1 //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This tablegen backend emits a target specifier matcher for converting parsed 11 // assembly operands in the MCInst structures. It also emits a matcher for 12 // custom operand parsing. 13 // 14 // Converting assembly operands into MCInst structures 15 // --------------------------------------------------- 16 // 17 // The input to the target specific matcher is a list of literal tokens and 18 // operands. The target specific parser should generally eliminate any syntax 19 // which is not relevant for matching; for example, comma tokens should have 20 // already been consumed and eliminated by the parser. Most instructions will 21 // end up with a single literal token (the instruction name) and some number of 22 // operands. 23 // 24 // Some example inputs, for X86: 25 // 'addl' (immediate ...) (register ...) 26 // 'add' (immediate ...) (memory ...) 27 // 'call' '*' %epc 28 // 29 // The assembly matcher is responsible for converting this input into a precise 30 // machine instruction (i.e., an instruction with a well defined encoding). This 31 // mapping has several properties which complicate matching: 32 // 33 // - It may be ambiguous; many architectures can legally encode particular 34 // variants of an instruction in different ways (for example, using a smaller 35 // encoding for small immediates). Such ambiguities should never be 36 // arbitrarily resolved by the assembler, the assembler is always responsible 37 // for choosing the "best" available instruction. 38 // 39 // - It may depend on the subtarget or the assembler context. Instructions 40 // which are invalid for the current mode, but otherwise unambiguous (e.g., 41 // an SSE instruction in a file being assembled for i486) should be accepted 42 // and rejected by the assembler front end. However, if the proper encoding 43 // for an instruction is dependent on the assembler context then the matcher 44 // is responsible for selecting the correct machine instruction for the 45 // current mode. 46 // 47 // The core matching algorithm attempts to exploit the regularity in most 48 // instruction sets to quickly determine the set of possibly matching 49 // instructions, and the simplify the generated code. Additionally, this helps 50 // to ensure that the ambiguities are intentionally resolved by the user. 51 // 52 // The matching is divided into two distinct phases: 53 // 54 // 1. Classification: Each operand is mapped to the unique set which (a) 55 // contains it, and (b) is the largest such subset for which a single 56 // instruction could match all members. 57 // 58 // For register classes, we can generate these subgroups automatically. For 59 // arbitrary operands, we expect the user to define the classes and their 60 // relations to one another (for example, 8-bit signed immediates as a 61 // subset of 32-bit immediates). 62 // 63 // By partitioning the operands in this way, we guarantee that for any 64 // tuple of classes, any single instruction must match either all or none 65 // of the sets of operands which could classify to that tuple. 66 // 67 // In addition, the subset relation amongst classes induces a partial order 68 // on such tuples, which we use to resolve ambiguities. 69 // 70 // 2. The input can now be treated as a tuple of classes (static tokens are 71 // simple singleton sets). Each such tuple should generally map to a single 72 // instruction (we currently ignore cases where this isn't true, whee!!!), 73 // which we can emit a simple matcher for. 74 // 75 // Custom Operand Parsing 76 // ---------------------- 77 // 78 // Some targets need a custom way to parse operands, some specific instructions 79 // can contain arguments that can represent processor flags and other kinds of 80 // identifiers that need to be mapped to specific values in the final encoded 81 // instructions. The target specific custom operand parsing works in the 82 // following way: 83 // 84 // 1. A operand match table is built, each entry contains a mnemonic, an 85 // operand class, a mask for all operand positions for that same 86 // class/mnemonic and target features to be checked while trying to match. 87 // 88 // 2. The operand matcher will try every possible entry with the same 89 // mnemonic and will check if the target feature for this mnemonic also 90 // matches. After that, if the operand to be matched has its index 91 // present in the mask, a successful match occurs. Otherwise, fallback 92 // to the regular operand parsing. 93 // 94 // 3. For a match success, each operand class that has a 'ParserMethod' 95 // becomes part of a switch from where the custom method is called. 96 // 97 //===----------------------------------------------------------------------===// 98 99 #include "CodeGenTarget.h" 100 #include "SubtargetFeatureInfo.h" 101 #include "Types.h" 102 #include "llvm/ADT/CachedHashString.h" 103 #include "llvm/ADT/PointerUnion.h" 104 #include "llvm/ADT/STLExtras.h" 105 #include "llvm/ADT/SmallPtrSet.h" 106 #include "llvm/ADT/SmallVector.h" 107 #include "llvm/ADT/StringExtras.h" 108 #include "llvm/Config/llvm-config.h" 109 #include "llvm/Support/CommandLine.h" 110 #include "llvm/Support/Debug.h" 111 #include "llvm/Support/ErrorHandling.h" 112 #include "llvm/TableGen/Error.h" 113 #include "llvm/TableGen/Record.h" 114 #include "llvm/TableGen/StringMatcher.h" 115 #include "llvm/TableGen/StringToOffsetTable.h" 116 #include "llvm/TableGen/TableGenBackend.h" 117 #include <cassert> 118 #include <cctype> 119 #include <forward_list> 120 #include <map> 121 #include <set> 122 123 using namespace llvm; 124 125 #define DEBUG_TYPE "asm-matcher-emitter" 126 127 cl::OptionCategory AsmMatcherEmitterCat("Options for -gen-asm-matcher"); 128 129 static cl::opt<std::string> 130 MatchPrefix("match-prefix", cl::init(""), 131 cl::desc("Only match instructions with the given prefix"), 132 cl::cat(AsmMatcherEmitterCat)); 133 134 namespace { 135 class AsmMatcherInfo; 136 137 // Register sets are used as keys in some second-order sets TableGen creates 138 // when generating its data structures. This means that the order of two 139 // RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and 140 // can even affect compiler output (at least seen in diagnostics produced when 141 // all matches fail). So we use a type that sorts them consistently. 142 typedef std::set<Record*, LessRecordByID> RegisterSet; 143 144 class AsmMatcherEmitter { 145 RecordKeeper &Records; 146 public: 147 AsmMatcherEmitter(RecordKeeper &R) : Records(R) {} 148 149 void run(raw_ostream &o); 150 }; 151 152 /// ClassInfo - Helper class for storing the information about a particular 153 /// class of operands which can be matched. 154 struct ClassInfo { 155 enum ClassInfoKind { 156 /// Invalid kind, for use as a sentinel value. 157 Invalid = 0, 158 159 /// The class for a particular token. 160 Token, 161 162 /// The (first) register class, subsequent register classes are 163 /// RegisterClass0+1, and so on. 164 RegisterClass0, 165 166 /// The (first) user defined class, subsequent user defined classes are 167 /// UserClass0+1, and so on. 168 UserClass0 = 1<<16 169 }; 170 171 /// Kind - The class kind, which is either a predefined kind, or (UserClass0 + 172 /// N) for the Nth user defined class. 173 unsigned Kind; 174 175 /// SuperClasses - The super classes of this class. Note that for simplicities 176 /// sake user operands only record their immediate super class, while register 177 /// operands include all superclasses. 178 std::vector<ClassInfo*> SuperClasses; 179 180 /// Name - The full class name, suitable for use in an enum. 181 std::string Name; 182 183 /// ClassName - The unadorned generic name for this class (e.g., Token). 184 std::string ClassName; 185 186 /// ValueName - The name of the value this class represents; for a token this 187 /// is the literal token string, for an operand it is the TableGen class (or 188 /// empty if this is a derived class). 189 std::string ValueName; 190 191 /// PredicateMethod - The name of the operand method to test whether the 192 /// operand matches this class; this is not valid for Token or register kinds. 193 std::string PredicateMethod; 194 195 /// RenderMethod - The name of the operand method to add this operand to an 196 /// MCInst; this is not valid for Token or register kinds. 197 std::string RenderMethod; 198 199 /// ParserMethod - The name of the operand method to do a target specific 200 /// parsing on the operand. 201 std::string ParserMethod; 202 203 /// For register classes: the records for all the registers in this class. 204 RegisterSet Registers; 205 206 /// For custom match classes: the diagnostic kind for when the predicate fails. 207 std::string DiagnosticType; 208 209 /// For custom match classes: the diagnostic string for when the predicate fails. 210 std::string DiagnosticString; 211 212 /// Is this operand optional and not always required. 213 bool IsOptional; 214 215 /// DefaultMethod - The name of the method that returns the default operand 216 /// for optional operand 217 std::string DefaultMethod; 218 219 public: 220 /// isRegisterClass() - Check if this is a register class. 221 bool isRegisterClass() const { 222 return Kind >= RegisterClass0 && Kind < UserClass0; 223 } 224 225 /// isUserClass() - Check if this is a user defined class. 226 bool isUserClass() const { 227 return Kind >= UserClass0; 228 } 229 230 /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes 231 /// are related if they are in the same class hierarchy. 232 bool isRelatedTo(const ClassInfo &RHS) const { 233 // Tokens are only related to tokens. 234 if (Kind == Token || RHS.Kind == Token) 235 return Kind == Token && RHS.Kind == Token; 236 237 // Registers classes are only related to registers classes, and only if 238 // their intersection is non-empty. 239 if (isRegisterClass() || RHS.isRegisterClass()) { 240 if (!isRegisterClass() || !RHS.isRegisterClass()) 241 return false; 242 243 RegisterSet Tmp; 244 std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin()); 245 std::set_intersection(Registers.begin(), Registers.end(), 246 RHS.Registers.begin(), RHS.Registers.end(), 247 II, LessRecordByID()); 248 249 return !Tmp.empty(); 250 } 251 252 // Otherwise we have two users operands; they are related if they are in the 253 // same class hierarchy. 254 // 255 // FIXME: This is an oversimplification, they should only be related if they 256 // intersect, however we don't have that information. 257 assert(isUserClass() && RHS.isUserClass() && "Unexpected class!"); 258 const ClassInfo *Root = this; 259 while (!Root->SuperClasses.empty()) 260 Root = Root->SuperClasses.front(); 261 262 const ClassInfo *RHSRoot = &RHS; 263 while (!RHSRoot->SuperClasses.empty()) 264 RHSRoot = RHSRoot->SuperClasses.front(); 265 266 return Root == RHSRoot; 267 } 268 269 /// isSubsetOf - Test whether this class is a subset of \p RHS. 270 bool isSubsetOf(const ClassInfo &RHS) const { 271 // This is a subset of RHS if it is the same class... 272 if (this == &RHS) 273 return true; 274 275 // ... or if any of its super classes are a subset of RHS. 276 for (const ClassInfo *CI : SuperClasses) 277 if (CI->isSubsetOf(RHS)) 278 return true; 279 280 return false; 281 } 282 283 int getTreeDepth() const { 284 int Depth = 0; 285 const ClassInfo *Root = this; 286 while (!Root->SuperClasses.empty()) { 287 Depth++; 288 Root = Root->SuperClasses.front(); 289 } 290 return Depth; 291 } 292 293 const ClassInfo *findRoot() const { 294 const ClassInfo *Root = this; 295 while (!Root->SuperClasses.empty()) 296 Root = Root->SuperClasses.front(); 297 return Root; 298 } 299 300 /// Compare two classes. This does not produce a total ordering, but does 301 /// guarantee that subclasses are sorted before their parents, and that the 302 /// ordering is transitive. 303 bool operator<(const ClassInfo &RHS) const { 304 if (this == &RHS) 305 return false; 306 307 // First, enforce the ordering between the three different types of class. 308 // Tokens sort before registers, which sort before user classes. 309 if (Kind == Token) { 310 if (RHS.Kind != Token) 311 return true; 312 assert(RHS.Kind == Token); 313 } else if (isRegisterClass()) { 314 if (RHS.Kind == Token) 315 return false; 316 else if (RHS.isUserClass()) 317 return true; 318 assert(RHS.isRegisterClass()); 319 } else if (isUserClass()) { 320 if (!RHS.isUserClass()) 321 return false; 322 assert(RHS.isUserClass()); 323 } else { 324 llvm_unreachable("Unknown ClassInfoKind"); 325 } 326 327 if (Kind == Token || isUserClass()) { 328 // Related tokens and user classes get sorted by depth in the inheritence 329 // tree (so that subclasses are before their parents). 330 if (isRelatedTo(RHS)) { 331 if (getTreeDepth() > RHS.getTreeDepth()) 332 return true; 333 if (getTreeDepth() < RHS.getTreeDepth()) 334 return false; 335 } else { 336 // Unrelated tokens and user classes are ordered by the name of their 337 // root nodes, so that there is a consistent ordering between 338 // unconnected trees. 339 return findRoot()->ValueName < RHS.findRoot()->ValueName; 340 } 341 } else if (isRegisterClass()) { 342 // For register sets, sort by number of registers. This guarantees that 343 // a set will always sort before all of it's strict supersets. 344 if (Registers.size() != RHS.Registers.size()) 345 return Registers.size() < RHS.Registers.size(); 346 } else { 347 llvm_unreachable("Unknown ClassInfoKind"); 348 } 349 350 // FIXME: We should be able to just return false here, as we only need a 351 // partial order (we use stable sorts, so this is deterministic) and the 352 // name of a class shouldn't be significant. However, some of the backends 353 // accidentally rely on this behaviour, so it will have to stay like this 354 // until they are fixed. 355 return ValueName < RHS.ValueName; 356 } 357 }; 358 359 class AsmVariantInfo { 360 public: 361 StringRef RegisterPrefix; 362 StringRef TokenizingCharacters; 363 StringRef SeparatorCharacters; 364 StringRef BreakCharacters; 365 StringRef Name; 366 int AsmVariantNo; 367 }; 368 369 /// MatchableInfo - Helper class for storing the necessary information for an 370 /// instruction or alias which is capable of being matched. 371 struct MatchableInfo { 372 struct AsmOperand { 373 /// Token - This is the token that the operand came from. 374 StringRef Token; 375 376 /// The unique class instance this operand should match. 377 ClassInfo *Class; 378 379 /// The operand name this is, if anything. 380 StringRef SrcOpName; 381 382 /// The operand name this is, before renaming for tied operands. 383 StringRef OrigSrcOpName; 384 385 /// The suboperand index within SrcOpName, or -1 for the entire operand. 386 int SubOpIdx; 387 388 /// Whether the token is "isolated", i.e., it is preceded and followed 389 /// by separators. 390 bool IsIsolatedToken; 391 392 /// Register record if this token is singleton register. 393 Record *SingletonReg; 394 395 explicit AsmOperand(bool IsIsolatedToken, StringRef T) 396 : Token(T), Class(nullptr), SubOpIdx(-1), 397 IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {} 398 }; 399 400 /// ResOperand - This represents a single operand in the result instruction 401 /// generated by the match. In cases (like addressing modes) where a single 402 /// assembler operand expands to multiple MCOperands, this represents the 403 /// single assembler operand, not the MCOperand. 404 struct ResOperand { 405 enum { 406 /// RenderAsmOperand - This represents an operand result that is 407 /// generated by calling the render method on the assembly operand. The 408 /// corresponding AsmOperand is specified by AsmOperandNum. 409 RenderAsmOperand, 410 411 /// TiedOperand - This represents a result operand that is a duplicate of 412 /// a previous result operand. 413 TiedOperand, 414 415 /// ImmOperand - This represents an immediate value that is dumped into 416 /// the operand. 417 ImmOperand, 418 419 /// RegOperand - This represents a fixed register that is dumped in. 420 RegOperand 421 } Kind; 422 423 /// Tuple containing the index of the (earlier) result operand that should 424 /// be copied from, as well as the indices of the corresponding (parsed) 425 /// operands in the asm string. 426 struct TiedOperandsTuple { 427 unsigned ResOpnd; 428 unsigned SrcOpnd1Idx; 429 unsigned SrcOpnd2Idx; 430 }; 431 432 union { 433 /// This is the operand # in the AsmOperands list that this should be 434 /// copied from. 435 unsigned AsmOperandNum; 436 437 /// Description of tied operands. 438 TiedOperandsTuple TiedOperands; 439 440 /// ImmVal - This is the immediate value added to the instruction. 441 int64_t ImmVal; 442 443 /// Register - This is the register record. 444 Record *Register; 445 }; 446 447 /// MINumOperands - The number of MCInst operands populated by this 448 /// operand. 449 unsigned MINumOperands; 450 451 static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) { 452 ResOperand X; 453 X.Kind = RenderAsmOperand; 454 X.AsmOperandNum = AsmOpNum; 455 X.MINumOperands = NumOperands; 456 return X; 457 } 458 459 static ResOperand getTiedOp(unsigned TiedOperandNum, unsigned SrcOperand1, 460 unsigned SrcOperand2) { 461 ResOperand X; 462 X.Kind = TiedOperand; 463 X.TiedOperands = { TiedOperandNum, SrcOperand1, SrcOperand2 }; 464 X.MINumOperands = 1; 465 return X; 466 } 467 468 static ResOperand getImmOp(int64_t Val) { 469 ResOperand X; 470 X.Kind = ImmOperand; 471 X.ImmVal = Val; 472 X.MINumOperands = 1; 473 return X; 474 } 475 476 static ResOperand getRegOp(Record *Reg) { 477 ResOperand X; 478 X.Kind = RegOperand; 479 X.Register = Reg; 480 X.MINumOperands = 1; 481 return X; 482 } 483 }; 484 485 /// AsmVariantID - Target's assembly syntax variant no. 486 int AsmVariantID; 487 488 /// AsmString - The assembly string for this instruction (with variants 489 /// removed), e.g. "movsx $src, $dst". 490 std::string AsmString; 491 492 /// TheDef - This is the definition of the instruction or InstAlias that this 493 /// matchable came from. 494 Record *const TheDef; 495 496 /// DefRec - This is the definition that it came from. 497 PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec; 498 499 const CodeGenInstruction *getResultInst() const { 500 if (DefRec.is<const CodeGenInstruction*>()) 501 return DefRec.get<const CodeGenInstruction*>(); 502 return DefRec.get<const CodeGenInstAlias*>()->ResultInst; 503 } 504 505 /// ResOperands - This is the operand list that should be built for the result 506 /// MCInst. 507 SmallVector<ResOperand, 8> ResOperands; 508 509 /// Mnemonic - This is the first token of the matched instruction, its 510 /// mnemonic. 511 StringRef Mnemonic; 512 513 /// AsmOperands - The textual operands that this instruction matches, 514 /// annotated with a class and where in the OperandList they were defined. 515 /// This directly corresponds to the tokenized AsmString after the mnemonic is 516 /// removed. 517 SmallVector<AsmOperand, 8> AsmOperands; 518 519 /// AsmOperandEqualityConstraints - an array of pairs holding operand 520 /// constraints. 521 /// Each constraint is represented as a pair holding position of the token of 522 /// the operand asm name. 523 /// For example, an "AsmString" "add $Vd.s, $Vn.s, $Xn" would be 524 /// split in the following list of tokens: 525 /// 526 /// ['add', '$Vd', '.s', '$Vn', '.s', '$Xn'] 527 /// 528 /// A constraint "$Vd = $Vn" (e.g. for a destructive operation) is rendered 529 /// as the pair {1,3} into this set (note that tokens are numbered starting 530 /// from 0). 531 SmallVector<std::pair<unsigned,unsigned>, 1> AsmOperandTiedConstraints; 532 533 /// Predicates - The required subtarget features to match this instruction. 534 SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures; 535 536 /// ConversionFnKind - The enum value which is passed to the generated 537 /// convertToMCInst to convert parsed operands into an MCInst for this 538 /// function. 539 std::string ConversionFnKind; 540 541 /// If this instruction is deprecated in some form. 542 bool HasDeprecation; 543 544 /// If this is an alias, this is use to determine whether or not to using 545 /// the conversion function defined by the instruction's AsmMatchConverter 546 /// or to use the function generated by the alias. 547 bool UseInstAsmMatchConverter; 548 549 MatchableInfo(const CodeGenInstruction &CGI) 550 : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI), 551 UseInstAsmMatchConverter(true) { 552 } 553 554 MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias) 555 : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef), 556 DefRec(Alias.release()), 557 UseInstAsmMatchConverter( 558 TheDef->getValueAsBit("UseInstAsmMatchConverter")) { 559 } 560 561 // Could remove this and the dtor if PointerUnion supported unique_ptr 562 // elements with a dynamic failure/assertion (like the one below) in the case 563 // where it was copied while being in an owning state. 564 MatchableInfo(const MatchableInfo &RHS) 565 : AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString), 566 TheDef(RHS.TheDef), DefRec(RHS.DefRec), ResOperands(RHS.ResOperands), 567 Mnemonic(RHS.Mnemonic), AsmOperands(RHS.AsmOperands), 568 RequiredFeatures(RHS.RequiredFeatures), 569 ConversionFnKind(RHS.ConversionFnKind), 570 HasDeprecation(RHS.HasDeprecation), 571 UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) { 572 assert(!DefRec.is<const CodeGenInstAlias *>()); 573 } 574 575 ~MatchableInfo() { 576 delete DefRec.dyn_cast<const CodeGenInstAlias*>(); 577 } 578 579 // Two-operand aliases clone from the main matchable, but mark the second 580 // operand as a tied operand of the first for purposes of the assembler. 581 void formTwoOperandAlias(StringRef Constraint); 582 583 void initialize(const AsmMatcherInfo &Info, 584 SmallPtrSetImpl<Record*> &SingletonRegisters, 585 AsmVariantInfo const &Variant, 586 bool HasMnemonicFirst); 587 588 /// validate - Return true if this matchable is a valid thing to match against 589 /// and perform a bunch of validity checking. 590 bool validate(StringRef CommentDelimiter, bool IsAlias) const; 591 592 /// findAsmOperand - Find the AsmOperand with the specified name and 593 /// suboperand index. 594 int findAsmOperand(StringRef N, int SubOpIdx) const { 595 auto I = find_if(AsmOperands, [&](const AsmOperand &Op) { 596 return Op.SrcOpName == N && Op.SubOpIdx == SubOpIdx; 597 }); 598 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; 599 } 600 601 /// findAsmOperandNamed - Find the first AsmOperand with the specified name. 602 /// This does not check the suboperand index. 603 int findAsmOperandNamed(StringRef N, int LastIdx = -1) const { 604 auto I = std::find_if(AsmOperands.begin() + LastIdx + 1, AsmOperands.end(), 605 [&](const AsmOperand &Op) { return Op.SrcOpName == N; }); 606 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; 607 } 608 609 int findAsmOperandOriginallyNamed(StringRef N) const { 610 auto I = 611 find_if(AsmOperands, 612 [&](const AsmOperand &Op) { return Op.OrigSrcOpName == N; }); 613 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; 614 } 615 616 void buildInstructionResultOperands(); 617 void buildAliasResultOperands(bool AliasConstraintsAreChecked); 618 619 /// operator< - Compare two matchables. 620 bool operator<(const MatchableInfo &RHS) const { 621 // The primary comparator is the instruction mnemonic. 622 if (int Cmp = Mnemonic.compare(RHS.Mnemonic)) 623 return Cmp == -1; 624 625 if (AsmOperands.size() != RHS.AsmOperands.size()) 626 return AsmOperands.size() < RHS.AsmOperands.size(); 627 628 // Compare lexicographically by operand. The matcher validates that other 629 // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith(). 630 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { 631 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) 632 return true; 633 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) 634 return false; 635 } 636 637 // Give matches that require more features higher precedence. This is useful 638 // because we cannot define AssemblerPredicates with the negation of 639 // processor features. For example, ARM v6 "nop" may be either a HINT or 640 // MOV. With v6, we want to match HINT. The assembler has no way to 641 // predicate MOV under "NoV6", but HINT will always match first because it 642 // requires V6 while MOV does not. 643 if (RequiredFeatures.size() != RHS.RequiredFeatures.size()) 644 return RequiredFeatures.size() > RHS.RequiredFeatures.size(); 645 646 return false; 647 } 648 649 /// couldMatchAmbiguouslyWith - Check whether this matchable could 650 /// ambiguously match the same set of operands as \p RHS (without being a 651 /// strictly superior match). 652 bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const { 653 // The primary comparator is the instruction mnemonic. 654 if (Mnemonic != RHS.Mnemonic) 655 return false; 656 657 // Different variants can't conflict. 658 if (AsmVariantID != RHS.AsmVariantID) 659 return false; 660 661 // The number of operands is unambiguous. 662 if (AsmOperands.size() != RHS.AsmOperands.size()) 663 return false; 664 665 // Otherwise, make sure the ordering of the two instructions is unambiguous 666 // by checking that either (a) a token or operand kind discriminates them, 667 // or (b) the ordering among equivalent kinds is consistent. 668 669 // Tokens and operand kinds are unambiguous (assuming a correct target 670 // specific parser). 671 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) 672 if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind || 673 AsmOperands[i].Class->Kind == ClassInfo::Token) 674 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class || 675 *RHS.AsmOperands[i].Class < *AsmOperands[i].Class) 676 return false; 677 678 // Otherwise, this operand could commute if all operands are equivalent, or 679 // there is a pair of operands that compare less than and a pair that 680 // compare greater than. 681 bool HasLT = false, HasGT = false; 682 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { 683 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) 684 HasLT = true; 685 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) 686 HasGT = true; 687 } 688 689 return HasLT == HasGT; 690 } 691 692 void dump() const; 693 694 private: 695 void tokenizeAsmString(AsmMatcherInfo const &Info, 696 AsmVariantInfo const &Variant); 697 void addAsmOperand(StringRef Token, bool IsIsolatedToken = false); 698 }; 699 700 struct OperandMatchEntry { 701 unsigned OperandMask; 702 const MatchableInfo* MI; 703 ClassInfo *CI; 704 705 static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci, 706 unsigned opMask) { 707 OperandMatchEntry X; 708 X.OperandMask = opMask; 709 X.CI = ci; 710 X.MI = mi; 711 return X; 712 } 713 }; 714 715 class AsmMatcherInfo { 716 public: 717 /// Tracked Records 718 RecordKeeper &Records; 719 720 /// The tablegen AsmParser record. 721 Record *AsmParser; 722 723 /// Target - The target information. 724 CodeGenTarget &Target; 725 726 /// The classes which are needed for matching. 727 std::forward_list<ClassInfo> Classes; 728 729 /// The information on the matchables to match. 730 std::vector<std::unique_ptr<MatchableInfo>> Matchables; 731 732 /// Info for custom matching operands by user defined methods. 733 std::vector<OperandMatchEntry> OperandMatchInfo; 734 735 /// Map of Register records to their class information. 736 typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy; 737 RegisterClassesTy RegisterClasses; 738 739 /// Map of Predicate records to their subtarget information. 740 std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures; 741 742 /// Map of AsmOperandClass records to their class information. 743 std::map<Record*, ClassInfo*> AsmOperandClasses; 744 745 /// Map of RegisterClass records to their class information. 746 std::map<Record*, ClassInfo*> RegisterClassClasses; 747 748 private: 749 /// Map of token to class information which has already been constructed. 750 std::map<std::string, ClassInfo*> TokenClasses; 751 752 private: 753 /// getTokenClass - Lookup or create the class for the given token. 754 ClassInfo *getTokenClass(StringRef Token); 755 756 /// getOperandClass - Lookup or create the class for the given operand. 757 ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI, 758 int SubOpIdx); 759 ClassInfo *getOperandClass(Record *Rec, int SubOpIdx); 760 761 /// buildRegisterClasses - Build the ClassInfo* instances for register 762 /// classes. 763 void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters); 764 765 /// buildOperandClasses - Build the ClassInfo* instances for user defined 766 /// operand classes. 767 void buildOperandClasses(); 768 769 void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName, 770 unsigned AsmOpIdx); 771 void buildAliasOperandReference(MatchableInfo *II, StringRef OpName, 772 MatchableInfo::AsmOperand &Op); 773 774 public: 775 AsmMatcherInfo(Record *AsmParser, 776 CodeGenTarget &Target, 777 RecordKeeper &Records); 778 779 /// Construct the various tables used during matching. 780 void buildInfo(); 781 782 /// buildOperandMatchInfo - Build the necessary information to handle user 783 /// defined operand parsing methods. 784 void buildOperandMatchInfo(); 785 786 /// getSubtargetFeature - Lookup or create the subtarget feature info for the 787 /// given operand. 788 const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const { 789 assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!"); 790 const auto &I = SubtargetFeatures.find(Def); 791 return I == SubtargetFeatures.end() ? nullptr : &I->second; 792 } 793 794 RecordKeeper &getRecords() const { 795 return Records; 796 } 797 798 bool hasOptionalOperands() const { 799 return find_if(Classes, [](const ClassInfo &Class) { 800 return Class.IsOptional; 801 }) != Classes.end(); 802 } 803 }; 804 805 } // end anonymous namespace 806 807 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 808 LLVM_DUMP_METHOD void MatchableInfo::dump() const { 809 errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n"; 810 811 errs() << " variant: " << AsmVariantID << "\n"; 812 813 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { 814 const AsmOperand &Op = AsmOperands[i]; 815 errs() << " op[" << i << "] = " << Op.Class->ClassName << " - "; 816 errs() << '\"' << Op.Token << "\"\n"; 817 } 818 } 819 #endif 820 821 static std::pair<StringRef, StringRef> 822 parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) { 823 // Split via the '='. 824 std::pair<StringRef, StringRef> Ops = S.split('='); 825 if (Ops.second == "") 826 PrintFatalError(Loc, "missing '=' in two-operand alias constraint"); 827 // Trim whitespace and the leading '$' on the operand names. 828 size_t start = Ops.first.find_first_of('$'); 829 if (start == std::string::npos) 830 PrintFatalError(Loc, "expected '$' prefix on asm operand name"); 831 Ops.first = Ops.first.slice(start + 1, std::string::npos); 832 size_t end = Ops.first.find_last_of(" \t"); 833 Ops.first = Ops.first.slice(0, end); 834 // Now the second operand. 835 start = Ops.second.find_first_of('$'); 836 if (start == std::string::npos) 837 PrintFatalError(Loc, "expected '$' prefix on asm operand name"); 838 Ops.second = Ops.second.slice(start + 1, std::string::npos); 839 end = Ops.second.find_last_of(" \t"); 840 Ops.first = Ops.first.slice(0, end); 841 return Ops; 842 } 843 844 void MatchableInfo::formTwoOperandAlias(StringRef Constraint) { 845 // Figure out which operands are aliased and mark them as tied. 846 std::pair<StringRef, StringRef> Ops = 847 parseTwoOperandConstraint(Constraint, TheDef->getLoc()); 848 849 // Find the AsmOperands that refer to the operands we're aliasing. 850 int SrcAsmOperand = findAsmOperandNamed(Ops.first); 851 int DstAsmOperand = findAsmOperandNamed(Ops.second); 852 if (SrcAsmOperand == -1) 853 PrintFatalError(TheDef->getLoc(), 854 "unknown source two-operand alias operand '" + Ops.first + 855 "'."); 856 if (DstAsmOperand == -1) 857 PrintFatalError(TheDef->getLoc(), 858 "unknown destination two-operand alias operand '" + 859 Ops.second + "'."); 860 861 // Find the ResOperand that refers to the operand we're aliasing away 862 // and update it to refer to the combined operand instead. 863 for (ResOperand &Op : ResOperands) { 864 if (Op.Kind == ResOperand::RenderAsmOperand && 865 Op.AsmOperandNum == (unsigned)SrcAsmOperand) { 866 Op.AsmOperandNum = DstAsmOperand; 867 break; 868 } 869 } 870 // Remove the AsmOperand for the alias operand. 871 AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand); 872 // Adjust the ResOperand references to any AsmOperands that followed 873 // the one we just deleted. 874 for (ResOperand &Op : ResOperands) { 875 switch(Op.Kind) { 876 default: 877 // Nothing to do for operands that don't reference AsmOperands. 878 break; 879 case ResOperand::RenderAsmOperand: 880 if (Op.AsmOperandNum > (unsigned)SrcAsmOperand) 881 --Op.AsmOperandNum; 882 break; 883 } 884 } 885 } 886 887 /// extractSingletonRegisterForAsmOperand - Extract singleton register, 888 /// if present, from specified token. 889 static void 890 extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op, 891 const AsmMatcherInfo &Info, 892 StringRef RegisterPrefix) { 893 StringRef Tok = Op.Token; 894 895 // If this token is not an isolated token, i.e., it isn't separated from 896 // other tokens (e.g. with whitespace), don't interpret it as a register name. 897 if (!Op.IsIsolatedToken) 898 return; 899 900 if (RegisterPrefix.empty()) { 901 std::string LoweredTok = Tok.lower(); 902 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok)) 903 Op.SingletonReg = Reg->TheDef; 904 return; 905 } 906 907 if (!Tok.startswith(RegisterPrefix)) 908 return; 909 910 StringRef RegName = Tok.substr(RegisterPrefix.size()); 911 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName)) 912 Op.SingletonReg = Reg->TheDef; 913 914 // If there is no register prefix (i.e. "%" in "%eax"), then this may 915 // be some random non-register token, just ignore it. 916 } 917 918 void MatchableInfo::initialize(const AsmMatcherInfo &Info, 919 SmallPtrSetImpl<Record*> &SingletonRegisters, 920 AsmVariantInfo const &Variant, 921 bool HasMnemonicFirst) { 922 AsmVariantID = Variant.AsmVariantNo; 923 AsmString = 924 CodeGenInstruction::FlattenAsmStringVariants(AsmString, 925 Variant.AsmVariantNo); 926 927 tokenizeAsmString(Info, Variant); 928 929 // The first token of the instruction is the mnemonic, which must be a 930 // simple string, not a $foo variable or a singleton register. 931 if (AsmOperands.empty()) 932 PrintFatalError(TheDef->getLoc(), 933 "Instruction '" + TheDef->getName() + "' has no tokens"); 934 935 assert(!AsmOperands[0].Token.empty()); 936 if (HasMnemonicFirst) { 937 Mnemonic = AsmOperands[0].Token; 938 if (Mnemonic[0] == '$') 939 PrintFatalError(TheDef->getLoc(), 940 "Invalid instruction mnemonic '" + Mnemonic + "'!"); 941 942 // Remove the first operand, it is tracked in the mnemonic field. 943 AsmOperands.erase(AsmOperands.begin()); 944 } else if (AsmOperands[0].Token[0] != '$') 945 Mnemonic = AsmOperands[0].Token; 946 947 // Compute the require features. 948 for (Record *Predicate : TheDef->getValueAsListOfDefs("Predicates")) 949 if (const SubtargetFeatureInfo *Feature = 950 Info.getSubtargetFeature(Predicate)) 951 RequiredFeatures.push_back(Feature); 952 953 // Collect singleton registers, if used. 954 for (MatchableInfo::AsmOperand &Op : AsmOperands) { 955 extractSingletonRegisterForAsmOperand(Op, Info, Variant.RegisterPrefix); 956 if (Record *Reg = Op.SingletonReg) 957 SingletonRegisters.insert(Reg); 958 } 959 960 const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask"); 961 if (!DepMask) 962 DepMask = TheDef->getValue("ComplexDeprecationPredicate"); 963 964 HasDeprecation = 965 DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false; 966 } 967 968 /// Append an AsmOperand for the given substring of AsmString. 969 void MatchableInfo::addAsmOperand(StringRef Token, bool IsIsolatedToken) { 970 AsmOperands.push_back(AsmOperand(IsIsolatedToken, Token)); 971 } 972 973 /// tokenizeAsmString - Tokenize a simplified assembly string. 974 void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info, 975 AsmVariantInfo const &Variant) { 976 StringRef String = AsmString; 977 size_t Prev = 0; 978 bool InTok = false; 979 bool IsIsolatedToken = true; 980 for (size_t i = 0, e = String.size(); i != e; ++i) { 981 char Char = String[i]; 982 if (Variant.BreakCharacters.find(Char) != std::string::npos) { 983 if (InTok) { 984 addAsmOperand(String.slice(Prev, i), false); 985 Prev = i; 986 IsIsolatedToken = false; 987 } 988 InTok = true; 989 continue; 990 } 991 if (Variant.TokenizingCharacters.find(Char) != std::string::npos) { 992 if (InTok) { 993 addAsmOperand(String.slice(Prev, i), IsIsolatedToken); 994 InTok = false; 995 IsIsolatedToken = false; 996 } 997 addAsmOperand(String.slice(i, i + 1), IsIsolatedToken); 998 Prev = i + 1; 999 IsIsolatedToken = true; 1000 continue; 1001 } 1002 if (Variant.SeparatorCharacters.find(Char) != std::string::npos) { 1003 if (InTok) { 1004 addAsmOperand(String.slice(Prev, i), IsIsolatedToken); 1005 InTok = false; 1006 } 1007 Prev = i + 1; 1008 IsIsolatedToken = true; 1009 continue; 1010 } 1011 1012 switch (Char) { 1013 case '\\': 1014 if (InTok) { 1015 addAsmOperand(String.slice(Prev, i), false); 1016 InTok = false; 1017 IsIsolatedToken = false; 1018 } 1019 ++i; 1020 assert(i != String.size() && "Invalid quoted character"); 1021 addAsmOperand(String.slice(i, i + 1), IsIsolatedToken); 1022 Prev = i + 1; 1023 IsIsolatedToken = false; 1024 break; 1025 1026 case '$': { 1027 if (InTok) { 1028 addAsmOperand(String.slice(Prev, i), false); 1029 InTok = false; 1030 IsIsolatedToken = false; 1031 } 1032 1033 // If this isn't "${", start new identifier looking like "$xxx" 1034 if (i + 1 == String.size() || String[i + 1] != '{') { 1035 Prev = i; 1036 break; 1037 } 1038 1039 size_t EndPos = String.find('}', i); 1040 assert(EndPos != StringRef::npos && 1041 "Missing brace in operand reference!"); 1042 addAsmOperand(String.slice(i, EndPos+1), IsIsolatedToken); 1043 Prev = EndPos + 1; 1044 i = EndPos; 1045 IsIsolatedToken = false; 1046 break; 1047 } 1048 1049 default: 1050 InTok = true; 1051 break; 1052 } 1053 } 1054 if (InTok && Prev != String.size()) 1055 addAsmOperand(String.substr(Prev), IsIsolatedToken); 1056 } 1057 1058 bool MatchableInfo::validate(StringRef CommentDelimiter, bool IsAlias) const { 1059 // Reject matchables with no .s string. 1060 if (AsmString.empty()) 1061 PrintFatalError(TheDef->getLoc(), "instruction with empty asm string"); 1062 1063 // Reject any matchables with a newline in them, they should be marked 1064 // isCodeGenOnly if they are pseudo instructions. 1065 if (AsmString.find('\n') != std::string::npos) 1066 PrintFatalError(TheDef->getLoc(), 1067 "multiline instruction is not valid for the asmparser, " 1068 "mark it isCodeGenOnly"); 1069 1070 // Remove comments from the asm string. We know that the asmstring only 1071 // has one line. 1072 if (!CommentDelimiter.empty() && 1073 StringRef(AsmString).find(CommentDelimiter) != StringRef::npos) 1074 PrintFatalError(TheDef->getLoc(), 1075 "asmstring for instruction has comment character in it, " 1076 "mark it isCodeGenOnly"); 1077 1078 // Reject matchables with operand modifiers, these aren't something we can 1079 // handle, the target should be refactored to use operands instead of 1080 // modifiers. 1081 // 1082 // Also, check for instructions which reference the operand multiple times; 1083 // this implies a constraint we would not honor. 1084 std::set<std::string> OperandNames; 1085 for (const AsmOperand &Op : AsmOperands) { 1086 StringRef Tok = Op.Token; 1087 if (Tok[0] == '$' && Tok.find(':') != StringRef::npos) 1088 PrintFatalError(TheDef->getLoc(), 1089 "matchable with operand modifier '" + Tok + 1090 "' not supported by asm matcher. Mark isCodeGenOnly!"); 1091 // Verify that any operand is only mentioned once. 1092 // We reject aliases and ignore instructions for now. 1093 if (!IsAlias && Tok[0] == '$' && !OperandNames.insert(Tok).second) { 1094 DEBUG({ 1095 errs() << "warning: '" << TheDef->getName() << "': " 1096 << "ignoring instruction with tied operand '" 1097 << Tok << "'\n"; 1098 }); 1099 return false; 1100 } 1101 } 1102 1103 return true; 1104 } 1105 1106 static std::string getEnumNameForToken(StringRef Str) { 1107 std::string Res; 1108 1109 for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) { 1110 switch (*it) { 1111 case '*': Res += "_STAR_"; break; 1112 case '%': Res += "_PCT_"; break; 1113 case ':': Res += "_COLON_"; break; 1114 case '!': Res += "_EXCLAIM_"; break; 1115 case '.': Res += "_DOT_"; break; 1116 case '<': Res += "_LT_"; break; 1117 case '>': Res += "_GT_"; break; 1118 case '-': Res += "_MINUS_"; break; 1119 default: 1120 if ((*it >= 'A' && *it <= 'Z') || 1121 (*it >= 'a' && *it <= 'z') || 1122 (*it >= '0' && *it <= '9')) 1123 Res += *it; 1124 else 1125 Res += "_" + utostr((unsigned) *it) + "_"; 1126 } 1127 } 1128 1129 return Res; 1130 } 1131 1132 ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) { 1133 ClassInfo *&Entry = TokenClasses[Token]; 1134 1135 if (!Entry) { 1136 Classes.emplace_front(); 1137 Entry = &Classes.front(); 1138 Entry->Kind = ClassInfo::Token; 1139 Entry->ClassName = "Token"; 1140 Entry->Name = "MCK_" + getEnumNameForToken(Token); 1141 Entry->ValueName = Token; 1142 Entry->PredicateMethod = "<invalid>"; 1143 Entry->RenderMethod = "<invalid>"; 1144 Entry->ParserMethod = ""; 1145 Entry->DiagnosticType = ""; 1146 Entry->IsOptional = false; 1147 Entry->DefaultMethod = "<invalid>"; 1148 } 1149 1150 return Entry; 1151 } 1152 1153 ClassInfo * 1154 AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI, 1155 int SubOpIdx) { 1156 Record *Rec = OI.Rec; 1157 if (SubOpIdx != -1) 1158 Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef(); 1159 return getOperandClass(Rec, SubOpIdx); 1160 } 1161 1162 ClassInfo * 1163 AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) { 1164 if (Rec->isSubClassOf("RegisterOperand")) { 1165 // RegisterOperand may have an associated ParserMatchClass. If it does, 1166 // use it, else just fall back to the underlying register class. 1167 const RecordVal *R = Rec->getValue("ParserMatchClass"); 1168 if (!R || !R->getValue()) 1169 PrintFatalError("Record `" + Rec->getName() + 1170 "' does not have a ParserMatchClass!\n"); 1171 1172 if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) { 1173 Record *MatchClass = DI->getDef(); 1174 if (ClassInfo *CI = AsmOperandClasses[MatchClass]) 1175 return CI; 1176 } 1177 1178 // No custom match class. Just use the register class. 1179 Record *ClassRec = Rec->getValueAsDef("RegClass"); 1180 if (!ClassRec) 1181 PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() + 1182 "' has no associated register class!\n"); 1183 if (ClassInfo *CI = RegisterClassClasses[ClassRec]) 1184 return CI; 1185 PrintFatalError(Rec->getLoc(), "register class has no class info!"); 1186 } 1187 1188 if (Rec->isSubClassOf("RegisterClass")) { 1189 if (ClassInfo *CI = RegisterClassClasses[Rec]) 1190 return CI; 1191 PrintFatalError(Rec->getLoc(), "register class has no class info!"); 1192 } 1193 1194 if (!Rec->isSubClassOf("Operand")) 1195 PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() + 1196 "' does not derive from class Operand!\n"); 1197 Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); 1198 if (ClassInfo *CI = AsmOperandClasses[MatchClass]) 1199 return CI; 1200 1201 PrintFatalError(Rec->getLoc(), "operand has no match class!"); 1202 } 1203 1204 struct LessRegisterSet { 1205 bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const { 1206 // std::set<T> defines its own compariso "operator<", but it 1207 // performs a lexicographical comparison by T's innate comparison 1208 // for some reason. We don't want non-deterministic pointer 1209 // comparisons so use this instead. 1210 return std::lexicographical_compare(LHS.begin(), LHS.end(), 1211 RHS.begin(), RHS.end(), 1212 LessRecordByID()); 1213 } 1214 }; 1215 1216 void AsmMatcherInfo:: 1217 buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) { 1218 const auto &Registers = Target.getRegBank().getRegisters(); 1219 auto &RegClassList = Target.getRegBank().getRegClasses(); 1220 1221 typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet; 1222 1223 // The register sets used for matching. 1224 RegisterSetSet RegisterSets; 1225 1226 // Gather the defined sets. 1227 for (const CodeGenRegisterClass &RC : RegClassList) 1228 RegisterSets.insert( 1229 RegisterSet(RC.getOrder().begin(), RC.getOrder().end())); 1230 1231 // Add any required singleton sets. 1232 for (Record *Rec : SingletonRegisters) { 1233 RegisterSets.insert(RegisterSet(&Rec, &Rec + 1)); 1234 } 1235 1236 // Introduce derived sets where necessary (when a register does not determine 1237 // a unique register set class), and build the mapping of registers to the set 1238 // they should classify to. 1239 std::map<Record*, RegisterSet> RegisterMap; 1240 for (const CodeGenRegister &CGR : Registers) { 1241 // Compute the intersection of all sets containing this register. 1242 RegisterSet ContainingSet; 1243 1244 for (const RegisterSet &RS : RegisterSets) { 1245 if (!RS.count(CGR.TheDef)) 1246 continue; 1247 1248 if (ContainingSet.empty()) { 1249 ContainingSet = RS; 1250 continue; 1251 } 1252 1253 RegisterSet Tmp; 1254 std::swap(Tmp, ContainingSet); 1255 std::insert_iterator<RegisterSet> II(ContainingSet, 1256 ContainingSet.begin()); 1257 std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II, 1258 LessRecordByID()); 1259 } 1260 1261 if (!ContainingSet.empty()) { 1262 RegisterSets.insert(ContainingSet); 1263 RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet)); 1264 } 1265 } 1266 1267 // Construct the register classes. 1268 std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses; 1269 unsigned Index = 0; 1270 for (const RegisterSet &RS : RegisterSets) { 1271 Classes.emplace_front(); 1272 ClassInfo *CI = &Classes.front(); 1273 CI->Kind = ClassInfo::RegisterClass0 + Index; 1274 CI->ClassName = "Reg" + utostr(Index); 1275 CI->Name = "MCK_Reg" + utostr(Index); 1276 CI->ValueName = ""; 1277 CI->PredicateMethod = ""; // unused 1278 CI->RenderMethod = "addRegOperands"; 1279 CI->Registers = RS; 1280 // FIXME: diagnostic type. 1281 CI->DiagnosticType = ""; 1282 CI->IsOptional = false; 1283 CI->DefaultMethod = ""; // unused 1284 RegisterSetClasses.insert(std::make_pair(RS, CI)); 1285 ++Index; 1286 } 1287 1288 // Find the superclasses; we could compute only the subgroup lattice edges, 1289 // but there isn't really a point. 1290 for (const RegisterSet &RS : RegisterSets) { 1291 ClassInfo *CI = RegisterSetClasses[RS]; 1292 for (const RegisterSet &RS2 : RegisterSets) 1293 if (RS != RS2 && 1294 std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(), 1295 LessRecordByID())) 1296 CI->SuperClasses.push_back(RegisterSetClasses[RS2]); 1297 } 1298 1299 // Name the register classes which correspond to a user defined RegisterClass. 1300 for (const CodeGenRegisterClass &RC : RegClassList) { 1301 // Def will be NULL for non-user defined register classes. 1302 Record *Def = RC.getDef(); 1303 if (!Def) 1304 continue; 1305 ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(), 1306 RC.getOrder().end())]; 1307 if (CI->ValueName.empty()) { 1308 CI->ClassName = RC.getName(); 1309 CI->Name = "MCK_" + RC.getName(); 1310 CI->ValueName = RC.getName(); 1311 } else 1312 CI->ValueName = CI->ValueName + "," + RC.getName(); 1313 1314 Init *DiagnosticType = Def->getValueInit("DiagnosticType"); 1315 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType)) 1316 CI->DiagnosticType = SI->getValue(); 1317 1318 Init *DiagnosticString = Def->getValueInit("DiagnosticString"); 1319 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString)) 1320 CI->DiagnosticString = SI->getValue(); 1321 1322 // If we have a diagnostic string but the diagnostic type is not specified 1323 // explicitly, create an anonymous diagnostic type. 1324 if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty()) 1325 CI->DiagnosticType = RC.getName(); 1326 1327 RegisterClassClasses.insert(std::make_pair(Def, CI)); 1328 } 1329 1330 // Populate the map for individual registers. 1331 for (std::map<Record*, RegisterSet>::iterator it = RegisterMap.begin(), 1332 ie = RegisterMap.end(); it != ie; ++it) 1333 RegisterClasses[it->first] = RegisterSetClasses[it->second]; 1334 1335 // Name the register classes which correspond to singleton registers. 1336 for (Record *Rec : SingletonRegisters) { 1337 ClassInfo *CI = RegisterClasses[Rec]; 1338 assert(CI && "Missing singleton register class info!"); 1339 1340 if (CI->ValueName.empty()) { 1341 CI->ClassName = Rec->getName(); 1342 CI->Name = "MCK_" + Rec->getName().str(); 1343 CI->ValueName = Rec->getName(); 1344 } else 1345 CI->ValueName = CI->ValueName + "," + Rec->getName().str(); 1346 } 1347 } 1348 1349 void AsmMatcherInfo::buildOperandClasses() { 1350 std::vector<Record*> AsmOperands = 1351 Records.getAllDerivedDefinitions("AsmOperandClass"); 1352 1353 // Pre-populate AsmOperandClasses map. 1354 for (Record *Rec : AsmOperands) { 1355 Classes.emplace_front(); 1356 AsmOperandClasses[Rec] = &Classes.front(); 1357 } 1358 1359 unsigned Index = 0; 1360 for (Record *Rec : AsmOperands) { 1361 ClassInfo *CI = AsmOperandClasses[Rec]; 1362 CI->Kind = ClassInfo::UserClass0 + Index; 1363 1364 ListInit *Supers = Rec->getValueAsListInit("SuperClasses"); 1365 for (Init *I : Supers->getValues()) { 1366 DefInit *DI = dyn_cast<DefInit>(I); 1367 if (!DI) { 1368 PrintError(Rec->getLoc(), "Invalid super class reference!"); 1369 continue; 1370 } 1371 1372 ClassInfo *SC = AsmOperandClasses[DI->getDef()]; 1373 if (!SC) 1374 PrintError(Rec->getLoc(), "Invalid super class reference!"); 1375 else 1376 CI->SuperClasses.push_back(SC); 1377 } 1378 CI->ClassName = Rec->getValueAsString("Name"); 1379 CI->Name = "MCK_" + CI->ClassName; 1380 CI->ValueName = Rec->getName(); 1381 1382 // Get or construct the predicate method name. 1383 Init *PMName = Rec->getValueInit("PredicateMethod"); 1384 if (StringInit *SI = dyn_cast<StringInit>(PMName)) { 1385 CI->PredicateMethod = SI->getValue(); 1386 } else { 1387 assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!"); 1388 CI->PredicateMethod = "is" + CI->ClassName; 1389 } 1390 1391 // Get or construct the render method name. 1392 Init *RMName = Rec->getValueInit("RenderMethod"); 1393 if (StringInit *SI = dyn_cast<StringInit>(RMName)) { 1394 CI->RenderMethod = SI->getValue(); 1395 } else { 1396 assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!"); 1397 CI->RenderMethod = "add" + CI->ClassName + "Operands"; 1398 } 1399 1400 // Get the parse method name or leave it as empty. 1401 Init *PRMName = Rec->getValueInit("ParserMethod"); 1402 if (StringInit *SI = dyn_cast<StringInit>(PRMName)) 1403 CI->ParserMethod = SI->getValue(); 1404 1405 // Get the diagnostic type and string or leave them as empty. 1406 Init *DiagnosticType = Rec->getValueInit("DiagnosticType"); 1407 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType)) 1408 CI->DiagnosticType = SI->getValue(); 1409 Init *DiagnosticString = Rec->getValueInit("DiagnosticString"); 1410 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString)) 1411 CI->DiagnosticString = SI->getValue(); 1412 // If we have a DiagnosticString, we need a DiagnosticType for use within 1413 // the matcher. 1414 if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty()) 1415 CI->DiagnosticType = CI->ClassName; 1416 1417 Init *IsOptional = Rec->getValueInit("IsOptional"); 1418 if (BitInit *BI = dyn_cast<BitInit>(IsOptional)) 1419 CI->IsOptional = BI->getValue(); 1420 1421 // Get or construct the default method name. 1422 Init *DMName = Rec->getValueInit("DefaultMethod"); 1423 if (StringInit *SI = dyn_cast<StringInit>(DMName)) { 1424 CI->DefaultMethod = SI->getValue(); 1425 } else { 1426 assert(isa<UnsetInit>(DMName) && "Unexpected DefaultMethod field!"); 1427 CI->DefaultMethod = "default" + CI->ClassName + "Operands"; 1428 } 1429 1430 ++Index; 1431 } 1432 } 1433 1434 AsmMatcherInfo::AsmMatcherInfo(Record *asmParser, 1435 CodeGenTarget &target, 1436 RecordKeeper &records) 1437 : Records(records), AsmParser(asmParser), Target(target) { 1438 } 1439 1440 /// buildOperandMatchInfo - Build the necessary information to handle user 1441 /// defined operand parsing methods. 1442 void AsmMatcherInfo::buildOperandMatchInfo() { 1443 1444 /// Map containing a mask with all operands indices that can be found for 1445 /// that class inside a instruction. 1446 typedef std::map<ClassInfo *, unsigned, less_ptr<ClassInfo>> OpClassMaskTy; 1447 OpClassMaskTy OpClassMask; 1448 1449 for (const auto &MI : Matchables) { 1450 OpClassMask.clear(); 1451 1452 // Keep track of all operands of this instructions which belong to the 1453 // same class. 1454 for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) { 1455 const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i]; 1456 if (Op.Class->ParserMethod.empty()) 1457 continue; 1458 unsigned &OperandMask = OpClassMask[Op.Class]; 1459 OperandMask |= (1 << i); 1460 } 1461 1462 // Generate operand match info for each mnemonic/operand class pair. 1463 for (const auto &OCM : OpClassMask) { 1464 unsigned OpMask = OCM.second; 1465 ClassInfo *CI = OCM.first; 1466 OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI, 1467 OpMask)); 1468 } 1469 } 1470 } 1471 1472 void AsmMatcherInfo::buildInfo() { 1473 // Build information about all of the AssemblerPredicates. 1474 const std::vector<std::pair<Record *, SubtargetFeatureInfo>> 1475 &SubtargetFeaturePairs = SubtargetFeatureInfo::getAll(Records); 1476 SubtargetFeatures.insert(SubtargetFeaturePairs.begin(), 1477 SubtargetFeaturePairs.end()); 1478 #ifndef NDEBUG 1479 for (const auto &Pair : SubtargetFeatures) 1480 DEBUG(Pair.second.dump()); 1481 #endif // NDEBUG 1482 assert(SubtargetFeatures.size() <= 64 && "Too many subtarget features!"); 1483 1484 bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst"); 1485 bool ReportMultipleNearMisses = 1486 AsmParser->getValueAsBit("ReportMultipleNearMisses"); 1487 1488 // Parse the instructions; we need to do this first so that we can gather the 1489 // singleton register classes. 1490 SmallPtrSet<Record*, 16> SingletonRegisters; 1491 unsigned VariantCount = Target.getAsmParserVariantCount(); 1492 for (unsigned VC = 0; VC != VariantCount; ++VC) { 1493 Record *AsmVariant = Target.getAsmParserVariant(VC); 1494 StringRef CommentDelimiter = 1495 AsmVariant->getValueAsString("CommentDelimiter"); 1496 AsmVariantInfo Variant; 1497 Variant.RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix"); 1498 Variant.TokenizingCharacters = 1499 AsmVariant->getValueAsString("TokenizingCharacters"); 1500 Variant.SeparatorCharacters = 1501 AsmVariant->getValueAsString("SeparatorCharacters"); 1502 Variant.BreakCharacters = 1503 AsmVariant->getValueAsString("BreakCharacters"); 1504 Variant.Name = AsmVariant->getValueAsString("Name"); 1505 Variant.AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 1506 1507 for (const CodeGenInstruction *CGI : Target.getInstructionsByEnumValue()) { 1508 1509 // If the tblgen -match-prefix option is specified (for tblgen hackers), 1510 // filter the set of instructions we consider. 1511 if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix)) 1512 continue; 1513 1514 // Ignore "codegen only" instructions. 1515 if (CGI->TheDef->getValueAsBit("isCodeGenOnly")) 1516 continue; 1517 1518 // Ignore instructions for different instructions 1519 StringRef V = CGI->TheDef->getValueAsString("AsmVariantName"); 1520 if (!V.empty() && V != Variant.Name) 1521 continue; 1522 1523 auto II = llvm::make_unique<MatchableInfo>(*CGI); 1524 1525 II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst); 1526 1527 // Ignore instructions which shouldn't be matched and diagnose invalid 1528 // instruction definitions with an error. 1529 if (!II->validate(CommentDelimiter, false)) 1530 continue; 1531 1532 Matchables.push_back(std::move(II)); 1533 } 1534 1535 // Parse all of the InstAlias definitions and stick them in the list of 1536 // matchables. 1537 std::vector<Record*> AllInstAliases = 1538 Records.getAllDerivedDefinitions("InstAlias"); 1539 for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) { 1540 auto Alias = llvm::make_unique<CodeGenInstAlias>(AllInstAliases[i], 1541 Variant.AsmVariantNo, 1542 Target); 1543 1544 // If the tblgen -match-prefix option is specified (for tblgen hackers), 1545 // filter the set of instruction aliases we consider, based on the target 1546 // instruction. 1547 if (!StringRef(Alias->ResultInst->TheDef->getName()) 1548 .startswith( MatchPrefix)) 1549 continue; 1550 1551 StringRef V = Alias->TheDef->getValueAsString("AsmVariantName"); 1552 if (!V.empty() && V != Variant.Name) 1553 continue; 1554 1555 auto II = llvm::make_unique<MatchableInfo>(std::move(Alias)); 1556 1557 II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst); 1558 1559 // Validate the alias definitions. 1560 II->validate(CommentDelimiter, true); 1561 1562 Matchables.push_back(std::move(II)); 1563 } 1564 } 1565 1566 // Build info for the register classes. 1567 buildRegisterClasses(SingletonRegisters); 1568 1569 // Build info for the user defined assembly operand classes. 1570 buildOperandClasses(); 1571 1572 // Build the information about matchables, now that we have fully formed 1573 // classes. 1574 std::vector<std::unique_ptr<MatchableInfo>> NewMatchables; 1575 for (auto &II : Matchables) { 1576 // Parse the tokens after the mnemonic. 1577 // Note: buildInstructionOperandReference may insert new AsmOperands, so 1578 // don't precompute the loop bound. 1579 for (unsigned i = 0; i != II->AsmOperands.size(); ++i) { 1580 MatchableInfo::AsmOperand &Op = II->AsmOperands[i]; 1581 StringRef Token = Op.Token; 1582 1583 // Check for singleton registers. 1584 if (Record *RegRecord = Op.SingletonReg) { 1585 Op.Class = RegisterClasses[RegRecord]; 1586 assert(Op.Class && Op.Class->Registers.size() == 1 && 1587 "Unexpected class for singleton register"); 1588 continue; 1589 } 1590 1591 // Check for simple tokens. 1592 if (Token[0] != '$') { 1593 Op.Class = getTokenClass(Token); 1594 continue; 1595 } 1596 1597 if (Token.size() > 1 && isdigit(Token[1])) { 1598 Op.Class = getTokenClass(Token); 1599 continue; 1600 } 1601 1602 // Otherwise this is an operand reference. 1603 StringRef OperandName; 1604 if (Token[1] == '{') 1605 OperandName = Token.substr(2, Token.size() - 3); 1606 else 1607 OperandName = Token.substr(1); 1608 1609 if (II->DefRec.is<const CodeGenInstruction*>()) 1610 buildInstructionOperandReference(II.get(), OperandName, i); 1611 else 1612 buildAliasOperandReference(II.get(), OperandName, Op); 1613 } 1614 1615 if (II->DefRec.is<const CodeGenInstruction*>()) { 1616 II->buildInstructionResultOperands(); 1617 // If the instruction has a two-operand alias, build up the 1618 // matchable here. We'll add them in bulk at the end to avoid 1619 // confusing this loop. 1620 StringRef Constraint = 1621 II->TheDef->getValueAsString("TwoOperandAliasConstraint"); 1622 if (Constraint != "") { 1623 // Start by making a copy of the original matchable. 1624 auto AliasII = llvm::make_unique<MatchableInfo>(*II); 1625 1626 // Adjust it to be a two-operand alias. 1627 AliasII->formTwoOperandAlias(Constraint); 1628 1629 // Add the alias to the matchables list. 1630 NewMatchables.push_back(std::move(AliasII)); 1631 } 1632 } else 1633 // FIXME: The tied operands checking is not yet integrated with the 1634 // framework for reporting multiple near misses. To prevent invalid 1635 // formats from being matched with an alias if a tied-operands check 1636 // would otherwise have disallowed it, we just disallow such constructs 1637 // in TableGen completely. 1638 II->buildAliasResultOperands(!ReportMultipleNearMisses); 1639 } 1640 if (!NewMatchables.empty()) 1641 Matchables.insert(Matchables.end(), 1642 std::make_move_iterator(NewMatchables.begin()), 1643 std::make_move_iterator(NewMatchables.end())); 1644 1645 // Process token alias definitions and set up the associated superclass 1646 // information. 1647 std::vector<Record*> AllTokenAliases = 1648 Records.getAllDerivedDefinitions("TokenAlias"); 1649 for (Record *Rec : AllTokenAliases) { 1650 ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken")); 1651 ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken")); 1652 if (FromClass == ToClass) 1653 PrintFatalError(Rec->getLoc(), 1654 "error: Destination value identical to source value."); 1655 FromClass->SuperClasses.push_back(ToClass); 1656 } 1657 1658 // Reorder classes so that classes precede super classes. 1659 Classes.sort(); 1660 1661 #ifdef EXPENSIVE_CHECKS 1662 // Verify that the table is sorted and operator < works transitively. 1663 for (auto I = Classes.begin(), E = Classes.end(); I != E; ++I) { 1664 for (auto J = I; J != E; ++J) { 1665 assert(!(*J < *I)); 1666 assert(I == J || !J->isSubsetOf(*I)); 1667 } 1668 } 1669 #endif 1670 } 1671 1672 /// buildInstructionOperandReference - The specified operand is a reference to a 1673 /// named operand such as $src. Resolve the Class and OperandInfo pointers. 1674 void AsmMatcherInfo:: 1675 buildInstructionOperandReference(MatchableInfo *II, 1676 StringRef OperandName, 1677 unsigned AsmOpIdx) { 1678 const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>(); 1679 const CGIOperandList &Operands = CGI.Operands; 1680 MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx]; 1681 1682 // Map this token to an operand. 1683 unsigned Idx; 1684 if (!Operands.hasOperandNamed(OperandName, Idx)) 1685 PrintFatalError(II->TheDef->getLoc(), 1686 "error: unable to find operand: '" + OperandName + "'"); 1687 1688 // If the instruction operand has multiple suboperands, but the parser 1689 // match class for the asm operand is still the default "ImmAsmOperand", 1690 // then handle each suboperand separately. 1691 if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) { 1692 Record *Rec = Operands[Idx].Rec; 1693 assert(Rec->isSubClassOf("Operand") && "Unexpected operand!"); 1694 Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); 1695 if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") { 1696 // Insert remaining suboperands after AsmOpIdx in II->AsmOperands. 1697 StringRef Token = Op->Token; // save this in case Op gets moved 1698 for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) { 1699 MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token); 1700 NewAsmOp.SubOpIdx = SI; 1701 II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp); 1702 } 1703 // Replace Op with first suboperand. 1704 Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved 1705 Op->SubOpIdx = 0; 1706 } 1707 } 1708 1709 // Set up the operand class. 1710 Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx); 1711 Op->OrigSrcOpName = OperandName; 1712 1713 // If the named operand is tied, canonicalize it to the untied operand. 1714 // For example, something like: 1715 // (outs GPR:$dst), (ins GPR:$src) 1716 // with an asmstring of 1717 // "inc $src" 1718 // we want to canonicalize to: 1719 // "inc $dst" 1720 // so that we know how to provide the $dst operand when filling in the result. 1721 int OITied = -1; 1722 if (Operands[Idx].MINumOperands == 1) 1723 OITied = Operands[Idx].getTiedRegister(); 1724 if (OITied != -1) { 1725 // The tied operand index is an MIOperand index, find the operand that 1726 // contains it. 1727 std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied); 1728 OperandName = Operands[Idx.first].Name; 1729 Op->SubOpIdx = Idx.second; 1730 } 1731 1732 Op->SrcOpName = OperandName; 1733 } 1734 1735 /// buildAliasOperandReference - When parsing an operand reference out of the 1736 /// matching string (e.g. "movsx $src, $dst"), determine what the class of the 1737 /// operand reference is by looking it up in the result pattern definition. 1738 void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II, 1739 StringRef OperandName, 1740 MatchableInfo::AsmOperand &Op) { 1741 const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>(); 1742 1743 // Set up the operand class. 1744 for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i) 1745 if (CGA.ResultOperands[i].isRecord() && 1746 CGA.ResultOperands[i].getName() == OperandName) { 1747 // It's safe to go with the first one we find, because CodeGenInstAlias 1748 // validates that all operands with the same name have the same record. 1749 Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second; 1750 // Use the match class from the Alias definition, not the 1751 // destination instruction, as we may have an immediate that's 1752 // being munged by the match class. 1753 Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(), 1754 Op.SubOpIdx); 1755 Op.SrcOpName = OperandName; 1756 Op.OrigSrcOpName = OperandName; 1757 return; 1758 } 1759 1760 PrintFatalError(II->TheDef->getLoc(), 1761 "error: unable to find operand: '" + OperandName + "'"); 1762 } 1763 1764 void MatchableInfo::buildInstructionResultOperands() { 1765 const CodeGenInstruction *ResultInst = getResultInst(); 1766 1767 // Loop over all operands of the result instruction, determining how to 1768 // populate them. 1769 for (const CGIOperandList::OperandInfo &OpInfo : ResultInst->Operands) { 1770 // If this is a tied operand, just copy from the previously handled operand. 1771 int TiedOp = -1; 1772 if (OpInfo.MINumOperands == 1) 1773 TiedOp = OpInfo.getTiedRegister(); 1774 if (TiedOp != -1) { 1775 int TiedSrcOperand = findAsmOperandOriginallyNamed(OpInfo.Name); 1776 if (TiedSrcOperand != -1 && 1777 ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) 1778 ResOperands.push_back(ResOperand::getTiedOp( 1779 TiedOp, ResOperands[TiedOp].AsmOperandNum, TiedSrcOperand)); 1780 else 1781 ResOperands.push_back(ResOperand::getTiedOp(TiedOp, 0, 0)); 1782 continue; 1783 } 1784 1785 int SrcOperand = findAsmOperandNamed(OpInfo.Name); 1786 if (OpInfo.Name.empty() || SrcOperand == -1) { 1787 // This may happen for operands that are tied to a suboperand of a 1788 // complex operand. Simply use a dummy value here; nobody should 1789 // use this operand slot. 1790 // FIXME: The long term goal is for the MCOperand list to not contain 1791 // tied operands at all. 1792 ResOperands.push_back(ResOperand::getImmOp(0)); 1793 continue; 1794 } 1795 1796 // Check if the one AsmOperand populates the entire operand. 1797 unsigned NumOperands = OpInfo.MINumOperands; 1798 if (AsmOperands[SrcOperand].SubOpIdx == -1) { 1799 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands)); 1800 continue; 1801 } 1802 1803 // Add a separate ResOperand for each suboperand. 1804 for (unsigned AI = 0; AI < NumOperands; ++AI) { 1805 assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI && 1806 AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name && 1807 "unexpected AsmOperands for suboperands"); 1808 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1)); 1809 } 1810 } 1811 } 1812 1813 void MatchableInfo::buildAliasResultOperands(bool AliasConstraintsAreChecked) { 1814 const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>(); 1815 const CodeGenInstruction *ResultInst = getResultInst(); 1816 1817 // Map of: $reg -> #lastref 1818 // where $reg is the name of the operand in the asm string 1819 // where #lastref is the last processed index where $reg was referenced in 1820 // the asm string. 1821 SmallDenseMap<StringRef, int> OperandRefs; 1822 1823 // Loop over all operands of the result instruction, determining how to 1824 // populate them. 1825 unsigned AliasOpNo = 0; 1826 unsigned LastOpNo = CGA.ResultInstOperandIndex.size(); 1827 for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) { 1828 const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i]; 1829 1830 // If this is a tied operand, just copy from the previously handled operand. 1831 int TiedOp = -1; 1832 if (OpInfo->MINumOperands == 1) 1833 TiedOp = OpInfo->getTiedRegister(); 1834 if (TiedOp != -1) { 1835 unsigned SrcOp1 = 0; 1836 unsigned SrcOp2 = 0; 1837 1838 // If an operand has been specified twice in the asm string, 1839 // add the two source operand's indices to the TiedOp so that 1840 // at runtime the 'tied' constraint is checked. 1841 if (ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) { 1842 SrcOp1 = ResOperands[TiedOp].AsmOperandNum; 1843 1844 // Find the next operand (similarly named operand) in the string. 1845 StringRef Name = AsmOperands[SrcOp1].SrcOpName; 1846 auto Insert = OperandRefs.try_emplace(Name, SrcOp1); 1847 SrcOp2 = findAsmOperandNamed(Name, Insert.first->second); 1848 1849 // Not updating the record in OperandRefs will cause TableGen 1850 // to fail with an error at the end of this function. 1851 if (AliasConstraintsAreChecked) 1852 Insert.first->second = SrcOp2; 1853 1854 // In case it only has one reference in the asm string, 1855 // it doesn't need to be checked for tied constraints. 1856 SrcOp2 = (SrcOp2 == (unsigned)-1) ? SrcOp1 : SrcOp2; 1857 } 1858 1859 ResOperands.push_back(ResOperand::getTiedOp(TiedOp, SrcOp1, SrcOp2)); 1860 continue; 1861 } 1862 1863 // Handle all the suboperands for this operand. 1864 const std::string &OpName = OpInfo->Name; 1865 for ( ; AliasOpNo < LastOpNo && 1866 CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) { 1867 int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second; 1868 1869 // Find out what operand from the asmparser that this MCInst operand 1870 // comes from. 1871 switch (CGA.ResultOperands[AliasOpNo].Kind) { 1872 case CodeGenInstAlias::ResultOperand::K_Record: { 1873 StringRef Name = CGA.ResultOperands[AliasOpNo].getName(); 1874 int SrcOperand = findAsmOperand(Name, SubIdx); 1875 if (SrcOperand == -1) 1876 PrintFatalError(TheDef->getLoc(), "Instruction '" + 1877 TheDef->getName() + "' has operand '" + OpName + 1878 "' that doesn't appear in asm string!"); 1879 1880 // Add it to the operand references. If it is added a second time, the 1881 // record won't be updated and it will fail later on. 1882 OperandRefs.try_emplace(Name, SrcOperand); 1883 1884 unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1); 1885 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, 1886 NumOperands)); 1887 break; 1888 } 1889 case CodeGenInstAlias::ResultOperand::K_Imm: { 1890 int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm(); 1891 ResOperands.push_back(ResOperand::getImmOp(ImmVal)); 1892 break; 1893 } 1894 case CodeGenInstAlias::ResultOperand::K_Reg: { 1895 Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister(); 1896 ResOperands.push_back(ResOperand::getRegOp(Reg)); 1897 break; 1898 } 1899 } 1900 } 1901 } 1902 1903 // Check that operands are not repeated more times than is supported. 1904 for (auto &T : OperandRefs) { 1905 if (T.second != -1 && findAsmOperandNamed(T.first, T.second) != -1) 1906 PrintFatalError(TheDef->getLoc(), 1907 "Operand '" + T.first + "' can never be matched"); 1908 } 1909 } 1910 1911 static unsigned 1912 getConverterOperandID(const std::string &Name, 1913 SmallSetVector<CachedHashString, 16> &Table, 1914 bool &IsNew) { 1915 IsNew = Table.insert(CachedHashString(Name)); 1916 1917 unsigned ID = IsNew ? Table.size() - 1 : find(Table, Name) - Table.begin(); 1918 1919 assert(ID < Table.size()); 1920 1921 return ID; 1922 } 1923 1924 static void emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName, 1925 std::vector<std::unique_ptr<MatchableInfo>> &Infos, 1926 bool HasMnemonicFirst, bool HasOptionalOperands, 1927 raw_ostream &OS) { 1928 SmallSetVector<CachedHashString, 16> OperandConversionKinds; 1929 SmallSetVector<CachedHashString, 16> InstructionConversionKinds; 1930 std::vector<std::vector<uint8_t> > ConversionTable; 1931 size_t MaxRowLength = 2; // minimum is custom converter plus terminator. 1932 1933 // TargetOperandClass - This is the target's operand class, like X86Operand. 1934 std::string TargetOperandClass = Target.getName().str() + "Operand"; 1935 1936 // Write the convert function to a separate stream, so we can drop it after 1937 // the enum. We'll build up the conversion handlers for the individual 1938 // operand types opportunistically as we encounter them. 1939 std::string ConvertFnBody; 1940 raw_string_ostream CvtOS(ConvertFnBody); 1941 // Start the unified conversion function. 1942 if (HasOptionalOperands) { 1943 CvtOS << "void " << Target.getName() << ClassName << "::\n" 1944 << "convertToMCInst(unsigned Kind, MCInst &Inst, " 1945 << "unsigned Opcode,\n" 1946 << " const OperandVector &Operands,\n" 1947 << " const SmallBitVector &OptionalOperandsMask) {\n"; 1948 } else { 1949 CvtOS << "void " << Target.getName() << ClassName << "::\n" 1950 << "convertToMCInst(unsigned Kind, MCInst &Inst, " 1951 << "unsigned Opcode,\n" 1952 << " const OperandVector &Operands) {\n"; 1953 } 1954 CvtOS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"; 1955 CvtOS << " const uint8_t *Converter = ConversionTable[Kind];\n"; 1956 if (HasOptionalOperands) { 1957 size_t MaxNumOperands = 0; 1958 for (const auto &MI : Infos) { 1959 MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size()); 1960 } 1961 CvtOS << " unsigned DefaultsOffset[" << (MaxNumOperands + 1) 1962 << "] = { 0 };\n"; 1963 CvtOS << " assert(OptionalOperandsMask.size() == " << (MaxNumOperands) 1964 << ");\n"; 1965 CvtOS << " for (unsigned i = 0, NumDefaults = 0; i < " << (MaxNumOperands) 1966 << "; ++i) {\n"; 1967 CvtOS << " DefaultsOffset[i + 1] = NumDefaults;\n"; 1968 CvtOS << " NumDefaults += (OptionalOperandsMask[i] ? 1 : 0);\n"; 1969 CvtOS << " }\n"; 1970 } 1971 CvtOS << " unsigned OpIdx;\n"; 1972 CvtOS << " Inst.setOpcode(Opcode);\n"; 1973 CvtOS << " for (const uint8_t *p = Converter; *p; p+= 2) {\n"; 1974 if (HasOptionalOperands) { 1975 CvtOS << " OpIdx = *(p + 1) - DefaultsOffset[*(p + 1)];\n"; 1976 } else { 1977 CvtOS << " OpIdx = *(p + 1);\n"; 1978 } 1979 CvtOS << " switch (*p) {\n"; 1980 CvtOS << " default: llvm_unreachable(\"invalid conversion entry!\");\n"; 1981 CvtOS << " case CVT_Reg:\n"; 1982 CvtOS << " static_cast<" << TargetOperandClass 1983 << "&>(*Operands[OpIdx]).addRegOperands(Inst, 1);\n"; 1984 CvtOS << " break;\n"; 1985 CvtOS << " case CVT_Tied: {\n"; 1986 CvtOS << " assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n"; 1987 CvtOS << " std::begin(TiedAsmOperandTable)) &&\n"; 1988 CvtOS << " \"Tied operand not found\");\n"; 1989 CvtOS << " unsigned TiedResOpnd = TiedAsmOperandTable[OpIdx][0];\n"; 1990 CvtOS << " Inst.addOperand(Inst.getOperand(TiedResOpnd));\n"; 1991 CvtOS << " break;\n"; 1992 CvtOS << " }\n"; 1993 1994 std::string OperandFnBody; 1995 raw_string_ostream OpOS(OperandFnBody); 1996 // Start the operand number lookup function. 1997 OpOS << "void " << Target.getName() << ClassName << "::\n" 1998 << "convertToMapAndConstraints(unsigned Kind,\n"; 1999 OpOS.indent(27); 2000 OpOS << "const OperandVector &Operands) {\n" 2001 << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n" 2002 << " unsigned NumMCOperands = 0;\n" 2003 << " const uint8_t *Converter = ConversionTable[Kind];\n" 2004 << " for (const uint8_t *p = Converter; *p; p+= 2) {\n" 2005 << " switch (*p) {\n" 2006 << " default: llvm_unreachable(\"invalid conversion entry!\");\n" 2007 << " case CVT_Reg:\n" 2008 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" 2009 << " Operands[*(p + 1)]->setConstraint(\"r\");\n" 2010 << " ++NumMCOperands;\n" 2011 << " break;\n" 2012 << " case CVT_Tied:\n" 2013 << " ++NumMCOperands;\n" 2014 << " break;\n"; 2015 2016 // Pre-populate the operand conversion kinds with the standard always 2017 // available entries. 2018 OperandConversionKinds.insert(CachedHashString("CVT_Done")); 2019 OperandConversionKinds.insert(CachedHashString("CVT_Reg")); 2020 OperandConversionKinds.insert(CachedHashString("CVT_Tied")); 2021 enum { CVT_Done, CVT_Reg, CVT_Tied }; 2022 2023 // Map of e.g. <0, 2, 3> -> "Tie_0_2_3" enum label. 2024 std::map<std::tuple<unsigned, unsigned, unsigned>, std::string> 2025 TiedOperandsEnumMap; 2026 2027 for (auto &II : Infos) { 2028 // Check if we have a custom match function. 2029 StringRef AsmMatchConverter = 2030 II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter"); 2031 if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) { 2032 std::string Signature = ("ConvertCustom_" + AsmMatchConverter).str(); 2033 II->ConversionFnKind = Signature; 2034 2035 // Check if we have already generated this signature. 2036 if (!InstructionConversionKinds.insert(CachedHashString(Signature))) 2037 continue; 2038 2039 // Remember this converter for the kind enum. 2040 unsigned KindID = OperandConversionKinds.size(); 2041 OperandConversionKinds.insert( 2042 CachedHashString("CVT_" + getEnumNameForToken(AsmMatchConverter))); 2043 2044 // Add the converter row for this instruction. 2045 ConversionTable.emplace_back(); 2046 ConversionTable.back().push_back(KindID); 2047 ConversionTable.back().push_back(CVT_Done); 2048 2049 // Add the handler to the conversion driver function. 2050 CvtOS << " case CVT_" 2051 << getEnumNameForToken(AsmMatchConverter) << ":\n" 2052 << " " << AsmMatchConverter << "(Inst, Operands);\n" 2053 << " break;\n"; 2054 2055 // FIXME: Handle the operand number lookup for custom match functions. 2056 continue; 2057 } 2058 2059 // Build the conversion function signature. 2060 std::string Signature = "Convert"; 2061 2062 std::vector<uint8_t> ConversionRow; 2063 2064 // Compute the convert enum and the case body. 2065 MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 ); 2066 2067 for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) { 2068 const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i]; 2069 2070 // Generate code to populate each result operand. 2071 switch (OpInfo.Kind) { 2072 case MatchableInfo::ResOperand::RenderAsmOperand: { 2073 // This comes from something we parsed. 2074 const MatchableInfo::AsmOperand &Op = 2075 II->AsmOperands[OpInfo.AsmOperandNum]; 2076 2077 // Registers are always converted the same, don't duplicate the 2078 // conversion function based on them. 2079 Signature += "__"; 2080 std::string Class; 2081 Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName; 2082 Signature += Class; 2083 Signature += utostr(OpInfo.MINumOperands); 2084 Signature += "_" + itostr(OpInfo.AsmOperandNum); 2085 2086 // Add the conversion kind, if necessary, and get the associated ID 2087 // the index of its entry in the vector). 2088 std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" : 2089 Op.Class->RenderMethod); 2090 if (Op.Class->IsOptional) { 2091 // For optional operands we must also care about DefaultMethod 2092 assert(HasOptionalOperands); 2093 Name += "_" + Op.Class->DefaultMethod; 2094 } 2095 Name = getEnumNameForToken(Name); 2096 2097 bool IsNewConverter = false; 2098 unsigned ID = getConverterOperandID(Name, OperandConversionKinds, 2099 IsNewConverter); 2100 2101 // Add the operand entry to the instruction kind conversion row. 2102 ConversionRow.push_back(ID); 2103 ConversionRow.push_back(OpInfo.AsmOperandNum + HasMnemonicFirst); 2104 2105 if (!IsNewConverter) 2106 break; 2107 2108 // This is a new operand kind. Add a handler for it to the 2109 // converter driver. 2110 CvtOS << " case " << Name << ":\n"; 2111 if (Op.Class->IsOptional) { 2112 // If optional operand is not present in actual instruction then we 2113 // should call its DefaultMethod before RenderMethod 2114 assert(HasOptionalOperands); 2115 CvtOS << " if (OptionalOperandsMask[*(p + 1) - 1]) {\n" 2116 << " " << Op.Class->DefaultMethod << "()" 2117 << "->" << Op.Class->RenderMethod << "(Inst, " 2118 << OpInfo.MINumOperands << ");\n" 2119 << " } else {\n" 2120 << " static_cast<" << TargetOperandClass 2121 << "&>(*Operands[OpIdx])." << Op.Class->RenderMethod 2122 << "(Inst, " << OpInfo.MINumOperands << ");\n" 2123 << " }\n"; 2124 } else { 2125 CvtOS << " static_cast<" << TargetOperandClass 2126 << "&>(*Operands[OpIdx])." << Op.Class->RenderMethod 2127 << "(Inst, " << OpInfo.MINumOperands << ");\n"; 2128 } 2129 CvtOS << " break;\n"; 2130 2131 // Add a handler for the operand number lookup. 2132 OpOS << " case " << Name << ":\n" 2133 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"; 2134 2135 if (Op.Class->isRegisterClass()) 2136 OpOS << " Operands[*(p + 1)]->setConstraint(\"r\");\n"; 2137 else 2138 OpOS << " Operands[*(p + 1)]->setConstraint(\"m\");\n"; 2139 OpOS << " NumMCOperands += " << OpInfo.MINumOperands << ";\n" 2140 << " break;\n"; 2141 break; 2142 } 2143 case MatchableInfo::ResOperand::TiedOperand: { 2144 // If this operand is tied to a previous one, just copy the MCInst 2145 // operand from the earlier one.We can only tie single MCOperand values. 2146 assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand"); 2147 unsigned TiedOp = OpInfo.TiedOperands.ResOpnd; 2148 unsigned SrcOp1 = OpInfo.TiedOperands.SrcOpnd1Idx + HasMnemonicFirst; 2149 unsigned SrcOp2 = OpInfo.TiedOperands.SrcOpnd2Idx + HasMnemonicFirst; 2150 assert(i > TiedOp && "Tied operand precedes its target!"); 2151 auto TiedTupleName = std::string("Tie") + utostr(TiedOp) + '_' + 2152 utostr(SrcOp1) + '_' + utostr(SrcOp2); 2153 Signature += "__" + TiedTupleName; 2154 ConversionRow.push_back(CVT_Tied); 2155 ConversionRow.push_back(TiedOp); 2156 ConversionRow.push_back(SrcOp1); 2157 ConversionRow.push_back(SrcOp2); 2158 2159 // Also create an 'enum' for this combination of tied operands. 2160 auto Key = std::make_tuple(TiedOp, SrcOp1, SrcOp2); 2161 TiedOperandsEnumMap.emplace(Key, TiedTupleName); 2162 break; 2163 } 2164 case MatchableInfo::ResOperand::ImmOperand: { 2165 int64_t Val = OpInfo.ImmVal; 2166 std::string Ty = "imm_" + itostr(Val); 2167 Ty = getEnumNameForToken(Ty); 2168 Signature += "__" + Ty; 2169 2170 std::string Name = "CVT_" + Ty; 2171 bool IsNewConverter = false; 2172 unsigned ID = getConverterOperandID(Name, OperandConversionKinds, 2173 IsNewConverter); 2174 // Add the operand entry to the instruction kind conversion row. 2175 ConversionRow.push_back(ID); 2176 ConversionRow.push_back(0); 2177 2178 if (!IsNewConverter) 2179 break; 2180 2181 CvtOS << " case " << Name << ":\n" 2182 << " Inst.addOperand(MCOperand::createImm(" << Val << "));\n" 2183 << " break;\n"; 2184 2185 OpOS << " case " << Name << ":\n" 2186 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" 2187 << " Operands[*(p + 1)]->setConstraint(\"\");\n" 2188 << " ++NumMCOperands;\n" 2189 << " break;\n"; 2190 break; 2191 } 2192 case MatchableInfo::ResOperand::RegOperand: { 2193 std::string Reg, Name; 2194 if (!OpInfo.Register) { 2195 Name = "reg0"; 2196 Reg = "0"; 2197 } else { 2198 Reg = getQualifiedName(OpInfo.Register); 2199 Name = "reg" + OpInfo.Register->getName().str(); 2200 } 2201 Signature += "__" + Name; 2202 Name = "CVT_" + Name; 2203 bool IsNewConverter = false; 2204 unsigned ID = getConverterOperandID(Name, OperandConversionKinds, 2205 IsNewConverter); 2206 // Add the operand entry to the instruction kind conversion row. 2207 ConversionRow.push_back(ID); 2208 ConversionRow.push_back(0); 2209 2210 if (!IsNewConverter) 2211 break; 2212 CvtOS << " case " << Name << ":\n" 2213 << " Inst.addOperand(MCOperand::createReg(" << Reg << "));\n" 2214 << " break;\n"; 2215 2216 OpOS << " case " << Name << ":\n" 2217 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" 2218 << " Operands[*(p + 1)]->setConstraint(\"m\");\n" 2219 << " ++NumMCOperands;\n" 2220 << " break;\n"; 2221 } 2222 } 2223 } 2224 2225 // If there were no operands, add to the signature to that effect 2226 if (Signature == "Convert") 2227 Signature += "_NoOperands"; 2228 2229 II->ConversionFnKind = Signature; 2230 2231 // Save the signature. If we already have it, don't add a new row 2232 // to the table. 2233 if (!InstructionConversionKinds.insert(CachedHashString(Signature))) 2234 continue; 2235 2236 // Add the row to the table. 2237 ConversionTable.push_back(std::move(ConversionRow)); 2238 } 2239 2240 // Finish up the converter driver function. 2241 CvtOS << " }\n }\n}\n\n"; 2242 2243 // Finish up the operand number lookup function. 2244 OpOS << " }\n }\n}\n\n"; 2245 2246 // Output a static table for tied operands. 2247 if (TiedOperandsEnumMap.size()) { 2248 // The number of tied operand combinations will be small in practice, 2249 // but just add the assert to be sure. 2250 assert(TiedOperandsEnumMap.size() <= 255 && 2251 "Too many tied-operand combinations to reference with " 2252 "an 8bit offset from the conversion table"); 2253 2254 OS << "enum {\n"; 2255 for (auto &KV : TiedOperandsEnumMap) { 2256 OS << " " << KV.second << ",\n"; 2257 } 2258 OS << "};\n\n"; 2259 2260 OS << "const char TiedAsmOperandTable[][3] = {\n"; 2261 for (auto &KV : TiedOperandsEnumMap) { 2262 OS << " /* " << KV.second << " */ { " << std::get<0>(KV.first) << ", " 2263 << std::get<1>(KV.first) << ", " << std::get<2>(KV.first) << " },\n"; 2264 } 2265 OS << "};\n\n"; 2266 } else 2267 OS << "const char TiedAsmOperandTable[][3] = { /* empty */ {0, 0, 0} " 2268 "};\n\n"; 2269 2270 OS << "namespace {\n"; 2271 2272 // Output the operand conversion kind enum. 2273 OS << "enum OperatorConversionKind {\n"; 2274 for (const auto &Converter : OperandConversionKinds) 2275 OS << " " << Converter << ",\n"; 2276 OS << " CVT_NUM_CONVERTERS\n"; 2277 OS << "};\n\n"; 2278 2279 // Output the instruction conversion kind enum. 2280 OS << "enum InstructionConversionKind {\n"; 2281 for (const auto &Signature : InstructionConversionKinds) 2282 OS << " " << Signature << ",\n"; 2283 OS << " CVT_NUM_SIGNATURES\n"; 2284 OS << "};\n\n"; 2285 2286 OS << "} // end anonymous namespace\n\n"; 2287 2288 // Output the conversion table. 2289 OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES][" 2290 << MaxRowLength << "] = {\n"; 2291 2292 for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) { 2293 assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!"); 2294 OS << " // " << InstructionConversionKinds[Row] << "\n"; 2295 OS << " { "; 2296 for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2) { 2297 OS << OperandConversionKinds[ConversionTable[Row][i]] << ", "; 2298 if (OperandConversionKinds[ConversionTable[Row][i]] != 2299 CachedHashString("CVT_Tied")) { 2300 OS << (unsigned)(ConversionTable[Row][i + 1]) << ", "; 2301 continue; 2302 } 2303 2304 // For a tied operand, emit a reference to the TiedAsmOperandTable 2305 // that contains the operand to copy, and the parsed operands to 2306 // check for their tied constraints. 2307 auto Key = std::make_tuple((unsigned)ConversionTable[Row][i + 1], 2308 (unsigned)ConversionTable[Row][i + 2], 2309 (unsigned)ConversionTable[Row][i + 3]); 2310 auto TiedOpndEnum = TiedOperandsEnumMap.find(Key); 2311 assert(TiedOpndEnum != TiedOperandsEnumMap.end() && 2312 "No record for tied operand pair"); 2313 OS << TiedOpndEnum->second << ", "; 2314 i += 2; 2315 } 2316 OS << "CVT_Done },\n"; 2317 } 2318 2319 OS << "};\n\n"; 2320 2321 // Spit out the conversion driver function. 2322 OS << CvtOS.str(); 2323 2324 // Spit out the operand number lookup function. 2325 OS << OpOS.str(); 2326 } 2327 2328 /// emitMatchClassEnumeration - Emit the enumeration for match class kinds. 2329 static void emitMatchClassEnumeration(CodeGenTarget &Target, 2330 std::forward_list<ClassInfo> &Infos, 2331 raw_ostream &OS) { 2332 OS << "namespace {\n\n"; 2333 2334 OS << "/// MatchClassKind - The kinds of classes which participate in\n" 2335 << "/// instruction matching.\n"; 2336 OS << "enum MatchClassKind {\n"; 2337 OS << " InvalidMatchClass = 0,\n"; 2338 OS << " OptionalMatchClass = 1,\n"; 2339 ClassInfo::ClassInfoKind LastKind = ClassInfo::Token; 2340 StringRef LastName = "OptionalMatchClass"; 2341 for (const auto &CI : Infos) { 2342 if (LastKind == ClassInfo::Token && CI.Kind != ClassInfo::Token) { 2343 OS << " MCK_LAST_TOKEN = " << LastName << ",\n"; 2344 } else if (LastKind < ClassInfo::UserClass0 && 2345 CI.Kind >= ClassInfo::UserClass0) { 2346 OS << " MCK_LAST_REGISTER = " << LastName << ",\n"; 2347 } 2348 LastKind = (ClassInfo::ClassInfoKind)CI.Kind; 2349 LastName = CI.Name; 2350 2351 OS << " " << CI.Name << ", // "; 2352 if (CI.Kind == ClassInfo::Token) { 2353 OS << "'" << CI.ValueName << "'\n"; 2354 } else if (CI.isRegisterClass()) { 2355 if (!CI.ValueName.empty()) 2356 OS << "register class '" << CI.ValueName << "'\n"; 2357 else 2358 OS << "derived register class\n"; 2359 } else { 2360 OS << "user defined class '" << CI.ValueName << "'\n"; 2361 } 2362 } 2363 OS << " NumMatchClassKinds\n"; 2364 OS << "};\n\n"; 2365 2366 OS << "}\n\n"; 2367 } 2368 2369 /// emitMatchClassDiagStrings - Emit a function to get the diagnostic text to be 2370 /// used when an assembly operand does not match the expected operand class. 2371 static void emitOperandMatchErrorDiagStrings(AsmMatcherInfo &Info, raw_ostream &OS) { 2372 // If the target does not use DiagnosticString for any operands, don't emit 2373 // an unused function. 2374 if (std::all_of( 2375 Info.Classes.begin(), Info.Classes.end(), 2376 [](const ClassInfo &CI) { return CI.DiagnosticString.empty(); })) 2377 return; 2378 2379 OS << "static const char *getMatchKindDiag(" << Info.Target.getName() 2380 << "AsmParser::" << Info.Target.getName() 2381 << "MatchResultTy MatchResult) {\n"; 2382 OS << " switch (MatchResult) {\n"; 2383 2384 for (const auto &CI: Info.Classes) { 2385 if (!CI.DiagnosticString.empty()) { 2386 assert(!CI.DiagnosticType.empty() && 2387 "DiagnosticString set without DiagnosticType"); 2388 OS << " case " << Info.Target.getName() 2389 << "AsmParser::Match_" << CI.DiagnosticType << ":\n"; 2390 OS << " return \"" << CI.DiagnosticString << "\";\n"; 2391 } 2392 } 2393 2394 OS << " default:\n"; 2395 OS << " return nullptr;\n"; 2396 2397 OS << " }\n"; 2398 OS << "}\n\n"; 2399 } 2400 2401 static void emitRegisterMatchErrorFunc(AsmMatcherInfo &Info, raw_ostream &OS) { 2402 OS << "static unsigned getDiagKindFromRegisterClass(MatchClassKind " 2403 "RegisterClass) {\n"; 2404 if (std::none_of(Info.Classes.begin(), Info.Classes.end(), 2405 [](const ClassInfo &CI) { 2406 return CI.isRegisterClass() && !CI.DiagnosticType.empty(); 2407 })) { 2408 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n"; 2409 } else { 2410 OS << " switch (RegisterClass) {\n"; 2411 for (const auto &CI: Info.Classes) { 2412 if (CI.isRegisterClass() && !CI.DiagnosticType.empty()) { 2413 OS << " case " << CI.Name << ":\n"; 2414 OS << " return " << Info.Target.getName() << "AsmParser::Match_" 2415 << CI.DiagnosticType << ";\n"; 2416 } 2417 } 2418 2419 OS << " default:\n"; 2420 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n"; 2421 2422 OS << " }\n"; 2423 } 2424 OS << "}\n\n"; 2425 } 2426 2427 /// emitValidateOperandClass - Emit the function to validate an operand class. 2428 static void emitValidateOperandClass(AsmMatcherInfo &Info, 2429 raw_ostream &OS) { 2430 OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, " 2431 << "MatchClassKind Kind) {\n"; 2432 OS << " " << Info.Target.getName() << "Operand &Operand = (" 2433 << Info.Target.getName() << "Operand&)GOp;\n"; 2434 2435 // The InvalidMatchClass is not to match any operand. 2436 OS << " if (Kind == InvalidMatchClass)\n"; 2437 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n\n"; 2438 2439 // Check for Token operands first. 2440 // FIXME: Use a more specific diagnostic type. 2441 OS << " if (Operand.isToken() && Kind <= MCK_LAST_TOKEN)\n"; 2442 OS << " return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n" 2443 << " MCTargetAsmParser::Match_Success :\n" 2444 << " MCTargetAsmParser::Match_InvalidOperand;\n\n"; 2445 2446 // Check the user classes. We don't care what order since we're only 2447 // actually matching against one of them. 2448 OS << " switch (Kind) {\n" 2449 " default: break;\n"; 2450 for (const auto &CI : Info.Classes) { 2451 if (!CI.isUserClass()) 2452 continue; 2453 2454 OS << " // '" << CI.ClassName << "' class\n"; 2455 OS << " case " << CI.Name << ": {\n"; 2456 OS << " DiagnosticPredicate DP(Operand." << CI.PredicateMethod 2457 << "());\n"; 2458 OS << " if (DP.isMatch())\n"; 2459 OS << " return MCTargetAsmParser::Match_Success;\n"; 2460 if (!CI.DiagnosticType.empty()) { 2461 OS << " if (DP.isNearMatch())\n"; 2462 OS << " return " << Info.Target.getName() << "AsmParser::Match_" 2463 << CI.DiagnosticType << ";\n"; 2464 OS << " break;\n"; 2465 } 2466 else 2467 OS << " break;\n"; 2468 OS << " }\n"; 2469 } 2470 OS << " } // end switch (Kind)\n\n"; 2471 2472 // Check for register operands, including sub-classes. 2473 OS << " if (Operand.isReg()) {\n"; 2474 OS << " MatchClassKind OpKind;\n"; 2475 OS << " switch (Operand.getReg()) {\n"; 2476 OS << " default: OpKind = InvalidMatchClass; break;\n"; 2477 for (const auto &RC : Info.RegisterClasses) 2478 OS << " case " << RC.first->getValueAsString("Namespace") << "::" 2479 << RC.first->getName() << ": OpKind = " << RC.second->Name 2480 << "; break;\n"; 2481 OS << " }\n"; 2482 OS << " return isSubclass(OpKind, Kind) ? " 2483 << "(unsigned)MCTargetAsmParser::Match_Success :\n " 2484 << " getDiagKindFromRegisterClass(Kind);\n }\n\n"; 2485 2486 // Expected operand is a register, but actual is not. 2487 OS << " if (Kind > MCK_LAST_TOKEN && Kind <= MCK_LAST_REGISTER)\n"; 2488 OS << " return getDiagKindFromRegisterClass(Kind);\n\n"; 2489 2490 // Generic fallthrough match failure case for operands that don't have 2491 // specialized diagnostic types. 2492 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n"; 2493 OS << "}\n\n"; 2494 } 2495 2496 /// emitIsSubclass - Emit the subclass predicate function. 2497 static void emitIsSubclass(CodeGenTarget &Target, 2498 std::forward_list<ClassInfo> &Infos, 2499 raw_ostream &OS) { 2500 OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n"; 2501 OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n"; 2502 OS << " if (A == B)\n"; 2503 OS << " return true;\n\n"; 2504 2505 bool EmittedSwitch = false; 2506 for (const auto &A : Infos) { 2507 std::vector<StringRef> SuperClasses; 2508 if (A.IsOptional) 2509 SuperClasses.push_back("OptionalMatchClass"); 2510 for (const auto &B : Infos) { 2511 if (&A != &B && A.isSubsetOf(B)) 2512 SuperClasses.push_back(B.Name); 2513 } 2514 2515 if (SuperClasses.empty()) 2516 continue; 2517 2518 // If this is the first SuperClass, emit the switch header. 2519 if (!EmittedSwitch) { 2520 OS << " switch (A) {\n"; 2521 OS << " default:\n"; 2522 OS << " return false;\n"; 2523 EmittedSwitch = true; 2524 } 2525 2526 OS << "\n case " << A.Name << ":\n"; 2527 2528 if (SuperClasses.size() == 1) { 2529 OS << " return B == " << SuperClasses.back() << ";\n"; 2530 continue; 2531 } 2532 2533 if (!SuperClasses.empty()) { 2534 OS << " switch (B) {\n"; 2535 OS << " default: return false;\n"; 2536 for (StringRef SC : SuperClasses) 2537 OS << " case " << SC << ": return true;\n"; 2538 OS << " }\n"; 2539 } else { 2540 // No case statement to emit 2541 OS << " return false;\n"; 2542 } 2543 } 2544 2545 // If there were case statements emitted into the string stream write the 2546 // default. 2547 if (EmittedSwitch) 2548 OS << " }\n"; 2549 else 2550 OS << " return false;\n"; 2551 2552 OS << "}\n\n"; 2553 } 2554 2555 /// emitMatchTokenString - Emit the function to match a token string to the 2556 /// appropriate match class value. 2557 static void emitMatchTokenString(CodeGenTarget &Target, 2558 std::forward_list<ClassInfo> &Infos, 2559 raw_ostream &OS) { 2560 // Construct the match list. 2561 std::vector<StringMatcher::StringPair> Matches; 2562 for (const auto &CI : Infos) { 2563 if (CI.Kind == ClassInfo::Token) 2564 Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";"); 2565 } 2566 2567 OS << "static MatchClassKind matchTokenString(StringRef Name) {\n"; 2568 2569 StringMatcher("Name", Matches, OS).Emit(); 2570 2571 OS << " return InvalidMatchClass;\n"; 2572 OS << "}\n\n"; 2573 } 2574 2575 /// emitMatchRegisterName - Emit the function to match a string to the target 2576 /// specific register enum. 2577 static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser, 2578 raw_ostream &OS) { 2579 // Construct the match list. 2580 std::vector<StringMatcher::StringPair> Matches; 2581 const auto &Regs = Target.getRegBank().getRegisters(); 2582 for (const CodeGenRegister &Reg : Regs) { 2583 if (Reg.TheDef->getValueAsString("AsmName").empty()) 2584 continue; 2585 2586 Matches.emplace_back(Reg.TheDef->getValueAsString("AsmName"), 2587 "return " + utostr(Reg.EnumValue) + ";"); 2588 } 2589 2590 OS << "static unsigned MatchRegisterName(StringRef Name) {\n"; 2591 2592 bool IgnoreDuplicates = 2593 AsmParser->getValueAsBit("AllowDuplicateRegisterNames"); 2594 StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates); 2595 2596 OS << " return 0;\n"; 2597 OS << "}\n\n"; 2598 } 2599 2600 /// Emit the function to match a string to the target 2601 /// specific register enum. 2602 static void emitMatchRegisterAltName(CodeGenTarget &Target, Record *AsmParser, 2603 raw_ostream &OS) { 2604 // Construct the match list. 2605 std::vector<StringMatcher::StringPair> Matches; 2606 const auto &Regs = Target.getRegBank().getRegisters(); 2607 for (const CodeGenRegister &Reg : Regs) { 2608 2609 auto AltNames = Reg.TheDef->getValueAsListOfStrings("AltNames"); 2610 2611 for (auto AltName : AltNames) { 2612 AltName = StringRef(AltName).trim(); 2613 2614 // don't handle empty alternative names 2615 if (AltName.empty()) 2616 continue; 2617 2618 Matches.emplace_back(AltName, 2619 "return " + utostr(Reg.EnumValue) + ";"); 2620 } 2621 } 2622 2623 OS << "static unsigned MatchRegisterAltName(StringRef Name) {\n"; 2624 2625 bool IgnoreDuplicates = 2626 AsmParser->getValueAsBit("AllowDuplicateRegisterNames"); 2627 StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates); 2628 2629 OS << " return 0;\n"; 2630 OS << "}\n\n"; 2631 } 2632 2633 /// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types. 2634 static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) { 2635 // Get the set of diagnostic types from all of the operand classes. 2636 std::set<StringRef> Types; 2637 for (const auto &OpClassEntry : Info.AsmOperandClasses) { 2638 if (!OpClassEntry.second->DiagnosticType.empty()) 2639 Types.insert(OpClassEntry.second->DiagnosticType); 2640 } 2641 for (const auto &OpClassEntry : Info.RegisterClassClasses) { 2642 if (!OpClassEntry.second->DiagnosticType.empty()) 2643 Types.insert(OpClassEntry.second->DiagnosticType); 2644 } 2645 2646 if (Types.empty()) return; 2647 2648 // Now emit the enum entries. 2649 for (StringRef Type : Types) 2650 OS << " Match_" << Type << ",\n"; 2651 OS << " END_OPERAND_DIAGNOSTIC_TYPES\n"; 2652 } 2653 2654 /// emitGetSubtargetFeatureName - Emit the helper function to get the 2655 /// user-level name for a subtarget feature. 2656 static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) { 2657 OS << "// User-level names for subtarget features that participate in\n" 2658 << "// instruction matching.\n" 2659 << "static const char *getSubtargetFeatureName(uint64_t Val) {\n"; 2660 if (!Info.SubtargetFeatures.empty()) { 2661 OS << " switch(Val) {\n"; 2662 for (const auto &SF : Info.SubtargetFeatures) { 2663 const SubtargetFeatureInfo &SFI = SF.second; 2664 // FIXME: Totally just a placeholder name to get the algorithm working. 2665 OS << " case " << SFI.getEnumName() << ": return \"" 2666 << SFI.TheDef->getValueAsString("PredicateName") << "\";\n"; 2667 } 2668 OS << " default: return \"(unknown)\";\n"; 2669 OS << " }\n"; 2670 } else { 2671 // Nothing to emit, so skip the switch 2672 OS << " return \"(unknown)\";\n"; 2673 } 2674 OS << "}\n\n"; 2675 } 2676 2677 static std::string GetAliasRequiredFeatures(Record *R, 2678 const AsmMatcherInfo &Info) { 2679 std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates"); 2680 std::string Result; 2681 unsigned NumFeatures = 0; 2682 for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) { 2683 const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]); 2684 2685 if (!F) 2686 PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() + 2687 "' is not marked as an AssemblerPredicate!"); 2688 2689 if (NumFeatures) 2690 Result += '|'; 2691 2692 Result += F->getEnumName(); 2693 ++NumFeatures; 2694 } 2695 2696 if (NumFeatures > 1) 2697 Result = '(' + Result + ')'; 2698 return Result; 2699 } 2700 2701 static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info, 2702 std::vector<Record*> &Aliases, 2703 unsigned Indent = 0, 2704 StringRef AsmParserVariantName = StringRef()){ 2705 // Keep track of all the aliases from a mnemonic. Use an std::map so that the 2706 // iteration order of the map is stable. 2707 std::map<std::string, std::vector<Record*> > AliasesFromMnemonic; 2708 2709 for (Record *R : Aliases) { 2710 // FIXME: Allow AssemblerVariantName to be a comma separated list. 2711 StringRef AsmVariantName = R->getValueAsString("AsmVariantName"); 2712 if (AsmVariantName != AsmParserVariantName) 2713 continue; 2714 AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R); 2715 } 2716 if (AliasesFromMnemonic.empty()) 2717 return; 2718 2719 // Process each alias a "from" mnemonic at a time, building the code executed 2720 // by the string remapper. 2721 std::vector<StringMatcher::StringPair> Cases; 2722 for (const auto &AliasEntry : AliasesFromMnemonic) { 2723 const std::vector<Record*> &ToVec = AliasEntry.second; 2724 2725 // Loop through each alias and emit code that handles each case. If there 2726 // are two instructions without predicates, emit an error. If there is one, 2727 // emit it last. 2728 std::string MatchCode; 2729 int AliasWithNoPredicate = -1; 2730 2731 for (unsigned i = 0, e = ToVec.size(); i != e; ++i) { 2732 Record *R = ToVec[i]; 2733 std::string FeatureMask = GetAliasRequiredFeatures(R, Info); 2734 2735 // If this unconditionally matches, remember it for later and diagnose 2736 // duplicates. 2737 if (FeatureMask.empty()) { 2738 if (AliasWithNoPredicate != -1) { 2739 // We can't have two aliases from the same mnemonic with no predicate. 2740 PrintError(ToVec[AliasWithNoPredicate]->getLoc(), 2741 "two MnemonicAliases with the same 'from' mnemonic!"); 2742 PrintFatalError(R->getLoc(), "this is the other MnemonicAlias."); 2743 } 2744 2745 AliasWithNoPredicate = i; 2746 continue; 2747 } 2748 if (R->getValueAsString("ToMnemonic") == AliasEntry.first) 2749 PrintFatalError(R->getLoc(), "MnemonicAlias to the same string"); 2750 2751 if (!MatchCode.empty()) 2752 MatchCode += "else "; 2753 MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n"; 2754 MatchCode += " Mnemonic = \""; 2755 MatchCode += R->getValueAsString("ToMnemonic"); 2756 MatchCode += "\";\n"; 2757 } 2758 2759 if (AliasWithNoPredicate != -1) { 2760 Record *R = ToVec[AliasWithNoPredicate]; 2761 if (!MatchCode.empty()) 2762 MatchCode += "else\n "; 2763 MatchCode += "Mnemonic = \""; 2764 MatchCode += R->getValueAsString("ToMnemonic"); 2765 MatchCode += "\";\n"; 2766 } 2767 2768 MatchCode += "return;"; 2769 2770 Cases.push_back(std::make_pair(AliasEntry.first, MatchCode)); 2771 } 2772 StringMatcher("Mnemonic", Cases, OS).Emit(Indent); 2773 } 2774 2775 /// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions, 2776 /// emit a function for them and return true, otherwise return false. 2777 static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info, 2778 CodeGenTarget &Target) { 2779 // Ignore aliases when match-prefix is set. 2780 if (!MatchPrefix.empty()) 2781 return false; 2782 2783 std::vector<Record*> Aliases = 2784 Info.getRecords().getAllDerivedDefinitions("MnemonicAlias"); 2785 if (Aliases.empty()) return false; 2786 2787 OS << "static void applyMnemonicAliases(StringRef &Mnemonic, " 2788 "uint64_t Features, unsigned VariantID) {\n"; 2789 OS << " switch (VariantID) {\n"; 2790 unsigned VariantCount = Target.getAsmParserVariantCount(); 2791 for (unsigned VC = 0; VC != VariantCount; ++VC) { 2792 Record *AsmVariant = Target.getAsmParserVariant(VC); 2793 int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant"); 2794 StringRef AsmParserVariantName = AsmVariant->getValueAsString("Name"); 2795 OS << " case " << AsmParserVariantNo << ":\n"; 2796 emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2, 2797 AsmParserVariantName); 2798 OS << " break;\n"; 2799 } 2800 OS << " }\n"; 2801 2802 // Emit aliases that apply to all variants. 2803 emitMnemonicAliasVariant(OS, Info, Aliases); 2804 2805 OS << "}\n\n"; 2806 2807 return true; 2808 } 2809 2810 static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target, 2811 const AsmMatcherInfo &Info, StringRef ClassName, 2812 StringToOffsetTable &StringTable, 2813 unsigned MaxMnemonicIndex, bool HasMnemonicFirst) { 2814 unsigned MaxMask = 0; 2815 for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) { 2816 MaxMask |= OMI.OperandMask; 2817 } 2818 2819 // Emit the static custom operand parsing table; 2820 OS << "namespace {\n"; 2821 OS << " struct OperandMatchEntry {\n"; 2822 OS << " " << getMinimalTypeForEnumBitfield(Info.SubtargetFeatures.size()) 2823 << " RequiredFeatures;\n"; 2824 OS << " " << getMinimalTypeForRange(MaxMnemonicIndex) 2825 << " Mnemonic;\n"; 2826 OS << " " << getMinimalTypeForRange(std::distance( 2827 Info.Classes.begin(), Info.Classes.end())) << " Class;\n"; 2828 OS << " " << getMinimalTypeForRange(MaxMask) 2829 << " OperandMask;\n\n"; 2830 OS << " StringRef getMnemonic() const {\n"; 2831 OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n"; 2832 OS << " MnemonicTable[Mnemonic]);\n"; 2833 OS << " }\n"; 2834 OS << " };\n\n"; 2835 2836 OS << " // Predicate for searching for an opcode.\n"; 2837 OS << " struct LessOpcodeOperand {\n"; 2838 OS << " bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n"; 2839 OS << " return LHS.getMnemonic() < RHS;\n"; 2840 OS << " }\n"; 2841 OS << " bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n"; 2842 OS << " return LHS < RHS.getMnemonic();\n"; 2843 OS << " }\n"; 2844 OS << " bool operator()(const OperandMatchEntry &LHS,"; 2845 OS << " const OperandMatchEntry &RHS) {\n"; 2846 OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n"; 2847 OS << " }\n"; 2848 OS << " };\n"; 2849 2850 OS << "} // end anonymous namespace.\n\n"; 2851 2852 OS << "static const OperandMatchEntry OperandMatchTable[" 2853 << Info.OperandMatchInfo.size() << "] = {\n"; 2854 2855 OS << " /* Operand List Mask, Mnemonic, Operand Class, Features */\n"; 2856 for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) { 2857 const MatchableInfo &II = *OMI.MI; 2858 2859 OS << " { "; 2860 2861 // Write the required features mask. 2862 if (!II.RequiredFeatures.empty()) { 2863 for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) { 2864 if (i) OS << "|"; 2865 OS << II.RequiredFeatures[i]->getEnumName(); 2866 } 2867 } else 2868 OS << "0"; 2869 2870 // Store a pascal-style length byte in the mnemonic. 2871 std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str(); 2872 OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false) 2873 << " /* " << II.Mnemonic << " */, "; 2874 2875 OS << OMI.CI->Name; 2876 2877 OS << ", " << OMI.OperandMask; 2878 OS << " /* "; 2879 bool printComma = false; 2880 for (int i = 0, e = 31; i !=e; ++i) 2881 if (OMI.OperandMask & (1 << i)) { 2882 if (printComma) 2883 OS << ", "; 2884 OS << i; 2885 printComma = true; 2886 } 2887 OS << " */"; 2888 2889 OS << " },\n"; 2890 } 2891 OS << "};\n\n"; 2892 2893 // Emit the operand class switch to call the correct custom parser for 2894 // the found operand class. 2895 OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n" 2896 << "tryCustomParseOperand(OperandVector" 2897 << " &Operands,\n unsigned MCK) {\n\n" 2898 << " switch(MCK) {\n"; 2899 2900 for (const auto &CI : Info.Classes) { 2901 if (CI.ParserMethod.empty()) 2902 continue; 2903 OS << " case " << CI.Name << ":\n" 2904 << " return " << CI.ParserMethod << "(Operands);\n"; 2905 } 2906 2907 OS << " default:\n"; 2908 OS << " return MatchOperand_NoMatch;\n"; 2909 OS << " }\n"; 2910 OS << " return MatchOperand_NoMatch;\n"; 2911 OS << "}\n\n"; 2912 2913 // Emit the static custom operand parser. This code is very similar with 2914 // the other matcher. Also use MatchResultTy here just in case we go for 2915 // a better error handling. 2916 OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n" 2917 << "MatchOperandParserImpl(OperandVector" 2918 << " &Operands,\n StringRef Mnemonic,\n" 2919 << " bool ParseForAllFeatures) {\n"; 2920 2921 // Emit code to get the available features. 2922 OS << " // Get the current feature set.\n"; 2923 OS << " uint64_t AvailableFeatures = getAvailableFeatures();\n\n"; 2924 2925 OS << " // Get the next operand index.\n"; 2926 OS << " unsigned NextOpNum = Operands.size()" 2927 << (HasMnemonicFirst ? " - 1" : "") << ";\n"; 2928 2929 // Emit code to search the table. 2930 OS << " // Search the table.\n"; 2931 if (HasMnemonicFirst) { 2932 OS << " auto MnemonicRange =\n"; 2933 OS << " std::equal_range(std::begin(OperandMatchTable), " 2934 "std::end(OperandMatchTable),\n"; 2935 OS << " Mnemonic, LessOpcodeOperand());\n\n"; 2936 } else { 2937 OS << " auto MnemonicRange = std::make_pair(std::begin(OperandMatchTable)," 2938 " std::end(OperandMatchTable));\n"; 2939 OS << " if (!Mnemonic.empty())\n"; 2940 OS << " MnemonicRange =\n"; 2941 OS << " std::equal_range(std::begin(OperandMatchTable), " 2942 "std::end(OperandMatchTable),\n"; 2943 OS << " Mnemonic, LessOpcodeOperand());\n\n"; 2944 } 2945 2946 OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; 2947 OS << " return MatchOperand_NoMatch;\n\n"; 2948 2949 OS << " for (const OperandMatchEntry *it = MnemonicRange.first,\n" 2950 << " *ie = MnemonicRange.second; it != ie; ++it) {\n"; 2951 2952 OS << " // equal_range guarantees that instruction mnemonic matches.\n"; 2953 OS << " assert(Mnemonic == it->getMnemonic());\n\n"; 2954 2955 // Emit check that the required features are available. 2956 OS << " // check if the available features match\n"; 2957 OS << " if (!ParseForAllFeatures && (AvailableFeatures & " 2958 "it->RequiredFeatures) != it->RequiredFeatures)\n"; 2959 OS << " continue;\n\n"; 2960 2961 // Emit check to ensure the operand number matches. 2962 OS << " // check if the operand in question has a custom parser.\n"; 2963 OS << " if (!(it->OperandMask & (1 << NextOpNum)))\n"; 2964 OS << " continue;\n\n"; 2965 2966 // Emit call to the custom parser method 2967 OS << " // call custom parse method to handle the operand\n"; 2968 OS << " OperandMatchResultTy Result = "; 2969 OS << "tryCustomParseOperand(Operands, it->Class);\n"; 2970 OS << " if (Result != MatchOperand_NoMatch)\n"; 2971 OS << " return Result;\n"; 2972 OS << " }\n\n"; 2973 2974 OS << " // Okay, we had no match.\n"; 2975 OS << " return MatchOperand_NoMatch;\n"; 2976 OS << "}\n\n"; 2977 } 2978 2979 static void emitAsmTiedOperandConstraints(CodeGenTarget &Target, 2980 AsmMatcherInfo &Info, 2981 raw_ostream &OS) { 2982 OS << "static bool "; 2983 OS << "checkAsmTiedOperandConstraints(unsigned Kind,\n"; 2984 OS << " const OperandVector &Operands,\n"; 2985 OS << " uint64_t &ErrorInfo) {\n"; 2986 OS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"; 2987 OS << " const uint8_t *Converter = ConversionTable[Kind];\n"; 2988 OS << " for (const uint8_t *p = Converter; *p; p+= 2) {\n"; 2989 OS << " switch (*p) {\n"; 2990 OS << " case CVT_Tied: {\n"; 2991 OS << " unsigned OpIdx = *(p+1);\n"; 2992 OS << " assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n"; 2993 OS << " std::begin(TiedAsmOperandTable)) &&\n"; 2994 OS << " \"Tied operand not found\");\n"; 2995 OS << " unsigned OpndNum1 = TiedAsmOperandTable[OpIdx][1];\n"; 2996 OS << " unsigned OpndNum2 = TiedAsmOperandTable[OpIdx][2];\n"; 2997 OS << " if (OpndNum1 != OpndNum2) {\n"; 2998 OS << " auto &SrcOp1 = Operands[OpndNum1];\n"; 2999 OS << " auto &SrcOp2 = Operands[OpndNum2];\n"; 3000 OS << " if (SrcOp1->isReg() && SrcOp2->isReg() &&\n"; 3001 OS << " SrcOp1->getReg() != SrcOp2->getReg()) {\n"; 3002 OS << " ErrorInfo = OpndNum2;\n"; 3003 OS << " return false;\n"; 3004 OS << " }\n"; 3005 OS << " }\n"; 3006 OS << " break;\n"; 3007 OS << " }\n"; 3008 OS << " default:\n"; 3009 OS << " break;\n"; 3010 OS << " }\n"; 3011 OS << " }\n"; 3012 OS << " return true;\n"; 3013 OS << "}\n\n"; 3014 } 3015 3016 static void emitMnemonicSpellChecker(raw_ostream &OS, CodeGenTarget &Target, 3017 unsigned VariantCount) { 3018 OS << "static std::string " << Target.getName() 3019 << "MnemonicSpellCheck(StringRef S, uint64_t FBS, unsigned VariantID) {\n"; 3020 if (!VariantCount) 3021 OS << " return \"\";"; 3022 else { 3023 OS << " const unsigned MaxEditDist = 2;\n"; 3024 OS << " std::vector<StringRef> Candidates;\n"; 3025 OS << " StringRef Prev = \"\";\n\n"; 3026 3027 OS << " // Find the appropriate table for this asm variant.\n"; 3028 OS << " const MatchEntry *Start, *End;\n"; 3029 OS << " switch (VariantID) {\n"; 3030 OS << " default: llvm_unreachable(\"invalid variant!\");\n"; 3031 for (unsigned VC = 0; VC != VariantCount; ++VC) { 3032 Record *AsmVariant = Target.getAsmParserVariant(VC); 3033 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 3034 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC 3035 << "); End = std::end(MatchTable" << VC << "); break;\n"; 3036 } 3037 OS << " }\n\n"; 3038 OS << " for (auto I = Start; I < End; I++) {\n"; 3039 OS << " // Ignore unsupported instructions.\n"; 3040 OS << " if ((FBS & I->RequiredFeatures) != I->RequiredFeatures)\n"; 3041 OS << " continue;\n"; 3042 OS << "\n"; 3043 OS << " StringRef T = I->getMnemonic();\n"; 3044 OS << " // Avoid recomputing the edit distance for the same string.\n"; 3045 OS << " if (T.equals(Prev))\n"; 3046 OS << " continue;\n"; 3047 OS << "\n"; 3048 OS << " Prev = T;\n"; 3049 OS << " unsigned Dist = S.edit_distance(T, false, MaxEditDist);\n"; 3050 OS << " if (Dist <= MaxEditDist)\n"; 3051 OS << " Candidates.push_back(T);\n"; 3052 OS << " }\n"; 3053 OS << "\n"; 3054 OS << " if (Candidates.empty())\n"; 3055 OS << " return \"\";\n"; 3056 OS << "\n"; 3057 OS << " std::string Res = \", did you mean: \";\n"; 3058 OS << " unsigned i = 0;\n"; 3059 OS << " for( ; i < Candidates.size() - 1; i++)\n"; 3060 OS << " Res += Candidates[i].str() + \", \";\n"; 3061 OS << " return Res + Candidates[i].str() + \"?\";\n"; 3062 } 3063 OS << "}\n"; 3064 OS << "\n"; 3065 } 3066 3067 3068 // Emit a function mapping match classes to strings, for debugging. 3069 static void emitMatchClassKindNames(std::forward_list<ClassInfo> &Infos, 3070 raw_ostream &OS) { 3071 OS << "#ifndef NDEBUG\n"; 3072 OS << "const char *getMatchClassName(MatchClassKind Kind) {\n"; 3073 OS << " switch (Kind) {\n"; 3074 3075 OS << " case InvalidMatchClass: return \"InvalidMatchClass\";\n"; 3076 OS << " case OptionalMatchClass: return \"OptionalMatchClass\";\n"; 3077 for (const auto &CI : Infos) { 3078 OS << " case " << CI.Name << ": return \"" << CI.Name << "\";\n"; 3079 } 3080 OS << " case NumMatchClassKinds: return \"NumMatchClassKinds\";\n"; 3081 3082 OS << " }\n"; 3083 OS << " llvm_unreachable(\"unhandled MatchClassKind!\");\n"; 3084 OS << "}\n\n"; 3085 OS << "#endif // NDEBUG\n"; 3086 } 3087 3088 void AsmMatcherEmitter::run(raw_ostream &OS) { 3089 CodeGenTarget Target(Records); 3090 Record *AsmParser = Target.getAsmParser(); 3091 StringRef ClassName = AsmParser->getValueAsString("AsmParserClassName"); 3092 3093 // Compute the information on the instructions to match. 3094 AsmMatcherInfo Info(AsmParser, Target, Records); 3095 Info.buildInfo(); 3096 3097 // Sort the instruction table using the partial order on classes. We use 3098 // stable_sort to ensure that ambiguous instructions are still 3099 // deterministically ordered. 3100 std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(), 3101 [](const std::unique_ptr<MatchableInfo> &a, 3102 const std::unique_ptr<MatchableInfo> &b){ 3103 return *a < *b;}); 3104 3105 #ifdef EXPENSIVE_CHECKS 3106 // Verify that the table is sorted and operator < works transitively. 3107 for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E; 3108 ++I) { 3109 for (auto J = I; J != E; ++J) { 3110 assert(!(**J < **I)); 3111 } 3112 } 3113 #endif 3114 3115 DEBUG_WITH_TYPE("instruction_info", { 3116 for (const auto &MI : Info.Matchables) 3117 MI->dump(); 3118 }); 3119 3120 // Check for ambiguous matchables. 3121 DEBUG_WITH_TYPE("ambiguous_instrs", { 3122 unsigned NumAmbiguous = 0; 3123 for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E; 3124 ++I) { 3125 for (auto J = std::next(I); J != E; ++J) { 3126 const MatchableInfo &A = **I; 3127 const MatchableInfo &B = **J; 3128 3129 if (A.couldMatchAmbiguouslyWith(B)) { 3130 errs() << "warning: ambiguous matchables:\n"; 3131 A.dump(); 3132 errs() << "\nis incomparable with:\n"; 3133 B.dump(); 3134 errs() << "\n\n"; 3135 ++NumAmbiguous; 3136 } 3137 } 3138 } 3139 if (NumAmbiguous) 3140 errs() << "warning: " << NumAmbiguous 3141 << " ambiguous matchables!\n"; 3142 }); 3143 3144 // Compute the information on the custom operand parsing. 3145 Info.buildOperandMatchInfo(); 3146 3147 bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst"); 3148 bool HasOptionalOperands = Info.hasOptionalOperands(); 3149 bool ReportMultipleNearMisses = 3150 AsmParser->getValueAsBit("ReportMultipleNearMisses"); 3151 3152 // Write the output. 3153 3154 // Information for the class declaration. 3155 OS << "\n#ifdef GET_ASSEMBLER_HEADER\n"; 3156 OS << "#undef GET_ASSEMBLER_HEADER\n"; 3157 OS << " // This should be included into the middle of the declaration of\n"; 3158 OS << " // your subclasses implementation of MCTargetAsmParser.\n"; 3159 OS << " uint64_t ComputeAvailableFeatures(const FeatureBitset& FB) const;\n"; 3160 if (HasOptionalOperands) { 3161 OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, " 3162 << "unsigned Opcode,\n" 3163 << " const OperandVector &Operands,\n" 3164 << " const SmallBitVector &OptionalOperandsMask);\n"; 3165 } else { 3166 OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, " 3167 << "unsigned Opcode,\n" 3168 << " const OperandVector &Operands);\n"; 3169 } 3170 OS << " void convertToMapAndConstraints(unsigned Kind,\n "; 3171 OS << " const OperandVector &Operands) override;\n"; 3172 OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n" 3173 << " MCInst &Inst,\n"; 3174 if (ReportMultipleNearMisses) 3175 OS << " SmallVectorImpl<NearMissInfo> *NearMisses,\n"; 3176 else 3177 OS << " uint64_t &ErrorInfo,\n"; 3178 OS << " bool matchingInlineAsm,\n" 3179 << " unsigned VariantID = 0);\n"; 3180 3181 if (!Info.OperandMatchInfo.empty()) { 3182 OS << " OperandMatchResultTy MatchOperandParserImpl(\n"; 3183 OS << " OperandVector &Operands,\n"; 3184 OS << " StringRef Mnemonic,\n"; 3185 OS << " bool ParseForAllFeatures = false);\n"; 3186 3187 OS << " OperandMatchResultTy tryCustomParseOperand(\n"; 3188 OS << " OperandVector &Operands,\n"; 3189 OS << " unsigned MCK);\n\n"; 3190 } 3191 3192 OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n"; 3193 3194 // Emit the operand match diagnostic enum names. 3195 OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n"; 3196 OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n"; 3197 emitOperandDiagnosticTypes(Info, OS); 3198 OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n"; 3199 3200 OS << "\n#ifdef GET_REGISTER_MATCHER\n"; 3201 OS << "#undef GET_REGISTER_MATCHER\n\n"; 3202 3203 // Emit the subtarget feature enumeration. 3204 SubtargetFeatureInfo::emitSubtargetFeatureFlagEnumeration( 3205 Info.SubtargetFeatures, OS); 3206 3207 // Emit the function to match a register name to number. 3208 // This should be omitted for Mips target 3209 if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName")) 3210 emitMatchRegisterName(Target, AsmParser, OS); 3211 3212 if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterAltName")) 3213 emitMatchRegisterAltName(Target, AsmParser, OS); 3214 3215 OS << "#endif // GET_REGISTER_MATCHER\n\n"; 3216 3217 OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n"; 3218 OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n"; 3219 3220 // Generate the helper function to get the names for subtarget features. 3221 emitGetSubtargetFeatureName(Info, OS); 3222 3223 OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n"; 3224 3225 OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n"; 3226 OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n"; 3227 3228 // Generate the function that remaps for mnemonic aliases. 3229 bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target); 3230 3231 // Generate the convertToMCInst function to convert operands into an MCInst. 3232 // Also, generate the convertToMapAndConstraints function for MS-style inline 3233 // assembly. The latter doesn't actually generate a MCInst. 3234 emitConvertFuncs(Target, ClassName, Info.Matchables, HasMnemonicFirst, 3235 HasOptionalOperands, OS); 3236 3237 // Emit the enumeration for classes which participate in matching. 3238 emitMatchClassEnumeration(Target, Info.Classes, OS); 3239 3240 // Emit a function to get the user-visible string to describe an operand 3241 // match failure in diagnostics. 3242 emitOperandMatchErrorDiagStrings(Info, OS); 3243 3244 // Emit a function to map register classes to operand match failure codes. 3245 emitRegisterMatchErrorFunc(Info, OS); 3246 3247 // Emit the routine to match token strings to their match class. 3248 emitMatchTokenString(Target, Info.Classes, OS); 3249 3250 // Emit the subclass predicate routine. 3251 emitIsSubclass(Target, Info.Classes, OS); 3252 3253 // Emit the routine to validate an operand against a match class. 3254 emitValidateOperandClass(Info, OS); 3255 3256 emitMatchClassKindNames(Info.Classes, OS); 3257 3258 // Emit the available features compute function. 3259 SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures( 3260 Info.Target.getName(), ClassName, "ComputeAvailableFeatures", 3261 Info.SubtargetFeatures, OS); 3262 3263 if (!ReportMultipleNearMisses) 3264 emitAsmTiedOperandConstraints(Target, Info, OS); 3265 3266 StringToOffsetTable StringTable; 3267 3268 size_t MaxNumOperands = 0; 3269 unsigned MaxMnemonicIndex = 0; 3270 bool HasDeprecation = false; 3271 for (const auto &MI : Info.Matchables) { 3272 MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size()); 3273 HasDeprecation |= MI->HasDeprecation; 3274 3275 // Store a pascal-style length byte in the mnemonic. 3276 std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str(); 3277 MaxMnemonicIndex = std::max(MaxMnemonicIndex, 3278 StringTable.GetOrAddStringOffset(LenMnemonic, false)); 3279 } 3280 3281 OS << "static const char *const MnemonicTable =\n"; 3282 StringTable.EmitString(OS); 3283 OS << ";\n\n"; 3284 3285 // Emit the static match table; unused classes get initialized to 0 which is 3286 // guaranteed to be InvalidMatchClass. 3287 // 3288 // FIXME: We can reduce the size of this table very easily. First, we change 3289 // it so that store the kinds in separate bit-fields for each index, which 3290 // only needs to be the max width used for classes at that index (we also need 3291 // to reject based on this during classification). If we then make sure to 3292 // order the match kinds appropriately (putting mnemonics last), then we 3293 // should only end up using a few bits for each class, especially the ones 3294 // following the mnemonic. 3295 OS << "namespace {\n"; 3296 OS << " struct MatchEntry {\n"; 3297 OS << " " << getMinimalTypeForRange(MaxMnemonicIndex) 3298 << " Mnemonic;\n"; 3299 OS << " uint16_t Opcode;\n"; 3300 OS << " " << getMinimalTypeForRange(Info.Matchables.size()) 3301 << " ConvertFn;\n"; 3302 OS << " " << getMinimalTypeForEnumBitfield(Info.SubtargetFeatures.size()) 3303 << " RequiredFeatures;\n"; 3304 OS << " " << getMinimalTypeForRange( 3305 std::distance(Info.Classes.begin(), Info.Classes.end())) 3306 << " Classes[" << MaxNumOperands << "];\n"; 3307 OS << " StringRef getMnemonic() const {\n"; 3308 OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n"; 3309 OS << " MnemonicTable[Mnemonic]);\n"; 3310 OS << " }\n"; 3311 OS << " };\n\n"; 3312 3313 OS << " // Predicate for searching for an opcode.\n"; 3314 OS << " struct LessOpcode {\n"; 3315 OS << " bool operator()(const MatchEntry &LHS, StringRef RHS) {\n"; 3316 OS << " return LHS.getMnemonic() < RHS;\n"; 3317 OS << " }\n"; 3318 OS << " bool operator()(StringRef LHS, const MatchEntry &RHS) {\n"; 3319 OS << " return LHS < RHS.getMnemonic();\n"; 3320 OS << " }\n"; 3321 OS << " bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n"; 3322 OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n"; 3323 OS << " }\n"; 3324 OS << " };\n"; 3325 3326 OS << "} // end anonymous namespace.\n\n"; 3327 3328 unsigned VariantCount = Target.getAsmParserVariantCount(); 3329 for (unsigned VC = 0; VC != VariantCount; ++VC) { 3330 Record *AsmVariant = Target.getAsmParserVariant(VC); 3331 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 3332 3333 OS << "static const MatchEntry MatchTable" << VC << "[] = {\n"; 3334 3335 for (const auto &MI : Info.Matchables) { 3336 if (MI->AsmVariantID != AsmVariantNo) 3337 continue; 3338 3339 // Store a pascal-style length byte in the mnemonic. 3340 std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str(); 3341 OS << " { " << StringTable.GetOrAddStringOffset(LenMnemonic, false) 3342 << " /* " << MI->Mnemonic << " */, " 3343 << Target.getInstNamespace() << "::" 3344 << MI->getResultInst()->TheDef->getName() << ", " 3345 << MI->ConversionFnKind << ", "; 3346 3347 // Write the required features mask. 3348 if (!MI->RequiredFeatures.empty()) { 3349 for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i) { 3350 if (i) OS << "|"; 3351 OS << MI->RequiredFeatures[i]->getEnumName(); 3352 } 3353 } else 3354 OS << "0"; 3355 3356 OS << ", { "; 3357 for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) { 3358 const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i]; 3359 3360 if (i) OS << ", "; 3361 OS << Op.Class->Name; 3362 } 3363 OS << " }, },\n"; 3364 } 3365 3366 OS << "};\n\n"; 3367 } 3368 3369 OS << "#include \"llvm/Support/Debug.h\"\n"; 3370 OS << "#include \"llvm/Support/Format.h\"\n\n"; 3371 3372 // Finally, build the match function. 3373 OS << "unsigned " << Target.getName() << ClassName << "::\n" 3374 << "MatchInstructionImpl(const OperandVector &Operands,\n"; 3375 OS << " MCInst &Inst,\n"; 3376 if (ReportMultipleNearMisses) 3377 OS << " SmallVectorImpl<NearMissInfo> *NearMisses,\n"; 3378 else 3379 OS << " uint64_t &ErrorInfo,\n"; 3380 OS << " bool matchingInlineAsm, unsigned VariantID) {\n"; 3381 3382 if (!ReportMultipleNearMisses) { 3383 OS << " // Eliminate obvious mismatches.\n"; 3384 OS << " if (Operands.size() > " 3385 << (MaxNumOperands + HasMnemonicFirst) << ") {\n"; 3386 OS << " ErrorInfo = " 3387 << (MaxNumOperands + HasMnemonicFirst) << ";\n"; 3388 OS << " return Match_InvalidOperand;\n"; 3389 OS << " }\n\n"; 3390 } 3391 3392 // Emit code to get the available features. 3393 OS << " // Get the current feature set.\n"; 3394 OS << " uint64_t AvailableFeatures = getAvailableFeatures();\n\n"; 3395 3396 OS << " // Get the instruction mnemonic, which is the first token.\n"; 3397 if (HasMnemonicFirst) { 3398 OS << " StringRef Mnemonic = ((" << Target.getName() 3399 << "Operand&)*Operands[0]).getToken();\n\n"; 3400 } else { 3401 OS << " StringRef Mnemonic;\n"; 3402 OS << " if (Operands[0]->isToken())\n"; 3403 OS << " Mnemonic = ((" << Target.getName() 3404 << "Operand&)*Operands[0]).getToken();\n\n"; 3405 } 3406 3407 if (HasMnemonicAliases) { 3408 OS << " // Process all MnemonicAliases to remap the mnemonic.\n"; 3409 OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n"; 3410 } 3411 3412 // Emit code to compute the class list for this operand vector. 3413 if (!ReportMultipleNearMisses) { 3414 OS << " // Some state to try to produce better error messages.\n"; 3415 OS << " bool HadMatchOtherThanFeatures = false;\n"; 3416 OS << " bool HadMatchOtherThanPredicate = false;\n"; 3417 OS << " unsigned RetCode = Match_InvalidOperand;\n"; 3418 OS << " uint64_t MissingFeatures = ~0ULL;\n"; 3419 OS << " // Set ErrorInfo to the operand that mismatches if it is\n"; 3420 OS << " // wrong for all instances of the instruction.\n"; 3421 OS << " ErrorInfo = ~0ULL;\n"; 3422 } 3423 3424 if (HasOptionalOperands) { 3425 OS << " SmallBitVector OptionalOperandsMask(" << MaxNumOperands << ");\n"; 3426 } 3427 3428 // Emit code to search the table. 3429 OS << " // Find the appropriate table for this asm variant.\n"; 3430 OS << " const MatchEntry *Start, *End;\n"; 3431 OS << " switch (VariantID) {\n"; 3432 OS << " default: llvm_unreachable(\"invalid variant!\");\n"; 3433 for (unsigned VC = 0; VC != VariantCount; ++VC) { 3434 Record *AsmVariant = Target.getAsmParserVariant(VC); 3435 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 3436 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC 3437 << "); End = std::end(MatchTable" << VC << "); break;\n"; 3438 } 3439 OS << " }\n"; 3440 3441 OS << " // Search the table.\n"; 3442 if (HasMnemonicFirst) { 3443 OS << " auto MnemonicRange = " 3444 "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n"; 3445 } else { 3446 OS << " auto MnemonicRange = std::make_pair(Start, End);\n"; 3447 OS << " unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n"; 3448 OS << " if (!Mnemonic.empty())\n"; 3449 OS << " MnemonicRange = " 3450 "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n"; 3451 } 3452 3453 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"AsmMatcher: found \" <<\n" 3454 << " std::distance(MnemonicRange.first, MnemonicRange.second) << \n" 3455 << " \" encodings with mnemonic '\" << Mnemonic << \"'\\n\");\n\n"; 3456 3457 OS << " // Return a more specific error code if no mnemonics match.\n"; 3458 OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; 3459 OS << " return Match_MnemonicFail;\n\n"; 3460 3461 OS << " for (const MatchEntry *it = MnemonicRange.first, " 3462 << "*ie = MnemonicRange.second;\n"; 3463 OS << " it != ie; ++it) {\n"; 3464 OS << " bool HasRequiredFeatures =\n"; 3465 OS << " (AvailableFeatures & it->RequiredFeatures) == " 3466 "it->RequiredFeatures;\n"; 3467 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Trying to match opcode \"\n"; 3468 OS << " << MII.getName(it->Opcode) << \"\\n\");\n"; 3469 3470 if (ReportMultipleNearMisses) { 3471 OS << " // Some state to record ways in which this instruction did not match.\n"; 3472 OS << " NearMissInfo OperandNearMiss = NearMissInfo::getSuccess();\n"; 3473 OS << " NearMissInfo FeaturesNearMiss = NearMissInfo::getSuccess();\n"; 3474 OS << " NearMissInfo EarlyPredicateNearMiss = NearMissInfo::getSuccess();\n"; 3475 OS << " NearMissInfo LatePredicateNearMiss = NearMissInfo::getSuccess();\n"; 3476 OS << " bool MultipleInvalidOperands = false;\n"; 3477 } 3478 3479 if (HasMnemonicFirst) { 3480 OS << " // equal_range guarantees that instruction mnemonic matches.\n"; 3481 OS << " assert(Mnemonic == it->getMnemonic());\n"; 3482 } 3483 3484 // Emit check that the subclasses match. 3485 if (!ReportMultipleNearMisses) 3486 OS << " bool OperandsValid = true;\n"; 3487 if (HasOptionalOperands) { 3488 OS << " OptionalOperandsMask.reset(0, " << MaxNumOperands << ");\n"; 3489 } 3490 OS << " for (unsigned FormalIdx = " << (HasMnemonicFirst ? "0" : "SIndex") 3491 << ", ActualIdx = " << (HasMnemonicFirst ? "1" : "SIndex") 3492 << "; FormalIdx != " << MaxNumOperands << "; ++FormalIdx) {\n"; 3493 OS << " auto Formal = " 3494 << "static_cast<MatchClassKind>(it->Classes[FormalIdx]);\n"; 3495 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n"; 3496 OS << " dbgs() << \" Matching formal operand class \" << getMatchClassName(Formal)\n"; 3497 OS << " << \" against actual operand at index \" << ActualIdx);\n"; 3498 OS << " if (ActualIdx < Operands.size())\n"; 3499 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \" (\";\n"; 3500 OS << " Operands[ActualIdx]->print(dbgs()); dbgs() << \"): \");\n"; 3501 OS << " else\n"; 3502 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \": \");\n"; 3503 OS << " if (ActualIdx >= Operands.size()) {\n"; 3504 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"actual operand index out of range \");\n"; 3505 if (ReportMultipleNearMisses) { 3506 OS << " bool ThisOperandValid = (Formal == " <<"InvalidMatchClass) || " 3507 "isSubclass(Formal, OptionalMatchClass);\n"; 3508 OS << " if (!ThisOperandValid) {\n"; 3509 OS << " if (!OperandNearMiss) {\n"; 3510 OS << " // Record info about match failure for later use.\n"; 3511 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"recording too-few-operands near miss\\n\");\n"; 3512 OS << " OperandNearMiss =\n"; 3513 OS << " NearMissInfo::getTooFewOperands(Formal, it->Opcode);\n"; 3514 OS << " } else if (OperandNearMiss.getKind() != NearMissInfo::NearMissTooFewOperands) {\n"; 3515 OS << " // If more than one operand is invalid, give up on this match entry.\n"; 3516 OS << " DEBUG_WITH_TYPE(\n"; 3517 OS << " \"asm-matcher\",\n"; 3518 OS << " dbgs() << \"second invalid operand, giving up on this opcode\\n\");\n"; 3519 OS << " MultipleInvalidOperands = true;\n"; 3520 OS << " break;\n"; 3521 OS << " }\n"; 3522 OS << " } else {\n"; 3523 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"but formal operand not required\\n\");\n"; 3524 OS << " break;\n"; 3525 OS << " }\n"; 3526 OS << " continue;\n"; 3527 } else { 3528 OS << " OperandsValid = (Formal == InvalidMatchClass) || isSubclass(Formal, OptionalMatchClass);\n"; 3529 OS << " if (!OperandsValid) ErrorInfo = ActualIdx;\n"; 3530 if (HasOptionalOperands) { 3531 OS << " OptionalOperandsMask.set(FormalIdx, " << MaxNumOperands 3532 << ");\n"; 3533 } 3534 OS << " break;\n"; 3535 } 3536 OS << " }\n"; 3537 OS << " MCParsedAsmOperand &Actual = *Operands[ActualIdx];\n"; 3538 OS << " unsigned Diag = validateOperandClass(Actual, Formal);\n"; 3539 OS << " if (Diag == Match_Success) {\n"; 3540 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n"; 3541 OS << " dbgs() << \"match success using generic matcher\\n\");\n"; 3542 OS << " ++ActualIdx;\n"; 3543 OS << " continue;\n"; 3544 OS << " }\n"; 3545 OS << " // If the generic handler indicates an invalid operand\n"; 3546 OS << " // failure, check for a special case.\n"; 3547 OS << " if (Diag != Match_Success) {\n"; 3548 OS << " unsigned TargetDiag = validateTargetOperandClass(Actual, Formal);\n"; 3549 OS << " if (TargetDiag == Match_Success) {\n"; 3550 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n"; 3551 OS << " dbgs() << \"match success using target matcher\\n\");\n"; 3552 OS << " ++ActualIdx;\n"; 3553 OS << " continue;\n"; 3554 OS << " }\n"; 3555 OS << " // If the target matcher returned a specific error code use\n"; 3556 OS << " // that, else use the one from the generic matcher.\n"; 3557 OS << " if (TargetDiag != Match_InvalidOperand && " 3558 "HasRequiredFeatures)\n"; 3559 OS << " Diag = TargetDiag;\n"; 3560 OS << " }\n"; 3561 OS << " // If current formal operand wasn't matched and it is optional\n" 3562 << " // then try to match next formal operand\n"; 3563 OS << " if (Diag == Match_InvalidOperand " 3564 << "&& isSubclass(Formal, OptionalMatchClass)) {\n"; 3565 if (HasOptionalOperands) { 3566 OS << " OptionalOperandsMask.set(FormalIdx);\n"; 3567 } 3568 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"ignoring optional operand\\n\");\n"; 3569 OS << " continue;\n"; 3570 OS << " }\n"; 3571 3572 if (ReportMultipleNearMisses) { 3573 OS << " if (!OperandNearMiss) {\n"; 3574 OS << " // If this is the first invalid operand we have seen, record some\n"; 3575 OS << " // information about it.\n"; 3576 OS << " DEBUG_WITH_TYPE(\n"; 3577 OS << " \"asm-matcher\",\n"; 3578 OS << " dbgs()\n"; 3579 OS << " << \"operand match failed, recording near-miss with diag code \"\n"; 3580 OS << " << Diag << \"\\n\");\n"; 3581 OS << " OperandNearMiss =\n"; 3582 OS << " NearMissInfo::getMissedOperand(Diag, Formal, it->Opcode, ActualIdx);\n"; 3583 OS << " ++ActualIdx;\n"; 3584 OS << " } else {\n"; 3585 OS << " // If more than one operand is invalid, give up on this match entry.\n"; 3586 OS << " DEBUG_WITH_TYPE(\n"; 3587 OS << " \"asm-matcher\",\n"; 3588 OS << " dbgs() << \"second operand mismatch, skipping this opcode\\n\");\n"; 3589 OS << " MultipleInvalidOperands = true;\n"; 3590 OS << " break;\n"; 3591 OS << " }\n"; 3592 OS << " }\n\n"; 3593 } else { 3594 OS << " // If this operand is broken for all of the instances of this\n"; 3595 OS << " // mnemonic, keep track of it so we can report loc info.\n"; 3596 OS << " // If we already had a match that only failed due to a\n"; 3597 OS << " // target predicate, that diagnostic is preferred.\n"; 3598 OS << " if (!HadMatchOtherThanPredicate &&\n"; 3599 OS << " (it == MnemonicRange.first || ErrorInfo <= ActualIdx)) {\n"; 3600 OS << " if (HasRequiredFeatures && (ErrorInfo != ActualIdx || Diag " 3601 "!= Match_InvalidOperand))\n"; 3602 OS << " RetCode = Diag;\n"; 3603 OS << " ErrorInfo = ActualIdx;\n"; 3604 OS << " }\n"; 3605 OS << " // Otherwise, just reject this instance of the mnemonic.\n"; 3606 OS << " OperandsValid = false;\n"; 3607 OS << " break;\n"; 3608 OS << " }\n\n"; 3609 } 3610 3611 if (ReportMultipleNearMisses) 3612 OS << " if (MultipleInvalidOperands) {\n"; 3613 else 3614 OS << " if (!OperandsValid) {\n"; 3615 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n"; 3616 OS << " \"operand mismatches, ignoring \"\n"; 3617 OS << " \"this opcode\\n\");\n"; 3618 OS << " continue;\n"; 3619 OS << " }\n"; 3620 3621 // Emit check that the required features are available. 3622 OS << " if (!HasRequiredFeatures) {\n"; 3623 if (!ReportMultipleNearMisses) 3624 OS << " HadMatchOtherThanFeatures = true;\n"; 3625 OS << " uint64_t NewMissingFeatures = it->RequiredFeatures & " 3626 "~AvailableFeatures;\n"; 3627 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Missing target features: \"\n"; 3628 OS << " << format_hex(NewMissingFeatures, 18)\n"; 3629 OS << " << \"\\n\");\n"; 3630 if (ReportMultipleNearMisses) { 3631 OS << " FeaturesNearMiss = NearMissInfo::getMissedFeature(NewMissingFeatures);\n"; 3632 } else { 3633 OS << " if (countPopulation(NewMissingFeatures) <=\n" 3634 " countPopulation(MissingFeatures))\n"; 3635 OS << " MissingFeatures = NewMissingFeatures;\n"; 3636 OS << " continue;\n"; 3637 } 3638 OS << " }\n"; 3639 OS << "\n"; 3640 OS << " Inst.clear();\n\n"; 3641 OS << " Inst.setOpcode(it->Opcode);\n"; 3642 // Verify the instruction with the target-specific match predicate function. 3643 OS << " // We have a potential match but have not rendered the operands.\n" 3644 << " // Check the target predicate to handle any context sensitive\n" 3645 " // constraints.\n" 3646 << " // For example, Ties that are referenced multiple times must be\n" 3647 " // checked here to ensure the input is the same for each match\n" 3648 " // constraints. If we leave it any later the ties will have been\n" 3649 " // canonicalized\n" 3650 << " unsigned MatchResult;\n" 3651 << " if ((MatchResult = checkEarlyTargetMatchPredicate(Inst, " 3652 "Operands)) != Match_Success) {\n" 3653 << " Inst.clear();\n"; 3654 OS << " DEBUG_WITH_TYPE(\n"; 3655 OS << " \"asm-matcher\",\n"; 3656 OS << " dbgs() << \"Early target match predicate failed with diag code \"\n"; 3657 OS << " << MatchResult << \"\\n\");\n"; 3658 if (ReportMultipleNearMisses) { 3659 OS << " EarlyPredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n"; 3660 } else { 3661 OS << " RetCode = MatchResult;\n" 3662 << " HadMatchOtherThanPredicate = true;\n" 3663 << " continue;\n"; 3664 } 3665 OS << " }\n\n"; 3666 3667 if (ReportMultipleNearMisses) { 3668 OS << " // If we did not successfully match the operands, then we can't convert to\n"; 3669 OS << " // an MCInst, so bail out on this instruction variant now.\n"; 3670 OS << " if (OperandNearMiss) {\n"; 3671 OS << " // If the operand mismatch was the only problem, reprrt it as a near-miss.\n"; 3672 OS << " if (NearMisses && !FeaturesNearMiss && !EarlyPredicateNearMiss) {\n"; 3673 OS << " DEBUG_WITH_TYPE(\n"; 3674 OS << " \"asm-matcher\",\n"; 3675 OS << " dbgs()\n"; 3676 OS << " << \"Opcode result: one mismatched operand, adding near-miss\\n\");\n"; 3677 OS << " NearMisses->push_back(OperandNearMiss);\n"; 3678 OS << " } else {\n"; 3679 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n"; 3680 OS << " \"types of mismatch, so not \"\n"; 3681 OS << " \"reporting near-miss\\n\");\n"; 3682 OS << " }\n"; 3683 OS << " continue;\n"; 3684 OS << " }\n\n"; 3685 } 3686 3687 OS << " if (matchingInlineAsm) {\n"; 3688 OS << " convertToMapAndConstraints(it->ConvertFn, Operands);\n"; 3689 if (!ReportMultipleNearMisses) { 3690 OS << " if (!checkAsmTiedOperandConstraints(it->ConvertFn, Operands, ErrorInfo))\n"; 3691 OS << " return Match_InvalidTiedOperand;\n"; 3692 OS << "\n"; 3693 } 3694 OS << " return Match_Success;\n"; 3695 OS << " }\n\n"; 3696 OS << " // We have selected a definite instruction, convert the parsed\n" 3697 << " // operands into the appropriate MCInst.\n"; 3698 if (HasOptionalOperands) { 3699 OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands,\n" 3700 << " OptionalOperandsMask);\n"; 3701 } else { 3702 OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n"; 3703 } 3704 OS << "\n"; 3705 3706 // Verify the instruction with the target-specific match predicate function. 3707 OS << " // We have a potential match. Check the target predicate to\n" 3708 << " // handle any context sensitive constraints.\n" 3709 << " if ((MatchResult = checkTargetMatchPredicate(Inst)) !=" 3710 << " Match_Success) {\n" 3711 << " DEBUG_WITH_TYPE(\"asm-matcher\",\n" 3712 << " dbgs() << \"Target match predicate failed with diag code \"\n" 3713 << " << MatchResult << \"\\n\");\n" 3714 << " Inst.clear();\n"; 3715 if (ReportMultipleNearMisses) { 3716 OS << " LatePredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n"; 3717 } else { 3718 OS << " RetCode = MatchResult;\n" 3719 << " HadMatchOtherThanPredicate = true;\n" 3720 << " continue;\n"; 3721 } 3722 OS << " }\n\n"; 3723 3724 if (ReportMultipleNearMisses) { 3725 OS << " int NumNearMisses = ((int)(bool)OperandNearMiss +\n"; 3726 OS << " (int)(bool)FeaturesNearMiss +\n"; 3727 OS << " (int)(bool)EarlyPredicateNearMiss +\n"; 3728 OS << " (int)(bool)LatePredicateNearMiss);\n"; 3729 OS << " if (NumNearMisses == 1) {\n"; 3730 OS << " // We had exactly one type of near-miss, so add that to the list.\n"; 3731 OS << " assert(!OperandNearMiss && \"OperandNearMiss was handled earlier\");\n"; 3732 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: found one type of \"\n"; 3733 OS << " \"mismatch, so reporting a \"\n"; 3734 OS << " \"near-miss\\n\");\n"; 3735 OS << " if (NearMisses && FeaturesNearMiss)\n"; 3736 OS << " NearMisses->push_back(FeaturesNearMiss);\n"; 3737 OS << " else if (NearMisses && EarlyPredicateNearMiss)\n"; 3738 OS << " NearMisses->push_back(EarlyPredicateNearMiss);\n"; 3739 OS << " else if (NearMisses && LatePredicateNearMiss)\n"; 3740 OS << " NearMisses->push_back(LatePredicateNearMiss);\n"; 3741 OS << "\n"; 3742 OS << " continue;\n"; 3743 OS << " } else if (NumNearMisses > 1) {\n"; 3744 OS << " // This instruction missed in more than one way, so ignore it.\n"; 3745 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n"; 3746 OS << " \"types of mismatch, so not \"\n"; 3747 OS << " \"reporting near-miss\\n\");\n"; 3748 OS << " continue;\n"; 3749 OS << " }\n"; 3750 } 3751 3752 // Call the post-processing function, if used. 3753 StringRef InsnCleanupFn = AsmParser->getValueAsString("AsmParserInstCleanup"); 3754 if (!InsnCleanupFn.empty()) 3755 OS << " " << InsnCleanupFn << "(Inst);\n"; 3756 3757 if (HasDeprecation) { 3758 OS << " std::string Info;\n"; 3759 OS << " if (!getParser().getTargetParser().\n"; 3760 OS << " getTargetOptions().MCNoDeprecatedWarn &&\n"; 3761 OS << " MII.get(Inst.getOpcode()).getDeprecatedInfo(Inst, getSTI(), Info)) {\n"; 3762 OS << " SMLoc Loc = ((" << Target.getName() 3763 << "Operand&)*Operands[0]).getStartLoc();\n"; 3764 OS << " getParser().Warning(Loc, Info, None);\n"; 3765 OS << " }\n"; 3766 } 3767 3768 if (!ReportMultipleNearMisses) { 3769 OS << " if (!checkAsmTiedOperandConstraints(it->ConvertFn, Operands, ErrorInfo))\n"; 3770 OS << " return Match_InvalidTiedOperand;\n"; 3771 OS << "\n"; 3772 } 3773 3774 OS << " DEBUG_WITH_TYPE(\n"; 3775 OS << " \"asm-matcher\",\n"; 3776 OS << " dbgs() << \"Opcode result: complete match, selecting this opcode\\n\");\n"; 3777 OS << " return Match_Success;\n"; 3778 OS << " }\n\n"; 3779 3780 if (ReportMultipleNearMisses) { 3781 OS << " // No instruction variants matched exactly.\n"; 3782 OS << " return Match_NearMisses;\n"; 3783 } else { 3784 OS << " // Okay, we had no match. Try to return a useful error code.\n"; 3785 OS << " if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n"; 3786 OS << " return RetCode;\n\n"; 3787 OS << " // Missing feature matches return which features were missing\n"; 3788 OS << " ErrorInfo = MissingFeatures;\n"; 3789 OS << " return Match_MissingFeature;\n"; 3790 } 3791 OS << "}\n\n"; 3792 3793 if (!Info.OperandMatchInfo.empty()) 3794 emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable, 3795 MaxMnemonicIndex, HasMnemonicFirst); 3796 3797 OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n"; 3798 3799 OS << "\n#ifdef GET_MNEMONIC_SPELL_CHECKER\n"; 3800 OS << "#undef GET_MNEMONIC_SPELL_CHECKER\n\n"; 3801 3802 emitMnemonicSpellChecker(OS, Target, VariantCount); 3803 3804 OS << "#endif // GET_MNEMONIC_SPELL_CHECKER\n\n"; 3805 } 3806 3807 namespace llvm { 3808 3809 void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) { 3810 emitSourceFileHeader("Assembly Matcher Source Fragment", OS); 3811 AsmMatcherEmitter(RK).run(OS); 3812 } 3813 3814 } // end namespace llvm 3815