1 //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend emits a target specifier matcher for converting parsed
10 // assembly operands in the MCInst structures. It also emits a matcher for
11 // custom operand parsing.
12 //
13 // Converting assembly operands into MCInst structures
14 // ---------------------------------------------------
15 //
16 // The input to the target specific matcher is a list of literal tokens and
17 // operands. The target specific parser should generally eliminate any syntax
18 // which is not relevant for matching; for example, comma tokens should have
19 // already been consumed and eliminated by the parser. Most instructions will
20 // end up with a single literal token (the instruction name) and some number of
21 // operands.
22 //
23 // Some example inputs, for X86:
24 // 'addl' (immediate ...) (register ...)
25 // 'add' (immediate ...) (memory ...)
26 // 'call' '*' %epc
27 //
28 // The assembly matcher is responsible for converting this input into a precise
29 // machine instruction (i.e., an instruction with a well defined encoding). This
30 // mapping has several properties which complicate matching:
31 //
32 // - It may be ambiguous; many architectures can legally encode particular
33 // variants of an instruction in different ways (for example, using a smaller
34 // encoding for small immediates). Such ambiguities should never be
35 // arbitrarily resolved by the assembler, the assembler is always responsible
36 // for choosing the "best" available instruction.
37 //
38 // - It may depend on the subtarget or the assembler context. Instructions
39 // which are invalid for the current mode, but otherwise unambiguous (e.g.,
40 // an SSE instruction in a file being assembled for i486) should be accepted
41 // and rejected by the assembler front end. However, if the proper encoding
42 // for an instruction is dependent on the assembler context then the matcher
43 // is responsible for selecting the correct machine instruction for the
44 // current mode.
45 //
46 // The core matching algorithm attempts to exploit the regularity in most
47 // instruction sets to quickly determine the set of possibly matching
48 // instructions, and the simplify the generated code. Additionally, this helps
49 // to ensure that the ambiguities are intentionally resolved by the user.
50 //
51 // The matching is divided into two distinct phases:
52 //
53 // 1. Classification: Each operand is mapped to the unique set which (a)
54 // contains it, and (b) is the largest such subset for which a single
55 // instruction could match all members.
56 //
57 // For register classes, we can generate these subgroups automatically. For
58 // arbitrary operands, we expect the user to define the classes and their
59 // relations to one another (for example, 8-bit signed immediates as a
60 // subset of 32-bit immediates).
61 //
62 // By partitioning the operands in this way, we guarantee that for any
63 // tuple of classes, any single instruction must match either all or none
64 // of the sets of operands which could classify to that tuple.
65 //
66 // In addition, the subset relation amongst classes induces a partial order
67 // on such tuples, which we use to resolve ambiguities.
68 //
69 // 2. The input can now be treated as a tuple of classes (static tokens are
70 // simple singleton sets). Each such tuple should generally map to a single
71 // instruction (we currently ignore cases where this isn't true, whee!!!),
72 // which we can emit a simple matcher for.
73 //
74 // Custom Operand Parsing
75 // ----------------------
76 //
77 // Some targets need a custom way to parse operands, some specific instructions
78 // can contain arguments that can represent processor flags and other kinds of
79 // identifiers that need to be mapped to specific values in the final encoded
80 // instructions. The target specific custom operand parsing works in the
81 // following way:
82 //
83 // 1. A operand match table is built, each entry contains a mnemonic, an
84 // operand class, a mask for all operand positions for that same
85 // class/mnemonic and target features to be checked while trying to match.
86 //
87 // 2. The operand matcher will try every possible entry with the same
88 // mnemonic and will check if the target feature for this mnemonic also
89 // matches. After that, if the operand to be matched has its index
90 // present in the mask, a successful match occurs. Otherwise, fallback
91 // to the regular operand parsing.
92 //
93 // 3. For a match success, each operand class that has a 'ParserMethod'
94 // becomes part of a switch from where the custom method is called.
95 //
96 //===----------------------------------------------------------------------===//
97
98 #include "CodeGenInstruction.h"
99 #include "CodeGenTarget.h"
100 #include "SubtargetFeatureInfo.h"
101 #include "Types.h"
102 #include "llvm/ADT/CachedHashString.h"
103 #include "llvm/ADT/PointerUnion.h"
104 #include "llvm/ADT/STLExtras.h"
105 #include "llvm/ADT/SmallPtrSet.h"
106 #include "llvm/ADT/SmallVector.h"
107 #include "llvm/ADT/StringExtras.h"
108 #include "llvm/Config/llvm-config.h"
109 #include "llvm/Support/CommandLine.h"
110 #include "llvm/Support/Debug.h"
111 #include "llvm/Support/ErrorHandling.h"
112 #include "llvm/TableGen/Error.h"
113 #include "llvm/TableGen/Record.h"
114 #include "llvm/TableGen/StringMatcher.h"
115 #include "llvm/TableGen/StringToOffsetTable.h"
116 #include "llvm/TableGen/TableGenBackend.h"
117 #include <cassert>
118 #include <cctype>
119 #include <forward_list>
120 #include <map>
121 #include <set>
122
123 using namespace llvm;
124
125 #define DEBUG_TYPE "asm-matcher-emitter"
126
127 cl::OptionCategory AsmMatcherEmitterCat("Options for -gen-asm-matcher");
128
129 static cl::opt<std::string>
130 MatchPrefix("match-prefix", cl::init(""),
131 cl::desc("Only match instructions with the given prefix"),
132 cl::cat(AsmMatcherEmitterCat));
133
134 namespace {
135 class AsmMatcherInfo;
136
137 // Register sets are used as keys in some second-order sets TableGen creates
138 // when generating its data structures. This means that the order of two
139 // RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and
140 // can even affect compiler output (at least seen in diagnostics produced when
141 // all matches fail). So we use a type that sorts them consistently.
142 typedef std::set<Record*, LessRecordByID> RegisterSet;
143
144 class AsmMatcherEmitter {
145 RecordKeeper &Records;
146 public:
AsmMatcherEmitter(RecordKeeper & R)147 AsmMatcherEmitter(RecordKeeper &R) : Records(R) {}
148
149 void run(raw_ostream &o);
150 };
151
152 /// ClassInfo - Helper class for storing the information about a particular
153 /// class of operands which can be matched.
154 struct ClassInfo {
155 enum ClassInfoKind {
156 /// Invalid kind, for use as a sentinel value.
157 Invalid = 0,
158
159 /// The class for a particular token.
160 Token,
161
162 /// The (first) register class, subsequent register classes are
163 /// RegisterClass0+1, and so on.
164 RegisterClass0,
165
166 /// The (first) user defined class, subsequent user defined classes are
167 /// UserClass0+1, and so on.
168 UserClass0 = 1<<16
169 };
170
171 /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
172 /// N) for the Nth user defined class.
173 unsigned Kind;
174
175 /// SuperClasses - The super classes of this class. Note that for simplicities
176 /// sake user operands only record their immediate super class, while register
177 /// operands include all superclasses.
178 std::vector<ClassInfo*> SuperClasses;
179
180 /// Name - The full class name, suitable for use in an enum.
181 std::string Name;
182
183 /// ClassName - The unadorned generic name for this class (e.g., Token).
184 std::string ClassName;
185
186 /// ValueName - The name of the value this class represents; for a token this
187 /// is the literal token string, for an operand it is the TableGen class (or
188 /// empty if this is a derived class).
189 std::string ValueName;
190
191 /// PredicateMethod - The name of the operand method to test whether the
192 /// operand matches this class; this is not valid for Token or register kinds.
193 std::string PredicateMethod;
194
195 /// RenderMethod - The name of the operand method to add this operand to an
196 /// MCInst; this is not valid for Token or register kinds.
197 std::string RenderMethod;
198
199 /// ParserMethod - The name of the operand method to do a target specific
200 /// parsing on the operand.
201 std::string ParserMethod;
202
203 /// For register classes: the records for all the registers in this class.
204 RegisterSet Registers;
205
206 /// For custom match classes: the diagnostic kind for when the predicate fails.
207 std::string DiagnosticType;
208
209 /// For custom match classes: the diagnostic string for when the predicate fails.
210 std::string DiagnosticString;
211
212 /// Is this operand optional and not always required.
213 bool IsOptional;
214
215 /// DefaultMethod - The name of the method that returns the default operand
216 /// for optional operand
217 std::string DefaultMethod;
218
219 public:
220 /// isRegisterClass() - Check if this is a register class.
isRegisterClass__anon8d06870a0111::ClassInfo221 bool isRegisterClass() const {
222 return Kind >= RegisterClass0 && Kind < UserClass0;
223 }
224
225 /// isUserClass() - Check if this is a user defined class.
isUserClass__anon8d06870a0111::ClassInfo226 bool isUserClass() const {
227 return Kind >= UserClass0;
228 }
229
230 /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes
231 /// are related if they are in the same class hierarchy.
isRelatedTo__anon8d06870a0111::ClassInfo232 bool isRelatedTo(const ClassInfo &RHS) const {
233 // Tokens are only related to tokens.
234 if (Kind == Token || RHS.Kind == Token)
235 return Kind == Token && RHS.Kind == Token;
236
237 // Registers classes are only related to registers classes, and only if
238 // their intersection is non-empty.
239 if (isRegisterClass() || RHS.isRegisterClass()) {
240 if (!isRegisterClass() || !RHS.isRegisterClass())
241 return false;
242
243 RegisterSet Tmp;
244 std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin());
245 std::set_intersection(Registers.begin(), Registers.end(),
246 RHS.Registers.begin(), RHS.Registers.end(),
247 II, LessRecordByID());
248
249 return !Tmp.empty();
250 }
251
252 // Otherwise we have two users operands; they are related if they are in the
253 // same class hierarchy.
254 //
255 // FIXME: This is an oversimplification, they should only be related if they
256 // intersect, however we don't have that information.
257 assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
258 const ClassInfo *Root = this;
259 while (!Root->SuperClasses.empty())
260 Root = Root->SuperClasses.front();
261
262 const ClassInfo *RHSRoot = &RHS;
263 while (!RHSRoot->SuperClasses.empty())
264 RHSRoot = RHSRoot->SuperClasses.front();
265
266 return Root == RHSRoot;
267 }
268
269 /// isSubsetOf - Test whether this class is a subset of \p RHS.
isSubsetOf__anon8d06870a0111::ClassInfo270 bool isSubsetOf(const ClassInfo &RHS) const {
271 // This is a subset of RHS if it is the same class...
272 if (this == &RHS)
273 return true;
274
275 // ... or if any of its super classes are a subset of RHS.
276 SmallVector<const ClassInfo *, 16> Worklist(SuperClasses.begin(),
277 SuperClasses.end());
278 SmallPtrSet<const ClassInfo *, 16> Visited;
279 while (!Worklist.empty()) {
280 auto *CI = Worklist.pop_back_val();
281 if (CI == &RHS)
282 return true;
283 for (auto *Super : CI->SuperClasses)
284 if (Visited.insert(Super).second)
285 Worklist.push_back(Super);
286 }
287
288 return false;
289 }
290
getTreeDepth__anon8d06870a0111::ClassInfo291 int getTreeDepth() const {
292 int Depth = 0;
293 const ClassInfo *Root = this;
294 while (!Root->SuperClasses.empty()) {
295 Depth++;
296 Root = Root->SuperClasses.front();
297 }
298 return Depth;
299 }
300
findRoot__anon8d06870a0111::ClassInfo301 const ClassInfo *findRoot() const {
302 const ClassInfo *Root = this;
303 while (!Root->SuperClasses.empty())
304 Root = Root->SuperClasses.front();
305 return Root;
306 }
307
308 /// Compare two classes. This does not produce a total ordering, but does
309 /// guarantee that subclasses are sorted before their parents, and that the
310 /// ordering is transitive.
operator <__anon8d06870a0111::ClassInfo311 bool operator<(const ClassInfo &RHS) const {
312 if (this == &RHS)
313 return false;
314
315 // First, enforce the ordering between the three different types of class.
316 // Tokens sort before registers, which sort before user classes.
317 if (Kind == Token) {
318 if (RHS.Kind != Token)
319 return true;
320 assert(RHS.Kind == Token);
321 } else if (isRegisterClass()) {
322 if (RHS.Kind == Token)
323 return false;
324 else if (RHS.isUserClass())
325 return true;
326 assert(RHS.isRegisterClass());
327 } else if (isUserClass()) {
328 if (!RHS.isUserClass())
329 return false;
330 assert(RHS.isUserClass());
331 } else {
332 llvm_unreachable("Unknown ClassInfoKind");
333 }
334
335 if (Kind == Token || isUserClass()) {
336 // Related tokens and user classes get sorted by depth in the inheritence
337 // tree (so that subclasses are before their parents).
338 if (isRelatedTo(RHS)) {
339 if (getTreeDepth() > RHS.getTreeDepth())
340 return true;
341 if (getTreeDepth() < RHS.getTreeDepth())
342 return false;
343 } else {
344 // Unrelated tokens and user classes are ordered by the name of their
345 // root nodes, so that there is a consistent ordering between
346 // unconnected trees.
347 return findRoot()->ValueName < RHS.findRoot()->ValueName;
348 }
349 } else if (isRegisterClass()) {
350 // For register sets, sort by number of registers. This guarantees that
351 // a set will always sort before all of it's strict supersets.
352 if (Registers.size() != RHS.Registers.size())
353 return Registers.size() < RHS.Registers.size();
354 } else {
355 llvm_unreachable("Unknown ClassInfoKind");
356 }
357
358 // FIXME: We should be able to just return false here, as we only need a
359 // partial order (we use stable sorts, so this is deterministic) and the
360 // name of a class shouldn't be significant. However, some of the backends
361 // accidentally rely on this behaviour, so it will have to stay like this
362 // until they are fixed.
363 return ValueName < RHS.ValueName;
364 }
365 };
366
367 class AsmVariantInfo {
368 public:
369 StringRef RegisterPrefix;
370 StringRef TokenizingCharacters;
371 StringRef SeparatorCharacters;
372 StringRef BreakCharacters;
373 StringRef Name;
374 int AsmVariantNo;
375 };
376
377 /// MatchableInfo - Helper class for storing the necessary information for an
378 /// instruction or alias which is capable of being matched.
379 struct MatchableInfo {
380 struct AsmOperand {
381 /// Token - This is the token that the operand came from.
382 StringRef Token;
383
384 /// The unique class instance this operand should match.
385 ClassInfo *Class;
386
387 /// The operand name this is, if anything.
388 StringRef SrcOpName;
389
390 /// The operand name this is, before renaming for tied operands.
391 StringRef OrigSrcOpName;
392
393 /// The suboperand index within SrcOpName, or -1 for the entire operand.
394 int SubOpIdx;
395
396 /// Whether the token is "isolated", i.e., it is preceded and followed
397 /// by separators.
398 bool IsIsolatedToken;
399
400 /// Register record if this token is singleton register.
401 Record *SingletonReg;
402
AsmOperand__anon8d06870a0111::MatchableInfo::AsmOperand403 explicit AsmOperand(bool IsIsolatedToken, StringRef T)
404 : Token(T), Class(nullptr), SubOpIdx(-1),
405 IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {}
406 };
407
408 /// ResOperand - This represents a single operand in the result instruction
409 /// generated by the match. In cases (like addressing modes) where a single
410 /// assembler operand expands to multiple MCOperands, this represents the
411 /// single assembler operand, not the MCOperand.
412 struct ResOperand {
413 enum {
414 /// RenderAsmOperand - This represents an operand result that is
415 /// generated by calling the render method on the assembly operand. The
416 /// corresponding AsmOperand is specified by AsmOperandNum.
417 RenderAsmOperand,
418
419 /// TiedOperand - This represents a result operand that is a duplicate of
420 /// a previous result operand.
421 TiedOperand,
422
423 /// ImmOperand - This represents an immediate value that is dumped into
424 /// the operand.
425 ImmOperand,
426
427 /// RegOperand - This represents a fixed register that is dumped in.
428 RegOperand
429 } Kind;
430
431 /// Tuple containing the index of the (earlier) result operand that should
432 /// be copied from, as well as the indices of the corresponding (parsed)
433 /// operands in the asm string.
434 struct TiedOperandsTuple {
435 unsigned ResOpnd;
436 unsigned SrcOpnd1Idx;
437 unsigned SrcOpnd2Idx;
438 };
439
440 union {
441 /// This is the operand # in the AsmOperands list that this should be
442 /// copied from.
443 unsigned AsmOperandNum;
444
445 /// Description of tied operands.
446 TiedOperandsTuple TiedOperands;
447
448 /// ImmVal - This is the immediate value added to the instruction.
449 int64_t ImmVal;
450
451 /// Register - This is the register record.
452 Record *Register;
453 };
454
455 /// MINumOperands - The number of MCInst operands populated by this
456 /// operand.
457 unsigned MINumOperands;
458
getRenderedOp__anon8d06870a0111::MatchableInfo::ResOperand459 static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
460 ResOperand X;
461 X.Kind = RenderAsmOperand;
462 X.AsmOperandNum = AsmOpNum;
463 X.MINumOperands = NumOperands;
464 return X;
465 }
466
getTiedOp__anon8d06870a0111::MatchableInfo::ResOperand467 static ResOperand getTiedOp(unsigned TiedOperandNum, unsigned SrcOperand1,
468 unsigned SrcOperand2) {
469 ResOperand X;
470 X.Kind = TiedOperand;
471 X.TiedOperands = { TiedOperandNum, SrcOperand1, SrcOperand2 };
472 X.MINumOperands = 1;
473 return X;
474 }
475
getImmOp__anon8d06870a0111::MatchableInfo::ResOperand476 static ResOperand getImmOp(int64_t Val) {
477 ResOperand X;
478 X.Kind = ImmOperand;
479 X.ImmVal = Val;
480 X.MINumOperands = 1;
481 return X;
482 }
483
getRegOp__anon8d06870a0111::MatchableInfo::ResOperand484 static ResOperand getRegOp(Record *Reg) {
485 ResOperand X;
486 X.Kind = RegOperand;
487 X.Register = Reg;
488 X.MINumOperands = 1;
489 return X;
490 }
491 };
492
493 /// AsmVariantID - Target's assembly syntax variant no.
494 int AsmVariantID;
495
496 /// AsmString - The assembly string for this instruction (with variants
497 /// removed), e.g. "movsx $src, $dst".
498 std::string AsmString;
499
500 /// TheDef - This is the definition of the instruction or InstAlias that this
501 /// matchable came from.
502 Record *const TheDef;
503
504 /// DefRec - This is the definition that it came from.
505 PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
506
getResultInst__anon8d06870a0111::MatchableInfo507 const CodeGenInstruction *getResultInst() const {
508 if (DefRec.is<const CodeGenInstruction*>())
509 return DefRec.get<const CodeGenInstruction*>();
510 return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
511 }
512
513 /// ResOperands - This is the operand list that should be built for the result
514 /// MCInst.
515 SmallVector<ResOperand, 8> ResOperands;
516
517 /// Mnemonic - This is the first token of the matched instruction, its
518 /// mnemonic.
519 StringRef Mnemonic;
520
521 /// AsmOperands - The textual operands that this instruction matches,
522 /// annotated with a class and where in the OperandList they were defined.
523 /// This directly corresponds to the tokenized AsmString after the mnemonic is
524 /// removed.
525 SmallVector<AsmOperand, 8> AsmOperands;
526
527 /// Predicates - The required subtarget features to match this instruction.
528 SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures;
529
530 /// ConversionFnKind - The enum value which is passed to the generated
531 /// convertToMCInst to convert parsed operands into an MCInst for this
532 /// function.
533 std::string ConversionFnKind;
534
535 /// If this instruction is deprecated in some form.
536 bool HasDeprecation;
537
538 /// If this is an alias, this is use to determine whether or not to using
539 /// the conversion function defined by the instruction's AsmMatchConverter
540 /// or to use the function generated by the alias.
541 bool UseInstAsmMatchConverter;
542
MatchableInfo__anon8d06870a0111::MatchableInfo543 MatchableInfo(const CodeGenInstruction &CGI)
544 : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI),
545 UseInstAsmMatchConverter(true) {
546 }
547
MatchableInfo__anon8d06870a0111::MatchableInfo548 MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias)
549 : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef),
550 DefRec(Alias.release()),
551 UseInstAsmMatchConverter(
552 TheDef->getValueAsBit("UseInstAsmMatchConverter")) {
553 }
554
555 // Could remove this and the dtor if PointerUnion supported unique_ptr
556 // elements with a dynamic failure/assertion (like the one below) in the case
557 // where it was copied while being in an owning state.
MatchableInfo__anon8d06870a0111::MatchableInfo558 MatchableInfo(const MatchableInfo &RHS)
559 : AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString),
560 TheDef(RHS.TheDef), DefRec(RHS.DefRec), ResOperands(RHS.ResOperands),
561 Mnemonic(RHS.Mnemonic), AsmOperands(RHS.AsmOperands),
562 RequiredFeatures(RHS.RequiredFeatures),
563 ConversionFnKind(RHS.ConversionFnKind),
564 HasDeprecation(RHS.HasDeprecation),
565 UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) {
566 assert(!DefRec.is<const CodeGenInstAlias *>());
567 }
568
~MatchableInfo__anon8d06870a0111::MatchableInfo569 ~MatchableInfo() {
570 delete DefRec.dyn_cast<const CodeGenInstAlias*>();
571 }
572
573 // Two-operand aliases clone from the main matchable, but mark the second
574 // operand as a tied operand of the first for purposes of the assembler.
575 void formTwoOperandAlias(StringRef Constraint);
576
577 void initialize(const AsmMatcherInfo &Info,
578 SmallPtrSetImpl<Record*> &SingletonRegisters,
579 AsmVariantInfo const &Variant,
580 bool HasMnemonicFirst);
581
582 /// validate - Return true if this matchable is a valid thing to match against
583 /// and perform a bunch of validity checking.
584 bool validate(StringRef CommentDelimiter, bool IsAlias) const;
585
586 /// findAsmOperand - Find the AsmOperand with the specified name and
587 /// suboperand index.
findAsmOperand__anon8d06870a0111::MatchableInfo588 int findAsmOperand(StringRef N, int SubOpIdx) const {
589 auto I = find_if(AsmOperands, [&](const AsmOperand &Op) {
590 return Op.SrcOpName == N && Op.SubOpIdx == SubOpIdx;
591 });
592 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
593 }
594
595 /// findAsmOperandNamed - Find the first AsmOperand with the specified name.
596 /// This does not check the suboperand index.
findAsmOperandNamed__anon8d06870a0111::MatchableInfo597 int findAsmOperandNamed(StringRef N, int LastIdx = -1) const {
598 auto I = std::find_if(AsmOperands.begin() + LastIdx + 1, AsmOperands.end(),
599 [&](const AsmOperand &Op) { return Op.SrcOpName == N; });
600 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
601 }
602
findAsmOperandOriginallyNamed__anon8d06870a0111::MatchableInfo603 int findAsmOperandOriginallyNamed(StringRef N) const {
604 auto I =
605 find_if(AsmOperands,
606 [&](const AsmOperand &Op) { return Op.OrigSrcOpName == N; });
607 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
608 }
609
610 void buildInstructionResultOperands();
611 void buildAliasResultOperands(bool AliasConstraintsAreChecked);
612
613 /// operator< - Compare two matchables.
operator <__anon8d06870a0111::MatchableInfo614 bool operator<(const MatchableInfo &RHS) const {
615 // The primary comparator is the instruction mnemonic.
616 if (int Cmp = Mnemonic.compare_insensitive(RHS.Mnemonic))
617 return Cmp == -1;
618
619 if (AsmOperands.size() != RHS.AsmOperands.size())
620 return AsmOperands.size() < RHS.AsmOperands.size();
621
622 // Compare lexicographically by operand. The matcher validates that other
623 // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith().
624 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
625 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
626 return true;
627 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
628 return false;
629 }
630
631 // Give matches that require more features higher precedence. This is useful
632 // because we cannot define AssemblerPredicates with the negation of
633 // processor features. For example, ARM v6 "nop" may be either a HINT or
634 // MOV. With v6, we want to match HINT. The assembler has no way to
635 // predicate MOV under "NoV6", but HINT will always match first because it
636 // requires V6 while MOV does not.
637 if (RequiredFeatures.size() != RHS.RequiredFeatures.size())
638 return RequiredFeatures.size() > RHS.RequiredFeatures.size();
639
640 // For X86 AVX/AVX512 instructions, we prefer vex encoding because the
641 // vex encoding size is smaller. Since X86InstrSSE.td is included ahead
642 // of X86InstrAVX512.td, the AVX instruction ID is less than AVX512 ID.
643 // We use the ID to sort AVX instruction before AVX512 instruction in
644 // matching table.
645 if (TheDef->isSubClassOf("Instruction") &&
646 TheDef->getValueAsBit("HasPositionOrder"))
647 return TheDef->getID() < RHS.TheDef->getID();
648
649 return false;
650 }
651
652 /// couldMatchAmbiguouslyWith - Check whether this matchable could
653 /// ambiguously match the same set of operands as \p RHS (without being a
654 /// strictly superior match).
couldMatchAmbiguouslyWith__anon8d06870a0111::MatchableInfo655 bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const {
656 // The primary comparator is the instruction mnemonic.
657 if (Mnemonic != RHS.Mnemonic)
658 return false;
659
660 // Different variants can't conflict.
661 if (AsmVariantID != RHS.AsmVariantID)
662 return false;
663
664 // The number of operands is unambiguous.
665 if (AsmOperands.size() != RHS.AsmOperands.size())
666 return false;
667
668 // Otherwise, make sure the ordering of the two instructions is unambiguous
669 // by checking that either (a) a token or operand kind discriminates them,
670 // or (b) the ordering among equivalent kinds is consistent.
671
672 // Tokens and operand kinds are unambiguous (assuming a correct target
673 // specific parser).
674 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
675 if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
676 AsmOperands[i].Class->Kind == ClassInfo::Token)
677 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
678 *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
679 return false;
680
681 // Otherwise, this operand could commute if all operands are equivalent, or
682 // there is a pair of operands that compare less than and a pair that
683 // compare greater than.
684 bool HasLT = false, HasGT = false;
685 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
686 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
687 HasLT = true;
688 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
689 HasGT = true;
690 }
691
692 return HasLT == HasGT;
693 }
694
695 void dump() const;
696
697 private:
698 void tokenizeAsmString(AsmMatcherInfo const &Info,
699 AsmVariantInfo const &Variant);
700 void addAsmOperand(StringRef Token, bool IsIsolatedToken = false);
701 };
702
703 struct OperandMatchEntry {
704 unsigned OperandMask;
705 const MatchableInfo* MI;
706 ClassInfo *CI;
707
create__anon8d06870a0111::OperandMatchEntry708 static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci,
709 unsigned opMask) {
710 OperandMatchEntry X;
711 X.OperandMask = opMask;
712 X.CI = ci;
713 X.MI = mi;
714 return X;
715 }
716 };
717
718 class AsmMatcherInfo {
719 public:
720 /// Tracked Records
721 RecordKeeper &Records;
722
723 /// The tablegen AsmParser record.
724 Record *AsmParser;
725
726 /// Target - The target information.
727 CodeGenTarget &Target;
728
729 /// The classes which are needed for matching.
730 std::forward_list<ClassInfo> Classes;
731
732 /// The information on the matchables to match.
733 std::vector<std::unique_ptr<MatchableInfo>> Matchables;
734
735 /// Info for custom matching operands by user defined methods.
736 std::vector<OperandMatchEntry> OperandMatchInfo;
737
738 /// Map of Register records to their class information.
739 typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy;
740 RegisterClassesTy RegisterClasses;
741
742 /// Map of Predicate records to their subtarget information.
743 std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures;
744
745 /// Map of AsmOperandClass records to their class information.
746 std::map<Record*, ClassInfo*> AsmOperandClasses;
747
748 /// Map of RegisterClass records to their class information.
749 std::map<Record*, ClassInfo*> RegisterClassClasses;
750
751 private:
752 /// Map of token to class information which has already been constructed.
753 std::map<std::string, ClassInfo*> TokenClasses;
754
755 private:
756 /// getTokenClass - Lookup or create the class for the given token.
757 ClassInfo *getTokenClass(StringRef Token);
758
759 /// getOperandClass - Lookup or create the class for the given operand.
760 ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
761 int SubOpIdx);
762 ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
763
764 /// buildRegisterClasses - Build the ClassInfo* instances for register
765 /// classes.
766 void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters);
767
768 /// buildOperandClasses - Build the ClassInfo* instances for user defined
769 /// operand classes.
770 void buildOperandClasses();
771
772 void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
773 unsigned AsmOpIdx);
774 void buildAliasOperandReference(MatchableInfo *II, StringRef OpName,
775 MatchableInfo::AsmOperand &Op);
776
777 public:
778 AsmMatcherInfo(Record *AsmParser,
779 CodeGenTarget &Target,
780 RecordKeeper &Records);
781
782 /// Construct the various tables used during matching.
783 void buildInfo();
784
785 /// buildOperandMatchInfo - Build the necessary information to handle user
786 /// defined operand parsing methods.
787 void buildOperandMatchInfo();
788
789 /// getSubtargetFeature - Lookup or create the subtarget feature info for the
790 /// given operand.
getSubtargetFeature(Record * Def) const791 const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
792 assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
793 const auto &I = SubtargetFeatures.find(Def);
794 return I == SubtargetFeatures.end() ? nullptr : &I->second;
795 }
796
getRecords() const797 RecordKeeper &getRecords() const {
798 return Records;
799 }
800
hasOptionalOperands() const801 bool hasOptionalOperands() const {
802 return any_of(Classes,
803 [](const ClassInfo &Class) { return Class.IsOptional; });
804 }
805 };
806
807 } // end anonymous namespace
808
809 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const810 LLVM_DUMP_METHOD void MatchableInfo::dump() const {
811 errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
812
813 errs() << " variant: " << AsmVariantID << "\n";
814
815 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
816 const AsmOperand &Op = AsmOperands[i];
817 errs() << " op[" << i << "] = " << Op.Class->ClassName << " - ";
818 errs() << '\"' << Op.Token << "\"\n";
819 }
820 }
821 #endif
822
823 static std::pair<StringRef, StringRef>
parseTwoOperandConstraint(StringRef S,ArrayRef<SMLoc> Loc)824 parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) {
825 // Split via the '='.
826 std::pair<StringRef, StringRef> Ops = S.split('=');
827 if (Ops.second == "")
828 PrintFatalError(Loc, "missing '=' in two-operand alias constraint");
829 // Trim whitespace and the leading '$' on the operand names.
830 size_t start = Ops.first.find_first_of('$');
831 if (start == std::string::npos)
832 PrintFatalError(Loc, "expected '$' prefix on asm operand name");
833 Ops.first = Ops.first.slice(start + 1, std::string::npos);
834 size_t end = Ops.first.find_last_of(" \t");
835 Ops.first = Ops.first.slice(0, end);
836 // Now the second operand.
837 start = Ops.second.find_first_of('$');
838 if (start == std::string::npos)
839 PrintFatalError(Loc, "expected '$' prefix on asm operand name");
840 Ops.second = Ops.second.slice(start + 1, std::string::npos);
841 end = Ops.second.find_last_of(" \t");
842 Ops.first = Ops.first.slice(0, end);
843 return Ops;
844 }
845
formTwoOperandAlias(StringRef Constraint)846 void MatchableInfo::formTwoOperandAlias(StringRef Constraint) {
847 // Figure out which operands are aliased and mark them as tied.
848 std::pair<StringRef, StringRef> Ops =
849 parseTwoOperandConstraint(Constraint, TheDef->getLoc());
850
851 // Find the AsmOperands that refer to the operands we're aliasing.
852 int SrcAsmOperand = findAsmOperandNamed(Ops.first);
853 int DstAsmOperand = findAsmOperandNamed(Ops.second);
854 if (SrcAsmOperand == -1)
855 PrintFatalError(TheDef->getLoc(),
856 "unknown source two-operand alias operand '" + Ops.first +
857 "'.");
858 if (DstAsmOperand == -1)
859 PrintFatalError(TheDef->getLoc(),
860 "unknown destination two-operand alias operand '" +
861 Ops.second + "'.");
862
863 // Find the ResOperand that refers to the operand we're aliasing away
864 // and update it to refer to the combined operand instead.
865 for (ResOperand &Op : ResOperands) {
866 if (Op.Kind == ResOperand::RenderAsmOperand &&
867 Op.AsmOperandNum == (unsigned)SrcAsmOperand) {
868 Op.AsmOperandNum = DstAsmOperand;
869 break;
870 }
871 }
872 // Remove the AsmOperand for the alias operand.
873 AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand);
874 // Adjust the ResOperand references to any AsmOperands that followed
875 // the one we just deleted.
876 for (ResOperand &Op : ResOperands) {
877 switch(Op.Kind) {
878 default:
879 // Nothing to do for operands that don't reference AsmOperands.
880 break;
881 case ResOperand::RenderAsmOperand:
882 if (Op.AsmOperandNum > (unsigned)SrcAsmOperand)
883 --Op.AsmOperandNum;
884 break;
885 }
886 }
887 }
888
889 /// extractSingletonRegisterForAsmOperand - Extract singleton register,
890 /// if present, from specified token.
891 static void
extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand & Op,const AsmMatcherInfo & Info,StringRef RegisterPrefix)892 extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op,
893 const AsmMatcherInfo &Info,
894 StringRef RegisterPrefix) {
895 StringRef Tok = Op.Token;
896
897 // If this token is not an isolated token, i.e., it isn't separated from
898 // other tokens (e.g. with whitespace), don't interpret it as a register name.
899 if (!Op.IsIsolatedToken)
900 return;
901
902 if (RegisterPrefix.empty()) {
903 std::string LoweredTok = Tok.lower();
904 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
905 Op.SingletonReg = Reg->TheDef;
906 return;
907 }
908
909 if (!Tok.startswith(RegisterPrefix))
910 return;
911
912 StringRef RegName = Tok.substr(RegisterPrefix.size());
913 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
914 Op.SingletonReg = Reg->TheDef;
915
916 // If there is no register prefix (i.e. "%" in "%eax"), then this may
917 // be some random non-register token, just ignore it.
918 }
919
initialize(const AsmMatcherInfo & Info,SmallPtrSetImpl<Record * > & SingletonRegisters,AsmVariantInfo const & Variant,bool HasMnemonicFirst)920 void MatchableInfo::initialize(const AsmMatcherInfo &Info,
921 SmallPtrSetImpl<Record*> &SingletonRegisters,
922 AsmVariantInfo const &Variant,
923 bool HasMnemonicFirst) {
924 AsmVariantID = Variant.AsmVariantNo;
925 AsmString =
926 CodeGenInstruction::FlattenAsmStringVariants(AsmString,
927 Variant.AsmVariantNo);
928
929 tokenizeAsmString(Info, Variant);
930
931 // The first token of the instruction is the mnemonic, which must be a
932 // simple string, not a $foo variable or a singleton register.
933 if (AsmOperands.empty())
934 PrintFatalError(TheDef->getLoc(),
935 "Instruction '" + TheDef->getName() + "' has no tokens");
936
937 assert(!AsmOperands[0].Token.empty());
938 if (HasMnemonicFirst) {
939 Mnemonic = AsmOperands[0].Token;
940 if (Mnemonic[0] == '$')
941 PrintFatalError(TheDef->getLoc(),
942 "Invalid instruction mnemonic '" + Mnemonic + "'!");
943
944 // Remove the first operand, it is tracked in the mnemonic field.
945 AsmOperands.erase(AsmOperands.begin());
946 } else if (AsmOperands[0].Token[0] != '$')
947 Mnemonic = AsmOperands[0].Token;
948
949 // Compute the require features.
950 for (Record *Predicate : TheDef->getValueAsListOfDefs("Predicates"))
951 if (const SubtargetFeatureInfo *Feature =
952 Info.getSubtargetFeature(Predicate))
953 RequiredFeatures.push_back(Feature);
954
955 // Collect singleton registers, if used.
956 for (MatchableInfo::AsmOperand &Op : AsmOperands) {
957 extractSingletonRegisterForAsmOperand(Op, Info, Variant.RegisterPrefix);
958 if (Record *Reg = Op.SingletonReg)
959 SingletonRegisters.insert(Reg);
960 }
961
962 const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask");
963 if (!DepMask)
964 DepMask = TheDef->getValue("ComplexDeprecationPredicate");
965
966 HasDeprecation =
967 DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false;
968 }
969
970 /// Append an AsmOperand for the given substring of AsmString.
addAsmOperand(StringRef Token,bool IsIsolatedToken)971 void MatchableInfo::addAsmOperand(StringRef Token, bool IsIsolatedToken) {
972 AsmOperands.push_back(AsmOperand(IsIsolatedToken, Token));
973 }
974
975 /// tokenizeAsmString - Tokenize a simplified assembly string.
tokenizeAsmString(const AsmMatcherInfo & Info,AsmVariantInfo const & Variant)976 void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info,
977 AsmVariantInfo const &Variant) {
978 StringRef String = AsmString;
979 size_t Prev = 0;
980 bool InTok = false;
981 bool IsIsolatedToken = true;
982 for (size_t i = 0, e = String.size(); i != e; ++i) {
983 char Char = String[i];
984 if (Variant.BreakCharacters.find(Char) != std::string::npos) {
985 if (InTok) {
986 addAsmOperand(String.slice(Prev, i), false);
987 Prev = i;
988 IsIsolatedToken = false;
989 }
990 InTok = true;
991 continue;
992 }
993 if (Variant.TokenizingCharacters.find(Char) != std::string::npos) {
994 if (InTok) {
995 addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
996 InTok = false;
997 IsIsolatedToken = false;
998 }
999 addAsmOperand(String.slice(i, i + 1), IsIsolatedToken);
1000 Prev = i + 1;
1001 IsIsolatedToken = true;
1002 continue;
1003 }
1004 if (Variant.SeparatorCharacters.find(Char) != std::string::npos) {
1005 if (InTok) {
1006 addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
1007 InTok = false;
1008 }
1009 Prev = i + 1;
1010 IsIsolatedToken = true;
1011 continue;
1012 }
1013
1014 switch (Char) {
1015 case '\\':
1016 if (InTok) {
1017 addAsmOperand(String.slice(Prev, i), false);
1018 InTok = false;
1019 IsIsolatedToken = false;
1020 }
1021 ++i;
1022 assert(i != String.size() && "Invalid quoted character");
1023 addAsmOperand(String.slice(i, i + 1), IsIsolatedToken);
1024 Prev = i + 1;
1025 IsIsolatedToken = false;
1026 break;
1027
1028 case '$': {
1029 if (InTok) {
1030 addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
1031 InTok = false;
1032 IsIsolatedToken = false;
1033 }
1034
1035 // If this isn't "${", start new identifier looking like "$xxx"
1036 if (i + 1 == String.size() || String[i + 1] != '{') {
1037 Prev = i;
1038 break;
1039 }
1040
1041 size_t EndPos = String.find('}', i);
1042 assert(EndPos != StringRef::npos &&
1043 "Missing brace in operand reference!");
1044 addAsmOperand(String.slice(i, EndPos+1), IsIsolatedToken);
1045 Prev = EndPos + 1;
1046 i = EndPos;
1047 IsIsolatedToken = false;
1048 break;
1049 }
1050
1051 default:
1052 InTok = true;
1053 break;
1054 }
1055 }
1056 if (InTok && Prev != String.size())
1057 addAsmOperand(String.substr(Prev), IsIsolatedToken);
1058 }
1059
validate(StringRef CommentDelimiter,bool IsAlias) const1060 bool MatchableInfo::validate(StringRef CommentDelimiter, bool IsAlias) const {
1061 // Reject matchables with no .s string.
1062 if (AsmString.empty())
1063 PrintFatalError(TheDef->getLoc(), "instruction with empty asm string");
1064
1065 // Reject any matchables with a newline in them, they should be marked
1066 // isCodeGenOnly if they are pseudo instructions.
1067 if (AsmString.find('\n') != std::string::npos)
1068 PrintFatalError(TheDef->getLoc(),
1069 "multiline instruction is not valid for the asmparser, "
1070 "mark it isCodeGenOnly");
1071
1072 // Remove comments from the asm string. We know that the asmstring only
1073 // has one line.
1074 if (!CommentDelimiter.empty() &&
1075 StringRef(AsmString).contains(CommentDelimiter))
1076 PrintFatalError(TheDef->getLoc(),
1077 "asmstring for instruction has comment character in it, "
1078 "mark it isCodeGenOnly");
1079
1080 // Reject matchables with operand modifiers, these aren't something we can
1081 // handle, the target should be refactored to use operands instead of
1082 // modifiers.
1083 //
1084 // Also, check for instructions which reference the operand multiple times,
1085 // if they don't define a custom AsmMatcher: this implies a constraint that
1086 // the built-in matching code would not honor.
1087 std::set<std::string> OperandNames;
1088 for (const AsmOperand &Op : AsmOperands) {
1089 StringRef Tok = Op.Token;
1090 if (Tok[0] == '$' && Tok.contains(':'))
1091 PrintFatalError(TheDef->getLoc(),
1092 "matchable with operand modifier '" + Tok +
1093 "' not supported by asm matcher. Mark isCodeGenOnly!");
1094 // Verify that any operand is only mentioned once.
1095 // We reject aliases and ignore instructions for now.
1096 if (!IsAlias && TheDef->getValueAsString("AsmMatchConverter").empty() &&
1097 Tok[0] == '$' && !OperandNames.insert(std::string(Tok)).second) {
1098 LLVM_DEBUG({
1099 errs() << "warning: '" << TheDef->getName() << "': "
1100 << "ignoring instruction with tied operand '"
1101 << Tok << "'\n";
1102 });
1103 return false;
1104 }
1105 }
1106
1107 return true;
1108 }
1109
getEnumNameForToken(StringRef Str)1110 static std::string getEnumNameForToken(StringRef Str) {
1111 std::string Res;
1112
1113 for (char C : Str) {
1114 switch (C) {
1115 case '*': Res += "_STAR_"; break;
1116 case '%': Res += "_PCT_"; break;
1117 case ':': Res += "_COLON_"; break;
1118 case '!': Res += "_EXCLAIM_"; break;
1119 case '.': Res += "_DOT_"; break;
1120 case '<': Res += "_LT_"; break;
1121 case '>': Res += "_GT_"; break;
1122 case '-': Res += "_MINUS_"; break;
1123 case '#': Res += "_HASH_"; break;
1124 default:
1125 if (isAlnum(C))
1126 Res += C;
1127 else
1128 Res += "_" + utostr((unsigned)C) + "_";
1129 }
1130 }
1131
1132 return Res;
1133 }
1134
getTokenClass(StringRef Token)1135 ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
1136 ClassInfo *&Entry = TokenClasses[std::string(Token)];
1137
1138 if (!Entry) {
1139 Classes.emplace_front();
1140 Entry = &Classes.front();
1141 Entry->Kind = ClassInfo::Token;
1142 Entry->ClassName = "Token";
1143 Entry->Name = "MCK_" + getEnumNameForToken(Token);
1144 Entry->ValueName = std::string(Token);
1145 Entry->PredicateMethod = "<invalid>";
1146 Entry->RenderMethod = "<invalid>";
1147 Entry->ParserMethod = "";
1148 Entry->DiagnosticType = "";
1149 Entry->IsOptional = false;
1150 Entry->DefaultMethod = "<invalid>";
1151 }
1152
1153 return Entry;
1154 }
1155
1156 ClassInfo *
getOperandClass(const CGIOperandList::OperandInfo & OI,int SubOpIdx)1157 AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
1158 int SubOpIdx) {
1159 Record *Rec = OI.Rec;
1160 if (SubOpIdx != -1)
1161 Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
1162 return getOperandClass(Rec, SubOpIdx);
1163 }
1164
1165 ClassInfo *
getOperandClass(Record * Rec,int SubOpIdx)1166 AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
1167 if (Rec->isSubClassOf("RegisterOperand")) {
1168 // RegisterOperand may have an associated ParserMatchClass. If it does,
1169 // use it, else just fall back to the underlying register class.
1170 const RecordVal *R = Rec->getValue("ParserMatchClass");
1171 if (!R || !R->getValue())
1172 PrintFatalError(Rec->getLoc(),
1173 "Record `" + Rec->getName() +
1174 "' does not have a ParserMatchClass!\n");
1175
1176 if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) {
1177 Record *MatchClass = DI->getDef();
1178 if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1179 return CI;
1180 }
1181
1182 // No custom match class. Just use the register class.
1183 Record *ClassRec = Rec->getValueAsDef("RegClass");
1184 if (!ClassRec)
1185 PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
1186 "' has no associated register class!\n");
1187 if (ClassInfo *CI = RegisterClassClasses[ClassRec])
1188 return CI;
1189 PrintFatalError(Rec->getLoc(), "register class has no class info!");
1190 }
1191
1192 if (Rec->isSubClassOf("RegisterClass")) {
1193 if (ClassInfo *CI = RegisterClassClasses[Rec])
1194 return CI;
1195 PrintFatalError(Rec->getLoc(), "register class has no class info!");
1196 }
1197
1198 if (!Rec->isSubClassOf("Operand"))
1199 PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() +
1200 "' does not derive from class Operand!\n");
1201 Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1202 if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1203 return CI;
1204
1205 PrintFatalError(Rec->getLoc(), "operand has no match class!");
1206 }
1207
1208 struct LessRegisterSet {
operator ()LessRegisterSet1209 bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const {
1210 // std::set<T> defines its own compariso "operator<", but it
1211 // performs a lexicographical comparison by T's innate comparison
1212 // for some reason. We don't want non-deterministic pointer
1213 // comparisons so use this instead.
1214 return std::lexicographical_compare(LHS.begin(), LHS.end(),
1215 RHS.begin(), RHS.end(),
1216 LessRecordByID());
1217 }
1218 };
1219
1220 void AsmMatcherInfo::
buildRegisterClasses(SmallPtrSetImpl<Record * > & SingletonRegisters)1221 buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) {
1222 const auto &Registers = Target.getRegBank().getRegisters();
1223 auto &RegClassList = Target.getRegBank().getRegClasses();
1224
1225 typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet;
1226
1227 // The register sets used for matching.
1228 RegisterSetSet RegisterSets;
1229
1230 // Gather the defined sets.
1231 for (const CodeGenRegisterClass &RC : RegClassList)
1232 RegisterSets.insert(
1233 RegisterSet(RC.getOrder().begin(), RC.getOrder().end()));
1234
1235 // Add any required singleton sets.
1236 for (Record *Rec : SingletonRegisters) {
1237 RegisterSets.insert(RegisterSet(&Rec, &Rec + 1));
1238 }
1239
1240 // Introduce derived sets where necessary (when a register does not determine
1241 // a unique register set class), and build the mapping of registers to the set
1242 // they should classify to.
1243 std::map<Record*, RegisterSet> RegisterMap;
1244 for (const CodeGenRegister &CGR : Registers) {
1245 // Compute the intersection of all sets containing this register.
1246 RegisterSet ContainingSet;
1247
1248 for (const RegisterSet &RS : RegisterSets) {
1249 if (!RS.count(CGR.TheDef))
1250 continue;
1251
1252 if (ContainingSet.empty()) {
1253 ContainingSet = RS;
1254 continue;
1255 }
1256
1257 RegisterSet Tmp;
1258 std::swap(Tmp, ContainingSet);
1259 std::insert_iterator<RegisterSet> II(ContainingSet,
1260 ContainingSet.begin());
1261 std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II,
1262 LessRecordByID());
1263 }
1264
1265 if (!ContainingSet.empty()) {
1266 RegisterSets.insert(ContainingSet);
1267 RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
1268 }
1269 }
1270
1271 // Construct the register classes.
1272 std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses;
1273 unsigned Index = 0;
1274 for (const RegisterSet &RS : RegisterSets) {
1275 Classes.emplace_front();
1276 ClassInfo *CI = &Classes.front();
1277 CI->Kind = ClassInfo::RegisterClass0 + Index;
1278 CI->ClassName = "Reg" + utostr(Index);
1279 CI->Name = "MCK_Reg" + utostr(Index);
1280 CI->ValueName = "";
1281 CI->PredicateMethod = ""; // unused
1282 CI->RenderMethod = "addRegOperands";
1283 CI->Registers = RS;
1284 // FIXME: diagnostic type.
1285 CI->DiagnosticType = "";
1286 CI->IsOptional = false;
1287 CI->DefaultMethod = ""; // unused
1288 RegisterSetClasses.insert(std::make_pair(RS, CI));
1289 ++Index;
1290 }
1291
1292 // Find the superclasses; we could compute only the subgroup lattice edges,
1293 // but there isn't really a point.
1294 for (const RegisterSet &RS : RegisterSets) {
1295 ClassInfo *CI = RegisterSetClasses[RS];
1296 for (const RegisterSet &RS2 : RegisterSets)
1297 if (RS != RS2 &&
1298 std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(),
1299 LessRecordByID()))
1300 CI->SuperClasses.push_back(RegisterSetClasses[RS2]);
1301 }
1302
1303 // Name the register classes which correspond to a user defined RegisterClass.
1304 for (const CodeGenRegisterClass &RC : RegClassList) {
1305 // Def will be NULL for non-user defined register classes.
1306 Record *Def = RC.getDef();
1307 if (!Def)
1308 continue;
1309 ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(),
1310 RC.getOrder().end())];
1311 if (CI->ValueName.empty()) {
1312 CI->ClassName = RC.getName();
1313 CI->Name = "MCK_" + RC.getName();
1314 CI->ValueName = RC.getName();
1315 } else
1316 CI->ValueName = CI->ValueName + "," + RC.getName();
1317
1318 Init *DiagnosticType = Def->getValueInit("DiagnosticType");
1319 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
1320 CI->DiagnosticType = std::string(SI->getValue());
1321
1322 Init *DiagnosticString = Def->getValueInit("DiagnosticString");
1323 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString))
1324 CI->DiagnosticString = std::string(SI->getValue());
1325
1326 // If we have a diagnostic string but the diagnostic type is not specified
1327 // explicitly, create an anonymous diagnostic type.
1328 if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty())
1329 CI->DiagnosticType = RC.getName();
1330
1331 RegisterClassClasses.insert(std::make_pair(Def, CI));
1332 }
1333
1334 // Populate the map for individual registers.
1335 for (auto &It : RegisterMap)
1336 RegisterClasses[It.first] = RegisterSetClasses[It.second];
1337
1338 // Name the register classes which correspond to singleton registers.
1339 for (Record *Rec : SingletonRegisters) {
1340 ClassInfo *CI = RegisterClasses[Rec];
1341 assert(CI && "Missing singleton register class info!");
1342
1343 if (CI->ValueName.empty()) {
1344 CI->ClassName = std::string(Rec->getName());
1345 CI->Name = "MCK_" + Rec->getName().str();
1346 CI->ValueName = std::string(Rec->getName());
1347 } else
1348 CI->ValueName = CI->ValueName + "," + Rec->getName().str();
1349 }
1350 }
1351
buildOperandClasses()1352 void AsmMatcherInfo::buildOperandClasses() {
1353 std::vector<Record*> AsmOperands =
1354 Records.getAllDerivedDefinitions("AsmOperandClass");
1355
1356 // Pre-populate AsmOperandClasses map.
1357 for (Record *Rec : AsmOperands) {
1358 Classes.emplace_front();
1359 AsmOperandClasses[Rec] = &Classes.front();
1360 }
1361
1362 unsigned Index = 0;
1363 for (Record *Rec : AsmOperands) {
1364 ClassInfo *CI = AsmOperandClasses[Rec];
1365 CI->Kind = ClassInfo::UserClass0 + Index;
1366
1367 ListInit *Supers = Rec->getValueAsListInit("SuperClasses");
1368 for (Init *I : Supers->getValues()) {
1369 DefInit *DI = dyn_cast<DefInit>(I);
1370 if (!DI) {
1371 PrintError(Rec->getLoc(), "Invalid super class reference!");
1372 continue;
1373 }
1374
1375 ClassInfo *SC = AsmOperandClasses[DI->getDef()];
1376 if (!SC)
1377 PrintError(Rec->getLoc(), "Invalid super class reference!");
1378 else
1379 CI->SuperClasses.push_back(SC);
1380 }
1381 CI->ClassName = std::string(Rec->getValueAsString("Name"));
1382 CI->Name = "MCK_" + CI->ClassName;
1383 CI->ValueName = std::string(Rec->getName());
1384
1385 // Get or construct the predicate method name.
1386 Init *PMName = Rec->getValueInit("PredicateMethod");
1387 if (StringInit *SI = dyn_cast<StringInit>(PMName)) {
1388 CI->PredicateMethod = std::string(SI->getValue());
1389 } else {
1390 assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!");
1391 CI->PredicateMethod = "is" + CI->ClassName;
1392 }
1393
1394 // Get or construct the render method name.
1395 Init *RMName = Rec->getValueInit("RenderMethod");
1396 if (StringInit *SI = dyn_cast<StringInit>(RMName)) {
1397 CI->RenderMethod = std::string(SI->getValue());
1398 } else {
1399 assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!");
1400 CI->RenderMethod = "add" + CI->ClassName + "Operands";
1401 }
1402
1403 // Get the parse method name or leave it as empty.
1404 Init *PRMName = Rec->getValueInit("ParserMethod");
1405 if (StringInit *SI = dyn_cast<StringInit>(PRMName))
1406 CI->ParserMethod = std::string(SI->getValue());
1407
1408 // Get the diagnostic type and string or leave them as empty.
1409 Init *DiagnosticType = Rec->getValueInit("DiagnosticType");
1410 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
1411 CI->DiagnosticType = std::string(SI->getValue());
1412 Init *DiagnosticString = Rec->getValueInit("DiagnosticString");
1413 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString))
1414 CI->DiagnosticString = std::string(SI->getValue());
1415 // If we have a DiagnosticString, we need a DiagnosticType for use within
1416 // the matcher.
1417 if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty())
1418 CI->DiagnosticType = CI->ClassName;
1419
1420 Init *IsOptional = Rec->getValueInit("IsOptional");
1421 if (BitInit *BI = dyn_cast<BitInit>(IsOptional))
1422 CI->IsOptional = BI->getValue();
1423
1424 // Get or construct the default method name.
1425 Init *DMName = Rec->getValueInit("DefaultMethod");
1426 if (StringInit *SI = dyn_cast<StringInit>(DMName)) {
1427 CI->DefaultMethod = std::string(SI->getValue());
1428 } else {
1429 assert(isa<UnsetInit>(DMName) && "Unexpected DefaultMethod field!");
1430 CI->DefaultMethod = "default" + CI->ClassName + "Operands";
1431 }
1432
1433 ++Index;
1434 }
1435 }
1436
AsmMatcherInfo(Record * asmParser,CodeGenTarget & target,RecordKeeper & records)1437 AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
1438 CodeGenTarget &target,
1439 RecordKeeper &records)
1440 : Records(records), AsmParser(asmParser), Target(target) {
1441 }
1442
1443 /// buildOperandMatchInfo - Build the necessary information to handle user
1444 /// defined operand parsing methods.
buildOperandMatchInfo()1445 void AsmMatcherInfo::buildOperandMatchInfo() {
1446
1447 /// Map containing a mask with all operands indices that can be found for
1448 /// that class inside a instruction.
1449 typedef std::map<ClassInfo *, unsigned, deref<std::less<>>> OpClassMaskTy;
1450 OpClassMaskTy OpClassMask;
1451
1452 for (const auto &MI : Matchables) {
1453 OpClassMask.clear();
1454
1455 // Keep track of all operands of this instructions which belong to the
1456 // same class.
1457 for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
1458 const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
1459 if (Op.Class->ParserMethod.empty())
1460 continue;
1461 unsigned &OperandMask = OpClassMask[Op.Class];
1462 OperandMask |= (1 << i);
1463 }
1464
1465 // Generate operand match info for each mnemonic/operand class pair.
1466 for (const auto &OCM : OpClassMask) {
1467 unsigned OpMask = OCM.second;
1468 ClassInfo *CI = OCM.first;
1469 OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI,
1470 OpMask));
1471 }
1472 }
1473 }
1474
buildInfo()1475 void AsmMatcherInfo::buildInfo() {
1476 // Build information about all of the AssemblerPredicates.
1477 const std::vector<std::pair<Record *, SubtargetFeatureInfo>>
1478 &SubtargetFeaturePairs = SubtargetFeatureInfo::getAll(Records);
1479 SubtargetFeatures.insert(SubtargetFeaturePairs.begin(),
1480 SubtargetFeaturePairs.end());
1481 #ifndef NDEBUG
1482 for (const auto &Pair : SubtargetFeatures)
1483 LLVM_DEBUG(Pair.second.dump());
1484 #endif // NDEBUG
1485
1486 bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
1487 bool ReportMultipleNearMisses =
1488 AsmParser->getValueAsBit("ReportMultipleNearMisses");
1489
1490 // Parse the instructions; we need to do this first so that we can gather the
1491 // singleton register classes.
1492 SmallPtrSet<Record*, 16> SingletonRegisters;
1493 unsigned VariantCount = Target.getAsmParserVariantCount();
1494 for (unsigned VC = 0; VC != VariantCount; ++VC) {
1495 Record *AsmVariant = Target.getAsmParserVariant(VC);
1496 StringRef CommentDelimiter =
1497 AsmVariant->getValueAsString("CommentDelimiter");
1498 AsmVariantInfo Variant;
1499 Variant.RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
1500 Variant.TokenizingCharacters =
1501 AsmVariant->getValueAsString("TokenizingCharacters");
1502 Variant.SeparatorCharacters =
1503 AsmVariant->getValueAsString("SeparatorCharacters");
1504 Variant.BreakCharacters =
1505 AsmVariant->getValueAsString("BreakCharacters");
1506 Variant.Name = AsmVariant->getValueAsString("Name");
1507 Variant.AsmVariantNo = AsmVariant->getValueAsInt("Variant");
1508
1509 for (const CodeGenInstruction *CGI : Target.getInstructionsByEnumValue()) {
1510
1511 // If the tblgen -match-prefix option is specified (for tblgen hackers),
1512 // filter the set of instructions we consider.
1513 if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix))
1514 continue;
1515
1516 // Ignore "codegen only" instructions.
1517 if (CGI->TheDef->getValueAsBit("isCodeGenOnly"))
1518 continue;
1519
1520 // Ignore instructions for different instructions
1521 StringRef V = CGI->TheDef->getValueAsString("AsmVariantName");
1522 if (!V.empty() && V != Variant.Name)
1523 continue;
1524
1525 auto II = std::make_unique<MatchableInfo>(*CGI);
1526
1527 II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);
1528
1529 // Ignore instructions which shouldn't be matched and diagnose invalid
1530 // instruction definitions with an error.
1531 if (!II->validate(CommentDelimiter, false))
1532 continue;
1533
1534 Matchables.push_back(std::move(II));
1535 }
1536
1537 // Parse all of the InstAlias definitions and stick them in the list of
1538 // matchables.
1539 std::vector<Record*> AllInstAliases =
1540 Records.getAllDerivedDefinitions("InstAlias");
1541 for (Record *InstAlias : AllInstAliases) {
1542 auto Alias = std::make_unique<CodeGenInstAlias>(InstAlias, Target);
1543
1544 // If the tblgen -match-prefix option is specified (for tblgen hackers),
1545 // filter the set of instruction aliases we consider, based on the target
1546 // instruction.
1547 if (!StringRef(Alias->ResultInst->TheDef->getName())
1548 .startswith( MatchPrefix))
1549 continue;
1550
1551 StringRef V = Alias->TheDef->getValueAsString("AsmVariantName");
1552 if (!V.empty() && V != Variant.Name)
1553 continue;
1554
1555 auto II = std::make_unique<MatchableInfo>(std::move(Alias));
1556
1557 II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);
1558
1559 // Validate the alias definitions.
1560 II->validate(CommentDelimiter, true);
1561
1562 Matchables.push_back(std::move(II));
1563 }
1564 }
1565
1566 // Build info for the register classes.
1567 buildRegisterClasses(SingletonRegisters);
1568
1569 // Build info for the user defined assembly operand classes.
1570 buildOperandClasses();
1571
1572 // Build the information about matchables, now that we have fully formed
1573 // classes.
1574 std::vector<std::unique_ptr<MatchableInfo>> NewMatchables;
1575 for (auto &II : Matchables) {
1576 // Parse the tokens after the mnemonic.
1577 // Note: buildInstructionOperandReference may insert new AsmOperands, so
1578 // don't precompute the loop bound.
1579 for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
1580 MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
1581 StringRef Token = Op.Token;
1582
1583 // Check for singleton registers.
1584 if (Record *RegRecord = Op.SingletonReg) {
1585 Op.Class = RegisterClasses[RegRecord];
1586 assert(Op.Class && Op.Class->Registers.size() == 1 &&
1587 "Unexpected class for singleton register");
1588 continue;
1589 }
1590
1591 // Check for simple tokens.
1592 if (Token[0] != '$') {
1593 Op.Class = getTokenClass(Token);
1594 continue;
1595 }
1596
1597 if (Token.size() > 1 && isdigit(Token[1])) {
1598 Op.Class = getTokenClass(Token);
1599 continue;
1600 }
1601
1602 // Otherwise this is an operand reference.
1603 StringRef OperandName;
1604 if (Token[1] == '{')
1605 OperandName = Token.substr(2, Token.size() - 3);
1606 else
1607 OperandName = Token.substr(1);
1608
1609 if (II->DefRec.is<const CodeGenInstruction*>())
1610 buildInstructionOperandReference(II.get(), OperandName, i);
1611 else
1612 buildAliasOperandReference(II.get(), OperandName, Op);
1613 }
1614
1615 if (II->DefRec.is<const CodeGenInstruction*>()) {
1616 II->buildInstructionResultOperands();
1617 // If the instruction has a two-operand alias, build up the
1618 // matchable here. We'll add them in bulk at the end to avoid
1619 // confusing this loop.
1620 StringRef Constraint =
1621 II->TheDef->getValueAsString("TwoOperandAliasConstraint");
1622 if (Constraint != "") {
1623 // Start by making a copy of the original matchable.
1624 auto AliasII = std::make_unique<MatchableInfo>(*II);
1625
1626 // Adjust it to be a two-operand alias.
1627 AliasII->formTwoOperandAlias(Constraint);
1628
1629 // Add the alias to the matchables list.
1630 NewMatchables.push_back(std::move(AliasII));
1631 }
1632 } else
1633 // FIXME: The tied operands checking is not yet integrated with the
1634 // framework for reporting multiple near misses. To prevent invalid
1635 // formats from being matched with an alias if a tied-operands check
1636 // would otherwise have disallowed it, we just disallow such constructs
1637 // in TableGen completely.
1638 II->buildAliasResultOperands(!ReportMultipleNearMisses);
1639 }
1640 if (!NewMatchables.empty())
1641 Matchables.insert(Matchables.end(),
1642 std::make_move_iterator(NewMatchables.begin()),
1643 std::make_move_iterator(NewMatchables.end()));
1644
1645 // Process token alias definitions and set up the associated superclass
1646 // information.
1647 std::vector<Record*> AllTokenAliases =
1648 Records.getAllDerivedDefinitions("TokenAlias");
1649 for (Record *Rec : AllTokenAliases) {
1650 ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
1651 ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
1652 if (FromClass == ToClass)
1653 PrintFatalError(Rec->getLoc(),
1654 "error: Destination value identical to source value.");
1655 FromClass->SuperClasses.push_back(ToClass);
1656 }
1657
1658 // Reorder classes so that classes precede super classes.
1659 Classes.sort();
1660
1661 #ifdef EXPENSIVE_CHECKS
1662 // Verify that the table is sorted and operator < works transitively.
1663 for (auto I = Classes.begin(), E = Classes.end(); I != E; ++I) {
1664 for (auto J = I; J != E; ++J) {
1665 assert(!(*J < *I));
1666 assert(I == J || !J->isSubsetOf(*I));
1667 }
1668 }
1669 #endif
1670 }
1671
1672 /// buildInstructionOperandReference - The specified operand is a reference to a
1673 /// named operand such as $src. Resolve the Class and OperandInfo pointers.
1674 void AsmMatcherInfo::
buildInstructionOperandReference(MatchableInfo * II,StringRef OperandName,unsigned AsmOpIdx)1675 buildInstructionOperandReference(MatchableInfo *II,
1676 StringRef OperandName,
1677 unsigned AsmOpIdx) {
1678 const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
1679 const CGIOperandList &Operands = CGI.Operands;
1680 MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
1681
1682 // Map this token to an operand.
1683 unsigned Idx;
1684 if (!Operands.hasOperandNamed(OperandName, Idx))
1685 PrintFatalError(II->TheDef->getLoc(),
1686 "error: unable to find operand: '" + OperandName + "'");
1687
1688 // If the instruction operand has multiple suboperands, but the parser
1689 // match class for the asm operand is still the default "ImmAsmOperand",
1690 // then handle each suboperand separately.
1691 if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
1692 Record *Rec = Operands[Idx].Rec;
1693 assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
1694 Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1695 if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
1696 // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
1697 StringRef Token = Op->Token; // save this in case Op gets moved
1698 for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
1699 MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token);
1700 NewAsmOp.SubOpIdx = SI;
1701 II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
1702 }
1703 // Replace Op with first suboperand.
1704 Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
1705 Op->SubOpIdx = 0;
1706 }
1707 }
1708
1709 // Set up the operand class.
1710 Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
1711 Op->OrigSrcOpName = OperandName;
1712
1713 // If the named operand is tied, canonicalize it to the untied operand.
1714 // For example, something like:
1715 // (outs GPR:$dst), (ins GPR:$src)
1716 // with an asmstring of
1717 // "inc $src"
1718 // we want to canonicalize to:
1719 // "inc $dst"
1720 // so that we know how to provide the $dst operand when filling in the result.
1721 int OITied = -1;
1722 if (Operands[Idx].MINumOperands == 1)
1723 OITied = Operands[Idx].getTiedRegister();
1724 if (OITied != -1) {
1725 // The tied operand index is an MIOperand index, find the operand that
1726 // contains it.
1727 std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
1728 OperandName = Operands[Idx.first].Name;
1729 Op->SubOpIdx = Idx.second;
1730 }
1731
1732 Op->SrcOpName = OperandName;
1733 }
1734
1735 /// buildAliasOperandReference - When parsing an operand reference out of the
1736 /// matching string (e.g. "movsx $src, $dst"), determine what the class of the
1737 /// operand reference is by looking it up in the result pattern definition.
buildAliasOperandReference(MatchableInfo * II,StringRef OperandName,MatchableInfo::AsmOperand & Op)1738 void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II,
1739 StringRef OperandName,
1740 MatchableInfo::AsmOperand &Op) {
1741 const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
1742
1743 // Set up the operand class.
1744 for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
1745 if (CGA.ResultOperands[i].isRecord() &&
1746 CGA.ResultOperands[i].getName() == OperandName) {
1747 // It's safe to go with the first one we find, because CodeGenInstAlias
1748 // validates that all operands with the same name have the same record.
1749 Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
1750 // Use the match class from the Alias definition, not the
1751 // destination instruction, as we may have an immediate that's
1752 // being munged by the match class.
1753 Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
1754 Op.SubOpIdx);
1755 Op.SrcOpName = OperandName;
1756 Op.OrigSrcOpName = OperandName;
1757 return;
1758 }
1759
1760 PrintFatalError(II->TheDef->getLoc(),
1761 "error: unable to find operand: '" + OperandName + "'");
1762 }
1763
buildInstructionResultOperands()1764 void MatchableInfo::buildInstructionResultOperands() {
1765 const CodeGenInstruction *ResultInst = getResultInst();
1766
1767 // Loop over all operands of the result instruction, determining how to
1768 // populate them.
1769 for (const CGIOperandList::OperandInfo &OpInfo : ResultInst->Operands) {
1770 // If this is a tied operand, just copy from the previously handled operand.
1771 int TiedOp = -1;
1772 if (OpInfo.MINumOperands == 1)
1773 TiedOp = OpInfo.getTiedRegister();
1774 if (TiedOp != -1) {
1775 int TiedSrcOperand = findAsmOperandOriginallyNamed(OpInfo.Name);
1776 if (TiedSrcOperand != -1 &&
1777 ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand)
1778 ResOperands.push_back(ResOperand::getTiedOp(
1779 TiedOp, ResOperands[TiedOp].AsmOperandNum, TiedSrcOperand));
1780 else
1781 ResOperands.push_back(ResOperand::getTiedOp(TiedOp, 0, 0));
1782 continue;
1783 }
1784
1785 int SrcOperand = findAsmOperandNamed(OpInfo.Name);
1786 if (OpInfo.Name.empty() || SrcOperand == -1) {
1787 // This may happen for operands that are tied to a suboperand of a
1788 // complex operand. Simply use a dummy value here; nobody should
1789 // use this operand slot.
1790 // FIXME: The long term goal is for the MCOperand list to not contain
1791 // tied operands at all.
1792 ResOperands.push_back(ResOperand::getImmOp(0));
1793 continue;
1794 }
1795
1796 // Check if the one AsmOperand populates the entire operand.
1797 unsigned NumOperands = OpInfo.MINumOperands;
1798 if (AsmOperands[SrcOperand].SubOpIdx == -1) {
1799 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
1800 continue;
1801 }
1802
1803 // Add a separate ResOperand for each suboperand.
1804 for (unsigned AI = 0; AI < NumOperands; ++AI) {
1805 assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
1806 AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
1807 "unexpected AsmOperands for suboperands");
1808 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
1809 }
1810 }
1811 }
1812
buildAliasResultOperands(bool AliasConstraintsAreChecked)1813 void MatchableInfo::buildAliasResultOperands(bool AliasConstraintsAreChecked) {
1814 const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
1815 const CodeGenInstruction *ResultInst = getResultInst();
1816
1817 // Map of: $reg -> #lastref
1818 // where $reg is the name of the operand in the asm string
1819 // where #lastref is the last processed index where $reg was referenced in
1820 // the asm string.
1821 SmallDenseMap<StringRef, int> OperandRefs;
1822
1823 // Loop over all operands of the result instruction, determining how to
1824 // populate them.
1825 unsigned AliasOpNo = 0;
1826 unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
1827 for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1828 const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
1829
1830 // If this is a tied operand, just copy from the previously handled operand.
1831 int TiedOp = -1;
1832 if (OpInfo->MINumOperands == 1)
1833 TiedOp = OpInfo->getTiedRegister();
1834 if (TiedOp != -1) {
1835 unsigned SrcOp1 = 0;
1836 unsigned SrcOp2 = 0;
1837
1838 // If an operand has been specified twice in the asm string,
1839 // add the two source operand's indices to the TiedOp so that
1840 // at runtime the 'tied' constraint is checked.
1841 if (ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) {
1842 SrcOp1 = ResOperands[TiedOp].AsmOperandNum;
1843
1844 // Find the next operand (similarly named operand) in the string.
1845 StringRef Name = AsmOperands[SrcOp1].SrcOpName;
1846 auto Insert = OperandRefs.try_emplace(Name, SrcOp1);
1847 SrcOp2 = findAsmOperandNamed(Name, Insert.first->second);
1848
1849 // Not updating the record in OperandRefs will cause TableGen
1850 // to fail with an error at the end of this function.
1851 if (AliasConstraintsAreChecked)
1852 Insert.first->second = SrcOp2;
1853
1854 // In case it only has one reference in the asm string,
1855 // it doesn't need to be checked for tied constraints.
1856 SrcOp2 = (SrcOp2 == (unsigned)-1) ? SrcOp1 : SrcOp2;
1857 }
1858
1859 // If the alias operand is of a different operand class, we only want
1860 // to benefit from the tied-operands check and just match the operand
1861 // as a normal, but not copy the original (TiedOp) to the result
1862 // instruction. We do this by passing -1 as the tied operand to copy.
1863 if (ResultInst->Operands[i].Rec->getName() !=
1864 ResultInst->Operands[TiedOp].Rec->getName()) {
1865 SrcOp1 = ResOperands[TiedOp].AsmOperandNum;
1866 int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1867 StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1868 SrcOp2 = findAsmOperand(Name, SubIdx);
1869 ResOperands.push_back(
1870 ResOperand::getTiedOp((unsigned)-1, SrcOp1, SrcOp2));
1871 } else {
1872 ResOperands.push_back(ResOperand::getTiedOp(TiedOp, SrcOp1, SrcOp2));
1873 continue;
1874 }
1875 }
1876
1877 // Handle all the suboperands for this operand.
1878 const std::string &OpName = OpInfo->Name;
1879 for ( ; AliasOpNo < LastOpNo &&
1880 CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
1881 int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1882
1883 // Find out what operand from the asmparser that this MCInst operand
1884 // comes from.
1885 switch (CGA.ResultOperands[AliasOpNo].Kind) {
1886 case CodeGenInstAlias::ResultOperand::K_Record: {
1887 StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1888 int SrcOperand = findAsmOperand(Name, SubIdx);
1889 if (SrcOperand == -1)
1890 PrintFatalError(TheDef->getLoc(), "Instruction '" +
1891 TheDef->getName() + "' has operand '" + OpName +
1892 "' that doesn't appear in asm string!");
1893
1894 // Add it to the operand references. If it is added a second time, the
1895 // record won't be updated and it will fail later on.
1896 OperandRefs.try_emplace(Name, SrcOperand);
1897
1898 unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
1899 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
1900 NumOperands));
1901 break;
1902 }
1903 case CodeGenInstAlias::ResultOperand::K_Imm: {
1904 int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
1905 ResOperands.push_back(ResOperand::getImmOp(ImmVal));
1906 break;
1907 }
1908 case CodeGenInstAlias::ResultOperand::K_Reg: {
1909 Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
1910 ResOperands.push_back(ResOperand::getRegOp(Reg));
1911 break;
1912 }
1913 }
1914 }
1915 }
1916
1917 // Check that operands are not repeated more times than is supported.
1918 for (auto &T : OperandRefs) {
1919 if (T.second != -1 && findAsmOperandNamed(T.first, T.second) != -1)
1920 PrintFatalError(TheDef->getLoc(),
1921 "Operand '" + T.first + "' can never be matched");
1922 }
1923 }
1924
1925 static unsigned
getConverterOperandID(const std::string & Name,SmallSetVector<CachedHashString,16> & Table,bool & IsNew)1926 getConverterOperandID(const std::string &Name,
1927 SmallSetVector<CachedHashString, 16> &Table,
1928 bool &IsNew) {
1929 IsNew = Table.insert(CachedHashString(Name));
1930
1931 unsigned ID = IsNew ? Table.size() - 1 : find(Table, Name) - Table.begin();
1932
1933 assert(ID < Table.size());
1934
1935 return ID;
1936 }
1937
1938 static unsigned
emitConvertFuncs(CodeGenTarget & Target,StringRef ClassName,std::vector<std::unique_ptr<MatchableInfo>> & Infos,bool HasMnemonicFirst,bool HasOptionalOperands,raw_ostream & OS)1939 emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName,
1940 std::vector<std::unique_ptr<MatchableInfo>> &Infos,
1941 bool HasMnemonicFirst, bool HasOptionalOperands,
1942 raw_ostream &OS) {
1943 SmallSetVector<CachedHashString, 16> OperandConversionKinds;
1944 SmallSetVector<CachedHashString, 16> InstructionConversionKinds;
1945 std::vector<std::vector<uint8_t> > ConversionTable;
1946 size_t MaxRowLength = 2; // minimum is custom converter plus terminator.
1947
1948 // TargetOperandClass - This is the target's operand class, like X86Operand.
1949 std::string TargetOperandClass = Target.getName().str() + "Operand";
1950
1951 // Write the convert function to a separate stream, so we can drop it after
1952 // the enum. We'll build up the conversion handlers for the individual
1953 // operand types opportunistically as we encounter them.
1954 std::string ConvertFnBody;
1955 raw_string_ostream CvtOS(ConvertFnBody);
1956 // Start the unified conversion function.
1957 if (HasOptionalOperands) {
1958 CvtOS << "void " << Target.getName() << ClassName << "::\n"
1959 << "convertToMCInst(unsigned Kind, MCInst &Inst, "
1960 << "unsigned Opcode,\n"
1961 << " const OperandVector &Operands,\n"
1962 << " const SmallBitVector &OptionalOperandsMask) {\n";
1963 } else {
1964 CvtOS << "void " << Target.getName() << ClassName << "::\n"
1965 << "convertToMCInst(unsigned Kind, MCInst &Inst, "
1966 << "unsigned Opcode,\n"
1967 << " const OperandVector &Operands) {\n";
1968 }
1969 CvtOS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n";
1970 CvtOS << " const uint8_t *Converter = ConversionTable[Kind];\n";
1971 if (HasOptionalOperands) {
1972 size_t MaxNumOperands = 0;
1973 for (const auto &MI : Infos) {
1974 MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
1975 }
1976 CvtOS << " unsigned DefaultsOffset[" << (MaxNumOperands + 1)
1977 << "] = { 0 };\n";
1978 CvtOS << " assert(OptionalOperandsMask.size() == " << (MaxNumOperands)
1979 << ");\n";
1980 CvtOS << " for (unsigned i = 0, NumDefaults = 0; i < " << (MaxNumOperands)
1981 << "; ++i) {\n";
1982 CvtOS << " DefaultsOffset[i + 1] = NumDefaults;\n";
1983 CvtOS << " NumDefaults += (OptionalOperandsMask[i] ? 1 : 0);\n";
1984 CvtOS << " }\n";
1985 }
1986 CvtOS << " unsigned OpIdx;\n";
1987 CvtOS << " Inst.setOpcode(Opcode);\n";
1988 CvtOS << " for (const uint8_t *p = Converter; *p; p += 2) {\n";
1989 if (HasOptionalOperands) {
1990 CvtOS << " OpIdx = *(p + 1) - DefaultsOffset[*(p + 1)];\n";
1991 } else {
1992 CvtOS << " OpIdx = *(p + 1);\n";
1993 }
1994 CvtOS << " switch (*p) {\n";
1995 CvtOS << " default: llvm_unreachable(\"invalid conversion entry!\");\n";
1996 CvtOS << " case CVT_Reg:\n";
1997 CvtOS << " static_cast<" << TargetOperandClass
1998 << " &>(*Operands[OpIdx]).addRegOperands(Inst, 1);\n";
1999 CvtOS << " break;\n";
2000 CvtOS << " case CVT_Tied: {\n";
2001 CvtOS << " assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n";
2002 CvtOS << " std::begin(TiedAsmOperandTable)) &&\n";
2003 CvtOS << " \"Tied operand not found\");\n";
2004 CvtOS << " unsigned TiedResOpnd = TiedAsmOperandTable[OpIdx][0];\n";
2005 CvtOS << " if (TiedResOpnd != (uint8_t)-1)\n";
2006 CvtOS << " Inst.addOperand(Inst.getOperand(TiedResOpnd));\n";
2007 CvtOS << " break;\n";
2008 CvtOS << " }\n";
2009
2010 std::string OperandFnBody;
2011 raw_string_ostream OpOS(OperandFnBody);
2012 // Start the operand number lookup function.
2013 OpOS << "void " << Target.getName() << ClassName << "::\n"
2014 << "convertToMapAndConstraints(unsigned Kind,\n";
2015 OpOS.indent(27);
2016 OpOS << "const OperandVector &Operands) {\n"
2017 << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
2018 << " unsigned NumMCOperands = 0;\n"
2019 << " const uint8_t *Converter = ConversionTable[Kind];\n"
2020 << " for (const uint8_t *p = Converter; *p; p += 2) {\n"
2021 << " switch (*p) {\n"
2022 << " default: llvm_unreachable(\"invalid conversion entry!\");\n"
2023 << " case CVT_Reg:\n"
2024 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2025 << " Operands[*(p + 1)]->setConstraint(\"r\");\n"
2026 << " ++NumMCOperands;\n"
2027 << " break;\n"
2028 << " case CVT_Tied:\n"
2029 << " ++NumMCOperands;\n"
2030 << " break;\n";
2031
2032 // Pre-populate the operand conversion kinds with the standard always
2033 // available entries.
2034 OperandConversionKinds.insert(CachedHashString("CVT_Done"));
2035 OperandConversionKinds.insert(CachedHashString("CVT_Reg"));
2036 OperandConversionKinds.insert(CachedHashString("CVT_Tied"));
2037 enum { CVT_Done, CVT_Reg, CVT_Tied };
2038
2039 // Map of e.g. <0, 2, 3> -> "Tie_0_2_3" enum label.
2040 std::map<std::tuple<uint8_t, uint8_t, uint8_t>, std::string>
2041 TiedOperandsEnumMap;
2042
2043 for (auto &II : Infos) {
2044 // Check if we have a custom match function.
2045 StringRef AsmMatchConverter =
2046 II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
2047 if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) {
2048 std::string Signature = ("ConvertCustom_" + AsmMatchConverter).str();
2049 II->ConversionFnKind = Signature;
2050
2051 // Check if we have already generated this signature.
2052 if (!InstructionConversionKinds.insert(CachedHashString(Signature)))
2053 continue;
2054
2055 // Remember this converter for the kind enum.
2056 unsigned KindID = OperandConversionKinds.size();
2057 OperandConversionKinds.insert(
2058 CachedHashString("CVT_" + getEnumNameForToken(AsmMatchConverter)));
2059
2060 // Add the converter row for this instruction.
2061 ConversionTable.emplace_back();
2062 ConversionTable.back().push_back(KindID);
2063 ConversionTable.back().push_back(CVT_Done);
2064
2065 // Add the handler to the conversion driver function.
2066 CvtOS << " case CVT_"
2067 << getEnumNameForToken(AsmMatchConverter) << ":\n"
2068 << " " << AsmMatchConverter << "(Inst, Operands);\n"
2069 << " break;\n";
2070
2071 // FIXME: Handle the operand number lookup for custom match functions.
2072 continue;
2073 }
2074
2075 // Build the conversion function signature.
2076 std::string Signature = "Convert";
2077
2078 std::vector<uint8_t> ConversionRow;
2079
2080 // Compute the convert enum and the case body.
2081 MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 );
2082
2083 for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) {
2084 const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i];
2085
2086 // Generate code to populate each result operand.
2087 switch (OpInfo.Kind) {
2088 case MatchableInfo::ResOperand::RenderAsmOperand: {
2089 // This comes from something we parsed.
2090 const MatchableInfo::AsmOperand &Op =
2091 II->AsmOperands[OpInfo.AsmOperandNum];
2092
2093 // Registers are always converted the same, don't duplicate the
2094 // conversion function based on them.
2095 Signature += "__";
2096 std::string Class;
2097 Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName;
2098 Signature += Class;
2099 Signature += utostr(OpInfo.MINumOperands);
2100 Signature += "_" + itostr(OpInfo.AsmOperandNum);
2101
2102 // Add the conversion kind, if necessary, and get the associated ID
2103 // the index of its entry in the vector).
2104 std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" :
2105 Op.Class->RenderMethod);
2106 if (Op.Class->IsOptional) {
2107 // For optional operands we must also care about DefaultMethod
2108 assert(HasOptionalOperands);
2109 Name += "_" + Op.Class->DefaultMethod;
2110 }
2111 Name = getEnumNameForToken(Name);
2112
2113 bool IsNewConverter = false;
2114 unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
2115 IsNewConverter);
2116
2117 // Add the operand entry to the instruction kind conversion row.
2118 ConversionRow.push_back(ID);
2119 ConversionRow.push_back(OpInfo.AsmOperandNum + HasMnemonicFirst);
2120
2121 if (!IsNewConverter)
2122 break;
2123
2124 // This is a new operand kind. Add a handler for it to the
2125 // converter driver.
2126 CvtOS << " case " << Name << ":\n";
2127 if (Op.Class->IsOptional) {
2128 // If optional operand is not present in actual instruction then we
2129 // should call its DefaultMethod before RenderMethod
2130 assert(HasOptionalOperands);
2131 CvtOS << " if (OptionalOperandsMask[*(p + 1) - 1]) {\n"
2132 << " " << Op.Class->DefaultMethod << "()"
2133 << "->" << Op.Class->RenderMethod << "(Inst, "
2134 << OpInfo.MINumOperands << ");\n"
2135 << " } else {\n"
2136 << " static_cast<" << TargetOperandClass
2137 << " &>(*Operands[OpIdx])." << Op.Class->RenderMethod
2138 << "(Inst, " << OpInfo.MINumOperands << ");\n"
2139 << " }\n";
2140 } else {
2141 CvtOS << " static_cast<" << TargetOperandClass
2142 << " &>(*Operands[OpIdx])." << Op.Class->RenderMethod
2143 << "(Inst, " << OpInfo.MINumOperands << ");\n";
2144 }
2145 CvtOS << " break;\n";
2146
2147 // Add a handler for the operand number lookup.
2148 OpOS << " case " << Name << ":\n"
2149 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n";
2150
2151 if (Op.Class->isRegisterClass())
2152 OpOS << " Operands[*(p + 1)]->setConstraint(\"r\");\n";
2153 else
2154 OpOS << " Operands[*(p + 1)]->setConstraint(\"m\");\n";
2155 OpOS << " NumMCOperands += " << OpInfo.MINumOperands << ";\n"
2156 << " break;\n";
2157 break;
2158 }
2159 case MatchableInfo::ResOperand::TiedOperand: {
2160 // If this operand is tied to a previous one, just copy the MCInst
2161 // operand from the earlier one.We can only tie single MCOperand values.
2162 assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
2163 uint8_t TiedOp = OpInfo.TiedOperands.ResOpnd;
2164 uint8_t SrcOp1 =
2165 OpInfo.TiedOperands.SrcOpnd1Idx + HasMnemonicFirst;
2166 uint8_t SrcOp2 =
2167 OpInfo.TiedOperands.SrcOpnd2Idx + HasMnemonicFirst;
2168 assert((i > TiedOp || TiedOp == (uint8_t)-1) &&
2169 "Tied operand precedes its target!");
2170 auto TiedTupleName = std::string("Tie") + utostr(TiedOp) + '_' +
2171 utostr(SrcOp1) + '_' + utostr(SrcOp2);
2172 Signature += "__" + TiedTupleName;
2173 ConversionRow.push_back(CVT_Tied);
2174 ConversionRow.push_back(TiedOp);
2175 ConversionRow.push_back(SrcOp1);
2176 ConversionRow.push_back(SrcOp2);
2177
2178 // Also create an 'enum' for this combination of tied operands.
2179 auto Key = std::make_tuple(TiedOp, SrcOp1, SrcOp2);
2180 TiedOperandsEnumMap.emplace(Key, TiedTupleName);
2181 break;
2182 }
2183 case MatchableInfo::ResOperand::ImmOperand: {
2184 int64_t Val = OpInfo.ImmVal;
2185 std::string Ty = "imm_" + itostr(Val);
2186 Ty = getEnumNameForToken(Ty);
2187 Signature += "__" + Ty;
2188
2189 std::string Name = "CVT_" + Ty;
2190 bool IsNewConverter = false;
2191 unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
2192 IsNewConverter);
2193 // Add the operand entry to the instruction kind conversion row.
2194 ConversionRow.push_back(ID);
2195 ConversionRow.push_back(0);
2196
2197 if (!IsNewConverter)
2198 break;
2199
2200 CvtOS << " case " << Name << ":\n"
2201 << " Inst.addOperand(MCOperand::createImm(" << Val << "));\n"
2202 << " break;\n";
2203
2204 OpOS << " case " << Name << ":\n"
2205 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2206 << " Operands[*(p + 1)]->setConstraint(\"\");\n"
2207 << " ++NumMCOperands;\n"
2208 << " break;\n";
2209 break;
2210 }
2211 case MatchableInfo::ResOperand::RegOperand: {
2212 std::string Reg, Name;
2213 if (!OpInfo.Register) {
2214 Name = "reg0";
2215 Reg = "0";
2216 } else {
2217 Reg = getQualifiedName(OpInfo.Register);
2218 Name = "reg" + OpInfo.Register->getName().str();
2219 }
2220 Signature += "__" + Name;
2221 Name = "CVT_" + Name;
2222 bool IsNewConverter = false;
2223 unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
2224 IsNewConverter);
2225 // Add the operand entry to the instruction kind conversion row.
2226 ConversionRow.push_back(ID);
2227 ConversionRow.push_back(0);
2228
2229 if (!IsNewConverter)
2230 break;
2231 CvtOS << " case " << Name << ":\n"
2232 << " Inst.addOperand(MCOperand::createReg(" << Reg << "));\n"
2233 << " break;\n";
2234
2235 OpOS << " case " << Name << ":\n"
2236 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2237 << " Operands[*(p + 1)]->setConstraint(\"m\");\n"
2238 << " ++NumMCOperands;\n"
2239 << " break;\n";
2240 }
2241 }
2242 }
2243
2244 // If there were no operands, add to the signature to that effect
2245 if (Signature == "Convert")
2246 Signature += "_NoOperands";
2247
2248 II->ConversionFnKind = Signature;
2249
2250 // Save the signature. If we already have it, don't add a new row
2251 // to the table.
2252 if (!InstructionConversionKinds.insert(CachedHashString(Signature)))
2253 continue;
2254
2255 // Add the row to the table.
2256 ConversionTable.push_back(std::move(ConversionRow));
2257 }
2258
2259 // Finish up the converter driver function.
2260 CvtOS << " }\n }\n}\n\n";
2261
2262 // Finish up the operand number lookup function.
2263 OpOS << " }\n }\n}\n\n";
2264
2265 // Output a static table for tied operands.
2266 if (TiedOperandsEnumMap.size()) {
2267 // The number of tied operand combinations will be small in practice,
2268 // but just add the assert to be sure.
2269 assert(TiedOperandsEnumMap.size() <= 254 &&
2270 "Too many tied-operand combinations to reference with "
2271 "an 8bit offset from the conversion table, where index "
2272 "'255' is reserved as operand not to be copied.");
2273
2274 OS << "enum {\n";
2275 for (auto &KV : TiedOperandsEnumMap) {
2276 OS << " " << KV.second << ",\n";
2277 }
2278 OS << "};\n\n";
2279
2280 OS << "static const uint8_t TiedAsmOperandTable[][3] = {\n";
2281 for (auto &KV : TiedOperandsEnumMap) {
2282 OS << " /* " << KV.second << " */ { "
2283 << utostr(std::get<0>(KV.first)) << ", "
2284 << utostr(std::get<1>(KV.first)) << ", "
2285 << utostr(std::get<2>(KV.first)) << " },\n";
2286 }
2287 OS << "};\n\n";
2288 } else
2289 OS << "static const uint8_t TiedAsmOperandTable[][3] = "
2290 "{ /* empty */ {0, 0, 0} };\n\n";
2291
2292 OS << "namespace {\n";
2293
2294 // Output the operand conversion kind enum.
2295 OS << "enum OperatorConversionKind {\n";
2296 for (const auto &Converter : OperandConversionKinds)
2297 OS << " " << Converter << ",\n";
2298 OS << " CVT_NUM_CONVERTERS\n";
2299 OS << "};\n\n";
2300
2301 // Output the instruction conversion kind enum.
2302 OS << "enum InstructionConversionKind {\n";
2303 for (const auto &Signature : InstructionConversionKinds)
2304 OS << " " << Signature << ",\n";
2305 OS << " CVT_NUM_SIGNATURES\n";
2306 OS << "};\n\n";
2307
2308 OS << "} // end anonymous namespace\n\n";
2309
2310 // Output the conversion table.
2311 OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES]["
2312 << MaxRowLength << "] = {\n";
2313
2314 for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) {
2315 assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!");
2316 OS << " // " << InstructionConversionKinds[Row] << "\n";
2317 OS << " { ";
2318 for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2) {
2319 OS << OperandConversionKinds[ConversionTable[Row][i]] << ", ";
2320 if (OperandConversionKinds[ConversionTable[Row][i]] !=
2321 CachedHashString("CVT_Tied")) {
2322 OS << (unsigned)(ConversionTable[Row][i + 1]) << ", ";
2323 continue;
2324 }
2325
2326 // For a tied operand, emit a reference to the TiedAsmOperandTable
2327 // that contains the operand to copy, and the parsed operands to
2328 // check for their tied constraints.
2329 auto Key = std::make_tuple((uint8_t)ConversionTable[Row][i + 1],
2330 (uint8_t)ConversionTable[Row][i + 2],
2331 (uint8_t)ConversionTable[Row][i + 3]);
2332 auto TiedOpndEnum = TiedOperandsEnumMap.find(Key);
2333 assert(TiedOpndEnum != TiedOperandsEnumMap.end() &&
2334 "No record for tied operand pair");
2335 OS << TiedOpndEnum->second << ", ";
2336 i += 2;
2337 }
2338 OS << "CVT_Done },\n";
2339 }
2340
2341 OS << "};\n\n";
2342
2343 // Spit out the conversion driver function.
2344 OS << CvtOS.str();
2345
2346 // Spit out the operand number lookup function.
2347 OS << OpOS.str();
2348
2349 return ConversionTable.size();
2350 }
2351
2352 /// emitMatchClassEnumeration - Emit the enumeration for match class kinds.
emitMatchClassEnumeration(CodeGenTarget & Target,std::forward_list<ClassInfo> & Infos,raw_ostream & OS)2353 static void emitMatchClassEnumeration(CodeGenTarget &Target,
2354 std::forward_list<ClassInfo> &Infos,
2355 raw_ostream &OS) {
2356 OS << "namespace {\n\n";
2357
2358 OS << "/// MatchClassKind - The kinds of classes which participate in\n"
2359 << "/// instruction matching.\n";
2360 OS << "enum MatchClassKind {\n";
2361 OS << " InvalidMatchClass = 0,\n";
2362 OS << " OptionalMatchClass = 1,\n";
2363 ClassInfo::ClassInfoKind LastKind = ClassInfo::Token;
2364 StringRef LastName = "OptionalMatchClass";
2365 for (const auto &CI : Infos) {
2366 if (LastKind == ClassInfo::Token && CI.Kind != ClassInfo::Token) {
2367 OS << " MCK_LAST_TOKEN = " << LastName << ",\n";
2368 } else if (LastKind < ClassInfo::UserClass0 &&
2369 CI.Kind >= ClassInfo::UserClass0) {
2370 OS << " MCK_LAST_REGISTER = " << LastName << ",\n";
2371 }
2372 LastKind = (ClassInfo::ClassInfoKind)CI.Kind;
2373 LastName = CI.Name;
2374
2375 OS << " " << CI.Name << ", // ";
2376 if (CI.Kind == ClassInfo::Token) {
2377 OS << "'" << CI.ValueName << "'\n";
2378 } else if (CI.isRegisterClass()) {
2379 if (!CI.ValueName.empty())
2380 OS << "register class '" << CI.ValueName << "'\n";
2381 else
2382 OS << "derived register class\n";
2383 } else {
2384 OS << "user defined class '" << CI.ValueName << "'\n";
2385 }
2386 }
2387 OS << " NumMatchClassKinds\n";
2388 OS << "};\n\n";
2389
2390 OS << "} // end anonymous namespace\n\n";
2391 }
2392
2393 /// emitMatchClassDiagStrings - Emit a function to get the diagnostic text to be
2394 /// used when an assembly operand does not match the expected operand class.
emitOperandMatchErrorDiagStrings(AsmMatcherInfo & Info,raw_ostream & OS)2395 static void emitOperandMatchErrorDiagStrings(AsmMatcherInfo &Info, raw_ostream &OS) {
2396 // If the target does not use DiagnosticString for any operands, don't emit
2397 // an unused function.
2398 if (llvm::all_of(Info.Classes, [](const ClassInfo &CI) {
2399 return CI.DiagnosticString.empty();
2400 }))
2401 return;
2402
2403 OS << "static const char *getMatchKindDiag(" << Info.Target.getName()
2404 << "AsmParser::" << Info.Target.getName()
2405 << "MatchResultTy MatchResult) {\n";
2406 OS << " switch (MatchResult) {\n";
2407
2408 for (const auto &CI: Info.Classes) {
2409 if (!CI.DiagnosticString.empty()) {
2410 assert(!CI.DiagnosticType.empty() &&
2411 "DiagnosticString set without DiagnosticType");
2412 OS << " case " << Info.Target.getName()
2413 << "AsmParser::Match_" << CI.DiagnosticType << ":\n";
2414 OS << " return \"" << CI.DiagnosticString << "\";\n";
2415 }
2416 }
2417
2418 OS << " default:\n";
2419 OS << " return nullptr;\n";
2420
2421 OS << " }\n";
2422 OS << "}\n\n";
2423 }
2424
emitRegisterMatchErrorFunc(AsmMatcherInfo & Info,raw_ostream & OS)2425 static void emitRegisterMatchErrorFunc(AsmMatcherInfo &Info, raw_ostream &OS) {
2426 OS << "static unsigned getDiagKindFromRegisterClass(MatchClassKind "
2427 "RegisterClass) {\n";
2428 if (none_of(Info.Classes, [](const ClassInfo &CI) {
2429 return CI.isRegisterClass() && !CI.DiagnosticType.empty();
2430 })) {
2431 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n";
2432 } else {
2433 OS << " switch (RegisterClass) {\n";
2434 for (const auto &CI: Info.Classes) {
2435 if (CI.isRegisterClass() && !CI.DiagnosticType.empty()) {
2436 OS << " case " << CI.Name << ":\n";
2437 OS << " return " << Info.Target.getName() << "AsmParser::Match_"
2438 << CI.DiagnosticType << ";\n";
2439 }
2440 }
2441
2442 OS << " default:\n";
2443 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n";
2444
2445 OS << " }\n";
2446 }
2447 OS << "}\n\n";
2448 }
2449
2450 /// emitValidateOperandClass - Emit the function to validate an operand class.
emitValidateOperandClass(AsmMatcherInfo & Info,raw_ostream & OS)2451 static void emitValidateOperandClass(AsmMatcherInfo &Info,
2452 raw_ostream &OS) {
2453 OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, "
2454 << "MatchClassKind Kind) {\n";
2455 OS << " " << Info.Target.getName() << "Operand &Operand = ("
2456 << Info.Target.getName() << "Operand &)GOp;\n";
2457
2458 // The InvalidMatchClass is not to match any operand.
2459 OS << " if (Kind == InvalidMatchClass)\n";
2460 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n\n";
2461
2462 // Check for Token operands first.
2463 // FIXME: Use a more specific diagnostic type.
2464 OS << " if (Operand.isToken() && Kind <= MCK_LAST_TOKEN)\n";
2465 OS << " return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n"
2466 << " MCTargetAsmParser::Match_Success :\n"
2467 << " MCTargetAsmParser::Match_InvalidOperand;\n\n";
2468
2469 // Check the user classes. We don't care what order since we're only
2470 // actually matching against one of them.
2471 OS << " switch (Kind) {\n"
2472 " default: break;\n";
2473 for (const auto &CI : Info.Classes) {
2474 if (!CI.isUserClass())
2475 continue;
2476
2477 OS << " // '" << CI.ClassName << "' class\n";
2478 OS << " case " << CI.Name << ": {\n";
2479 OS << " DiagnosticPredicate DP(Operand." << CI.PredicateMethod
2480 << "());\n";
2481 OS << " if (DP.isMatch())\n";
2482 OS << " return MCTargetAsmParser::Match_Success;\n";
2483 if (!CI.DiagnosticType.empty()) {
2484 OS << " if (DP.isNearMatch())\n";
2485 OS << " return " << Info.Target.getName() << "AsmParser::Match_"
2486 << CI.DiagnosticType << ";\n";
2487 OS << " break;\n";
2488 }
2489 else
2490 OS << " break;\n";
2491 OS << " }\n";
2492 }
2493 OS << " } // end switch (Kind)\n\n";
2494
2495 // Check for register operands, including sub-classes.
2496 OS << " if (Operand.isReg()) {\n";
2497 OS << " MatchClassKind OpKind;\n";
2498 OS << " switch (Operand.getReg()) {\n";
2499 OS << " default: OpKind = InvalidMatchClass; break;\n";
2500 for (const auto &RC : Info.RegisterClasses)
2501 OS << " case " << RC.first->getValueAsString("Namespace") << "::"
2502 << RC.first->getName() << ": OpKind = " << RC.second->Name
2503 << "; break;\n";
2504 OS << " }\n";
2505 OS << " return isSubclass(OpKind, Kind) ? "
2506 << "(unsigned)MCTargetAsmParser::Match_Success :\n "
2507 << " getDiagKindFromRegisterClass(Kind);\n }\n\n";
2508
2509 // Expected operand is a register, but actual is not.
2510 OS << " if (Kind > MCK_LAST_TOKEN && Kind <= MCK_LAST_REGISTER)\n";
2511 OS << " return getDiagKindFromRegisterClass(Kind);\n\n";
2512
2513 // Generic fallthrough match failure case for operands that don't have
2514 // specialized diagnostic types.
2515 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n";
2516 OS << "}\n\n";
2517 }
2518
2519 /// emitIsSubclass - Emit the subclass predicate function.
emitIsSubclass(CodeGenTarget & Target,std::forward_list<ClassInfo> & Infos,raw_ostream & OS)2520 static void emitIsSubclass(CodeGenTarget &Target,
2521 std::forward_list<ClassInfo> &Infos,
2522 raw_ostream &OS) {
2523 OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n";
2524 OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
2525 OS << " if (A == B)\n";
2526 OS << " return true;\n\n";
2527
2528 bool EmittedSwitch = false;
2529 for (const auto &A : Infos) {
2530 std::vector<StringRef> SuperClasses;
2531 if (A.IsOptional)
2532 SuperClasses.push_back("OptionalMatchClass");
2533 for (const auto &B : Infos) {
2534 if (&A != &B && A.isSubsetOf(B))
2535 SuperClasses.push_back(B.Name);
2536 }
2537
2538 if (SuperClasses.empty())
2539 continue;
2540
2541 // If this is the first SuperClass, emit the switch header.
2542 if (!EmittedSwitch) {
2543 OS << " switch (A) {\n";
2544 OS << " default:\n";
2545 OS << " return false;\n";
2546 EmittedSwitch = true;
2547 }
2548
2549 OS << "\n case " << A.Name << ":\n";
2550
2551 if (SuperClasses.size() == 1) {
2552 OS << " return B == " << SuperClasses.back() << ";\n";
2553 continue;
2554 }
2555
2556 if (!SuperClasses.empty()) {
2557 OS << " switch (B) {\n";
2558 OS << " default: return false;\n";
2559 for (StringRef SC : SuperClasses)
2560 OS << " case " << SC << ": return true;\n";
2561 OS << " }\n";
2562 } else {
2563 // No case statement to emit
2564 OS << " return false;\n";
2565 }
2566 }
2567
2568 // If there were case statements emitted into the string stream write the
2569 // default.
2570 if (EmittedSwitch)
2571 OS << " }\n";
2572 else
2573 OS << " return false;\n";
2574
2575 OS << "}\n\n";
2576 }
2577
2578 /// emitMatchTokenString - Emit the function to match a token string to the
2579 /// appropriate match class value.
emitMatchTokenString(CodeGenTarget & Target,std::forward_list<ClassInfo> & Infos,raw_ostream & OS)2580 static void emitMatchTokenString(CodeGenTarget &Target,
2581 std::forward_list<ClassInfo> &Infos,
2582 raw_ostream &OS) {
2583 // Construct the match list.
2584 std::vector<StringMatcher::StringPair> Matches;
2585 for (const auto &CI : Infos) {
2586 if (CI.Kind == ClassInfo::Token)
2587 Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";");
2588 }
2589
2590 OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
2591
2592 StringMatcher("Name", Matches, OS).Emit();
2593
2594 OS << " return InvalidMatchClass;\n";
2595 OS << "}\n\n";
2596 }
2597
2598 /// emitMatchRegisterName - Emit the function to match a string to the target
2599 /// specific register enum.
emitMatchRegisterName(CodeGenTarget & Target,Record * AsmParser,raw_ostream & OS)2600 static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
2601 raw_ostream &OS) {
2602 // Construct the match list.
2603 std::vector<StringMatcher::StringPair> Matches;
2604 const auto &Regs = Target.getRegBank().getRegisters();
2605 for (const CodeGenRegister &Reg : Regs) {
2606 if (Reg.TheDef->getValueAsString("AsmName").empty())
2607 continue;
2608
2609 Matches.emplace_back(std::string(Reg.TheDef->getValueAsString("AsmName")),
2610 "return " + utostr(Reg.EnumValue) + ";");
2611 }
2612
2613 OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
2614
2615 bool IgnoreDuplicates =
2616 AsmParser->getValueAsBit("AllowDuplicateRegisterNames");
2617 StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates);
2618
2619 OS << " return 0;\n";
2620 OS << "}\n\n";
2621 }
2622
2623 /// Emit the function to match a string to the target
2624 /// specific register enum.
emitMatchRegisterAltName(CodeGenTarget & Target,Record * AsmParser,raw_ostream & OS)2625 static void emitMatchRegisterAltName(CodeGenTarget &Target, Record *AsmParser,
2626 raw_ostream &OS) {
2627 // Construct the match list.
2628 std::vector<StringMatcher::StringPair> Matches;
2629 const auto &Regs = Target.getRegBank().getRegisters();
2630 for (const CodeGenRegister &Reg : Regs) {
2631
2632 auto AltNames = Reg.TheDef->getValueAsListOfStrings("AltNames");
2633
2634 for (auto AltName : AltNames) {
2635 AltName = StringRef(AltName).trim();
2636
2637 // don't handle empty alternative names
2638 if (AltName.empty())
2639 continue;
2640
2641 Matches.emplace_back(std::string(AltName),
2642 "return " + utostr(Reg.EnumValue) + ";");
2643 }
2644 }
2645
2646 OS << "static unsigned MatchRegisterAltName(StringRef Name) {\n";
2647
2648 bool IgnoreDuplicates =
2649 AsmParser->getValueAsBit("AllowDuplicateRegisterNames");
2650 StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates);
2651
2652 OS << " return 0;\n";
2653 OS << "}\n\n";
2654 }
2655
2656 /// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types.
emitOperandDiagnosticTypes(AsmMatcherInfo & Info,raw_ostream & OS)2657 static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) {
2658 // Get the set of diagnostic types from all of the operand classes.
2659 std::set<StringRef> Types;
2660 for (const auto &OpClassEntry : Info.AsmOperandClasses) {
2661 if (!OpClassEntry.second->DiagnosticType.empty())
2662 Types.insert(OpClassEntry.second->DiagnosticType);
2663 }
2664 for (const auto &OpClassEntry : Info.RegisterClassClasses) {
2665 if (!OpClassEntry.second->DiagnosticType.empty())
2666 Types.insert(OpClassEntry.second->DiagnosticType);
2667 }
2668
2669 if (Types.empty()) return;
2670
2671 // Now emit the enum entries.
2672 for (StringRef Type : Types)
2673 OS << " Match_" << Type << ",\n";
2674 OS << " END_OPERAND_DIAGNOSTIC_TYPES\n";
2675 }
2676
2677 /// emitGetSubtargetFeatureName - Emit the helper function to get the
2678 /// user-level name for a subtarget feature.
emitGetSubtargetFeatureName(AsmMatcherInfo & Info,raw_ostream & OS)2679 static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) {
2680 OS << "// User-level names for subtarget features that participate in\n"
2681 << "// instruction matching.\n"
2682 << "static const char *getSubtargetFeatureName(uint64_t Val) {\n";
2683 if (!Info.SubtargetFeatures.empty()) {
2684 OS << " switch(Val) {\n";
2685 for (const auto &SF : Info.SubtargetFeatures) {
2686 const SubtargetFeatureInfo &SFI = SF.second;
2687 // FIXME: Totally just a placeholder name to get the algorithm working.
2688 OS << " case " << SFI.getEnumBitName() << ": return \""
2689 << SFI.TheDef->getValueAsString("PredicateName") << "\";\n";
2690 }
2691 OS << " default: return \"(unknown)\";\n";
2692 OS << " }\n";
2693 } else {
2694 // Nothing to emit, so skip the switch
2695 OS << " return \"(unknown)\";\n";
2696 }
2697 OS << "}\n\n";
2698 }
2699
GetAliasRequiredFeatures(Record * R,const AsmMatcherInfo & Info)2700 static std::string GetAliasRequiredFeatures(Record *R,
2701 const AsmMatcherInfo &Info) {
2702 std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
2703 std::string Result;
2704
2705 if (ReqFeatures.empty())
2706 return Result;
2707
2708 for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
2709 const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
2710
2711 if (!F)
2712 PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
2713 "' is not marked as an AssemblerPredicate!");
2714
2715 if (i)
2716 Result += " && ";
2717
2718 Result += "Features.test(" + F->getEnumBitName() + ')';
2719 }
2720
2721 return Result;
2722 }
2723
emitMnemonicAliasVariant(raw_ostream & OS,const AsmMatcherInfo & Info,std::vector<Record * > & Aliases,unsigned Indent=0,StringRef AsmParserVariantName=StringRef ())2724 static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info,
2725 std::vector<Record*> &Aliases,
2726 unsigned Indent = 0,
2727 StringRef AsmParserVariantName = StringRef()){
2728 // Keep track of all the aliases from a mnemonic. Use an std::map so that the
2729 // iteration order of the map is stable.
2730 std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
2731
2732 for (Record *R : Aliases) {
2733 // FIXME: Allow AssemblerVariantName to be a comma separated list.
2734 StringRef AsmVariantName = R->getValueAsString("AsmVariantName");
2735 if (AsmVariantName != AsmParserVariantName)
2736 continue;
2737 AliasesFromMnemonic[R->getValueAsString("FromMnemonic").lower()]
2738 .push_back(R);
2739 }
2740 if (AliasesFromMnemonic.empty())
2741 return;
2742
2743 // Process each alias a "from" mnemonic at a time, building the code executed
2744 // by the string remapper.
2745 std::vector<StringMatcher::StringPair> Cases;
2746 for (const auto &AliasEntry : AliasesFromMnemonic) {
2747 const std::vector<Record*> &ToVec = AliasEntry.second;
2748
2749 // Loop through each alias and emit code that handles each case. If there
2750 // are two instructions without predicates, emit an error. If there is one,
2751 // emit it last.
2752 std::string MatchCode;
2753 int AliasWithNoPredicate = -1;
2754
2755 for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
2756 Record *R = ToVec[i];
2757 std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
2758
2759 // If this unconditionally matches, remember it for later and diagnose
2760 // duplicates.
2761 if (FeatureMask.empty()) {
2762 if (AliasWithNoPredicate != -1 &&
2763 R->getValueAsString("ToMnemonic") !=
2764 ToVec[AliasWithNoPredicate]->getValueAsString("ToMnemonic")) {
2765 // We can't have two different aliases from the same mnemonic with no
2766 // predicate.
2767 PrintError(
2768 ToVec[AliasWithNoPredicate]->getLoc(),
2769 "two different MnemonicAliases with the same 'from' mnemonic!");
2770 PrintFatalError(R->getLoc(), "this is the other MnemonicAlias.");
2771 }
2772
2773 AliasWithNoPredicate = i;
2774 continue;
2775 }
2776 if (R->getValueAsString("ToMnemonic") == AliasEntry.first)
2777 PrintFatalError(R->getLoc(), "MnemonicAlias to the same string");
2778
2779 if (!MatchCode.empty())
2780 MatchCode += "else ";
2781 MatchCode += "if (" + FeatureMask + ")\n";
2782 MatchCode += " Mnemonic = \"";
2783 MatchCode += R->getValueAsString("ToMnemonic").lower();
2784 MatchCode += "\";\n";
2785 }
2786
2787 if (AliasWithNoPredicate != -1) {
2788 Record *R = ToVec[AliasWithNoPredicate];
2789 if (!MatchCode.empty())
2790 MatchCode += "else\n ";
2791 MatchCode += "Mnemonic = \"";
2792 MatchCode += R->getValueAsString("ToMnemonic").lower();
2793 MatchCode += "\";\n";
2794 }
2795
2796 MatchCode += "return;";
2797
2798 Cases.push_back(std::make_pair(AliasEntry.first, MatchCode));
2799 }
2800 StringMatcher("Mnemonic", Cases, OS).Emit(Indent);
2801 }
2802
2803 /// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
2804 /// emit a function for them and return true, otherwise return false.
emitMnemonicAliases(raw_ostream & OS,const AsmMatcherInfo & Info,CodeGenTarget & Target)2805 static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info,
2806 CodeGenTarget &Target) {
2807 // Ignore aliases when match-prefix is set.
2808 if (!MatchPrefix.empty())
2809 return false;
2810
2811 std::vector<Record*> Aliases =
2812 Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
2813 if (Aliases.empty()) return false;
2814
2815 OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
2816 "const FeatureBitset &Features, unsigned VariantID) {\n";
2817 OS << " switch (VariantID) {\n";
2818 unsigned VariantCount = Target.getAsmParserVariantCount();
2819 for (unsigned VC = 0; VC != VariantCount; ++VC) {
2820 Record *AsmVariant = Target.getAsmParserVariant(VC);
2821 int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant");
2822 StringRef AsmParserVariantName = AsmVariant->getValueAsString("Name");
2823 OS << " case " << AsmParserVariantNo << ":\n";
2824 emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2,
2825 AsmParserVariantName);
2826 OS << " break;\n";
2827 }
2828 OS << " }\n";
2829
2830 // Emit aliases that apply to all variants.
2831 emitMnemonicAliasVariant(OS, Info, Aliases);
2832
2833 OS << "}\n\n";
2834
2835 return true;
2836 }
2837
emitCustomOperandParsing(raw_ostream & OS,CodeGenTarget & Target,const AsmMatcherInfo & Info,StringRef ClassName,StringToOffsetTable & StringTable,unsigned MaxMnemonicIndex,unsigned MaxFeaturesIndex,bool HasMnemonicFirst)2838 static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
2839 const AsmMatcherInfo &Info, StringRef ClassName,
2840 StringToOffsetTable &StringTable,
2841 unsigned MaxMnemonicIndex,
2842 unsigned MaxFeaturesIndex,
2843 bool HasMnemonicFirst) {
2844 unsigned MaxMask = 0;
2845 for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
2846 MaxMask |= OMI.OperandMask;
2847 }
2848
2849 // Emit the static custom operand parsing table;
2850 OS << "namespace {\n";
2851 OS << " struct OperandMatchEntry {\n";
2852 OS << " " << getMinimalTypeForRange(MaxMnemonicIndex)
2853 << " Mnemonic;\n";
2854 OS << " " << getMinimalTypeForRange(MaxMask)
2855 << " OperandMask;\n";
2856 OS << " " << getMinimalTypeForRange(std::distance(
2857 Info.Classes.begin(), Info.Classes.end())) << " Class;\n";
2858 OS << " " << getMinimalTypeForRange(MaxFeaturesIndex)
2859 << " RequiredFeaturesIdx;\n\n";
2860 OS << " StringRef getMnemonic() const {\n";
2861 OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n";
2862 OS << " MnemonicTable[Mnemonic]);\n";
2863 OS << " }\n";
2864 OS << " };\n\n";
2865
2866 OS << " // Predicate for searching for an opcode.\n";
2867 OS << " struct LessOpcodeOperand {\n";
2868 OS << " bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
2869 OS << " return LHS.getMnemonic() < RHS;\n";
2870 OS << " }\n";
2871 OS << " bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
2872 OS << " return LHS < RHS.getMnemonic();\n";
2873 OS << " }\n";
2874 OS << " bool operator()(const OperandMatchEntry &LHS,";
2875 OS << " const OperandMatchEntry &RHS) {\n";
2876 OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n";
2877 OS << " }\n";
2878 OS << " };\n";
2879
2880 OS << "} // end anonymous namespace\n\n";
2881
2882 OS << "static const OperandMatchEntry OperandMatchTable["
2883 << Info.OperandMatchInfo.size() << "] = {\n";
2884
2885 OS << " /* Operand List Mnemonic, Mask, Operand Class, Features */\n";
2886 for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
2887 const MatchableInfo &II = *OMI.MI;
2888
2889 OS << " { ";
2890
2891 // Store a pascal-style length byte in the mnemonic.
2892 std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.lower();
2893 OS << StringTable.GetOrAddStringOffset(LenMnemonic, false)
2894 << " /* " << II.Mnemonic << " */, ";
2895
2896 OS << OMI.OperandMask;
2897 OS << " /* ";
2898 ListSeparator LS;
2899 for (int i = 0, e = 31; i !=e; ++i)
2900 if (OMI.OperandMask & (1 << i))
2901 OS << LS << i;
2902 OS << " */, ";
2903
2904 OS << OMI.CI->Name;
2905
2906 // Write the required features mask.
2907 OS << ", AMFBS";
2908 if (II.RequiredFeatures.empty())
2909 OS << "_None";
2910 else
2911 for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i)
2912 OS << '_' << II.RequiredFeatures[i]->TheDef->getName();
2913
2914 OS << " },\n";
2915 }
2916 OS << "};\n\n";
2917
2918 // Emit the operand class switch to call the correct custom parser for
2919 // the found operand class.
2920 OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n"
2921 << "tryCustomParseOperand(OperandVector"
2922 << " &Operands,\n unsigned MCK) {\n\n"
2923 << " switch(MCK) {\n";
2924
2925 for (const auto &CI : Info.Classes) {
2926 if (CI.ParserMethod.empty())
2927 continue;
2928 OS << " case " << CI.Name << ":\n"
2929 << " return " << CI.ParserMethod << "(Operands);\n";
2930 }
2931
2932 OS << " default:\n";
2933 OS << " return MatchOperand_NoMatch;\n";
2934 OS << " }\n";
2935 OS << " return MatchOperand_NoMatch;\n";
2936 OS << "}\n\n";
2937
2938 // Emit the static custom operand parser. This code is very similar with
2939 // the other matcher. Also use MatchResultTy here just in case we go for
2940 // a better error handling.
2941 OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n"
2942 << "MatchOperandParserImpl(OperandVector"
2943 << " &Operands,\n StringRef Mnemonic,\n"
2944 << " bool ParseForAllFeatures) {\n";
2945
2946 // Emit code to get the available features.
2947 OS << " // Get the current feature set.\n";
2948 OS << " const FeatureBitset &AvailableFeatures = getAvailableFeatures();\n\n";
2949
2950 OS << " // Get the next operand index.\n";
2951 OS << " unsigned NextOpNum = Operands.size()"
2952 << (HasMnemonicFirst ? " - 1" : "") << ";\n";
2953
2954 // Emit code to search the table.
2955 OS << " // Search the table.\n";
2956 if (HasMnemonicFirst) {
2957 OS << " auto MnemonicRange =\n";
2958 OS << " std::equal_range(std::begin(OperandMatchTable), "
2959 "std::end(OperandMatchTable),\n";
2960 OS << " Mnemonic, LessOpcodeOperand());\n\n";
2961 } else {
2962 OS << " auto MnemonicRange = std::make_pair(std::begin(OperandMatchTable),"
2963 " std::end(OperandMatchTable));\n";
2964 OS << " if (!Mnemonic.empty())\n";
2965 OS << " MnemonicRange =\n";
2966 OS << " std::equal_range(std::begin(OperandMatchTable), "
2967 "std::end(OperandMatchTable),\n";
2968 OS << " Mnemonic, LessOpcodeOperand());\n\n";
2969 }
2970
2971 OS << " if (MnemonicRange.first == MnemonicRange.second)\n";
2972 OS << " return MatchOperand_NoMatch;\n\n";
2973
2974 OS << " for (const OperandMatchEntry *it = MnemonicRange.first,\n"
2975 << " *ie = MnemonicRange.second; it != ie; ++it) {\n";
2976
2977 OS << " // equal_range guarantees that instruction mnemonic matches.\n";
2978 OS << " assert(Mnemonic == it->getMnemonic());\n\n";
2979
2980 // Emit check that the required features are available.
2981 OS << " // check if the available features match\n";
2982 OS << " const FeatureBitset &RequiredFeatures = "
2983 "FeatureBitsets[it->RequiredFeaturesIdx];\n";
2984 OS << " if (!ParseForAllFeatures && (AvailableFeatures & "
2985 "RequiredFeatures) != RequiredFeatures)\n";
2986 OS << " continue;\n\n";
2987
2988 // Emit check to ensure the operand number matches.
2989 OS << " // check if the operand in question has a custom parser.\n";
2990 OS << " if (!(it->OperandMask & (1 << NextOpNum)))\n";
2991 OS << " continue;\n\n";
2992
2993 // Emit call to the custom parser method
2994 OS << " // call custom parse method to handle the operand\n";
2995 OS << " OperandMatchResultTy Result = ";
2996 OS << "tryCustomParseOperand(Operands, it->Class);\n";
2997 OS << " if (Result != MatchOperand_NoMatch)\n";
2998 OS << " return Result;\n";
2999 OS << " }\n\n";
3000
3001 OS << " // Okay, we had no match.\n";
3002 OS << " return MatchOperand_NoMatch;\n";
3003 OS << "}\n\n";
3004 }
3005
emitAsmTiedOperandConstraints(CodeGenTarget & Target,AsmMatcherInfo & Info,raw_ostream & OS)3006 static void emitAsmTiedOperandConstraints(CodeGenTarget &Target,
3007 AsmMatcherInfo &Info,
3008 raw_ostream &OS) {
3009 std::string AsmParserName =
3010 std::string(Info.AsmParser->getValueAsString("AsmParserClassName"));
3011 OS << "static bool ";
3012 OS << "checkAsmTiedOperandConstraints(const " << Target.getName()
3013 << AsmParserName << "&AsmParser,\n";
3014 OS << " unsigned Kind,\n";
3015 OS << " const OperandVector &Operands,\n";
3016 OS << " uint64_t &ErrorInfo) {\n";
3017 OS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n";
3018 OS << " const uint8_t *Converter = ConversionTable[Kind];\n";
3019 OS << " for (const uint8_t *p = Converter; *p; p += 2) {\n";
3020 OS << " switch (*p) {\n";
3021 OS << " case CVT_Tied: {\n";
3022 OS << " unsigned OpIdx = *(p + 1);\n";
3023 OS << " assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n";
3024 OS << " std::begin(TiedAsmOperandTable)) &&\n";
3025 OS << " \"Tied operand not found\");\n";
3026 OS << " unsigned OpndNum1 = TiedAsmOperandTable[OpIdx][1];\n";
3027 OS << " unsigned OpndNum2 = TiedAsmOperandTable[OpIdx][2];\n";
3028 OS << " if (OpndNum1 != OpndNum2) {\n";
3029 OS << " auto &SrcOp1 = Operands[OpndNum1];\n";
3030 OS << " auto &SrcOp2 = Operands[OpndNum2];\n";
3031 OS << " if (SrcOp1->isReg() && SrcOp2->isReg()) {\n";
3032 OS << " if (!AsmParser.regsEqual(*SrcOp1, *SrcOp2)) {\n";
3033 OS << " ErrorInfo = OpndNum2;\n";
3034 OS << " return false;\n";
3035 OS << " }\n";
3036 OS << " }\n";
3037 OS << " }\n";
3038 OS << " break;\n";
3039 OS << " }\n";
3040 OS << " default:\n";
3041 OS << " break;\n";
3042 OS << " }\n";
3043 OS << " }\n";
3044 OS << " return true;\n";
3045 OS << "}\n\n";
3046 }
3047
emitMnemonicSpellChecker(raw_ostream & OS,CodeGenTarget & Target,unsigned VariantCount)3048 static void emitMnemonicSpellChecker(raw_ostream &OS, CodeGenTarget &Target,
3049 unsigned VariantCount) {
3050 OS << "static std::string " << Target.getName()
3051 << "MnemonicSpellCheck(StringRef S, const FeatureBitset &FBS,"
3052 << " unsigned VariantID) {\n";
3053 if (!VariantCount)
3054 OS << " return \"\";";
3055 else {
3056 OS << " const unsigned MaxEditDist = 2;\n";
3057 OS << " std::vector<StringRef> Candidates;\n";
3058 OS << " StringRef Prev = \"\";\n\n";
3059
3060 OS << " // Find the appropriate table for this asm variant.\n";
3061 OS << " const MatchEntry *Start, *End;\n";
3062 OS << " switch (VariantID) {\n";
3063 OS << " default: llvm_unreachable(\"invalid variant!\");\n";
3064 for (unsigned VC = 0; VC != VariantCount; ++VC) {
3065 Record *AsmVariant = Target.getAsmParserVariant(VC);
3066 int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3067 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3068 << "); End = std::end(MatchTable" << VC << "); break;\n";
3069 }
3070 OS << " }\n\n";
3071 OS << " for (auto I = Start; I < End; I++) {\n";
3072 OS << " // Ignore unsupported instructions.\n";
3073 OS << " const FeatureBitset &RequiredFeatures = "
3074 "FeatureBitsets[I->RequiredFeaturesIdx];\n";
3075 OS << " if ((FBS & RequiredFeatures) != RequiredFeatures)\n";
3076 OS << " continue;\n";
3077 OS << "\n";
3078 OS << " StringRef T = I->getMnemonic();\n";
3079 OS << " // Avoid recomputing the edit distance for the same string.\n";
3080 OS << " if (T.equals(Prev))\n";
3081 OS << " continue;\n";
3082 OS << "\n";
3083 OS << " Prev = T;\n";
3084 OS << " unsigned Dist = S.edit_distance(T, false, MaxEditDist);\n";
3085 OS << " if (Dist <= MaxEditDist)\n";
3086 OS << " Candidates.push_back(T);\n";
3087 OS << " }\n";
3088 OS << "\n";
3089 OS << " if (Candidates.empty())\n";
3090 OS << " return \"\";\n";
3091 OS << "\n";
3092 OS << " std::string Res = \", did you mean: \";\n";
3093 OS << " unsigned i = 0;\n";
3094 OS << " for (; i < Candidates.size() - 1; i++)\n";
3095 OS << " Res += Candidates[i].str() + \", \";\n";
3096 OS << " return Res + Candidates[i].str() + \"?\";\n";
3097 }
3098 OS << "}\n";
3099 OS << "\n";
3100 }
3101
emitMnemonicChecker(raw_ostream & OS,CodeGenTarget & Target,unsigned VariantCount,bool HasMnemonicFirst,bool HasMnemonicAliases)3102 static void emitMnemonicChecker(raw_ostream &OS,
3103 CodeGenTarget &Target,
3104 unsigned VariantCount,
3105 bool HasMnemonicFirst,
3106 bool HasMnemonicAliases) {
3107 OS << "static bool " << Target.getName()
3108 << "CheckMnemonic(StringRef Mnemonic,\n";
3109 OS << " "
3110 << "const FeatureBitset &AvailableFeatures,\n";
3111 OS << " "
3112 << "unsigned VariantID) {\n";
3113
3114 if (!VariantCount) {
3115 OS << " return false;\n";
3116 } else {
3117 if (HasMnemonicAliases) {
3118 OS << " // Process all MnemonicAliases to remap the mnemonic.\n";
3119 OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);";
3120 OS << "\n\n";
3121 }
3122 OS << " // Find the appropriate table for this asm variant.\n";
3123 OS << " const MatchEntry *Start, *End;\n";
3124 OS << " switch (VariantID) {\n";
3125 OS << " default: llvm_unreachable(\"invalid variant!\");\n";
3126 for (unsigned VC = 0; VC != VariantCount; ++VC) {
3127 Record *AsmVariant = Target.getAsmParserVariant(VC);
3128 int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3129 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3130 << "); End = std::end(MatchTable" << VC << "); break;\n";
3131 }
3132 OS << " }\n\n";
3133
3134 OS << " // Search the table.\n";
3135 if (HasMnemonicFirst) {
3136 OS << " auto MnemonicRange = "
3137 "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
3138 } else {
3139 OS << " auto MnemonicRange = std::make_pair(Start, End);\n";
3140 OS << " unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n";
3141 OS << " if (!Mnemonic.empty())\n";
3142 OS << " MnemonicRange = "
3143 << "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n";
3144 }
3145
3146 OS << " if (MnemonicRange.first == MnemonicRange.second)\n";
3147 OS << " return false;\n\n";
3148
3149 OS << " for (const MatchEntry *it = MnemonicRange.first, "
3150 << "*ie = MnemonicRange.second;\n";
3151 OS << " it != ie; ++it) {\n";
3152 OS << " const FeatureBitset &RequiredFeatures =\n";
3153 OS << " FeatureBitsets[it->RequiredFeaturesIdx];\n";
3154 OS << " if ((AvailableFeatures & RequiredFeatures) == ";
3155 OS << "RequiredFeatures)\n";
3156 OS << " return true;\n";
3157 OS << " }\n";
3158 OS << " return false;\n";
3159 }
3160 OS << "}\n";
3161 OS << "\n";
3162 }
3163
3164 // Emit a function mapping match classes to strings, for debugging.
emitMatchClassKindNames(std::forward_list<ClassInfo> & Infos,raw_ostream & OS)3165 static void emitMatchClassKindNames(std::forward_list<ClassInfo> &Infos,
3166 raw_ostream &OS) {
3167 OS << "#ifndef NDEBUG\n";
3168 OS << "const char *getMatchClassName(MatchClassKind Kind) {\n";
3169 OS << " switch (Kind) {\n";
3170
3171 OS << " case InvalidMatchClass: return \"InvalidMatchClass\";\n";
3172 OS << " case OptionalMatchClass: return \"OptionalMatchClass\";\n";
3173 for (const auto &CI : Infos) {
3174 OS << " case " << CI.Name << ": return \"" << CI.Name << "\";\n";
3175 }
3176 OS << " case NumMatchClassKinds: return \"NumMatchClassKinds\";\n";
3177
3178 OS << " }\n";
3179 OS << " llvm_unreachable(\"unhandled MatchClassKind!\");\n";
3180 OS << "}\n\n";
3181 OS << "#endif // NDEBUG\n";
3182 }
3183
3184 static std::string
getNameForFeatureBitset(const std::vector<Record * > & FeatureBitset)3185 getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) {
3186 std::string Name = "AMFBS";
3187 for (const auto &Feature : FeatureBitset)
3188 Name += ("_" + Feature->getName()).str();
3189 return Name;
3190 }
3191
run(raw_ostream & OS)3192 void AsmMatcherEmitter::run(raw_ostream &OS) {
3193 CodeGenTarget Target(Records);
3194 Record *AsmParser = Target.getAsmParser();
3195 StringRef ClassName = AsmParser->getValueAsString("AsmParserClassName");
3196
3197 // Compute the information on the instructions to match.
3198 AsmMatcherInfo Info(AsmParser, Target, Records);
3199 Info.buildInfo();
3200
3201 // Sort the instruction table using the partial order on classes. We use
3202 // stable_sort to ensure that ambiguous instructions are still
3203 // deterministically ordered.
3204 llvm::stable_sort(
3205 Info.Matchables,
3206 [](const std::unique_ptr<MatchableInfo> &a,
3207 const std::unique_ptr<MatchableInfo> &b) { return *a < *b; });
3208
3209 #ifdef EXPENSIVE_CHECKS
3210 // Verify that the table is sorted and operator < works transitively.
3211 for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
3212 ++I) {
3213 for (auto J = I; J != E; ++J) {
3214 assert(!(**J < **I));
3215 }
3216 }
3217 #endif
3218
3219 DEBUG_WITH_TYPE("instruction_info", {
3220 for (const auto &MI : Info.Matchables)
3221 MI->dump();
3222 });
3223
3224 // Check for ambiguous matchables.
3225 DEBUG_WITH_TYPE("ambiguous_instrs", {
3226 unsigned NumAmbiguous = 0;
3227 for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
3228 ++I) {
3229 for (auto J = std::next(I); J != E; ++J) {
3230 const MatchableInfo &A = **I;
3231 const MatchableInfo &B = **J;
3232
3233 if (A.couldMatchAmbiguouslyWith(B)) {
3234 errs() << "warning: ambiguous matchables:\n";
3235 A.dump();
3236 errs() << "\nis incomparable with:\n";
3237 B.dump();
3238 errs() << "\n\n";
3239 ++NumAmbiguous;
3240 }
3241 }
3242 }
3243 if (NumAmbiguous)
3244 errs() << "warning: " << NumAmbiguous
3245 << " ambiguous matchables!\n";
3246 });
3247
3248 // Compute the information on the custom operand parsing.
3249 Info.buildOperandMatchInfo();
3250
3251 bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
3252 bool HasOptionalOperands = Info.hasOptionalOperands();
3253 bool ReportMultipleNearMisses =
3254 AsmParser->getValueAsBit("ReportMultipleNearMisses");
3255
3256 // Write the output.
3257
3258 // Information for the class declaration.
3259 OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
3260 OS << "#undef GET_ASSEMBLER_HEADER\n";
3261 OS << " // This should be included into the middle of the declaration of\n";
3262 OS << " // your subclasses implementation of MCTargetAsmParser.\n";
3263 OS << " FeatureBitset ComputeAvailableFeatures(const FeatureBitset &FB) const;\n";
3264 if (HasOptionalOperands) {
3265 OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, "
3266 << "unsigned Opcode,\n"
3267 << " const OperandVector &Operands,\n"
3268 << " const SmallBitVector &OptionalOperandsMask);\n";
3269 } else {
3270 OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, "
3271 << "unsigned Opcode,\n"
3272 << " const OperandVector &Operands);\n";
3273 }
3274 OS << " void convertToMapAndConstraints(unsigned Kind,\n ";
3275 OS << " const OperandVector &Operands) override;\n";
3276 OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n"
3277 << " MCInst &Inst,\n";
3278 if (ReportMultipleNearMisses)
3279 OS << " SmallVectorImpl<NearMissInfo> *NearMisses,\n";
3280 else
3281 OS << " uint64_t &ErrorInfo,\n"
3282 << " FeatureBitset &MissingFeatures,\n";
3283 OS << " bool matchingInlineAsm,\n"
3284 << " unsigned VariantID = 0);\n";
3285 if (!ReportMultipleNearMisses)
3286 OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n"
3287 << " MCInst &Inst,\n"
3288 << " uint64_t &ErrorInfo,\n"
3289 << " bool matchingInlineAsm,\n"
3290 << " unsigned VariantID = 0) {\n"
3291 << " FeatureBitset MissingFeatures;\n"
3292 << " return MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,\n"
3293 << " matchingInlineAsm, VariantID);\n"
3294 << " }\n\n";
3295
3296
3297 if (!Info.OperandMatchInfo.empty()) {
3298 OS << " OperandMatchResultTy MatchOperandParserImpl(\n";
3299 OS << " OperandVector &Operands,\n";
3300 OS << " StringRef Mnemonic,\n";
3301 OS << " bool ParseForAllFeatures = false);\n";
3302
3303 OS << " OperandMatchResultTy tryCustomParseOperand(\n";
3304 OS << " OperandVector &Operands,\n";
3305 OS << " unsigned MCK);\n\n";
3306 }
3307
3308 OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
3309
3310 // Emit the operand match diagnostic enum names.
3311 OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n";
3312 OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
3313 emitOperandDiagnosticTypes(Info, OS);
3314 OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
3315
3316 OS << "\n#ifdef GET_REGISTER_MATCHER\n";
3317 OS << "#undef GET_REGISTER_MATCHER\n\n";
3318
3319 // Emit the subtarget feature enumeration.
3320 SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(
3321 Info.SubtargetFeatures, OS);
3322
3323 // Emit the function to match a register name to number.
3324 // This should be omitted for Mips target
3325 if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName"))
3326 emitMatchRegisterName(Target, AsmParser, OS);
3327
3328 if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterAltName"))
3329 emitMatchRegisterAltName(Target, AsmParser, OS);
3330
3331 OS << "#endif // GET_REGISTER_MATCHER\n\n";
3332
3333 OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n";
3334 OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n";
3335
3336 // Generate the helper function to get the names for subtarget features.
3337 emitGetSubtargetFeatureName(Info, OS);
3338
3339 OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n";
3340
3341 OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
3342 OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
3343
3344 // Generate the function that remaps for mnemonic aliases.
3345 bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target);
3346
3347 // Generate the convertToMCInst function to convert operands into an MCInst.
3348 // Also, generate the convertToMapAndConstraints function for MS-style inline
3349 // assembly. The latter doesn't actually generate a MCInst.
3350 unsigned NumConverters = emitConvertFuncs(Target, ClassName, Info.Matchables,
3351 HasMnemonicFirst,
3352 HasOptionalOperands, OS);
3353
3354 // Emit the enumeration for classes which participate in matching.
3355 emitMatchClassEnumeration(Target, Info.Classes, OS);
3356
3357 // Emit a function to get the user-visible string to describe an operand
3358 // match failure in diagnostics.
3359 emitOperandMatchErrorDiagStrings(Info, OS);
3360
3361 // Emit a function to map register classes to operand match failure codes.
3362 emitRegisterMatchErrorFunc(Info, OS);
3363
3364 // Emit the routine to match token strings to their match class.
3365 emitMatchTokenString(Target, Info.Classes, OS);
3366
3367 // Emit the subclass predicate routine.
3368 emitIsSubclass(Target, Info.Classes, OS);
3369
3370 // Emit the routine to validate an operand against a match class.
3371 emitValidateOperandClass(Info, OS);
3372
3373 emitMatchClassKindNames(Info.Classes, OS);
3374
3375 // Emit the available features compute function.
3376 SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures(
3377 Info.Target.getName(), ClassName, "ComputeAvailableFeatures",
3378 Info.SubtargetFeatures, OS);
3379
3380 if (!ReportMultipleNearMisses)
3381 emitAsmTiedOperandConstraints(Target, Info, OS);
3382
3383 StringToOffsetTable StringTable;
3384
3385 size_t MaxNumOperands = 0;
3386 unsigned MaxMnemonicIndex = 0;
3387 bool HasDeprecation = false;
3388 for (const auto &MI : Info.Matchables) {
3389 MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
3390 HasDeprecation |= MI->HasDeprecation;
3391
3392 // Store a pascal-style length byte in the mnemonic.
3393 std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.lower();
3394 MaxMnemonicIndex = std::max(MaxMnemonicIndex,
3395 StringTable.GetOrAddStringOffset(LenMnemonic, false));
3396 }
3397
3398 OS << "static const char MnemonicTable[] =\n";
3399 StringTable.EmitString(OS);
3400 OS << ";\n\n";
3401
3402 std::vector<std::vector<Record *>> FeatureBitsets;
3403 for (const auto &MI : Info.Matchables) {
3404 if (MI->RequiredFeatures.empty())
3405 continue;
3406 FeatureBitsets.emplace_back();
3407 for (unsigned I = 0, E = MI->RequiredFeatures.size(); I != E; ++I)
3408 FeatureBitsets.back().push_back(MI->RequiredFeatures[I]->TheDef);
3409 }
3410
3411 llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A,
3412 const std::vector<Record *> &B) {
3413 if (A.size() < B.size())
3414 return true;
3415 if (A.size() > B.size())
3416 return false;
3417 for (auto Pair : zip(A, B)) {
3418 if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName())
3419 return true;
3420 if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName())
3421 return false;
3422 }
3423 return false;
3424 });
3425 FeatureBitsets.erase(
3426 std::unique(FeatureBitsets.begin(), FeatureBitsets.end()),
3427 FeatureBitsets.end());
3428 OS << "// Feature bitsets.\n"
3429 << "enum : " << getMinimalTypeForRange(FeatureBitsets.size()) << " {\n"
3430 << " AMFBS_None,\n";
3431 for (const auto &FeatureBitset : FeatureBitsets) {
3432 if (FeatureBitset.empty())
3433 continue;
3434 OS << " " << getNameForFeatureBitset(FeatureBitset) << ",\n";
3435 }
3436 OS << "};\n\n"
3437 << "static constexpr FeatureBitset FeatureBitsets[] = {\n"
3438 << " {}, // AMFBS_None\n";
3439 for (const auto &FeatureBitset : FeatureBitsets) {
3440 if (FeatureBitset.empty())
3441 continue;
3442 OS << " {";
3443 for (const auto &Feature : FeatureBitset) {
3444 const auto &I = Info.SubtargetFeatures.find(Feature);
3445 assert(I != Info.SubtargetFeatures.end() && "Didn't import predicate?");
3446 OS << I->second.getEnumBitName() << ", ";
3447 }
3448 OS << "},\n";
3449 }
3450 OS << "};\n\n";
3451
3452 // Emit the static match table; unused classes get initialized to 0 which is
3453 // guaranteed to be InvalidMatchClass.
3454 //
3455 // FIXME: We can reduce the size of this table very easily. First, we change
3456 // it so that store the kinds in separate bit-fields for each index, which
3457 // only needs to be the max width used for classes at that index (we also need
3458 // to reject based on this during classification). If we then make sure to
3459 // order the match kinds appropriately (putting mnemonics last), then we
3460 // should only end up using a few bits for each class, especially the ones
3461 // following the mnemonic.
3462 OS << "namespace {\n";
3463 OS << " struct MatchEntry {\n";
3464 OS << " " << getMinimalTypeForRange(MaxMnemonicIndex)
3465 << " Mnemonic;\n";
3466 OS << " uint16_t Opcode;\n";
3467 OS << " " << getMinimalTypeForRange(NumConverters)
3468 << " ConvertFn;\n";
3469 OS << " " << getMinimalTypeForRange(FeatureBitsets.size())
3470 << " RequiredFeaturesIdx;\n";
3471 OS << " " << getMinimalTypeForRange(
3472 std::distance(Info.Classes.begin(), Info.Classes.end()))
3473 << " Classes[" << MaxNumOperands << "];\n";
3474 OS << " StringRef getMnemonic() const {\n";
3475 OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n";
3476 OS << " MnemonicTable[Mnemonic]);\n";
3477 OS << " }\n";
3478 OS << " };\n\n";
3479
3480 OS << " // Predicate for searching for an opcode.\n";
3481 OS << " struct LessOpcode {\n";
3482 OS << " bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
3483 OS << " return LHS.getMnemonic() < RHS;\n";
3484 OS << " }\n";
3485 OS << " bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
3486 OS << " return LHS < RHS.getMnemonic();\n";
3487 OS << " }\n";
3488 OS << " bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
3489 OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n";
3490 OS << " }\n";
3491 OS << " };\n";
3492
3493 OS << "} // end anonymous namespace\n\n";
3494
3495 unsigned VariantCount = Target.getAsmParserVariantCount();
3496 for (unsigned VC = 0; VC != VariantCount; ++VC) {
3497 Record *AsmVariant = Target.getAsmParserVariant(VC);
3498 int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3499
3500 OS << "static const MatchEntry MatchTable" << VC << "[] = {\n";
3501
3502 for (const auto &MI : Info.Matchables) {
3503 if (MI->AsmVariantID != AsmVariantNo)
3504 continue;
3505
3506 // Store a pascal-style length byte in the mnemonic.
3507 std::string LenMnemonic =
3508 char(MI->Mnemonic.size()) + MI->Mnemonic.lower();
3509 OS << " { " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
3510 << " /* " << MI->Mnemonic << " */, "
3511 << Target.getInstNamespace() << "::"
3512 << MI->getResultInst()->TheDef->getName() << ", "
3513 << MI->ConversionFnKind << ", ";
3514
3515 // Write the required features mask.
3516 OS << "AMFBS";
3517 if (MI->RequiredFeatures.empty())
3518 OS << "_None";
3519 else
3520 for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i)
3521 OS << '_' << MI->RequiredFeatures[i]->TheDef->getName();
3522
3523 OS << ", { ";
3524 ListSeparator LS;
3525 for (const MatchableInfo::AsmOperand &Op : MI->AsmOperands)
3526 OS << LS << Op.Class->Name;
3527 OS << " }, },\n";
3528 }
3529
3530 OS << "};\n\n";
3531 }
3532
3533 OS << "#include \"llvm/Support/Debug.h\"\n";
3534 OS << "#include \"llvm/Support/Format.h\"\n\n";
3535
3536 // Finally, build the match function.
3537 OS << "unsigned " << Target.getName() << ClassName << "::\n"
3538 << "MatchInstructionImpl(const OperandVector &Operands,\n";
3539 OS << " MCInst &Inst,\n";
3540 if (ReportMultipleNearMisses)
3541 OS << " SmallVectorImpl<NearMissInfo> *NearMisses,\n";
3542 else
3543 OS << " uint64_t &ErrorInfo,\n"
3544 << " FeatureBitset &MissingFeatures,\n";
3545 OS << " bool matchingInlineAsm, unsigned VariantID) {\n";
3546
3547 if (!ReportMultipleNearMisses) {
3548 OS << " // Eliminate obvious mismatches.\n";
3549 OS << " if (Operands.size() > "
3550 << (MaxNumOperands + HasMnemonicFirst) << ") {\n";
3551 OS << " ErrorInfo = "
3552 << (MaxNumOperands + HasMnemonicFirst) << ";\n";
3553 OS << " return Match_InvalidOperand;\n";
3554 OS << " }\n\n";
3555 }
3556
3557 // Emit code to get the available features.
3558 OS << " // Get the current feature set.\n";
3559 OS << " const FeatureBitset &AvailableFeatures = getAvailableFeatures();\n\n";
3560
3561 OS << " // Get the instruction mnemonic, which is the first token.\n";
3562 if (HasMnemonicFirst) {
3563 OS << " StringRef Mnemonic = ((" << Target.getName()
3564 << "Operand &)*Operands[0]).getToken();\n\n";
3565 } else {
3566 OS << " StringRef Mnemonic;\n";
3567 OS << " if (Operands[0]->isToken())\n";
3568 OS << " Mnemonic = ((" << Target.getName()
3569 << "Operand &)*Operands[0]).getToken();\n\n";
3570 }
3571
3572 if (HasMnemonicAliases) {
3573 OS << " // Process all MnemonicAliases to remap the mnemonic.\n";
3574 OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n";
3575 }
3576
3577 // Emit code to compute the class list for this operand vector.
3578 if (!ReportMultipleNearMisses) {
3579 OS << " // Some state to try to produce better error messages.\n";
3580 OS << " bool HadMatchOtherThanFeatures = false;\n";
3581 OS << " bool HadMatchOtherThanPredicate = false;\n";
3582 OS << " unsigned RetCode = Match_InvalidOperand;\n";
3583 OS << " MissingFeatures.set();\n";
3584 OS << " // Set ErrorInfo to the operand that mismatches if it is\n";
3585 OS << " // wrong for all instances of the instruction.\n";
3586 OS << " ErrorInfo = ~0ULL;\n";
3587 }
3588
3589 if (HasOptionalOperands) {
3590 OS << " SmallBitVector OptionalOperandsMask(" << MaxNumOperands << ");\n";
3591 }
3592
3593 // Emit code to search the table.
3594 OS << " // Find the appropriate table for this asm variant.\n";
3595 OS << " const MatchEntry *Start, *End;\n";
3596 OS << " switch (VariantID) {\n";
3597 OS << " default: llvm_unreachable(\"invalid variant!\");\n";
3598 for (unsigned VC = 0; VC != VariantCount; ++VC) {
3599 Record *AsmVariant = Target.getAsmParserVariant(VC);
3600 int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3601 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3602 << "); End = std::end(MatchTable" << VC << "); break;\n";
3603 }
3604 OS << " }\n";
3605
3606 OS << " // Search the table.\n";
3607 if (HasMnemonicFirst) {
3608 OS << " auto MnemonicRange = "
3609 "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
3610 } else {
3611 OS << " auto MnemonicRange = std::make_pair(Start, End);\n";
3612 OS << " unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n";
3613 OS << " if (!Mnemonic.empty())\n";
3614 OS << " MnemonicRange = "
3615 "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n";
3616 }
3617
3618 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"AsmMatcher: found \" <<\n"
3619 << " std::distance(MnemonicRange.first, MnemonicRange.second) <<\n"
3620 << " \" encodings with mnemonic '\" << Mnemonic << \"'\\n\");\n\n";
3621
3622 OS << " // Return a more specific error code if no mnemonics match.\n";
3623 OS << " if (MnemonicRange.first == MnemonicRange.second)\n";
3624 OS << " return Match_MnemonicFail;\n\n";
3625
3626 OS << " for (const MatchEntry *it = MnemonicRange.first, "
3627 << "*ie = MnemonicRange.second;\n";
3628 OS << " it != ie; ++it) {\n";
3629 OS << " const FeatureBitset &RequiredFeatures = "
3630 "FeatureBitsets[it->RequiredFeaturesIdx];\n";
3631 OS << " bool HasRequiredFeatures =\n";
3632 OS << " (AvailableFeatures & RequiredFeatures) == RequiredFeatures;\n";
3633 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Trying to match opcode \"\n";
3634 OS << " << MII.getName(it->Opcode) << \"\\n\");\n";
3635
3636 if (ReportMultipleNearMisses) {
3637 OS << " // Some state to record ways in which this instruction did not match.\n";
3638 OS << " NearMissInfo OperandNearMiss = NearMissInfo::getSuccess();\n";
3639 OS << " NearMissInfo FeaturesNearMiss = NearMissInfo::getSuccess();\n";
3640 OS << " NearMissInfo EarlyPredicateNearMiss = NearMissInfo::getSuccess();\n";
3641 OS << " NearMissInfo LatePredicateNearMiss = NearMissInfo::getSuccess();\n";
3642 OS << " bool MultipleInvalidOperands = false;\n";
3643 }
3644
3645 if (HasMnemonicFirst) {
3646 OS << " // equal_range guarantees that instruction mnemonic matches.\n";
3647 OS << " assert(Mnemonic == it->getMnemonic());\n";
3648 }
3649
3650 // Emit check that the subclasses match.
3651 if (!ReportMultipleNearMisses)
3652 OS << " bool OperandsValid = true;\n";
3653 if (HasOptionalOperands) {
3654 OS << " OptionalOperandsMask.reset(0, " << MaxNumOperands << ");\n";
3655 }
3656 OS << " for (unsigned FormalIdx = " << (HasMnemonicFirst ? "0" : "SIndex")
3657 << ", ActualIdx = " << (HasMnemonicFirst ? "1" : "SIndex")
3658 << "; FormalIdx != " << MaxNumOperands << "; ++FormalIdx) {\n";
3659 OS << " auto Formal = "
3660 << "static_cast<MatchClassKind>(it->Classes[FormalIdx]);\n";
3661 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3662 OS << " dbgs() << \" Matching formal operand class \" << getMatchClassName(Formal)\n";
3663 OS << " << \" against actual operand at index \" << ActualIdx);\n";
3664 OS << " if (ActualIdx < Operands.size())\n";
3665 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \" (\";\n";
3666 OS << " Operands[ActualIdx]->print(dbgs()); dbgs() << \"): \");\n";
3667 OS << " else\n";
3668 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \": \");\n";
3669 OS << " if (ActualIdx >= Operands.size()) {\n";
3670 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"actual operand index out of range \");\n";
3671 if (ReportMultipleNearMisses) {
3672 OS << " bool ThisOperandValid = (Formal == " <<"InvalidMatchClass) || "
3673 "isSubclass(Formal, OptionalMatchClass);\n";
3674 OS << " if (!ThisOperandValid) {\n";
3675 OS << " if (!OperandNearMiss) {\n";
3676 OS << " // Record info about match failure for later use.\n";
3677 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"recording too-few-operands near miss\\n\");\n";
3678 OS << " OperandNearMiss =\n";
3679 OS << " NearMissInfo::getTooFewOperands(Formal, it->Opcode);\n";
3680 OS << " } else if (OperandNearMiss.getKind() != NearMissInfo::NearMissTooFewOperands) {\n";
3681 OS << " // If more than one operand is invalid, give up on this match entry.\n";
3682 OS << " DEBUG_WITH_TYPE(\n";
3683 OS << " \"asm-matcher\",\n";
3684 OS << " dbgs() << \"second invalid operand, giving up on this opcode\\n\");\n";
3685 OS << " MultipleInvalidOperands = true;\n";
3686 OS << " break;\n";
3687 OS << " }\n";
3688 OS << " } else {\n";
3689 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"but formal operand not required\\n\");\n";
3690 OS << " break;\n";
3691 OS << " }\n";
3692 OS << " continue;\n";
3693 } else {
3694 OS << " OperandsValid = (Formal == InvalidMatchClass) || isSubclass(Formal, OptionalMatchClass);\n";
3695 OS << " if (!OperandsValid) ErrorInfo = ActualIdx;\n";
3696 if (HasOptionalOperands) {
3697 OS << " OptionalOperandsMask.set(FormalIdx, " << MaxNumOperands
3698 << ");\n";
3699 }
3700 OS << " break;\n";
3701 }
3702 OS << " }\n";
3703 OS << " MCParsedAsmOperand &Actual = *Operands[ActualIdx];\n";
3704 OS << " unsigned Diag = validateOperandClass(Actual, Formal);\n";
3705 OS << " if (Diag == Match_Success) {\n";
3706 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3707 OS << " dbgs() << \"match success using generic matcher\\n\");\n";
3708 OS << " ++ActualIdx;\n";
3709 OS << " continue;\n";
3710 OS << " }\n";
3711 OS << " // If the generic handler indicates an invalid operand\n";
3712 OS << " // failure, check for a special case.\n";
3713 OS << " if (Diag != Match_Success) {\n";
3714 OS << " unsigned TargetDiag = validateTargetOperandClass(Actual, Formal);\n";
3715 OS << " if (TargetDiag == Match_Success) {\n";
3716 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3717 OS << " dbgs() << \"match success using target matcher\\n\");\n";
3718 OS << " ++ActualIdx;\n";
3719 OS << " continue;\n";
3720 OS << " }\n";
3721 OS << " // If the target matcher returned a specific error code use\n";
3722 OS << " // that, else use the one from the generic matcher.\n";
3723 OS << " if (TargetDiag != Match_InvalidOperand && "
3724 "HasRequiredFeatures)\n";
3725 OS << " Diag = TargetDiag;\n";
3726 OS << " }\n";
3727 OS << " // If current formal operand wasn't matched and it is optional\n"
3728 << " // then try to match next formal operand\n";
3729 OS << " if (Diag == Match_InvalidOperand "
3730 << "&& isSubclass(Formal, OptionalMatchClass)) {\n";
3731 if (HasOptionalOperands) {
3732 OS << " OptionalOperandsMask.set(FormalIdx);\n";
3733 }
3734 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"ignoring optional operand\\n\");\n";
3735 OS << " continue;\n";
3736 OS << " }\n";
3737
3738 if (ReportMultipleNearMisses) {
3739 OS << " if (!OperandNearMiss) {\n";
3740 OS << " // If this is the first invalid operand we have seen, record some\n";
3741 OS << " // information about it.\n";
3742 OS << " DEBUG_WITH_TYPE(\n";
3743 OS << " \"asm-matcher\",\n";
3744 OS << " dbgs()\n";
3745 OS << " << \"operand match failed, recording near-miss with diag code \"\n";
3746 OS << " << Diag << \"\\n\");\n";
3747 OS << " OperandNearMiss =\n";
3748 OS << " NearMissInfo::getMissedOperand(Diag, Formal, it->Opcode, ActualIdx);\n";
3749 OS << " ++ActualIdx;\n";
3750 OS << " } else {\n";
3751 OS << " // If more than one operand is invalid, give up on this match entry.\n";
3752 OS << " DEBUG_WITH_TYPE(\n";
3753 OS << " \"asm-matcher\",\n";
3754 OS << " dbgs() << \"second operand mismatch, skipping this opcode\\n\");\n";
3755 OS << " MultipleInvalidOperands = true;\n";
3756 OS << " break;\n";
3757 OS << " }\n";
3758 OS << " }\n\n";
3759 } else {
3760 OS << " // If this operand is broken for all of the instances of this\n";
3761 OS << " // mnemonic, keep track of it so we can report loc info.\n";
3762 OS << " // If we already had a match that only failed due to a\n";
3763 OS << " // target predicate, that diagnostic is preferred.\n";
3764 OS << " if (!HadMatchOtherThanPredicate &&\n";
3765 OS << " (it == MnemonicRange.first || ErrorInfo <= ActualIdx)) {\n";
3766 OS << " if (HasRequiredFeatures && (ErrorInfo != ActualIdx || Diag "
3767 "!= Match_InvalidOperand))\n";
3768 OS << " RetCode = Diag;\n";
3769 OS << " ErrorInfo = ActualIdx;\n";
3770 OS << " }\n";
3771 OS << " // Otherwise, just reject this instance of the mnemonic.\n";
3772 OS << " OperandsValid = false;\n";
3773 OS << " break;\n";
3774 OS << " }\n\n";
3775 }
3776
3777 if (ReportMultipleNearMisses)
3778 OS << " if (MultipleInvalidOperands) {\n";
3779 else
3780 OS << " if (!OperandsValid) {\n";
3781 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n";
3782 OS << " \"operand mismatches, ignoring \"\n";
3783 OS << " \"this opcode\\n\");\n";
3784 OS << " continue;\n";
3785 OS << " }\n";
3786
3787 // Emit check that the required features are available.
3788 OS << " if (!HasRequiredFeatures) {\n";
3789 if (!ReportMultipleNearMisses)
3790 OS << " HadMatchOtherThanFeatures = true;\n";
3791 OS << " FeatureBitset NewMissingFeatures = RequiredFeatures & "
3792 "~AvailableFeatures;\n";
3793 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Missing target features:\";\n";
3794 OS << " for (unsigned I = 0, E = NewMissingFeatures.size(); I != E; ++I)\n";
3795 OS << " if (NewMissingFeatures[I])\n";
3796 OS << " dbgs() << ' ' << I;\n";
3797 OS << " dbgs() << \"\\n\");\n";
3798 if (ReportMultipleNearMisses) {
3799 OS << " FeaturesNearMiss = NearMissInfo::getMissedFeature(NewMissingFeatures);\n";
3800 } else {
3801 OS << " if (NewMissingFeatures.count() <=\n"
3802 " MissingFeatures.count())\n";
3803 OS << " MissingFeatures = NewMissingFeatures;\n";
3804 OS << " continue;\n";
3805 }
3806 OS << " }\n";
3807 OS << "\n";
3808 OS << " Inst.clear();\n\n";
3809 OS << " Inst.setOpcode(it->Opcode);\n";
3810 // Verify the instruction with the target-specific match predicate function.
3811 OS << " // We have a potential match but have not rendered the operands.\n"
3812 << " // Check the target predicate to handle any context sensitive\n"
3813 " // constraints.\n"
3814 << " // For example, Ties that are referenced multiple times must be\n"
3815 " // checked here to ensure the input is the same for each match\n"
3816 " // constraints. If we leave it any later the ties will have been\n"
3817 " // canonicalized\n"
3818 << " unsigned MatchResult;\n"
3819 << " if ((MatchResult = checkEarlyTargetMatchPredicate(Inst, "
3820 "Operands)) != Match_Success) {\n"
3821 << " Inst.clear();\n";
3822 OS << " DEBUG_WITH_TYPE(\n";
3823 OS << " \"asm-matcher\",\n";
3824 OS << " dbgs() << \"Early target match predicate failed with diag code \"\n";
3825 OS << " << MatchResult << \"\\n\");\n";
3826 if (ReportMultipleNearMisses) {
3827 OS << " EarlyPredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n";
3828 } else {
3829 OS << " RetCode = MatchResult;\n"
3830 << " HadMatchOtherThanPredicate = true;\n"
3831 << " continue;\n";
3832 }
3833 OS << " }\n\n";
3834
3835 if (ReportMultipleNearMisses) {
3836 OS << " // If we did not successfully match the operands, then we can't convert to\n";
3837 OS << " // an MCInst, so bail out on this instruction variant now.\n";
3838 OS << " if (OperandNearMiss) {\n";
3839 OS << " // If the operand mismatch was the only problem, reprrt it as a near-miss.\n";
3840 OS << " if (NearMisses && !FeaturesNearMiss && !EarlyPredicateNearMiss) {\n";
3841 OS << " DEBUG_WITH_TYPE(\n";
3842 OS << " \"asm-matcher\",\n";
3843 OS << " dbgs()\n";
3844 OS << " << \"Opcode result: one mismatched operand, adding near-miss\\n\");\n";
3845 OS << " NearMisses->push_back(OperandNearMiss);\n";
3846 OS << " } else {\n";
3847 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n";
3848 OS << " \"types of mismatch, so not \"\n";
3849 OS << " \"reporting near-miss\\n\");\n";
3850 OS << " }\n";
3851 OS << " continue;\n";
3852 OS << " }\n\n";
3853 }
3854
3855 OS << " if (matchingInlineAsm) {\n";
3856 OS << " convertToMapAndConstraints(it->ConvertFn, Operands);\n";
3857 if (!ReportMultipleNearMisses) {
3858 OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, "
3859 "Operands, ErrorInfo))\n";
3860 OS << " return Match_InvalidTiedOperand;\n";
3861 OS << "\n";
3862 }
3863 OS << " return Match_Success;\n";
3864 OS << " }\n\n";
3865 OS << " // We have selected a definite instruction, convert the parsed\n"
3866 << " // operands into the appropriate MCInst.\n";
3867 if (HasOptionalOperands) {
3868 OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands,\n"
3869 << " OptionalOperandsMask);\n";
3870 } else {
3871 OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
3872 }
3873 OS << "\n";
3874
3875 // Verify the instruction with the target-specific match predicate function.
3876 OS << " // We have a potential match. Check the target predicate to\n"
3877 << " // handle any context sensitive constraints.\n"
3878 << " if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
3879 << " Match_Success) {\n"
3880 << " DEBUG_WITH_TYPE(\"asm-matcher\",\n"
3881 << " dbgs() << \"Target match predicate failed with diag code \"\n"
3882 << " << MatchResult << \"\\n\");\n"
3883 << " Inst.clear();\n";
3884 if (ReportMultipleNearMisses) {
3885 OS << " LatePredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n";
3886 } else {
3887 OS << " RetCode = MatchResult;\n"
3888 << " HadMatchOtherThanPredicate = true;\n"
3889 << " continue;\n";
3890 }
3891 OS << " }\n\n";
3892
3893 if (ReportMultipleNearMisses) {
3894 OS << " int NumNearMisses = ((int)(bool)OperandNearMiss +\n";
3895 OS << " (int)(bool)FeaturesNearMiss +\n";
3896 OS << " (int)(bool)EarlyPredicateNearMiss +\n";
3897 OS << " (int)(bool)LatePredicateNearMiss);\n";
3898 OS << " if (NumNearMisses == 1) {\n";
3899 OS << " // We had exactly one type of near-miss, so add that to the list.\n";
3900 OS << " assert(!OperandNearMiss && \"OperandNearMiss was handled earlier\");\n";
3901 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: found one type of \"\n";
3902 OS << " \"mismatch, so reporting a \"\n";
3903 OS << " \"near-miss\\n\");\n";
3904 OS << " if (NearMisses && FeaturesNearMiss)\n";
3905 OS << " NearMisses->push_back(FeaturesNearMiss);\n";
3906 OS << " else if (NearMisses && EarlyPredicateNearMiss)\n";
3907 OS << " NearMisses->push_back(EarlyPredicateNearMiss);\n";
3908 OS << " else if (NearMisses && LatePredicateNearMiss)\n";
3909 OS << " NearMisses->push_back(LatePredicateNearMiss);\n";
3910 OS << "\n";
3911 OS << " continue;\n";
3912 OS << " } else if (NumNearMisses > 1) {\n";
3913 OS << " // This instruction missed in more than one way, so ignore it.\n";
3914 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n";
3915 OS << " \"types of mismatch, so not \"\n";
3916 OS << " \"reporting near-miss\\n\");\n";
3917 OS << " continue;\n";
3918 OS << " }\n";
3919 }
3920
3921 // Call the post-processing function, if used.
3922 StringRef InsnCleanupFn = AsmParser->getValueAsString("AsmParserInstCleanup");
3923 if (!InsnCleanupFn.empty())
3924 OS << " " << InsnCleanupFn << "(Inst);\n";
3925
3926 if (HasDeprecation) {
3927 OS << " std::string Info;\n";
3928 OS << " if (!getParser().getTargetParser().getTargetOptions().MCNoDeprecatedWarn &&\n";
3929 OS << " MII.getDeprecatedInfo(Inst, getSTI(), Info)) {\n";
3930 OS << " SMLoc Loc = ((" << Target.getName()
3931 << "Operand &)*Operands[0]).getStartLoc();\n";
3932 OS << " getParser().Warning(Loc, Info, None);\n";
3933 OS << " }\n";
3934 }
3935
3936 if (!ReportMultipleNearMisses) {
3937 OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, "
3938 "Operands, ErrorInfo))\n";
3939 OS << " return Match_InvalidTiedOperand;\n";
3940 OS << "\n";
3941 }
3942
3943 OS << " DEBUG_WITH_TYPE(\n";
3944 OS << " \"asm-matcher\",\n";
3945 OS << " dbgs() << \"Opcode result: complete match, selecting this opcode\\n\");\n";
3946 OS << " return Match_Success;\n";
3947 OS << " }\n\n";
3948
3949 if (ReportMultipleNearMisses) {
3950 OS << " // No instruction variants matched exactly.\n";
3951 OS << " return Match_NearMisses;\n";
3952 } else {
3953 OS << " // Okay, we had no match. Try to return a useful error code.\n";
3954 OS << " if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n";
3955 OS << " return RetCode;\n\n";
3956 OS << " ErrorInfo = 0;\n";
3957 OS << " return Match_MissingFeature;\n";
3958 }
3959 OS << "}\n\n";
3960
3961 if (!Info.OperandMatchInfo.empty())
3962 emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable,
3963 MaxMnemonicIndex, FeatureBitsets.size(),
3964 HasMnemonicFirst);
3965
3966 OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
3967
3968 OS << "\n#ifdef GET_MNEMONIC_SPELL_CHECKER\n";
3969 OS << "#undef GET_MNEMONIC_SPELL_CHECKER\n\n";
3970
3971 emitMnemonicSpellChecker(OS, Target, VariantCount);
3972
3973 OS << "#endif // GET_MNEMONIC_SPELL_CHECKER\n\n";
3974
3975 OS << "\n#ifdef GET_MNEMONIC_CHECKER\n";
3976 OS << "#undef GET_MNEMONIC_CHECKER\n\n";
3977
3978 emitMnemonicChecker(OS, Target, VariantCount,
3979 HasMnemonicFirst, HasMnemonicAliases);
3980
3981 OS << "#endif // GET_MNEMONIC_CHECKER\n\n";
3982 }
3983
3984 namespace llvm {
3985
EmitAsmMatcher(RecordKeeper & RK,raw_ostream & OS)3986 void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) {
3987 emitSourceFileHeader("Assembly Matcher Source Fragment", OS);
3988 AsmMatcherEmitter(RK).run(OS);
3989 }
3990
3991 } // end namespace llvm
3992