reg.EnumValue) + ";");
2620     }
2621   }
2622 
2623   OS << "static unsigned MatchRegisterAltName(StringRef Name) {\n";
2624 
2625   bool IgnoreDuplicates =
2626       AsmParser->getValueAsBit("AllowDuplicateRegisterNames");
2627   StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates);
2628 
2629   OS << "  return 0;\n";
2630   OS << "}\n\n";
2631 }
2632 
2633 /// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types.
2634 static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) {
2635   // Get the set of diagnostic types from all of the operand classes.
2636   std::set<StringRef> Types;
2637   for (const auto &OpClassEntry : Info.AsmOperandClasses) {
2638     if (!OpClassEntry.second->DiagnosticType.empty())
2639       Types.insert(OpClassEntry.second->DiagnosticType);
2640   }
2641   for (const auto &OpClassEntry : Info.RegisterClassClasses) {
2642     if (!OpClassEntry.second->DiagnosticType.empty())
2643       Types.insert(OpClassEntry.second->DiagnosticType);
2644   }
2645 
2646   if (Types.empty()) return;
2647 
2648   // Now emit the enum entries.
2649   for (StringRef Type : Types)
2650     OS << "  Match_" << Type << ",\n";
2651   OS << "  END_OPERAND_DIAGNOSTIC_TYPES\n";
2652 }
2653 
2654 /// emitGetSubtargetFeatureName - Emit the helper function to get the
2655 /// user-level name for a subtarget feature.
2656 static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) {
2657   OS << "// User-level names for subtarget features that participate in\n"
2658      << "// instruction matching.\n"
2659      << "static const char *getSubtargetFeatureName(uint64_t Val) {\n";
2660   if (!Info.SubtargetFeatures.empty()) {
2661     OS << "  switch(Val) {\n";
2662     for (const auto &SF : Info.SubtargetFeatures) {
2663       const SubtargetFeatureInfo &SFI = SF.second;
2664       // FIXME: Totally just a placeholder name to get the algorithm working.
2665       OS << "  case " << SFI.getEnumName() << ": return \""
2666          << SFI.TheDef->getValueAsString("PredicateName") << "\";\n";
2667     }
2668     OS << "  default: return \"(unknown)\";\n";
2669     OS << "  }\n";
2670   } else {
2671     // Nothing to emit, so skip the switch
2672     OS << "  return \"(unknown)\";\n";
2673   }
2674   OS << "}\n\n";
2675 }
2676 
2677 static std::string GetAliasRequiredFeatures(Record *R,
2678                                             const AsmMatcherInfo &Info) {
2679   std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
2680   std::string Result;
2681   unsigned NumFeatures = 0;
2682   for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
2683     const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
2684 
2685     if (!F)
2686       PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
2687                     "' is not marked as an AssemblerPredicate!");
2688 
2689     if (NumFeatures)
2690       Result += '|';
2691 
2692     Result += F->getEnumName();
2693     ++NumFeatures;
2694   }
2695 
2696   if (NumFeatures > 1)
2697     Result = '(' + Result + ')';
2698   return Result;
2699 }
2700 
2701 static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info,
2702                                      std::vector<Record*> &Aliases,
2703                                      unsigned Indent = 0,
2704                                   StringRef AsmParserVariantName = StringRef()){
2705   // Keep track of all the aliases from a mnemonic.  Use an std::map so that the
2706   // iteration order of the map is stable.
2707   std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
2708 
2709   for (Record *R : Aliases) {
2710     // FIXME: Allow AssemblerVariantName to be a comma separated list.
2711     StringRef AsmVariantName = R->getValueAsString("AsmVariantName");
2712     if (AsmVariantName != AsmParserVariantName)
2713       continue;
2714     AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
2715   }
2716   if (AliasesFromMnemonic.empty())
2717     return;
2718 
2719   // Process each alias a "from" mnemonic at a time, building the code executed
2720   // by the string remapper.
2721   std::vector<StringMatcher::StringPair> Cases;
2722   for (const auto &AliasEntry : AliasesFromMnemonic) {
2723     const std::vector<Record*> &ToVec = AliasEntry.second;
2724 
2725     // Loop through each alias and emit code that handles each case.  If there
2726     // are two instructions without predicates, emit an error.  If there is one,
2727     // emit it last.
2728     std::string MatchCode;
2729     int AliasWithNoPredicate = -1;
2730 
2731     for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
2732       Record *R = ToVec[i];
2733       std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
2734 
2735       // If this unconditionally matches, remember it for later and diagnose
2736       // duplicates.
2737       if (FeatureMask.empty()) {
2738         if (AliasWithNoPredicate != -1) {
2739           // We can't have two aliases from the same mnemonic with no predicate.
2740           PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
2741                      "two MnemonicAliases with the same 'from' mnemonic!");
2742           PrintFatalError(R->getLoc(), "this is the other MnemonicAlias.");
2743         }
2744 
2745         AliasWithNoPredicate = i;
2746         continue;
2747       }
2748       if (R->getValueAsString("ToMnemonic") == AliasEntry.first)
2749         PrintFatalError(R->getLoc(), "MnemonicAlias to the same string");
2750 
2751       if (!MatchCode.empty())
2752         MatchCode += "else ";
2753       MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
2754       MatchCode += "  Mnemonic = \"";
2755       MatchCode += R->getValueAsString("ToMnemonic");
2756       MatchCode += "\";\n";
2757     }
2758 
2759     if (AliasWithNoPredicate != -1) {
2760       Record *R = ToVec[AliasWithNoPredicate];
2761       if (!MatchCode.empty())
2762         MatchCode += "else\n  ";
2763       MatchCode += "Mnemonic = \"";
2764       MatchCode += R->getValueAsString("ToMnemonic");
2765       MatchCode += "\";\n";
2766     }
2767 
2768     MatchCode += "return;";
2769 
2770     Cases.push_back(std::make_pair(AliasEntry.first, MatchCode));
2771   }
2772   StringMatcher("Mnemonic", Cases, OS).Emit(Indent);
2773 }
2774 
2775 /// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
2776 /// emit a function for them and return true, otherwise return false.
2777 static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info,
2778                                 CodeGenTarget &Target) {
2779   // Ignore aliases when match-prefix is set.
2780   if (!MatchPrefix.empty())
2781     return false;
2782 
2783   std::vector<Record*> Aliases =
2784     Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
2785   if (Aliases.empty()) return false;
2786 
2787   OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
2788     "uint64_t Features, unsigned VariantID) {\n";
2789   OS << "  switch (VariantID) {\n";
2790   unsigned VariantCount = Target.getAsmParserVariantCount();
2791   for (unsigned VC = 0; VC != VariantCount; ++VC) {
2792     Record *AsmVariant = Target.getAsmParserVariant(VC);
2793     int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant");
2794     StringRef AsmParserVariantName = AsmVariant->getValueAsString("Name");
2795     OS << "    case " << AsmParserVariantNo << ":\n";
2796     emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2,
2797                              AsmParserVariantName);
2798     OS << "    break;\n";
2799   }
2800   OS << "  }\n";
2801 
2802   // Emit aliases that apply to all variants.
2803   emitMnemonicAliasVariant(OS, Info, Aliases);
2804 
2805   OS << "}\n\n";
2806 
2807   return true;
2808 }
2809 
2810 static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
2811                               const AsmMatcherInfo &Info, StringRef ClassName,
2812                               StringToOffsetTable &StringTable,
2813                               unsigned MaxMnemonicIndex, bool HasMnemonicFirst) {
2814   unsigned MaxMask = 0;
2815   for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
2816     MaxMask |= OMI.OperandMask;
2817   }
2818 
2819   // Emit the static custom operand parsing table;
2820   OS << "namespace {\n";
2821   OS << "  struct OperandMatchEntry {\n";
2822   OS << "    " << getMinimalTypeForEnumBitfield(Info.SubtargetFeatures.size())
2823                << " RequiredFeatures;\n";
2824   OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
2825                << " Mnemonic;\n";
2826   OS << "    " << getMinimalTypeForRange(std::distance(
2827                       Info.Classes.begin(), Info.Classes.end())) << " Class;\n";
2828   OS << "    " << getMinimalTypeForRange(MaxMask)
2829                << " OperandMask;\n\n";
2830   OS << "    StringRef getMnemonic() const {\n";
2831   OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
2832   OS << "                       MnemonicTable[Mnemonic]);\n";
2833   OS << "    }\n";
2834   OS << "  };\n\n";
2835 
2836   OS << "  // Predicate for searching for an opcode.\n";
2837   OS << "  struct LessOpcodeOperand {\n";
2838   OS << "    bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
2839   OS << "      return LHS.getMnemonic()  < RHS;\n";
2840   OS << "    }\n";
2841   OS << "    bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
2842   OS << "      return LHS < RHS.getMnemonic();\n";
2843   OS << "    }\n";
2844   OS << "    bool operator()(const OperandMatchEntry &LHS,";
2845   OS << " const OperandMatchEntry &RHS) {\n";
2846   OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
2847   OS << "    }\n";
2848   OS << "  };\n";
2849 
2850   OS << "} // end anonymous namespace.\n\n";
2851 
2852   OS << "static const OperandMatchEntry OperandMatchTable["
2853      << Info.OperandMatchInfo.size() << "] = {\n";
2854 
2855   OS << "  /* Operand List Mask, Mnemonic, Operand Class, Features */\n";
2856   for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
2857     const MatchableInfo &II = *OMI.MI;
2858 
2859     OS << "  { ";
2860 
2861     // Write the required features mask.
2862     if (!II.RequiredFeatures.empty()) {
2863       for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
2864         if (i) OS << "|";
2865         OS << II.RequiredFeatures[i]->getEnumName();
2866       }
2867     } else
2868       OS << "0";
2869 
2870     // Store a pascal-style length byte in the mnemonic.
2871     std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
2872     OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
2873        << " /* " << II.Mnemonic << " */, ";
2874 
2875     OS << OMI.CI->Name;
2876 
2877     OS << ", " << OMI.OperandMask;
2878     OS << " /* ";
2879     bool printComma = false;
2880     for (int i = 0, e = 31; i !=e; ++i)
2881       if (OMI.OperandMask & (1 << i)) {
2882         if (printComma)
2883           OS << ", ";
2884         OS << i;
2885         printComma = true;
2886       }
2887     OS << " */";
2888 
2889     OS << " },\n";
2890   }
2891   OS << "};\n\n";
2892 
2893   // Emit the operand class switch to call the correct custom parser for
2894   // the found operand class.
2895   OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n"
2896      << "tryCustomParseOperand(OperandVector"
2897      << " &Operands,\n                      unsigned MCK) {\n\n"
2898      << "  switch(MCK) {\n";
2899 
2900   for (const auto &CI : Info.Classes) {
2901     if (CI.ParserMethod.empty())
2902       continue;
2903     OS << "  case " << CI.Name << ":\n"
2904        << "    return " << CI.ParserMethod << "(Operands);\n";
2905   }
2906 
2907   OS << "  default:\n";
2908   OS << "    return MatchOperand_NoMatch;\n";
2909   OS << "  }\n";
2910   OS << "  return MatchOperand_NoMatch;\n";
2911   OS << "}\n\n";
2912 
2913   // Emit the static custom operand parser. This code is very similar with
2914   // the other matcher. Also use MatchResultTy here just in case we go for
2915   // a better error handling.
2916   OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n"
2917      << "MatchOperandParserImpl(OperandVector"
2918      << " &Operands,\n                       StringRef Mnemonic,\n"
2919      << "                       bool ParseForAllFeatures) {\n";
2920 
2921   // Emit code to get the available features.
2922   OS << "  // Get the current feature set.\n";
2923   OS << "  uint64_t AvailableFeatures = getAvailableFeatures();\n\n";
2924 
2925   OS << "  // Get the next operand index.\n";
2926   OS << "  unsigned NextOpNum = Operands.size()"
2927      << (HasMnemonicFirst ? " - 1" : "") << ";\n";
2928 
2929   // Emit code to search the table.
2930   OS << "  // Search the table.\n";
2931   if (HasMnemonicFirst) {
2932     OS << "  auto MnemonicRange =\n";
2933     OS << "    std::equal_range(std::begin(OperandMatchTable), "
2934           "std::end(OperandMatchTable),\n";
2935     OS << "                     Mnemonic, LessOpcodeOperand());\n\n";
2936   } else {
2937     OS << "  auto MnemonicRange = std::make_pair(std::begin(OperandMatchTable),"
2938           " std::end(OperandMatchTable));\n";
2939     OS << "  if (!Mnemonic.empty())\n";
2940     OS << "    MnemonicRange =\n";
2941     OS << "      std::equal_range(std::begin(OperandMatchTable), "
2942           "std::end(OperandMatchTable),\n";
2943     OS << "                       Mnemonic, LessOpcodeOperand());\n\n";
2944   }
2945 
2946   OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
2947   OS << "    return MatchOperand_NoMatch;\n\n";
2948 
2949   OS << "  for (const OperandMatchEntry *it = MnemonicRange.first,\n"
2950      << "       *ie = MnemonicRange.second; it != ie; ++it) {\n";
2951 
2952   OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
2953   OS << "    assert(Mnemonic == it->getMnemonic());\n\n";
2954 
2955   // Emit check that the required features are available.
2956   OS << "    // check if the available features match\n";
2957   OS << "    if (!ParseForAllFeatures && (AvailableFeatures & "
2958         "it->RequiredFeatures) != it->RequiredFeatures)\n";
2959   OS << "        continue;\n\n";
2960 
2961   // Emit check to ensure the operand number matches.
2962   OS << "    // check if the operand in question has a custom parser.\n";
2963   OS << "    if (!(it->OperandMask & (1 << NextOpNum)))\n";
2964   OS << "      continue;\n\n";
2965 
2966   // Emit call to the custom parser method
2967   OS << "    // call custom parse method to handle the operand\n";
2968   OS << "    OperandMatchResultTy Result = ";
2969   OS << "tryCustomParseOperand(Operands, it->Class);\n";
2970   OS << "    if (Result != MatchOperand_NoMatch)\n";
2971   OS << "      return Result;\n";
2972   OS << "  }\n\n";
2973 
2974   OS << "  // Okay, we had no match.\n";
2975   OS << "  return MatchOperand_NoMatch;\n";
2976   OS << "}\n\n";
2977 }
2978 
2979 static void emitAsmTiedOperandConstraints(CodeGenTarget &Target,
2980                                           AsmMatcherInfo &Info,
2981                                           raw_ostream &OS) {
2982   OS << "static bool ";
2983   OS << "checkAsmTiedOperandConstraints(unsigned Kind,\n";
2984   OS << "                               const OperandVector &Operands,\n";
2985   OS << "                               uint64_t &ErrorInfo) {\n";
2986   OS << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n";
2987   OS << "  const uint8_t *Converter = ConversionTable[Kind];\n";
2988   OS << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n";
2989   OS << "    switch (*p) {\n";
2990   OS << "    case CVT_Tied: {\n";
2991   OS << "      unsigned OpIdx = *(p+1);\n";
2992   OS << "      assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n";
2993   OS << "                              std::begin(TiedAsmOperandTable)) &&\n";
2994   OS << "             \"Tied operand not found\");\n";
2995   OS << "      unsigned OpndNum1 = TiedAsmOperandTable[OpIdx][1];\n";
2996   OS << "      unsigned OpndNum2 = TiedAsmOperandTable[OpIdx][2];\n";
2997   OS << "      if (OpndNum1 != OpndNum2) {\n";
2998   OS << "        auto &SrcOp1 = Operands[OpndNum1];\n";
2999   OS << "        auto &SrcOp2 = Operands[OpndNum2];\n";
3000   OS << "        if (SrcOp1->isReg() && SrcOp2->isReg() &&\n";
3001   OS << "            SrcOp1->getReg() != SrcOp2->getReg()) {\n";
3002   OS << "          ErrorInfo = OpndNum2;\n";
3003   OS << "          return false;\n";
3004   OS << "        }\n";
3005   OS << "      }\n";
3006   OS << "      break;\n";
3007   OS << "    }\n";
3008   OS << "    default:\n";
3009   OS << "      break;\n";
3010   OS << "    }\n";
3011   OS << "  }\n";
3012   OS << "  return true;\n";
3013   OS << "}\n\n";
3014 }
3015 
3016 static void emitMnemonicSpellChecker(raw_ostream &OS, CodeGenTarget &Target,
3017                                      unsigned VariantCount) {
3018   OS << "static std::string " << Target.getName()
3019      << "MnemonicSpellCheck(StringRef S, uint64_t FBS, unsigned VariantID) {\n";
3020   if (!VariantCount)
3021     OS <<  "  return \"\";";
3022   else {
3023     OS << "  const unsigned MaxEditDist = 2;\n";
3024     OS << "  std::vector<StringRef> Candidates;\n";
3025     OS << "  StringRef Prev = \"\";\n\n";
3026 
3027     OS << "  // Find the appropriate table for this asm variant.\n";
3028     OS << "  const MatchEntry *Start, *End;\n";
3029     OS << "  switch (VariantID) {\n";
3030     OS << "  default: llvm_unreachable(\"invalid variant!\");\n";
3031     for (unsigned VC = 0; VC != VariantCount; ++VC) {
3032       Record *AsmVariant = Target.getAsmParserVariant(VC);
3033       int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3034       OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3035          << "); End = std::end(MatchTable" << VC << "); break;\n";
3036     }
3037     OS << "  }\n\n";
3038     OS << "  for (auto I = Start; I < End; I++) {\n";
3039     OS << "    // Ignore unsupported instructions.\n";
3040     OS << "    if ((FBS & I->RequiredFeatures) != I->RequiredFeatures)\n";
3041     OS << "      continue;\n";
3042     OS << "\n";
3043     OS << "    StringRef T = I->getMnemonic();\n";
3044     OS << "    // Avoid recomputing the edit distance for the same string.\n";
3045     OS << "    if (T.equals(Prev))\n";
3046     OS << "      continue;\n";
3047     OS << "\n";
3048     OS << "    Prev = T;\n";
3049     OS << "    unsigned Dist = S.edit_distance(T, false, MaxEditDist);\n";
3050     OS << "    if (Dist <= MaxEditDist)\n";
3051     OS << "      Candidates.push_back(T);\n";
3052     OS << "  }\n";
3053     OS << "\n";
3054     OS << "  if (Candidates.empty())\n";
3055     OS << "    return \"\";\n";
3056     OS << "\n";
3057     OS << "  std::string Res = \", did you mean: \";\n";
3058     OS << "  unsigned i = 0;\n";
3059     OS << "  for( ; i < Candidates.size() - 1; i++)\n";
3060     OS << "    Res += Candidates[i].str() + \", \";\n";
3061     OS << "  return Res + Candidates[i].str() + \"?\";\n";
3062   }
3063   OS << "}\n";
3064   OS << "\n";
3065 }
3066 
3067 
3068 // Emit a function mapping match classes to strings, for debugging.
3069 static void emitMatchClassKindNames(std::forward_list<ClassInfo> &Infos,
3070                                     raw_ostream &OS) {
3071   OS << "#ifndef NDEBUG\n";
3072   OS << "const char *getMatchClassName(MatchClassKind Kind) {\n";
3073   OS << "  switch (Kind) {\n";
3074 
3075   OS << "  case InvalidMatchClass: return \"InvalidMatchClass\";\n";
3076   OS << "  case OptionalMatchClass: return \"OptionalMatchClass\";\n";
3077   for (const auto &CI : Infos) {
3078     OS << "  case " << CI.Name << ": return \"" << CI.Name << "\";\n";
3079   }
3080   OS << "  case NumMatchClassKinds: return \"NumMatchClassKinds\";\n";
3081 
3082   OS << "  }\n";
3083   OS << "  llvm_unreachable(\"unhandled MatchClassKind!\");\n";
3084   OS << "}\n\n";
3085   OS << "#endif // NDEBUG\n";
3086 }
3087 
3088 void AsmMatcherEmitter::run(raw_ostream &OS) {
3089   CodeGenTarget Target(Records);
3090   Record *AsmParser = Target.getAsmParser();
3091   StringRef ClassName = AsmParser->getValueAsString("AsmParserClassName");
3092 
3093   // Compute the information on the instructions to match.
3094   AsmMatcherInfo Info(AsmParser, Target, Records);
3095   Info.buildInfo();
3096 
3097   // Sort the instruction table using the partial order on classes. We use
3098   // stable_sort to ensure that ambiguous instructions are still
3099   // deterministically ordered.
3100   std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(),
3101                    [](const std::unique_ptr<MatchableInfo> &a,
3102                       const std::unique_ptr<MatchableInfo> &b){
3103                      return *a < *b;});
3104 
3105 #ifdef EXPENSIVE_CHECKS
3106   // Verify that the table is sorted and operator < works transitively.
3107   for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
3108        ++I) {
3109     for (auto J = I; J != E; ++J) {
3110       assert(!(**J < **I));
3111     }
3112   }
3113 #endif
3114 
3115   DEBUG_WITH_TYPE("instruction_info", {
3116       for (const auto &MI : Info.Matchables)
3117         MI->dump();
3118     });
3119 
3120   // Check for ambiguous matchables.
3121   DEBUG_WITH_TYPE("ambiguous_instrs", {
3122     unsigned NumAmbiguous = 0;
3123     for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
3124          ++I) {
3125       for (auto J = std::next(I); J != E; ++J) {
3126         const MatchableInfo &A = **I;
3127         const MatchableInfo &B = **J;
3128 
3129         if (A.couldMatchAmbiguouslyWith(B)) {
3130           errs() << "warning: ambiguous matchables:\n";
3131           A.dump();
3132           errs() << "\nis incomparable with:\n";
3133           B.dump();
3134           errs() << "\n\n";
3135           ++NumAmbiguous;
3136         }
3137       }
3138     }
3139     if (NumAmbiguous)
3140       errs() << "warning: " << NumAmbiguous
3141              << " ambiguous matchables!\n";
3142   });
3143 
3144   // Compute the information on the custom operand parsing.
3145   Info.buildOperandMatchInfo();
3146 
3147   bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
3148   bool HasOptionalOperands = Info.hasOptionalOperands();
3149   bool ReportMultipleNearMisses =
3150       AsmParser->getValueAsBit("ReportMultipleNearMisses");
3151 
3152   // Write the output.
3153 
3154   // Information for the class declaration.
3155   OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
3156   OS << "#undef GET_ASSEMBLER_HEADER\n";
3157   OS << "  // This should be included into the middle of the declaration of\n";
3158   OS << "  // your subclasses implementation of MCTargetAsmParser.\n";
3159   OS << "  uint64_t ComputeAvailableFeatures(const FeatureBitset& FB) const;\n";
3160   if (HasOptionalOperands) {
3161     OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, "
3162        << "unsigned Opcode,\n"
3163        << "                       const OperandVector &Operands,\n"
3164        << "                       const SmallBitVector &OptionalOperandsMask);\n";
3165   } else {
3166     OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, "
3167        << "unsigned Opcode,\n"
3168        << "                       const OperandVector &Operands);\n";
3169   }
3170   OS << "  void convertToMapAndConstraints(unsigned Kind,\n                ";
3171   OS << "           const OperandVector &Operands) override;\n";
3172   OS << "  unsigned MatchInstructionImpl(const OperandVector &Operands,\n"
3173      << "                                MCInst &Inst,\n";
3174   if (ReportMultipleNearMisses)
3175     OS << "                                SmallVectorImpl<NearMissInfo> *NearMisses,\n";
3176   else
3177     OS << "                                uint64_t &ErrorInfo,\n";
3178   OS << "                                bool matchingInlineAsm,\n"
3179      << "                                unsigned VariantID = 0);\n";
3180 
3181   if (!Info.OperandMatchInfo.empty()) {
3182     OS << "  OperandMatchResultTy MatchOperandParserImpl(\n";
3183     OS << "    OperandVector &Operands,\n";
3184     OS << "    StringRef Mnemonic,\n";
3185     OS << "    bool ParseForAllFeatures = false);\n";
3186 
3187     OS << "  OperandMatchResultTy tryCustomParseOperand(\n";
3188     OS << "    OperandVector &Operands,\n";
3189     OS << "    unsigned MCK);\n\n";
3190   }
3191 
3192   OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
3193 
3194   // Emit the operand match diagnostic enum names.
3195   OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n";
3196   OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
3197   emitOperandDiagnosticTypes(Info, OS);
3198   OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
3199 
3200   OS << "\n#ifdef GET_REGISTER_MATCHER\n";
3201   OS << "#undef GET_REGISTER_MATCHER\n\n";
3202 
3203   // Emit the subtarget feature enumeration.
3204   SubtargetFeatureInfo::emitSubtargetFeatureFlagEnumeration(
3205       Info.SubtargetFeatures, OS);
3206 
3207   // Emit the function to match a register name to number.
3208   // This should be omitted for Mips target
3209   if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName"))
3210     emitMatchRegisterName(Target, AsmParser, OS);
3211 
3212   if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterAltName"))
3213     emitMatchRegisterAltName(Target, AsmParser, OS);
3214 
3215   OS << "#endif // GET_REGISTER_MATCHER\n\n";
3216 
3217   OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n";
3218   OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n";
3219 
3220   // Generate the helper function to get the names for subtarget features.
3221   emitGetSubtargetFeatureName(Info, OS);
3222 
3223   OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n";
3224 
3225   OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
3226   OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
3227 
3228   // Generate the function that remaps for mnemonic aliases.
3229   bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target);
3230 
3231   // Generate the convertToMCInst function to convert operands into an MCInst.
3232   // Also, generate the convertToMapAndConstraints function for MS-style inline
3233   // assembly.  The latter doesn't actually generate a MCInst.
3234   emitConvertFuncs(Target, ClassName, Info.Matchables, HasMnemonicFirst,
3235                    HasOptionalOperands, OS);
3236 
3237   // Emit the enumeration for classes which participate in matching.
3238   emitMatchClassEnumeration(Target, Info.Classes, OS);
3239 
3240   // Emit a function to get the user-visible string to describe an operand
3241   // match failure in diagnostics.
3242   emitOperandMatchErrorDiagStrings(Info, OS);
3243 
3244   // Emit a function to map register classes to operand match failure codes.
3245   emitRegisterMatchErrorFunc(Info, OS);
3246 
3247   // Emit the routine to match token strings to their match class.
3248   emitMatchTokenString(Target, Info.Classes, OS);
3249 
3250   // Emit the subclass predicate routine.
3251   emitIsSubclass(Target, Info.Classes, OS);
3252 
3253   // Emit the routine to validate an operand against a match class.
3254   emitValidateOperandClass(Info, OS);
3255 
3256   emitMatchClassKindNames(Info.Classes, OS);
3257 
3258   // Emit the available features compute function.
3259   SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures(
3260       Info.Target.getName(), ClassName, "ComputeAvailableFeatures",
3261       Info.SubtargetFeatures, OS);
3262 
3263   if (!ReportMultipleNearMisses)
3264     emitAsmTiedOperandConstraints(Target, Info, OS);
3265 
3266   StringToOffsetTable StringTable;
3267 
3268   size_t MaxNumOperands = 0;
3269   unsigned MaxMnemonicIndex = 0;
3270   bool HasDeprecation = false;
3271   for (const auto &MI : Info.Matchables) {
3272     MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
3273     HasDeprecation |= MI->HasDeprecation;
3274 
3275     // Store a pascal-style length byte in the mnemonic.
3276     std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str();
3277     MaxMnemonicIndex = std::max(MaxMnemonicIndex,
3278                         StringTable.GetOrAddStringOffset(LenMnemonic, false));
3279   }
3280 
3281   OS << "static const char *const MnemonicTable =\n";
3282   StringTable.EmitString(OS);
3283   OS << ";\n\n";
3284 
3285   // Emit the static match table; unused classes get initialized to 0 which is
3286   // guaranteed to be InvalidMatchClass.
3287   //
3288   // FIXME: We can reduce the size of this table very easily. First, we change
3289   // it so that store the kinds in separate bit-fields for each index, which
3290   // only needs to be the max width used for classes at that index (we also need
3291   // to reject based on this during classification). If we then make sure to
3292   // order the match kinds appropriately (putting mnemonics last), then we
3293   // should only end up using a few bits for each class, especially the ones
3294   // following the mnemonic.
3295   OS << "namespace {\n";
3296   OS << "  struct MatchEntry {\n";
3297   OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
3298                << " Mnemonic;\n";
3299   OS << "    uint16_t Opcode;\n";
3300   OS << "    " << getMinimalTypeForRange(Info.Matchables.size())
3301                << " ConvertFn;\n";
3302   OS << "    " << getMinimalTypeForEnumBitfield(Info.SubtargetFeatures.size())
3303                << " RequiredFeatures;\n";
3304   OS << "    " << getMinimalTypeForRange(
3305                       std::distance(Info.Classes.begin(), Info.Classes.end()))
3306      << " Classes[" << MaxNumOperands << "];\n";
3307   OS << "    StringRef getMnemonic() const {\n";
3308   OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
3309   OS << "                       MnemonicTable[Mnemonic]);\n";
3310   OS << "    }\n";
3311   OS << "  };\n\n";
3312 
3313   OS << "  // Predicate for searching for an opcode.\n";
3314   OS << "  struct LessOpcode {\n";
3315   OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
3316   OS << "      return LHS.getMnemonic() < RHS;\n";
3317   OS << "    }\n";
3318   OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
3319   OS << "      return LHS < RHS.getMnemonic();\n";
3320   OS << "    }\n";
3321   OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
3322   OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
3323   OS << "    }\n";
3324   OS << "  };\n";
3325 
3326   OS << "} // end anonymous namespace.\n\n";
3327 
3328   unsigned VariantCount = Target.getAsmParserVariantCount();
3329   for (unsigned VC = 0; VC != VariantCount; ++VC) {
3330     Record *AsmVariant = Target.getAsmParserVariant(VC);
3331     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3332 
3333     OS << "static const MatchEntry MatchTable" << VC << "[] = {\n";
3334 
3335     for (const auto &MI : Info.Matchables) {
3336       if (MI->AsmVariantID != AsmVariantNo)
3337         continue;
3338 
3339       // Store a pascal-style length byte in the mnemonic.
3340       std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str();
3341       OS << "  { " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
3342          << " /* " << MI->Mnemonic << " */, "
3343          << Target.getInstNamespace() << "::"
3344          << MI->getResultInst()->TheDef->getName() << ", "
3345          << MI->ConversionFnKind << ", ";
3346 
3347       // Write the required features mask.
3348       if (!MI->RequiredFeatures.empty()) {
3349         for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i) {
3350           if (i) OS << "|";
3351           OS << MI->RequiredFeatures[i]->getEnumName();
3352         }
3353       } else
3354         OS << "0";
3355 
3356       OS << ", { ";
3357       for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
3358         const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
3359 
3360         if (i) OS << ", ";
3361         OS << Op.Class->Name;
3362       }
3363       OS << " }, },\n";
3364     }
3365 
3366     OS << "};\n\n";
3367   }
3368 
3369   OS << "#include \"llvm/Support/Debug.h\"\n";
3370   OS << "#include \"llvm/Support/Format.h\"\n\n";
3371 
3372   // Finally, build the match function.
3373   OS << "unsigned " << Target.getName() << ClassName << "::\n"
3374      << "MatchInstructionImpl(const OperandVector &Operands,\n";
3375   OS << "                     MCInst &Inst,\n";
3376   if (ReportMultipleNearMisses)
3377     OS << "                     SmallVectorImpl<NearMissInfo> *NearMisses,\n";
3378   else
3379     OS << "                     uint64_t &ErrorInfo,\n";
3380   OS << "                     bool matchingInlineAsm, unsigned VariantID) {\n";
3381 
3382   if (!ReportMultipleNearMisses) {
3383     OS << "  // Eliminate obvious mismatches.\n";
3384     OS << "  if (Operands.size() > "
3385        << (MaxNumOperands + HasMnemonicFirst) << ") {\n";
3386     OS << "    ErrorInfo = "
3387        << (MaxNumOperands + HasMnemonicFirst) << ";\n";
3388     OS << "    return Match_InvalidOperand;\n";
3389     OS << "  }\n\n";
3390   }
3391 
3392   // Emit code to get the available features.
3393   OS << "  // Get the current feature set.\n";
3394   OS << "  uint64_t AvailableFeatures = getAvailableFeatures();\n\n";
3395 
3396   OS << "  // Get the instruction mnemonic, which is the first token.\n";
3397   if (HasMnemonicFirst) {
3398     OS << "  StringRef Mnemonic = ((" << Target.getName()
3399        << "Operand&)*Operands[0]).getToken();\n\n";
3400   } else {
3401     OS << "  StringRef Mnemonic;\n";
3402     OS << "  if (Operands[0]->isToken())\n";
3403     OS << "    Mnemonic = ((" << Target.getName()
3404        << "Operand&)*Operands[0]).getToken();\n\n";
3405   }
3406 
3407   if (HasMnemonicAliases) {
3408     OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
3409     OS << "  applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n";
3410   }
3411 
3412   // Emit code to compute the class list for this operand vector.
3413   if (!ReportMultipleNearMisses) {
3414     OS << "  // Some state to try to produce better error messages.\n";
3415     OS << "  bool HadMatchOtherThanFeatures = false;\n";
3416     OS << "  bool HadMatchOtherThanPredicate = false;\n";
3417     OS << "  unsigned RetCode = Match_InvalidOperand;\n";
3418     OS << "  uint64_t MissingFeatures = ~0ULL;\n";
3419     OS << "  // Set ErrorInfo to the operand that mismatches if it is\n";
3420     OS << "  // wrong for all instances of the instruction.\n";
3421     OS << "  ErrorInfo = ~0ULL;\n";
3422   }
3423 
3424   if (HasOptionalOperands) {
3425     OS << "  SmallBitVector OptionalOperandsMask(" << MaxNumOperands << ");\n";
3426   }
3427 
3428   // Emit code to search the table.
3429   OS << "  // Find the appropriate table for this asm variant.\n";
3430   OS << "  const MatchEntry *Start, *End;\n";
3431   OS << "  switch (VariantID) {\n";
3432   OS << "  default: llvm_unreachable(\"invalid variant!\");\n";
3433   for (unsigned VC = 0; VC != VariantCount; ++VC) {
3434     Record *AsmVariant = Target.getAsmParserVariant(VC);
3435     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3436     OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3437        << "); End = std::end(MatchTable" << VC << "); break;\n";
3438   }
3439   OS << "  }\n";
3440 
3441   OS << "  // Search the table.\n";
3442   if (HasMnemonicFirst) {
3443     OS << "  auto MnemonicRange = "
3444           "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
3445   } else {
3446     OS << "  auto MnemonicRange = std::make_pair(Start, End);\n";
3447     OS << "  unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n";
3448     OS << "  if (!Mnemonic.empty())\n";
3449     OS << "    MnemonicRange = "
3450           "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n";
3451   }
3452 
3453   OS << "  DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"AsmMatcher: found \" <<\n"
3454      << "  std::distance(MnemonicRange.first, MnemonicRange.second) << \n"
3455      << "  \" encodings with mnemonic '\" << Mnemonic << \"'\\n\");\n\n";
3456 
3457   OS << "  // Return a more specific error code if no mnemonics match.\n";
3458   OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
3459   OS << "    return Match_MnemonicFail;\n\n";
3460 
3461   OS << "  for (const MatchEntry *it = MnemonicRange.first, "
3462      << "*ie = MnemonicRange.second;\n";
3463   OS << "       it != ie; ++it) {\n";
3464   OS << "    bool HasRequiredFeatures =\n";
3465   OS << "      (AvailableFeatures & it->RequiredFeatures) == "
3466         "it->RequiredFeatures;\n";
3467   OS << "    DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Trying to match opcode \"\n";
3468   OS << "                                          << MII.getName(it->Opcode) << \"\\n\");\n";
3469 
3470   if (ReportMultipleNearMisses) {
3471     OS << "    // Some state to record ways in which this instruction did not match.\n";
3472     OS << "    NearMissInfo OperandNearMiss = NearMissInfo::getSuccess();\n";
3473     OS << "    NearMissInfo FeaturesNearMiss = NearMissInfo::getSuccess();\n";
3474     OS << "    NearMissInfo EarlyPredicateNearMiss = NearMissInfo::getSuccess();\n";
3475     OS << "    NearMissInfo LatePredicateNearMiss = NearMissInfo::getSuccess();\n";
3476     OS << "    bool MultipleInvalidOperands = false;\n";
3477   }
3478 
3479   if (HasMnemonicFirst) {
3480     OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
3481     OS << "    assert(Mnemonic == it->getMnemonic());\n";
3482   }
3483 
3484   // Emit check that the subclasses match.
3485   if (!ReportMultipleNearMisses)
3486     OS << "    bool OperandsValid = true;\n";
3487   if (HasOptionalOperands) {
3488     OS << "    OptionalOperandsMask.reset(0, " << MaxNumOperands << ");\n";
3489   }
3490   OS << "    for (unsigned FormalIdx = " << (HasMnemonicFirst ? "0" : "SIndex")
3491      << ", ActualIdx = " << (HasMnemonicFirst ? "1" : "SIndex")
3492      << "; FormalIdx != " << MaxNumOperands << "; ++FormalIdx) {\n";
3493   OS << "      auto Formal = "
3494      << "static_cast<MatchClassKind>(it->Classes[FormalIdx]);\n";
3495   OS << "      DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3496   OS << "                      dbgs() << \"  Matching formal operand class \" << getMatchClassName(Formal)\n";
3497   OS << "                             << \" against actual operand at index \" << ActualIdx);\n";
3498   OS << "      if (ActualIdx < Operands.size())\n";
3499   OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \" (\";\n";
3500   OS << "                        Operands[ActualIdx]->print(dbgs()); dbgs() << \"): \");\n";
3501   OS << "      else\n";
3502   OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \": \");\n";
3503   OS << "      if (ActualIdx >= Operands.size()) {\n";
3504   OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"actual operand index out of range \");\n";
3505   if (ReportMultipleNearMisses) {
3506     OS << "        bool ThisOperandValid = (Formal == " <<"InvalidMatchClass) || "
3507                                    "isSubclass(Formal, OptionalMatchClass);\n";
3508     OS << "        if (!ThisOperandValid) {\n";
3509     OS << "          if (!OperandNearMiss) {\n";
3510     OS << "            // Record info about match failure for later use.\n";
3511     OS << "            DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"recording too-few-operands near miss\\n\");\n";
3512     OS << "            OperandNearMiss =\n";
3513     OS << "                NearMissInfo::getTooFewOperands(Formal, it->Opcode);\n";
3514     OS << "          } else if (OperandNearMiss.getKind() != NearMissInfo::NearMissTooFewOperands) {\n";
3515     OS << "            // If more than one operand is invalid, give up on this match entry.\n";
3516     OS << "            DEBUG_WITH_TYPE(\n";
3517     OS << "                \"asm-matcher\",\n";
3518     OS << "                dbgs() << \"second invalid operand, giving up on this opcode\\n\");\n";
3519     OS << "            MultipleInvalidOperands = true;\n";
3520     OS << "            break;\n";
3521     OS << "          }\n";
3522     OS << "        } else {\n";
3523     OS << "          DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"but formal operand not required\\n\");\n";
3524     OS << "          break;\n";
3525     OS << "        }\n";
3526     OS << "        continue;\n";
3527   } else {
3528     OS << "        OperandsValid = (Formal == InvalidMatchClass) || isSubclass(Formal, OptionalMatchClass);\n";
3529     OS << "        if (!OperandsValid) ErrorInfo = ActualIdx;\n";
3530     if (HasOptionalOperands) {
3531       OS << "        OptionalOperandsMask.set(FormalIdx, " << MaxNumOperands
3532          << ");\n";
3533     }
3534     OS << "        break;\n";
3535   }
3536   OS << "      }\n";
3537   OS << "      MCParsedAsmOperand &Actual = *Operands[ActualIdx];\n";
3538   OS << "      unsigned Diag = validateOperandClass(Actual, Formal);\n";
3539   OS << "      if (Diag == Match_Success) {\n";
3540   OS << "        DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3541   OS << "                        dbgs() << \"match success using generic matcher\\n\");\n";
3542   OS << "        ++ActualIdx;\n";
3543   OS << "        continue;\n";
3544   OS << "      }\n";
3545   OS << "      // If the generic handler indicates an invalid operand\n";
3546   OS << "      // failure, check for a special case.\n";
3547   OS << "      if (Diag != Match_Success) {\n";
3548   OS << "        unsigned TargetDiag = validateTargetOperandClass(Actual, Formal);\n";
3549   OS << "        if (TargetDiag == Match_Success) {\n";
3550   OS << "          DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3551   OS << "                          dbgs() << \"match success using target matcher\\n\");\n";
3552   OS << "          ++ActualIdx;\n";
3553   OS << "          continue;\n";
3554   OS << "        }\n";
3555   OS << "        // If the target matcher returned a specific error code use\n";
3556   OS << "        // that, else use the one from the generic matcher.\n";
3557   OS << "        if (TargetDiag != Match_InvalidOperand && "
3558         "HasRequiredFeatures)\n";
3559   OS << "          Diag = TargetDiag;\n";
3560   OS << "      }\n";
3561   OS << "      // If current formal operand wasn't matched and it is optional\n"
3562      << "      // then try to match next formal operand\n";
3563   OS << "      if (Diag == Match_InvalidOperand "
3564      << "&& isSubclass(Formal, OptionalMatchClass)) {\n";
3565   if (HasOptionalOperands) {
3566     OS << "        OptionalOperandsMask.set(FormalIdx);\n";
3567   }
3568     OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"ignoring optional operand\\n\");\n";
3569   OS << "        continue;\n";
3570   OS << "      }\n";
3571 
3572   if (ReportMultipleNearMisses) {
3573     OS << "      if (!OperandNearMiss) {\n";
3574     OS << "        // If this is the first invalid operand we have seen, record some\n";
3575     OS << "        // information about it.\n";
3576     OS << "        DEBUG_WITH_TYPE(\n";
3577     OS << "            \"asm-matcher\",\n";
3578     OS << "            dbgs()\n";
3579     OS << "                << \"operand match failed, recording near-miss with diag code \"\n";
3580     OS << "                << Diag << \"\\n\");\n";
3581     OS << "        OperandNearMiss =\n";
3582     OS << "            NearMissInfo::getMissedOperand(Diag, Formal, it->Opcode, ActualIdx);\n";
3583     OS << "        ++ActualIdx;\n";
3584     OS << "      } else {\n";
3585     OS << "        // If more than one operand is invalid, give up on this match entry.\n";
3586     OS << "        DEBUG_WITH_TYPE(\n";
3587     OS << "            \"asm-matcher\",\n";
3588     OS << "            dbgs() << \"second operand mismatch, skipping this opcode\\n\");\n";
3589     OS << "        MultipleInvalidOperands = true;\n";
3590     OS << "        break;\n";
3591     OS << "      }\n";
3592     OS << "    }\n\n";
3593   } else {
3594     OS << "      // If this operand is broken for all of the instances of this\n";
3595     OS << "      // mnemonic, keep track of it so we can report loc info.\n";
3596     OS << "      // If we already had a match that only failed due to a\n";
3597     OS << "      // target predicate, that diagnostic is preferred.\n";
3598     OS << "      if (!HadMatchOtherThanPredicate &&\n";
3599     OS << "          (it == MnemonicRange.first || ErrorInfo <= ActualIdx)) {\n";
3600     OS << "        if (HasRequiredFeatures && (ErrorInfo != ActualIdx || Diag "
3601           "!= Match_InvalidOperand))\n";
3602     OS << "          RetCode = Diag;\n";
3603     OS << "        ErrorInfo = ActualIdx;\n";
3604     OS << "      }\n";
3605     OS << "      // Otherwise, just reject this instance of the mnemonic.\n";
3606     OS << "      OperandsValid = false;\n";
3607     OS << "      break;\n";
3608     OS << "    }\n\n";
3609   }
3610 
3611   if (ReportMultipleNearMisses)
3612     OS << "    if (MultipleInvalidOperands) {\n";
3613   else
3614     OS << "    if (!OperandsValid) {\n";
3615   OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n";
3616   OS << "                                               \"operand mismatches, ignoring \"\n";
3617   OS << "                                               \"this opcode\\n\");\n";
3618   OS << "      continue;\n";
3619   OS << "    }\n";
3620 
3621   // Emit check that the required features are available.
3622   OS << "    if (!HasRequiredFeatures) {\n";
3623   if (!ReportMultipleNearMisses)
3624     OS << "      HadMatchOtherThanFeatures = true;\n";
3625   OS << "      uint64_t NewMissingFeatures = it->RequiredFeatures & "
3626         "~AvailableFeatures;\n";
3627   OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Missing target features: \"\n";
3628   OS << "                                            << format_hex(NewMissingFeatures, 18)\n";
3629   OS << "                                            << \"\\n\");\n";
3630   if (ReportMultipleNearMisses) {
3631     OS << "      FeaturesNearMiss = NearMissInfo::getMissedFeature(NewMissingFeatures);\n";
3632   } else {
3633     OS << "      if (countPopulation(NewMissingFeatures) <=\n"
3634           "          countPopulation(MissingFeatures))\n";
3635     OS << "        MissingFeatures = NewMissingFeatures;\n";
3636     OS << "      continue;\n";
3637   }
3638   OS << "    }\n";
3639   OS << "\n";
3640   OS << "    Inst.clear();\n\n";
3641   OS << "    Inst.setOpcode(it->Opcode);\n";
3642   // Verify the instruction with the target-specific match predicate function.
3643   OS << "    // We have a potential match but have not rendered the operands.\n"
3644      << "    // Check the target predicate to handle any context sensitive\n"
3645         "    // constraints.\n"
3646      << "    // For example, Ties that are referenced multiple times must be\n"
3647         "    // checked here to ensure the input is the same for each match\n"
3648         "    // constraints. If we leave it any later the ties will have been\n"
3649         "    // canonicalized\n"
3650      << "    unsigned MatchResult;\n"
3651      << "    if ((MatchResult = checkEarlyTargetMatchPredicate(Inst, "
3652         "Operands)) != Match_Success) {\n"
3653      << "      Inst.clear();\n";
3654   OS << "      DEBUG_WITH_TYPE(\n";
3655   OS << "          \"asm-matcher\",\n";
3656   OS << "          dbgs() << \"Early target match predicate failed with diag code \"\n";
3657   OS << "                 << MatchResult << \"\\n\");\n";
3658   if (ReportMultipleNearMisses) {
3659     OS << "      EarlyPredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n";
3660   } else {
3661     OS << "      RetCode = MatchResult;\n"
3662        << "      HadMatchOtherThanPredicate = true;\n"
3663        << "      continue;\n";
3664   }
3665   OS << "    }\n\n";
3666 
3667   if (ReportMultipleNearMisses) {
3668     OS << "    // If we did not successfully match the operands, then we can't convert to\n";
3669     OS << "    // an MCInst, so bail out on this instruction variant now.\n";
3670     OS << "    if (OperandNearMiss) {\n";
3671     OS << "      // If the operand mismatch was the only problem, reprrt it as a near-miss.\n";
3672     OS << "      if (NearMisses && !FeaturesNearMiss && !EarlyPredicateNearMiss) {\n";
3673     OS << "        DEBUG_WITH_TYPE(\n";
3674     OS << "            \"asm-matcher\",\n";
3675     OS << "            dbgs()\n";
3676     OS << "                << \"Opcode result: one mismatched operand, adding near-miss\\n\");\n";
3677     OS << "        NearMisses->push_back(OperandNearMiss);\n";
3678     OS << "      } else {\n";
3679     OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n";
3680     OS << "                                                 \"types of mismatch, so not \"\n";
3681     OS << "                                                 \"reporting near-miss\\n\");\n";
3682     OS << "      }\n";
3683     OS << "      continue;\n";
3684     OS << "    }\n\n";
3685   }
3686 
3687   OS << "    if (matchingInlineAsm) {\n";
3688   OS << "      convertToMapAndConstraints(it->ConvertFn, Operands);\n";
3689   if (!ReportMultipleNearMisses) {
3690     OS << "      if (!checkAsmTiedOperandConstraints(it->ConvertFn, Operands, ErrorInfo))\n";
3691     OS << "        return Match_InvalidTiedOperand;\n";
3692     OS << "\n";
3693   }
3694   OS << "      return Match_Success;\n";
3695   OS << "    }\n\n";
3696   OS << "    // We have selected a definite instruction, convert the parsed\n"
3697      << "    // operands into the appropriate MCInst.\n";
3698   if (HasOptionalOperands) {
3699     OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands,\n"
3700        << "                    OptionalOperandsMask);\n";
3701   } else {
3702     OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
3703   }
3704   OS << "\n";
3705 
3706   // Verify the instruction with the target-specific match predicate function.
3707   OS << "    // We have a potential match. Check the target predicate to\n"
3708      << "    // handle any context sensitive constraints.\n"
3709      << "    if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
3710      << " Match_Success) {\n"
3711      << "      DEBUG_WITH_TYPE(\"asm-matcher\",\n"
3712      << "                      dbgs() << \"Target match predicate failed with diag code \"\n"
3713      << "                             << MatchResult << \"\\n\");\n"
3714      << "      Inst.clear();\n";
3715   if (ReportMultipleNearMisses) {
3716     OS << "      LatePredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n";
3717   } else {
3718     OS << "      RetCode = MatchResult;\n"
3719        << "      HadMatchOtherThanPredicate = true;\n"
3720        << "      continue;\n";
3721   }
3722   OS << "    }\n\n";
3723 
3724   if (ReportMultipleNearMisses) {
3725     OS << "    int NumNearMisses = ((int)(bool)OperandNearMiss +\n";
3726     OS << "                         (int)(bool)FeaturesNearMiss +\n";
3727     OS << "                         (int)(bool)EarlyPredicateNearMiss +\n";
3728     OS << "                         (int)(bool)LatePredicateNearMiss);\n";
3729     OS << "    if (NumNearMisses == 1) {\n";
3730     OS << "      // We had exactly one type of near-miss, so add that to the list.\n";
3731     OS << "      assert(!OperandNearMiss && \"OperandNearMiss was handled earlier\");\n";
3732     OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: found one type of \"\n";
3733     OS << "                                            \"mismatch, so reporting a \"\n";
3734     OS << "                                            \"near-miss\\n\");\n";
3735     OS << "      if (NearMisses && FeaturesNearMiss)\n";
3736     OS << "        NearMisses->push_back(FeaturesNearMiss);\n";
3737     OS << "      else if (NearMisses && EarlyPredicateNearMiss)\n";
3738     OS << "        NearMisses->push_back(EarlyPredicateNearMiss);\n";
3739     OS << "      else if (NearMisses && LatePredicateNearMiss)\n";
3740     OS << "        NearMisses->push_back(LatePredicateNearMiss);\n";
3741     OS << "\n";
3742     OS << "      continue;\n";
3743     OS << "    } else if (NumNearMisses > 1) {\n";
3744     OS << "      // This instruction missed in more than one way, so ignore it.\n";
3745     OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n";
3746     OS << "                                               \"types of mismatch, so not \"\n";
3747     OS << "                                               \"reporting near-miss\\n\");\n";
3748     OS << "      continue;\n";
3749     OS << "    }\n";
3750   }
3751 
3752   // Call the post-processing function, if used.
3753   StringRef InsnCleanupFn = AsmParser->getValueAsString("AsmParserInstCleanup");
3754   if (!InsnCleanupFn.empty())
3755     OS << "    " << InsnCleanupFn << "(Inst);\n";
3756 
3757   if (HasDeprecation) {
3758     OS << "    std::string Info;\n";
3759     OS << "    if (!getParser().getTargetParser().\n";
3760     OS << "        getTargetOptions().MCNoDeprecatedWarn &&\n";
3761     OS << "        MII.get(Inst.getOpcode()).getDeprecatedInfo(Inst, getSTI(), Info)) {\n";
3762     OS << "      SMLoc Loc = ((" << Target.getName()
3763        << "Operand&)*Operands[0]).getStartLoc();\n";
3764     OS << "      getParser().Warning(Loc, Info, None);\n";
3765     OS << "    }\n";
3766   }
3767 
3768   if (!ReportMultipleNearMisses) {
3769     OS << "    if (!checkAsmTiedOperandConstraints(it->ConvertFn, Operands, ErrorInfo))\n";
3770     OS << "      return Match_InvalidTiedOperand;\n";
3771     OS << "\n";
3772   }
3773 
3774   OS << "    DEBUG_WITH_TYPE(\n";
3775   OS << "        \"asm-matcher\",\n";
3776   OS << "        dbgs() << \"Opcode result: complete match, selecting this opcode\\n\");\n";
3777   OS << "    return Match_Success;\n";
3778   OS << "  }\n\n";
3779 
3780   if (ReportMultipleNearMisses) {
3781     OS << "  // No instruction variants matched exactly.\n";
3782     OS << "  return Match_NearMisses;\n";
3783   } else {
3784     OS << "  // Okay, we had no match.  Try to return a useful error code.\n";
3785     OS << "  if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n";
3786     OS << "    return RetCode;\n\n";
3787     OS << "  // Missing feature matches return which features were missing\n";
3788     OS << "  ErrorInfo = MissingFeatures;\n";
3789     OS << "  return Match_MissingFeature;\n";
3790   }
3791   OS << "}\n\n";
3792 
3793   if (!Info.OperandMatchInfo.empty())
3794     emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable,
3795                              MaxMnemonicIndex, HasMnemonicFirst);
3796 
3797   OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
3798 
3799   OS << "\n#ifdef GET_MNEMONIC_SPELL_CHECKER\n";
3800   OS << "#undef GET_MNEMONIC_SPELL_CHECKER\n\n";
3801 
3802   emitMnemonicSpellChecker(OS, Target, VariantCount);
3803 
3804   OS << "#endif // GET_MNEMONIC_SPELL_CHECKER\n\n";
3805 }
3806 
3807 namespace llvm {
3808 
3809 void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) {
3810   emitSourceFileHeader("Assembly Matcher Source Fragment", OS);
3811   AsmMatcherEmitter(RK).run(OS);
3812 }
3813 
3814 } // end namespace llvm
3815