1 //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This tablegen backend emits a target specifier matcher for converting parsed 11 // assembly operands in the MCInst structures. It also emits a matcher for 12 // custom operand parsing. 13 // 14 // Converting assembly operands into MCInst structures 15 // --------------------------------------------------- 16 // 17 // The input to the target specific matcher is a list of literal tokens and 18 // operands. The target specific parser should generally eliminate any syntax 19 // which is not relevant for matching; for example, comma tokens should have 20 // already been consumed and eliminated by the parser. Most instructions will 21 // end up with a single literal token (the instruction name) and some number of 22 // operands. 23 // 24 // Some example inputs, for X86: 25 // 'addl' (immediate ...) (register ...) 26 // 'add' (immediate ...) (memory ...) 27 // 'call' '*' %epc 28 // 29 // The assembly matcher is responsible for converting this input into a precise 30 // machine instruction (i.e., an instruction with a well defined encoding). This 31 // mapping has several properties which complicate matching: 32 // 33 // - It may be ambiguous; many architectures can legally encode particular 34 // variants of an instruction in different ways (for example, using a smaller 35 // encoding for small immediates). Such ambiguities should never be 36 // arbitrarily resolved by the assembler, the assembler is always responsible 37 // for choosing the "best" available instruction. 38 // 39 // - It may depend on the subtarget or the assembler context. Instructions 40 // which are invalid for the current mode, but otherwise unambiguous (e.g., 41 // an SSE instruction in a file being assembled for i486) should be accepted 42 // and rejected by the assembler front end. However, if the proper encoding 43 // for an instruction is dependent on the assembler context then the matcher 44 // is responsible for selecting the correct machine instruction for the 45 // current mode. 46 // 47 // The core matching algorithm attempts to exploit the regularity in most 48 // instruction sets to quickly determine the set of possibly matching 49 // instructions, and the simplify the generated code. Additionally, this helps 50 // to ensure that the ambiguities are intentionally resolved by the user. 51 // 52 // The matching is divided into two distinct phases: 53 // 54 // 1. Classification: Each operand is mapped to the unique set which (a) 55 // contains it, and (b) is the largest such subset for which a single 56 // instruction could match all members. 57 // 58 // For register classes, we can generate these subgroups automatically. For 59 // arbitrary operands, we expect the user to define the classes and their 60 // relations to one another (for example, 8-bit signed immediates as a 61 // subset of 32-bit immediates). 62 // 63 // By partitioning the operands in this way, we guarantee that for any 64 // tuple of classes, any single instruction must match either all or none 65 // of the sets of operands which could classify to that tuple. 66 // 67 // In addition, the subset relation amongst classes induces a partial order 68 // on such tuples, which we use to resolve ambiguities. 69 // 70 // 2. The input can now be treated as a tuple of classes (static tokens are 71 // simple singleton sets). Each such tuple should generally map to a single 72 // instruction (we currently ignore cases where this isn't true, whee!!!), 73 // which we can emit a simple matcher for. 74 // 75 // Custom Operand Parsing 76 // ---------------------- 77 // 78 // Some targets need a custom way to parse operands, some specific instructions 79 // can contain arguments that can represent processor flags and other kinds of 80 // identifiers that need to be mapped to specific values in the final encoded 81 // instructions. The target specific custom operand parsing works in the 82 // following way: 83 // 84 // 1. A operand match table is built, each entry contains a mnemonic, an 85 // operand class, a mask for all operand positions for that same 86 // class/mnemonic and target features to be checked while trying to match. 87 // 88 // 2. The operand matcher will try every possible entry with the same 89 // mnemonic and will check if the target feature for this mnemonic also 90 // matches. After that, if the operand to be matched has its index 91 // present in the mask, a successful match occurs. Otherwise, fallback 92 // to the regular operand parsing. 93 // 94 // 3. For a match success, each operand class that has a 'ParserMethod' 95 // becomes part of a switch from where the custom method is called. 96 // 97 //===----------------------------------------------------------------------===// 98 99 #include "CodeGenTarget.h" 100 #include "llvm/ADT/PointerUnion.h" 101 #include "llvm/ADT/STLExtras.h" 102 #include "llvm/ADT/SmallPtrSet.h" 103 #include "llvm/ADT/SmallVector.h" 104 #include "llvm/ADT/StringExtras.h" 105 #include "llvm/Support/CommandLine.h" 106 #include "llvm/Support/Debug.h" 107 #include "llvm/Support/ErrorHandling.h" 108 #include "llvm/TableGen/Error.h" 109 #include "llvm/TableGen/Record.h" 110 #include "llvm/TableGen/StringMatcher.h" 111 #include "llvm/TableGen/StringToOffsetTable.h" 112 #include "llvm/TableGen/TableGenBackend.h" 113 #include <cassert> 114 #include <cctype> 115 #include <map> 116 #include <set> 117 #include <sstream> 118 #include <forward_list> 119 using namespace llvm; 120 121 #define DEBUG_TYPE "asm-matcher-emitter" 122 123 static cl::opt<std::string> 124 MatchPrefix("match-prefix", cl::init(""), 125 cl::desc("Only match instructions with the given prefix")); 126 127 namespace { 128 class AsmMatcherInfo; 129 struct SubtargetFeatureInfo; 130 131 // Register sets are used as keys in some second-order sets TableGen creates 132 // when generating its data structures. This means that the order of two 133 // RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and 134 // can even affect compiler output (at least seen in diagnostics produced when 135 // all matches fail). So we use a type that sorts them consistently. 136 typedef std::set<Record*, LessRecordByID> RegisterSet; 137 138 class AsmMatcherEmitter { 139 RecordKeeper &Records; 140 public: 141 AsmMatcherEmitter(RecordKeeper &R) : Records(R) {} 142 143 void run(raw_ostream &o); 144 }; 145 146 /// ClassInfo - Helper class for storing the information about a particular 147 /// class of operands which can be matched. 148 struct ClassInfo { 149 enum ClassInfoKind { 150 /// Invalid kind, for use as a sentinel value. 151 Invalid = 0, 152 153 /// The class for a particular token. 154 Token, 155 156 /// The (first) register class, subsequent register classes are 157 /// RegisterClass0+1, and so on. 158 RegisterClass0, 159 160 /// The (first) user defined class, subsequent user defined classes are 161 /// UserClass0+1, and so on. 162 UserClass0 = 1<<16 163 }; 164 165 /// Kind - The class kind, which is either a predefined kind, or (UserClass0 + 166 /// N) for the Nth user defined class. 167 unsigned Kind; 168 169 /// SuperClasses - The super classes of this class. Note that for simplicities 170 /// sake user operands only record their immediate super class, while register 171 /// operands include all superclasses. 172 std::vector<ClassInfo*> SuperClasses; 173 174 /// Name - The full class name, suitable for use in an enum. 175 std::string Name; 176 177 /// ClassName - The unadorned generic name for this class (e.g., Token). 178 std::string ClassName; 179 180 /// ValueName - The name of the value this class represents; for a token this 181 /// is the literal token string, for an operand it is the TableGen class (or 182 /// empty if this is a derived class). 183 std::string ValueName; 184 185 /// PredicateMethod - The name of the operand method to test whether the 186 /// operand matches this class; this is not valid for Token or register kinds. 187 std::string PredicateMethod; 188 189 /// RenderMethod - The name of the operand method to add this operand to an 190 /// MCInst; this is not valid for Token or register kinds. 191 std::string RenderMethod; 192 193 /// ParserMethod - The name of the operand method to do a target specific 194 /// parsing on the operand. 195 std::string ParserMethod; 196 197 /// For register classes: the records for all the registers in this class. 198 RegisterSet Registers; 199 200 /// For custom match classes: the diagnostic kind for when the predicate fails. 201 std::string DiagnosticType; 202 public: 203 /// isRegisterClass() - Check if this is a register class. 204 bool isRegisterClass() const { 205 return Kind >= RegisterClass0 && Kind < UserClass0; 206 } 207 208 /// isUserClass() - Check if this is a user defined class. 209 bool isUserClass() const { 210 return Kind >= UserClass0; 211 } 212 213 /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes 214 /// are related if they are in the same class hierarchy. 215 bool isRelatedTo(const ClassInfo &RHS) const { 216 // Tokens are only related to tokens. 217 if (Kind == Token || RHS.Kind == Token) 218 return Kind == Token && RHS.Kind == Token; 219 220 // Registers classes are only related to registers classes, and only if 221 // their intersection is non-empty. 222 if (isRegisterClass() || RHS.isRegisterClass()) { 223 if (!isRegisterClass() || !RHS.isRegisterClass()) 224 return false; 225 226 RegisterSet Tmp; 227 std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin()); 228 std::set_intersection(Registers.begin(), Registers.end(), 229 RHS.Registers.begin(), RHS.Registers.end(), 230 II, LessRecordByID()); 231 232 return !Tmp.empty(); 233 } 234 235 // Otherwise we have two users operands; they are related if they are in the 236 // same class hierarchy. 237 // 238 // FIXME: This is an oversimplification, they should only be related if they 239 // intersect, however we don't have that information. 240 assert(isUserClass() && RHS.isUserClass() && "Unexpected class!"); 241 const ClassInfo *Root = this; 242 while (!Root->SuperClasses.empty()) 243 Root = Root->SuperClasses.front(); 244 245 const ClassInfo *RHSRoot = &RHS; 246 while (!RHSRoot->SuperClasses.empty()) 247 RHSRoot = RHSRoot->SuperClasses.front(); 248 249 return Root == RHSRoot; 250 } 251 252 /// isSubsetOf - Test whether this class is a subset of \p RHS. 253 bool isSubsetOf(const ClassInfo &RHS) const { 254 // This is a subset of RHS if it is the same class... 255 if (this == &RHS) 256 return true; 257 258 // ... or if any of its super classes are a subset of RHS. 259 for (const ClassInfo *CI : SuperClasses) 260 if (CI->isSubsetOf(RHS)) 261 return true; 262 263 return false; 264 } 265 266 /// operator< - Compare two classes. 267 // FIXME: This ordering seems to be broken. For example: 268 // u64 < i64, i64 < s8, s8 < u64, forming a cycle 269 // u64 is a subset of i64 270 // i64 and s8 are not subsets of each other, so are ordered by name 271 // s8 and u64 are not subsets of each other, so are ordered by name 272 bool operator<(const ClassInfo &RHS) const { 273 if (this == &RHS) 274 return false; 275 276 // Unrelated classes can be ordered by kind. 277 if (!isRelatedTo(RHS)) 278 return Kind < RHS.Kind; 279 280 switch (Kind) { 281 case Invalid: 282 llvm_unreachable("Invalid kind!"); 283 284 default: 285 // This class precedes the RHS if it is a proper subset of the RHS. 286 if (isSubsetOf(RHS)) 287 return true; 288 if (RHS.isSubsetOf(*this)) 289 return false; 290 291 // Otherwise, order by name to ensure we have a total ordering. 292 return ValueName < RHS.ValueName; 293 } 294 } 295 }; 296 297 /// MatchableInfo - Helper class for storing the necessary information for an 298 /// instruction or alias which is capable of being matched. 299 struct MatchableInfo { 300 struct AsmOperand { 301 /// Token - This is the token that the operand came from. 302 StringRef Token; 303 304 /// The unique class instance this operand should match. 305 ClassInfo *Class; 306 307 /// The operand name this is, if anything. 308 StringRef SrcOpName; 309 310 /// The suboperand index within SrcOpName, or -1 for the entire operand. 311 int SubOpIdx; 312 313 /// Whether the token is "isolated", i.e., it is preceded and followed 314 /// by separators. 315 bool IsIsolatedToken; 316 317 /// Register record if this token is singleton register. 318 Record *SingletonReg; 319 320 explicit AsmOperand(bool IsIsolatedToken, StringRef T) 321 : Token(T), Class(nullptr), SubOpIdx(-1), 322 IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {} 323 }; 324 325 /// ResOperand - This represents a single operand in the result instruction 326 /// generated by the match. In cases (like addressing modes) where a single 327 /// assembler operand expands to multiple MCOperands, this represents the 328 /// single assembler operand, not the MCOperand. 329 struct ResOperand { 330 enum { 331 /// RenderAsmOperand - This represents an operand result that is 332 /// generated by calling the render method on the assembly operand. The 333 /// corresponding AsmOperand is specified by AsmOperandNum. 334 RenderAsmOperand, 335 336 /// TiedOperand - This represents a result operand that is a duplicate of 337 /// a previous result operand. 338 TiedOperand, 339 340 /// ImmOperand - This represents an immediate value that is dumped into 341 /// the operand. 342 ImmOperand, 343 344 /// RegOperand - This represents a fixed register that is dumped in. 345 RegOperand 346 } Kind; 347 348 union { 349 /// This is the operand # in the AsmOperands list that this should be 350 /// copied from. 351 unsigned AsmOperandNum; 352 353 /// TiedOperandNum - This is the (earlier) result operand that should be 354 /// copied from. 355 unsigned TiedOperandNum; 356 357 /// ImmVal - This is the immediate value added to the instruction. 358 int64_t ImmVal; 359 360 /// Register - This is the register record. 361 Record *Register; 362 }; 363 364 /// MINumOperands - The number of MCInst operands populated by this 365 /// operand. 366 unsigned MINumOperands; 367 368 static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) { 369 ResOperand X; 370 X.Kind = RenderAsmOperand; 371 X.AsmOperandNum = AsmOpNum; 372 X.MINumOperands = NumOperands; 373 return X; 374 } 375 376 static ResOperand getTiedOp(unsigned TiedOperandNum) { 377 ResOperand X; 378 X.Kind = TiedOperand; 379 X.TiedOperandNum = TiedOperandNum; 380 X.MINumOperands = 1; 381 return X; 382 } 383 384 static ResOperand getImmOp(int64_t Val) { 385 ResOperand X; 386 X.Kind = ImmOperand; 387 X.ImmVal = Val; 388 X.MINumOperands = 1; 389 return X; 390 } 391 392 static ResOperand getRegOp(Record *Reg) { 393 ResOperand X; 394 X.Kind = RegOperand; 395 X.Register = Reg; 396 X.MINumOperands = 1; 397 return X; 398 } 399 }; 400 401 /// AsmVariantID - Target's assembly syntax variant no. 402 int AsmVariantID; 403 404 /// AsmString - The assembly string for this instruction (with variants 405 /// removed), e.g. "movsx $src, $dst". 406 std::string AsmString; 407 408 /// TheDef - This is the definition of the instruction or InstAlias that this 409 /// matchable came from. 410 Record *const TheDef; 411 412 /// DefRec - This is the definition that it came from. 413 PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec; 414 415 const CodeGenInstruction *getResultInst() const { 416 if (DefRec.is<const CodeGenInstruction*>()) 417 return DefRec.get<const CodeGenInstruction*>(); 418 return DefRec.get<const CodeGenInstAlias*>()->ResultInst; 419 } 420 421 /// ResOperands - This is the operand list that should be built for the result 422 /// MCInst. 423 SmallVector<ResOperand, 8> ResOperands; 424 425 /// Mnemonic - This is the first token of the matched instruction, its 426 /// mnemonic. 427 StringRef Mnemonic; 428 429 /// AsmOperands - The textual operands that this instruction matches, 430 /// annotated with a class and where in the OperandList they were defined. 431 /// This directly corresponds to the tokenized AsmString after the mnemonic is 432 /// removed. 433 SmallVector<AsmOperand, 8> AsmOperands; 434 435 /// Predicates - The required subtarget features to match this instruction. 436 SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures; 437 438 /// ConversionFnKind - The enum value which is passed to the generated 439 /// convertToMCInst to convert parsed operands into an MCInst for this 440 /// function. 441 std::string ConversionFnKind; 442 443 /// If this instruction is deprecated in some form. 444 bool HasDeprecation; 445 446 /// If this is an alias, this is use to determine whether or not to using 447 /// the conversion function defined by the instruction's AsmMatchConverter 448 /// or to use the function generated by the alias. 449 bool UseInstAsmMatchConverter; 450 451 MatchableInfo(const CodeGenInstruction &CGI) 452 : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI), 453 UseInstAsmMatchConverter(true) { 454 } 455 456 MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias) 457 : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef), 458 DefRec(Alias.release()), 459 UseInstAsmMatchConverter( 460 TheDef->getValueAsBit("UseInstAsmMatchConverter")) { 461 } 462 463 ~MatchableInfo() { 464 delete DefRec.dyn_cast<const CodeGenInstAlias*>(); 465 } 466 467 // Two-operand aliases clone from the main matchable, but mark the second 468 // operand as a tied operand of the first for purposes of the assembler. 469 void formTwoOperandAlias(StringRef Constraint); 470 471 void initialize(const AsmMatcherInfo &Info, 472 SmallPtrSetImpl<Record*> &SingletonRegisters, 473 int AsmVariantNo, std::string &RegisterPrefix); 474 475 /// validate - Return true if this matchable is a valid thing to match against 476 /// and perform a bunch of validity checking. 477 bool validate(StringRef CommentDelimiter, bool Hack) const; 478 479 /// extractSingletonRegisterForAsmOperand - Extract singleton register, 480 /// if present, from specified token. 481 void 482 extractSingletonRegisterForAsmOperand(unsigned i, const AsmMatcherInfo &Info, 483 std::string &RegisterPrefix); 484 485 /// findAsmOperand - Find the AsmOperand with the specified name and 486 /// suboperand index. 487 int findAsmOperand(StringRef N, int SubOpIdx) const { 488 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) 489 if (N == AsmOperands[i].SrcOpName && 490 SubOpIdx == AsmOperands[i].SubOpIdx) 491 return i; 492 return -1; 493 } 494 495 /// findAsmOperandNamed - Find the first AsmOperand with the specified name. 496 /// This does not check the suboperand index. 497 int findAsmOperandNamed(StringRef N) const { 498 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) 499 if (N == AsmOperands[i].SrcOpName) 500 return i; 501 return -1; 502 } 503 504 void buildInstructionResultOperands(); 505 void buildAliasResultOperands(); 506 507 /// operator< - Compare two matchables. 508 bool operator<(const MatchableInfo &RHS) const { 509 // The primary comparator is the instruction mnemonic. 510 if (Mnemonic != RHS.Mnemonic) 511 return Mnemonic < RHS.Mnemonic; 512 513 if (AsmOperands.size() != RHS.AsmOperands.size()) 514 return AsmOperands.size() < RHS.AsmOperands.size(); 515 516 // Compare lexicographically by operand. The matcher validates that other 517 // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith(). 518 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { 519 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) 520 return true; 521 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) 522 return false; 523 } 524 525 // Give matches that require more features higher precedence. This is useful 526 // because we cannot define AssemblerPredicates with the negation of 527 // processor features. For example, ARM v6 "nop" may be either a HINT or 528 // MOV. With v6, we want to match HINT. The assembler has no way to 529 // predicate MOV under "NoV6", but HINT will always match first because it 530 // requires V6 while MOV does not. 531 if (RequiredFeatures.size() != RHS.RequiredFeatures.size()) 532 return RequiredFeatures.size() > RHS.RequiredFeatures.size(); 533 534 return false; 535 } 536 537 /// couldMatchAmbiguouslyWith - Check whether this matchable could 538 /// ambiguously match the same set of operands as \p RHS (without being a 539 /// strictly superior match). 540 bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const { 541 // The primary comparator is the instruction mnemonic. 542 if (Mnemonic != RHS.Mnemonic) 543 return false; 544 545 // The number of operands is unambiguous. 546 if (AsmOperands.size() != RHS.AsmOperands.size()) 547 return false; 548 549 // Otherwise, make sure the ordering of the two instructions is unambiguous 550 // by checking that either (a) a token or operand kind discriminates them, 551 // or (b) the ordering among equivalent kinds is consistent. 552 553 // Tokens and operand kinds are unambiguous (assuming a correct target 554 // specific parser). 555 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) 556 if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind || 557 AsmOperands[i].Class->Kind == ClassInfo::Token) 558 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class || 559 *RHS.AsmOperands[i].Class < *AsmOperands[i].Class) 560 return false; 561 562 // Otherwise, this operand could commute if all operands are equivalent, or 563 // there is a pair of operands that compare less than and a pair that 564 // compare greater than. 565 bool HasLT = false, HasGT = false; 566 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { 567 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) 568 HasLT = true; 569 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) 570 HasGT = true; 571 } 572 573 return !(HasLT ^ HasGT); 574 } 575 576 void dump() const; 577 578 private: 579 void tokenizeAsmString(const AsmMatcherInfo &Info); 580 void addAsmOperand(size_t Start, size_t End); 581 }; 582 583 /// SubtargetFeatureInfo - Helper class for storing information on a subtarget 584 /// feature which participates in instruction matching. 585 struct SubtargetFeatureInfo { 586 /// \brief The predicate record for this feature. 587 Record *TheDef; 588 589 /// \brief An unique index assigned to represent this feature. 590 uint64_t Index; 591 592 SubtargetFeatureInfo(Record *D, uint64_t Idx) : TheDef(D), Index(Idx) {} 593 594 /// \brief The name of the enumerated constant identifying this feature. 595 std::string getEnumName() const { 596 return "Feature_" + TheDef->getName(); 597 } 598 599 void dump() const { 600 errs() << getEnumName() << " " << Index << "\n"; 601 TheDef->dump(); 602 } 603 }; 604 605 struct OperandMatchEntry { 606 unsigned OperandMask; 607 const MatchableInfo* MI; 608 ClassInfo *CI; 609 610 static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci, 611 unsigned opMask) { 612 OperandMatchEntry X; 613 X.OperandMask = opMask; 614 X.CI = ci; 615 X.MI = mi; 616 return X; 617 } 618 }; 619 620 621 class AsmMatcherInfo { 622 public: 623 /// Tracked Records 624 RecordKeeper &Records; 625 626 /// The tablegen AsmParser record. 627 Record *AsmParser; 628 629 /// Target - The target information. 630 CodeGenTarget &Target; 631 632 /// The classes which are needed for matching. 633 std::forward_list<ClassInfo> Classes; 634 635 /// The information on the matchables to match. 636 std::vector<std::unique_ptr<MatchableInfo>> Matchables; 637 638 /// Info for custom matching operands by user defined methods. 639 std::vector<OperandMatchEntry> OperandMatchInfo; 640 641 /// Map of Register records to their class information. 642 typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy; 643 RegisterClassesTy RegisterClasses; 644 645 /// Map of Predicate records to their subtarget information. 646 std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures; 647 648 /// Map of AsmOperandClass records to their class information. 649 std::map<Record*, ClassInfo*> AsmOperandClasses; 650 651 private: 652 /// Map of token to class information which has already been constructed. 653 std::map<std::string, ClassInfo*> TokenClasses; 654 655 /// Map of RegisterClass records to their class information. 656 std::map<Record*, ClassInfo*> RegisterClassClasses; 657 658 private: 659 /// getTokenClass - Lookup or create the class for the given token. 660 ClassInfo *getTokenClass(StringRef Token); 661 662 /// getOperandClass - Lookup or create the class for the given operand. 663 ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI, 664 int SubOpIdx); 665 ClassInfo *getOperandClass(Record *Rec, int SubOpIdx); 666 667 /// buildRegisterClasses - Build the ClassInfo* instances for register 668 /// classes. 669 void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters); 670 671 /// buildOperandClasses - Build the ClassInfo* instances for user defined 672 /// operand classes. 673 void buildOperandClasses(); 674 675 void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName, 676 unsigned AsmOpIdx); 677 void buildAliasOperandReference(MatchableInfo *II, StringRef OpName, 678 MatchableInfo::AsmOperand &Op); 679 680 public: 681 AsmMatcherInfo(Record *AsmParser, 682 CodeGenTarget &Target, 683 RecordKeeper &Records); 684 685 /// buildInfo - Construct the various tables used during matching. 686 void buildInfo(); 687 688 /// buildOperandMatchInfo - Build the necessary information to handle user 689 /// defined operand parsing methods. 690 void buildOperandMatchInfo(); 691 692 /// getSubtargetFeature - Lookup or create the subtarget feature info for the 693 /// given operand. 694 const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const { 695 assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!"); 696 const auto &I = SubtargetFeatures.find(Def); 697 return I == SubtargetFeatures.end() ? nullptr : &I->second; 698 } 699 700 RecordKeeper &getRecords() const { 701 return Records; 702 } 703 }; 704 705 } // End anonymous namespace 706 707 void MatchableInfo::dump() const { 708 errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n"; 709 710 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { 711 const AsmOperand &Op = AsmOperands[i]; 712 errs() << " op[" << i << "] = " << Op.Class->ClassName << " - "; 713 errs() << '\"' << Op.Token << "\"\n"; 714 } 715 } 716 717 static std::pair<StringRef, StringRef> 718 parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) { 719 // Split via the '='. 720 std::pair<StringRef, StringRef> Ops = S.split('='); 721 if (Ops.second == "") 722 PrintFatalError(Loc, "missing '=' in two-operand alias constraint"); 723 // Trim whitespace and the leading '$' on the operand names. 724 size_t start = Ops.first.find_first_of('$'); 725 if (start == std::string::npos) 726 PrintFatalError(Loc, "expected '$' prefix on asm operand name"); 727 Ops.first = Ops.first.slice(start + 1, std::string::npos); 728 size_t end = Ops.first.find_last_of(" \t"); 729 Ops.first = Ops.first.slice(0, end); 730 // Now the second operand. 731 start = Ops.second.find_first_of('$'); 732 if (start == std::string::npos) 733 PrintFatalError(Loc, "expected '$' prefix on asm operand name"); 734 Ops.second = Ops.second.slice(start + 1, std::string::npos); 735 end = Ops.second.find_last_of(" \t"); 736 Ops.first = Ops.first.slice(0, end); 737 return Ops; 738 } 739 740 void MatchableInfo::formTwoOperandAlias(StringRef Constraint) { 741 // Figure out which operands are aliased and mark them as tied. 742 std::pair<StringRef, StringRef> Ops = 743 parseTwoOperandConstraint(Constraint, TheDef->getLoc()); 744 745 // Find the AsmOperands that refer to the operands we're aliasing. 746 int SrcAsmOperand = findAsmOperandNamed(Ops.first); 747 int DstAsmOperand = findAsmOperandNamed(Ops.second); 748 if (SrcAsmOperand == -1) 749 PrintFatalError(TheDef->getLoc(), 750 "unknown source two-operand alias operand '" + Ops.first + 751 "'."); 752 if (DstAsmOperand == -1) 753 PrintFatalError(TheDef->getLoc(), 754 "unknown destination two-operand alias operand '" + 755 Ops.second + "'."); 756 757 // Find the ResOperand that refers to the operand we're aliasing away 758 // and update it to refer to the combined operand instead. 759 for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) { 760 ResOperand &Op = ResOperands[i]; 761 if (Op.Kind == ResOperand::RenderAsmOperand && 762 Op.AsmOperandNum == (unsigned)SrcAsmOperand) { 763 Op.AsmOperandNum = DstAsmOperand; 764 break; 765 } 766 } 767 // Remove the AsmOperand for the alias operand. 768 AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand); 769 // Adjust the ResOperand references to any AsmOperands that followed 770 // the one we just deleted. 771 for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) { 772 ResOperand &Op = ResOperands[i]; 773 switch(Op.Kind) { 774 default: 775 // Nothing to do for operands that don't reference AsmOperands. 776 break; 777 case ResOperand::RenderAsmOperand: 778 if (Op.AsmOperandNum > (unsigned)SrcAsmOperand) 779 --Op.AsmOperandNum; 780 break; 781 case ResOperand::TiedOperand: 782 if (Op.TiedOperandNum > (unsigned)SrcAsmOperand) 783 --Op.TiedOperandNum; 784 break; 785 } 786 } 787 } 788 789 void MatchableInfo::initialize(const AsmMatcherInfo &Info, 790 SmallPtrSetImpl<Record*> &SingletonRegisters, 791 int AsmVariantNo, std::string &RegisterPrefix) { 792 AsmVariantID = AsmVariantNo; 793 AsmString = 794 CodeGenInstruction::FlattenAsmStringVariants(AsmString, AsmVariantNo); 795 796 tokenizeAsmString(Info); 797 798 // Compute the require features. 799 std::vector<Record*> Predicates =TheDef->getValueAsListOfDefs("Predicates"); 800 for (unsigned i = 0, e = Predicates.size(); i != e; ++i) 801 if (const SubtargetFeatureInfo *Feature = 802 Info.getSubtargetFeature(Predicates[i])) 803 RequiredFeatures.push_back(Feature); 804 805 // Collect singleton registers, if used. 806 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { 807 extractSingletonRegisterForAsmOperand(i, Info, RegisterPrefix); 808 if (Record *Reg = AsmOperands[i].SingletonReg) 809 SingletonRegisters.insert(Reg); 810 } 811 812 const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask"); 813 if (!DepMask) 814 DepMask = TheDef->getValue("ComplexDeprecationPredicate"); 815 816 HasDeprecation = 817 DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false; 818 } 819 820 /// Append an AsmOperand for the given substring of AsmString. 821 void MatchableInfo::addAsmOperand(size_t Start, size_t End) { 822 StringRef String = AsmString; 823 StringRef Separators = "[]*! \t,"; 824 // Look for separators before and after to figure out is this token is 825 // isolated. Accept '$$' as that's how we escape '$'. 826 bool IsIsolatedToken = 827 (!Start || Separators.find(String[Start - 1]) != StringRef::npos || 828 String.substr(Start - 1, 2) == "$$") && 829 (End >= String.size() || Separators.find(String[End]) != StringRef::npos); 830 AsmOperands.push_back(AsmOperand(IsIsolatedToken, String.slice(Start, End))); 831 } 832 833 /// tokenizeAsmString - Tokenize a simplified assembly string. 834 void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info) { 835 StringRef String = AsmString; 836 unsigned Prev = 0; 837 bool InTok = true; 838 for (unsigned i = 0, e = String.size(); i != e; ++i) { 839 switch (String[i]) { 840 case '[': 841 case ']': 842 case '*': 843 case '!': 844 case ' ': 845 case '\t': 846 case ',': 847 if (InTok) { 848 addAsmOperand(Prev, i); 849 InTok = false; 850 } 851 if (!isspace(String[i]) && String[i] != ',') 852 addAsmOperand(i, i + 1); 853 Prev = i + 1; 854 break; 855 856 case '\\': 857 if (InTok) { 858 addAsmOperand(Prev, i); 859 InTok = false; 860 } 861 ++i; 862 assert(i != String.size() && "Invalid quoted character"); 863 addAsmOperand(i, i + 1); 864 Prev = i + 1; 865 break; 866 867 case '$': { 868 if (InTok) { 869 addAsmOperand(Prev, i); 870 InTok = false; 871 } 872 873 // If this isn't "${", treat like a normal token. 874 if (i + 1 == String.size() || String[i + 1] != '{') { 875 Prev = i; 876 break; 877 } 878 879 StringRef::iterator End = std::find(String.begin() + i, String.end(),'}'); 880 assert(End != String.end() && "Missing brace in operand reference!"); 881 size_t EndPos = End - String.begin(); 882 addAsmOperand(i, EndPos+1); 883 Prev = EndPos + 1; 884 i = EndPos; 885 break; 886 } 887 888 case '.': 889 if (!Info.AsmParser->getValueAsBit("MnemonicContainsDot")) { 890 if (InTok) 891 addAsmOperand(Prev, i); 892 Prev = i; 893 } 894 InTok = true; 895 break; 896 897 default: 898 InTok = true; 899 } 900 } 901 if (InTok && Prev != String.size()) 902 addAsmOperand(Prev, StringRef::npos); 903 904 // The first token of the instruction is the mnemonic, which must be a 905 // simple string, not a $foo variable or a singleton register. 906 if (AsmOperands.empty()) 907 PrintFatalError(TheDef->getLoc(), 908 "Instruction '" + TheDef->getName() + "' has no tokens"); 909 Mnemonic = AsmOperands[0].Token; 910 if (Mnemonic.empty()) 911 PrintFatalError(TheDef->getLoc(), 912 "Missing instruction mnemonic"); 913 // FIXME : Check and raise an error if it is a register. 914 if (Mnemonic[0] == '$') 915 PrintFatalError(TheDef->getLoc(), 916 "Invalid instruction mnemonic '" + Mnemonic + "'!"); 917 918 // Remove the first operand, it is tracked in the mnemonic field. 919 AsmOperands.erase(AsmOperands.begin()); 920 } 921 922 bool MatchableInfo::validate(StringRef CommentDelimiter, bool Hack) const { 923 // Reject matchables with no .s string. 924 if (AsmString.empty()) 925 PrintFatalError(TheDef->getLoc(), "instruction with empty asm string"); 926 927 // Reject any matchables with a newline in them, they should be marked 928 // isCodeGenOnly if they are pseudo instructions. 929 if (AsmString.find('\n') != std::string::npos) 930 PrintFatalError(TheDef->getLoc(), 931 "multiline instruction is not valid for the asmparser, " 932 "mark it isCodeGenOnly"); 933 934 // Remove comments from the asm string. We know that the asmstring only 935 // has one line. 936 if (!CommentDelimiter.empty() && 937 StringRef(AsmString).find(CommentDelimiter) != StringRef::npos) 938 PrintFatalError(TheDef->getLoc(), 939 "asmstring for instruction has comment character in it, " 940 "mark it isCodeGenOnly"); 941 942 // Reject matchables with operand modifiers, these aren't something we can 943 // handle, the target should be refactored to use operands instead of 944 // modifiers. 945 // 946 // Also, check for instructions which reference the operand multiple times; 947 // this implies a constraint we would not honor. 948 std::set<std::string> OperandNames; 949 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { 950 StringRef Tok = AsmOperands[i].Token; 951 if (Tok[0] == '$' && Tok.find(':') != StringRef::npos) 952 PrintFatalError(TheDef->getLoc(), 953 "matchable with operand modifier '" + Tok + 954 "' not supported by asm matcher. Mark isCodeGenOnly!"); 955 956 // Verify that any operand is only mentioned once. 957 // We reject aliases and ignore instructions for now. 958 if (Tok[0] == '$' && !OperandNames.insert(Tok).second) { 959 if (!Hack) 960 PrintFatalError(TheDef->getLoc(), 961 "ERROR: matchable with tied operand '" + Tok + 962 "' can never be matched!"); 963 // FIXME: Should reject these. The ARM backend hits this with $lane in a 964 // bunch of instructions. It is unclear what the right answer is. 965 DEBUG({ 966 errs() << "warning: '" << TheDef->getName() << "': " 967 << "ignoring instruction with tied operand '" 968 << Tok << "'\n"; 969 }); 970 return false; 971 } 972 } 973 974 return true; 975 } 976 977 /// extractSingletonRegisterForAsmOperand - Extract singleton register, 978 /// if present, from specified token. 979 void MatchableInfo:: 980 extractSingletonRegisterForAsmOperand(unsigned OperandNo, 981 const AsmMatcherInfo &Info, 982 std::string &RegisterPrefix) { 983 StringRef Tok = AsmOperands[OperandNo].Token; 984 985 // If this token is not an isolated token, i.e., it isn't separated from 986 // other tokens (e.g. with whitespace), don't interpret it as a register name. 987 if (!AsmOperands[OperandNo].IsIsolatedToken) 988 return; 989 990 if (RegisterPrefix.empty()) { 991 std::string LoweredTok = Tok.lower(); 992 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok)) 993 AsmOperands[OperandNo].SingletonReg = Reg->TheDef; 994 return; 995 } 996 997 if (!Tok.startswith(RegisterPrefix)) 998 return; 999 1000 StringRef RegName = Tok.substr(RegisterPrefix.size()); 1001 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName)) 1002 AsmOperands[OperandNo].SingletonReg = Reg->TheDef; 1003 1004 // If there is no register prefix (i.e. "%" in "%eax"), then this may 1005 // be some random non-register token, just ignore it. 1006 return; 1007 } 1008 1009 static std::string getEnumNameForToken(StringRef Str) { 1010 std::string Res; 1011 1012 for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) { 1013 switch (*it) { 1014 case '*': Res += "_STAR_"; break; 1015 case '%': Res += "_PCT_"; break; 1016 case ':': Res += "_COLON_"; break; 1017 case '!': Res += "_EXCLAIM_"; break; 1018 case '.': Res += "_DOT_"; break; 1019 case '<': Res += "_LT_"; break; 1020 case '>': Res += "_GT_"; break; 1021 case '-': Res += "_MINUS_"; break; 1022 default: 1023 if ((*it >= 'A' && *it <= 'Z') || 1024 (*it >= 'a' && *it <= 'z') || 1025 (*it >= '0' && *it <= '9')) 1026 Res += *it; 1027 else 1028 Res += "_" + utostr((unsigned) *it) + "_"; 1029 } 1030 } 1031 1032 return Res; 1033 } 1034 1035 ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) { 1036 ClassInfo *&Entry = TokenClasses[Token]; 1037 1038 if (!Entry) { 1039 Classes.emplace_front(); 1040 Entry = &Classes.front(); 1041 Entry->Kind = ClassInfo::Token; 1042 Entry->ClassName = "Token"; 1043 Entry->Name = "MCK_" + getEnumNameForToken(Token); 1044 Entry->ValueName = Token; 1045 Entry->PredicateMethod = "<invalid>"; 1046 Entry->RenderMethod = "<invalid>"; 1047 Entry->ParserMethod = ""; 1048 Entry->DiagnosticType = ""; 1049 } 1050 1051 return Entry; 1052 } 1053 1054 ClassInfo * 1055 AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI, 1056 int SubOpIdx) { 1057 Record *Rec = OI.Rec; 1058 if (SubOpIdx != -1) 1059 Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef(); 1060 return getOperandClass(Rec, SubOpIdx); 1061 } 1062 1063 ClassInfo * 1064 AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) { 1065 if (Rec->isSubClassOf("RegisterOperand")) { 1066 // RegisterOperand may have an associated ParserMatchClass. If it does, 1067 // use it, else just fall back to the underlying register class. 1068 const RecordVal *R = Rec->getValue("ParserMatchClass"); 1069 if (!R || !R->getValue()) 1070 PrintFatalError("Record `" + Rec->getName() + 1071 "' does not have a ParserMatchClass!\n"); 1072 1073 if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) { 1074 Record *MatchClass = DI->getDef(); 1075 if (ClassInfo *CI = AsmOperandClasses[MatchClass]) 1076 return CI; 1077 } 1078 1079 // No custom match class. Just use the register class. 1080 Record *ClassRec = Rec->getValueAsDef("RegClass"); 1081 if (!ClassRec) 1082 PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() + 1083 "' has no associated register class!\n"); 1084 if (ClassInfo *CI = RegisterClassClasses[ClassRec]) 1085 return CI; 1086 PrintFatalError(Rec->getLoc(), "register class has no class info!"); 1087 } 1088 1089 1090 if (Rec->isSubClassOf("RegisterClass")) { 1091 if (ClassInfo *CI = RegisterClassClasses[Rec]) 1092 return CI; 1093 PrintFatalError(Rec->getLoc(), "register class has no class info!"); 1094 } 1095 1096 if (!Rec->isSubClassOf("Operand")) 1097 PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() + 1098 "' does not derive from class Operand!\n"); 1099 Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); 1100 if (ClassInfo *CI = AsmOperandClasses[MatchClass]) 1101 return CI; 1102 1103 PrintFatalError(Rec->getLoc(), "operand has no match class!"); 1104 } 1105 1106 struct LessRegisterSet { 1107 bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const { 1108 // std::set<T> defines its own compariso "operator<", but it 1109 // performs a lexicographical comparison by T's innate comparison 1110 // for some reason. We don't want non-deterministic pointer 1111 // comparisons so use this instead. 1112 return std::lexicographical_compare(LHS.begin(), LHS.end(), 1113 RHS.begin(), RHS.end(), 1114 LessRecordByID()); 1115 } 1116 }; 1117 1118 void AsmMatcherInfo:: 1119 buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) { 1120 const auto &Registers = Target.getRegBank().getRegisters(); 1121 auto &RegClassList = Target.getRegBank().getRegClasses(); 1122 1123 typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet; 1124 1125 // The register sets used for matching. 1126 RegisterSetSet RegisterSets; 1127 1128 // Gather the defined sets. 1129 for (const CodeGenRegisterClass &RC : RegClassList) 1130 RegisterSets.insert( 1131 RegisterSet(RC.getOrder().begin(), RC.getOrder().end())); 1132 1133 // Add any required singleton sets. 1134 for (Record *Rec : SingletonRegisters) { 1135 RegisterSets.insert(RegisterSet(&Rec, &Rec + 1)); 1136 } 1137 1138 // Introduce derived sets where necessary (when a register does not determine 1139 // a unique register set class), and build the mapping of registers to the set 1140 // they should classify to. 1141 std::map<Record*, RegisterSet> RegisterMap; 1142 for (const CodeGenRegister &CGR : Registers) { 1143 // Compute the intersection of all sets containing this register. 1144 RegisterSet ContainingSet; 1145 1146 for (const RegisterSet &RS : RegisterSets) { 1147 if (!RS.count(CGR.TheDef)) 1148 continue; 1149 1150 if (ContainingSet.empty()) { 1151 ContainingSet = RS; 1152 continue; 1153 } 1154 1155 RegisterSet Tmp; 1156 std::swap(Tmp, ContainingSet); 1157 std::insert_iterator<RegisterSet> II(ContainingSet, 1158 ContainingSet.begin()); 1159 std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II, 1160 LessRecordByID()); 1161 } 1162 1163 if (!ContainingSet.empty()) { 1164 RegisterSets.insert(ContainingSet); 1165 RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet)); 1166 } 1167 } 1168 1169 // Construct the register classes. 1170 std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses; 1171 unsigned Index = 0; 1172 for (const RegisterSet &RS : RegisterSets) { 1173 Classes.emplace_front(); 1174 ClassInfo *CI = &Classes.front(); 1175 CI->Kind = ClassInfo::RegisterClass0 + Index; 1176 CI->ClassName = "Reg" + utostr(Index); 1177 CI->Name = "MCK_Reg" + utostr(Index); 1178 CI->ValueName = ""; 1179 CI->PredicateMethod = ""; // unused 1180 CI->RenderMethod = "addRegOperands"; 1181 CI->Registers = RS; 1182 // FIXME: diagnostic type. 1183 CI->DiagnosticType = ""; 1184 RegisterSetClasses.insert(std::make_pair(RS, CI)); 1185 ++Index; 1186 } 1187 1188 // Find the superclasses; we could compute only the subgroup lattice edges, 1189 // but there isn't really a point. 1190 for (const RegisterSet &RS : RegisterSets) { 1191 ClassInfo *CI = RegisterSetClasses[RS]; 1192 for (const RegisterSet &RS2 : RegisterSets) 1193 if (RS != RS2 && 1194 std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(), 1195 LessRecordByID())) 1196 CI->SuperClasses.push_back(RegisterSetClasses[RS2]); 1197 } 1198 1199 // Name the register classes which correspond to a user defined RegisterClass. 1200 for (const CodeGenRegisterClass &RC : RegClassList) { 1201 // Def will be NULL for non-user defined register classes. 1202 Record *Def = RC.getDef(); 1203 if (!Def) 1204 continue; 1205 ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(), 1206 RC.getOrder().end())]; 1207 if (CI->ValueName.empty()) { 1208 CI->ClassName = RC.getName(); 1209 CI->Name = "MCK_" + RC.getName(); 1210 CI->ValueName = RC.getName(); 1211 } else 1212 CI->ValueName = CI->ValueName + "," + RC.getName(); 1213 1214 RegisterClassClasses.insert(std::make_pair(Def, CI)); 1215 } 1216 1217 // Populate the map for individual registers. 1218 for (std::map<Record*, RegisterSet>::iterator it = RegisterMap.begin(), 1219 ie = RegisterMap.end(); it != ie; ++it) 1220 RegisterClasses[it->first] = RegisterSetClasses[it->second]; 1221 1222 // Name the register classes which correspond to singleton registers. 1223 for (Record *Rec : SingletonRegisters) { 1224 ClassInfo *CI = RegisterClasses[Rec]; 1225 assert(CI && "Missing singleton register class info!"); 1226 1227 if (CI->ValueName.empty()) { 1228 CI->ClassName = Rec->getName(); 1229 CI->Name = "MCK_" + Rec->getName(); 1230 CI->ValueName = Rec->getName(); 1231 } else 1232 CI->ValueName = CI->ValueName + "," + Rec->getName(); 1233 } 1234 } 1235 1236 void AsmMatcherInfo::buildOperandClasses() { 1237 std::vector<Record*> AsmOperands = 1238 Records.getAllDerivedDefinitions("AsmOperandClass"); 1239 1240 // Pre-populate AsmOperandClasses map. 1241 for (Record *Rec : AsmOperands) { 1242 Classes.emplace_front(); 1243 AsmOperandClasses[Rec] = &Classes.front(); 1244 } 1245 1246 unsigned Index = 0; 1247 for (Record *Rec : AsmOperands) { 1248 ClassInfo *CI = AsmOperandClasses[Rec]; 1249 CI->Kind = ClassInfo::UserClass0 + Index; 1250 1251 ListInit *Supers = Rec->getValueAsListInit("SuperClasses"); 1252 for (Init *I : Supers->getValues()) { 1253 DefInit *DI = dyn_cast<DefInit>(I); 1254 if (!DI) { 1255 PrintError(Rec->getLoc(), "Invalid super class reference!"); 1256 continue; 1257 } 1258 1259 ClassInfo *SC = AsmOperandClasses[DI->getDef()]; 1260 if (!SC) 1261 PrintError(Rec->getLoc(), "Invalid super class reference!"); 1262 else 1263 CI->SuperClasses.push_back(SC); 1264 } 1265 CI->ClassName = Rec->getValueAsString("Name"); 1266 CI->Name = "MCK_" + CI->ClassName; 1267 CI->ValueName = Rec->getName(); 1268 1269 // Get or construct the predicate method name. 1270 Init *PMName = Rec->getValueInit("PredicateMethod"); 1271 if (StringInit *SI = dyn_cast<StringInit>(PMName)) { 1272 CI->PredicateMethod = SI->getValue(); 1273 } else { 1274 assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!"); 1275 CI->PredicateMethod = "is" + CI->ClassName; 1276 } 1277 1278 // Get or construct the render method name. 1279 Init *RMName = Rec->getValueInit("RenderMethod"); 1280 if (StringInit *SI = dyn_cast<StringInit>(RMName)) { 1281 CI->RenderMethod = SI->getValue(); 1282 } else { 1283 assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!"); 1284 CI->RenderMethod = "add" + CI->ClassName + "Operands"; 1285 } 1286 1287 // Get the parse method name or leave it as empty. 1288 Init *PRMName = Rec->getValueInit("ParserMethod"); 1289 if (StringInit *SI = dyn_cast<StringInit>(PRMName)) 1290 CI->ParserMethod = SI->getValue(); 1291 1292 // Get the diagnostic type or leave it as empty. 1293 // Get the parse method name or leave it as empty. 1294 Init *DiagnosticType = Rec->getValueInit("DiagnosticType"); 1295 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType)) 1296 CI->DiagnosticType = SI->getValue(); 1297 1298 ++Index; 1299 } 1300 } 1301 1302 AsmMatcherInfo::AsmMatcherInfo(Record *asmParser, 1303 CodeGenTarget &target, 1304 RecordKeeper &records) 1305 : Records(records), AsmParser(asmParser), Target(target) { 1306 } 1307 1308 /// buildOperandMatchInfo - Build the necessary information to handle user 1309 /// defined operand parsing methods. 1310 void AsmMatcherInfo::buildOperandMatchInfo() { 1311 1312 /// Map containing a mask with all operands indices that can be found for 1313 /// that class inside a instruction. 1314 typedef std::map<ClassInfo *, unsigned, less_ptr<ClassInfo>> OpClassMaskTy; 1315 OpClassMaskTy OpClassMask; 1316 1317 for (const auto &MI : Matchables) { 1318 OpClassMask.clear(); 1319 1320 // Keep track of all operands of this instructions which belong to the 1321 // same class. 1322 for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) { 1323 const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i]; 1324 if (Op.Class->ParserMethod.empty()) 1325 continue; 1326 unsigned &OperandMask = OpClassMask[Op.Class]; 1327 OperandMask |= (1 << i); 1328 } 1329 1330 // Generate operand match info for each mnemonic/operand class pair. 1331 for (const auto &OCM : OpClassMask) { 1332 unsigned OpMask = OCM.second; 1333 ClassInfo *CI = OCM.first; 1334 OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI, 1335 OpMask)); 1336 } 1337 } 1338 } 1339 1340 void AsmMatcherInfo::buildInfo() { 1341 // Build information about all of the AssemblerPredicates. 1342 std::vector<Record*> AllPredicates = 1343 Records.getAllDerivedDefinitions("Predicate"); 1344 for (unsigned i = 0, e = AllPredicates.size(); i != e; ++i) { 1345 Record *Pred = AllPredicates[i]; 1346 // Ignore predicates that are not intended for the assembler. 1347 if (!Pred->getValueAsBit("AssemblerMatcherPredicate")) 1348 continue; 1349 1350 if (Pred->getName().empty()) 1351 PrintFatalError(Pred->getLoc(), "Predicate has no name!"); 1352 1353 SubtargetFeatures.insert(std::make_pair( 1354 Pred, SubtargetFeatureInfo(Pred, SubtargetFeatures.size()))); 1355 DEBUG(SubtargetFeatures.find(Pred)->second.dump()); 1356 assert(SubtargetFeatures.size() <= 64 && "Too many subtarget features!"); 1357 } 1358 1359 // Parse the instructions; we need to do this first so that we can gather the 1360 // singleton register classes. 1361 SmallPtrSet<Record*, 16> SingletonRegisters; 1362 unsigned VariantCount = Target.getAsmParserVariantCount(); 1363 for (unsigned VC = 0; VC != VariantCount; ++VC) { 1364 Record *AsmVariant = Target.getAsmParserVariant(VC); 1365 std::string CommentDelimiter = 1366 AsmVariant->getValueAsString("CommentDelimiter"); 1367 std::string RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix"); 1368 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 1369 1370 for (const CodeGenInstruction *CGI : Target.instructions()) { 1371 1372 // If the tblgen -match-prefix option is specified (for tblgen hackers), 1373 // filter the set of instructions we consider. 1374 if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix)) 1375 continue; 1376 1377 // Ignore "codegen only" instructions. 1378 if (CGI->TheDef->getValueAsBit("isCodeGenOnly")) 1379 continue; 1380 1381 std::unique_ptr<MatchableInfo> II(new MatchableInfo(*CGI)); 1382 1383 II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix); 1384 1385 // Ignore instructions which shouldn't be matched and diagnose invalid 1386 // instruction definitions with an error. 1387 if (!II->validate(CommentDelimiter, true)) 1388 continue; 1389 1390 Matchables.push_back(std::move(II)); 1391 } 1392 1393 // Parse all of the InstAlias definitions and stick them in the list of 1394 // matchables. 1395 std::vector<Record*> AllInstAliases = 1396 Records.getAllDerivedDefinitions("InstAlias"); 1397 for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) { 1398 auto Alias = llvm::make_unique<CodeGenInstAlias>(AllInstAliases[i], 1399 AsmVariantNo, Target); 1400 1401 // If the tblgen -match-prefix option is specified (for tblgen hackers), 1402 // filter the set of instruction aliases we consider, based on the target 1403 // instruction. 1404 if (!StringRef(Alias->ResultInst->TheDef->getName()) 1405 .startswith( MatchPrefix)) 1406 continue; 1407 1408 std::unique_ptr<MatchableInfo> II(new MatchableInfo(std::move(Alias))); 1409 1410 II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix); 1411 1412 // Validate the alias definitions. 1413 II->validate(CommentDelimiter, false); 1414 1415 Matchables.push_back(std::move(II)); 1416 } 1417 } 1418 1419 // Build info for the register classes. 1420 buildRegisterClasses(SingletonRegisters); 1421 1422 // Build info for the user defined assembly operand classes. 1423 buildOperandClasses(); 1424 1425 // Build the information about matchables, now that we have fully formed 1426 // classes. 1427 std::vector<std::unique_ptr<MatchableInfo>> NewMatchables; 1428 for (auto &II : Matchables) { 1429 // Parse the tokens after the mnemonic. 1430 // Note: buildInstructionOperandReference may insert new AsmOperands, so 1431 // don't precompute the loop bound. 1432 for (unsigned i = 0; i != II->AsmOperands.size(); ++i) { 1433 MatchableInfo::AsmOperand &Op = II->AsmOperands[i]; 1434 StringRef Token = Op.Token; 1435 1436 // Check for singleton registers. 1437 if (Record *RegRecord = II->AsmOperands[i].SingletonReg) { 1438 Op.Class = RegisterClasses[RegRecord]; 1439 assert(Op.Class && Op.Class->Registers.size() == 1 && 1440 "Unexpected class for singleton register"); 1441 continue; 1442 } 1443 1444 // Check for simple tokens. 1445 if (Token[0] != '$') { 1446 Op.Class = getTokenClass(Token); 1447 continue; 1448 } 1449 1450 if (Token.size() > 1 && isdigit(Token[1])) { 1451 Op.Class = getTokenClass(Token); 1452 continue; 1453 } 1454 1455 // Otherwise this is an operand reference. 1456 StringRef OperandName; 1457 if (Token[1] == '{') 1458 OperandName = Token.substr(2, Token.size() - 3); 1459 else 1460 OperandName = Token.substr(1); 1461 1462 if (II->DefRec.is<const CodeGenInstruction*>()) 1463 buildInstructionOperandReference(II.get(), OperandName, i); 1464 else 1465 buildAliasOperandReference(II.get(), OperandName, Op); 1466 } 1467 1468 if (II->DefRec.is<const CodeGenInstruction*>()) { 1469 II->buildInstructionResultOperands(); 1470 // If the instruction has a two-operand alias, build up the 1471 // matchable here. We'll add them in bulk at the end to avoid 1472 // confusing this loop. 1473 std::string Constraint = 1474 II->TheDef->getValueAsString("TwoOperandAliasConstraint"); 1475 if (Constraint != "") { 1476 // Start by making a copy of the original matchable. 1477 std::unique_ptr<MatchableInfo> AliasII(new MatchableInfo(*II)); 1478 1479 // Adjust it to be a two-operand alias. 1480 AliasII->formTwoOperandAlias(Constraint); 1481 1482 // Add the alias to the matchables list. 1483 NewMatchables.push_back(std::move(AliasII)); 1484 } 1485 } else 1486 II->buildAliasResultOperands(); 1487 } 1488 if (!NewMatchables.empty()) 1489 Matchables.insert(Matchables.end(), 1490 std::make_move_iterator(NewMatchables.begin()), 1491 std::make_move_iterator(NewMatchables.end())); 1492 1493 // Process token alias definitions and set up the associated superclass 1494 // information. 1495 std::vector<Record*> AllTokenAliases = 1496 Records.getAllDerivedDefinitions("TokenAlias"); 1497 for (unsigned i = 0, e = AllTokenAliases.size(); i != e; ++i) { 1498 Record *Rec = AllTokenAliases[i]; 1499 ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken")); 1500 ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken")); 1501 if (FromClass == ToClass) 1502 PrintFatalError(Rec->getLoc(), 1503 "error: Destination value identical to source value."); 1504 FromClass->SuperClasses.push_back(ToClass); 1505 } 1506 1507 // Reorder classes so that classes precede super classes. 1508 Classes.sort(); 1509 } 1510 1511 /// buildInstructionOperandReference - The specified operand is a reference to a 1512 /// named operand such as $src. Resolve the Class and OperandInfo pointers. 1513 void AsmMatcherInfo:: 1514 buildInstructionOperandReference(MatchableInfo *II, 1515 StringRef OperandName, 1516 unsigned AsmOpIdx) { 1517 const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>(); 1518 const CGIOperandList &Operands = CGI.Operands; 1519 MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx]; 1520 1521 // Map this token to an operand. 1522 unsigned Idx; 1523 if (!Operands.hasOperandNamed(OperandName, Idx)) 1524 PrintFatalError(II->TheDef->getLoc(), 1525 "error: unable to find operand: '" + OperandName + "'"); 1526 1527 // If the instruction operand has multiple suboperands, but the parser 1528 // match class for the asm operand is still the default "ImmAsmOperand", 1529 // then handle each suboperand separately. 1530 if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) { 1531 Record *Rec = Operands[Idx].Rec; 1532 assert(Rec->isSubClassOf("Operand") && "Unexpected operand!"); 1533 Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); 1534 if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") { 1535 // Insert remaining suboperands after AsmOpIdx in II->AsmOperands. 1536 StringRef Token = Op->Token; // save this in case Op gets moved 1537 for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) { 1538 MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token); 1539 NewAsmOp.SubOpIdx = SI; 1540 II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp); 1541 } 1542 // Replace Op with first suboperand. 1543 Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved 1544 Op->SubOpIdx = 0; 1545 } 1546 } 1547 1548 // Set up the operand class. 1549 Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx); 1550 1551 // If the named operand is tied, canonicalize it to the untied operand. 1552 // For example, something like: 1553 // (outs GPR:$dst), (ins GPR:$src) 1554 // with an asmstring of 1555 // "inc $src" 1556 // we want to canonicalize to: 1557 // "inc $dst" 1558 // so that we know how to provide the $dst operand when filling in the result. 1559 int OITied = -1; 1560 if (Operands[Idx].MINumOperands == 1) 1561 OITied = Operands[Idx].getTiedRegister(); 1562 if (OITied != -1) { 1563 // The tied operand index is an MIOperand index, find the operand that 1564 // contains it. 1565 std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied); 1566 OperandName = Operands[Idx.first].Name; 1567 Op->SubOpIdx = Idx.second; 1568 } 1569 1570 Op->SrcOpName = OperandName; 1571 } 1572 1573 /// buildAliasOperandReference - When parsing an operand reference out of the 1574 /// matching string (e.g. "movsx $src, $dst"), determine what the class of the 1575 /// operand reference is by looking it up in the result pattern definition. 1576 void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II, 1577 StringRef OperandName, 1578 MatchableInfo::AsmOperand &Op) { 1579 const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>(); 1580 1581 // Set up the operand class. 1582 for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i) 1583 if (CGA.ResultOperands[i].isRecord() && 1584 CGA.ResultOperands[i].getName() == OperandName) { 1585 // It's safe to go with the first one we find, because CodeGenInstAlias 1586 // validates that all operands with the same name have the same record. 1587 Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second; 1588 // Use the match class from the Alias definition, not the 1589 // destination instruction, as we may have an immediate that's 1590 // being munged by the match class. 1591 Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(), 1592 Op.SubOpIdx); 1593 Op.SrcOpName = OperandName; 1594 return; 1595 } 1596 1597 PrintFatalError(II->TheDef->getLoc(), 1598 "error: unable to find operand: '" + OperandName + "'"); 1599 } 1600 1601 void MatchableInfo::buildInstructionResultOperands() { 1602 const CodeGenInstruction *ResultInst = getResultInst(); 1603 1604 // Loop over all operands of the result instruction, determining how to 1605 // populate them. 1606 for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) { 1607 const CGIOperandList::OperandInfo &OpInfo = ResultInst->Operands[i]; 1608 1609 // If this is a tied operand, just copy from the previously handled operand. 1610 int TiedOp = -1; 1611 if (OpInfo.MINumOperands == 1) 1612 TiedOp = OpInfo.getTiedRegister(); 1613 if (TiedOp != -1) { 1614 ResOperands.push_back(ResOperand::getTiedOp(TiedOp)); 1615 continue; 1616 } 1617 1618 // Find out what operand from the asmparser this MCInst operand comes from. 1619 int SrcOperand = findAsmOperandNamed(OpInfo.Name); 1620 if (OpInfo.Name.empty() || SrcOperand == -1) { 1621 // This may happen for operands that are tied to a suboperand of a 1622 // complex operand. Simply use a dummy value here; nobody should 1623 // use this operand slot. 1624 // FIXME: The long term goal is for the MCOperand list to not contain 1625 // tied operands at all. 1626 ResOperands.push_back(ResOperand::getImmOp(0)); 1627 continue; 1628 } 1629 1630 // Check if the one AsmOperand populates the entire operand. 1631 unsigned NumOperands = OpInfo.MINumOperands; 1632 if (AsmOperands[SrcOperand].SubOpIdx == -1) { 1633 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands)); 1634 continue; 1635 } 1636 1637 // Add a separate ResOperand for each suboperand. 1638 for (unsigned AI = 0; AI < NumOperands; ++AI) { 1639 assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI && 1640 AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name && 1641 "unexpected AsmOperands for suboperands"); 1642 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1)); 1643 } 1644 } 1645 } 1646 1647 void MatchableInfo::buildAliasResultOperands() { 1648 const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>(); 1649 const CodeGenInstruction *ResultInst = getResultInst(); 1650 1651 // Loop over all operands of the result instruction, determining how to 1652 // populate them. 1653 unsigned AliasOpNo = 0; 1654 unsigned LastOpNo = CGA.ResultInstOperandIndex.size(); 1655 for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) { 1656 const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i]; 1657 1658 // If this is a tied operand, just copy from the previously handled operand. 1659 int TiedOp = -1; 1660 if (OpInfo->MINumOperands == 1) 1661 TiedOp = OpInfo->getTiedRegister(); 1662 if (TiedOp != -1) { 1663 ResOperands.push_back(ResOperand::getTiedOp(TiedOp)); 1664 continue; 1665 } 1666 1667 // Handle all the suboperands for this operand. 1668 const std::string &OpName = OpInfo->Name; 1669 for ( ; AliasOpNo < LastOpNo && 1670 CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) { 1671 int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second; 1672 1673 // Find out what operand from the asmparser that this MCInst operand 1674 // comes from. 1675 switch (CGA.ResultOperands[AliasOpNo].Kind) { 1676 case CodeGenInstAlias::ResultOperand::K_Record: { 1677 StringRef Name = CGA.ResultOperands[AliasOpNo].getName(); 1678 int SrcOperand = findAsmOperand(Name, SubIdx); 1679 if (SrcOperand == -1) 1680 PrintFatalError(TheDef->getLoc(), "Instruction '" + 1681 TheDef->getName() + "' has operand '" + OpName + 1682 "' that doesn't appear in asm string!"); 1683 unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1); 1684 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, 1685 NumOperands)); 1686 break; 1687 } 1688 case CodeGenInstAlias::ResultOperand::K_Imm: { 1689 int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm(); 1690 ResOperands.push_back(ResOperand::getImmOp(ImmVal)); 1691 break; 1692 } 1693 case CodeGenInstAlias::ResultOperand::K_Reg: { 1694 Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister(); 1695 ResOperands.push_back(ResOperand::getRegOp(Reg)); 1696 break; 1697 } 1698 } 1699 } 1700 } 1701 } 1702 1703 static unsigned getConverterOperandID(const std::string &Name, 1704 SetVector<std::string> &Table, 1705 bool &IsNew) { 1706 IsNew = Table.insert(Name); 1707 1708 unsigned ID = IsNew ? Table.size() - 1 : 1709 std::find(Table.begin(), Table.end(), Name) - Table.begin(); 1710 1711 assert(ID < Table.size()); 1712 1713 return ID; 1714 } 1715 1716 1717 static void emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName, 1718 std::vector<std::unique_ptr<MatchableInfo>> &Infos, 1719 raw_ostream &OS) { 1720 SetVector<std::string> OperandConversionKinds; 1721 SetVector<std::string> InstructionConversionKinds; 1722 std::vector<std::vector<uint8_t> > ConversionTable; 1723 size_t MaxRowLength = 2; // minimum is custom converter plus terminator. 1724 1725 // TargetOperandClass - This is the target's operand class, like X86Operand. 1726 std::string TargetOperandClass = Target.getName() + "Operand"; 1727 1728 // Write the convert function to a separate stream, so we can drop it after 1729 // the enum. We'll build up the conversion handlers for the individual 1730 // operand types opportunistically as we encounter them. 1731 std::string ConvertFnBody; 1732 raw_string_ostream CvtOS(ConvertFnBody); 1733 // Start the unified conversion function. 1734 CvtOS << "void " << Target.getName() << ClassName << "::\n" 1735 << "convertToMCInst(unsigned Kind, MCInst &Inst, " 1736 << "unsigned Opcode,\n" 1737 << " const OperandVector" 1738 << " &Operands) {\n" 1739 << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n" 1740 << " const uint8_t *Converter = ConversionTable[Kind];\n" 1741 << " Inst.setOpcode(Opcode);\n" 1742 << " for (const uint8_t *p = Converter; *p; p+= 2) {\n" 1743 << " switch (*p) {\n" 1744 << " default: llvm_unreachable(\"invalid conversion entry!\");\n" 1745 << " case CVT_Reg:\n" 1746 << " static_cast<" << TargetOperandClass 1747 << "&>(*Operands[*(p + 1)]).addRegOperands(Inst, 1);\n" 1748 << " break;\n" 1749 << " case CVT_Tied:\n" 1750 << " Inst.addOperand(Inst.getOperand(*(p + 1)));\n" 1751 << " break;\n"; 1752 1753 std::string OperandFnBody; 1754 raw_string_ostream OpOS(OperandFnBody); 1755 // Start the operand number lookup function. 1756 OpOS << "void " << Target.getName() << ClassName << "::\n" 1757 << "convertToMapAndConstraints(unsigned Kind,\n"; 1758 OpOS.indent(27); 1759 OpOS << "const OperandVector &Operands) {\n" 1760 << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n" 1761 << " unsigned NumMCOperands = 0;\n" 1762 << " const uint8_t *Converter = ConversionTable[Kind];\n" 1763 << " for (const uint8_t *p = Converter; *p; p+= 2) {\n" 1764 << " switch (*p) {\n" 1765 << " default: llvm_unreachable(\"invalid conversion entry!\");\n" 1766 << " case CVT_Reg:\n" 1767 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" 1768 << " Operands[*(p + 1)]->setConstraint(\"r\");\n" 1769 << " ++NumMCOperands;\n" 1770 << " break;\n" 1771 << " case CVT_Tied:\n" 1772 << " ++NumMCOperands;\n" 1773 << " break;\n"; 1774 1775 // Pre-populate the operand conversion kinds with the standard always 1776 // available entries. 1777 OperandConversionKinds.insert("CVT_Done"); 1778 OperandConversionKinds.insert("CVT_Reg"); 1779 OperandConversionKinds.insert("CVT_Tied"); 1780 enum { CVT_Done, CVT_Reg, CVT_Tied }; 1781 1782 for (auto &II : Infos) { 1783 // Check if we have a custom match function. 1784 std::string AsmMatchConverter = 1785 II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter"); 1786 if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) { 1787 std::string Signature = "ConvertCustom_" + AsmMatchConverter; 1788 II->ConversionFnKind = Signature; 1789 1790 // Check if we have already generated this signature. 1791 if (!InstructionConversionKinds.insert(Signature)) 1792 continue; 1793 1794 // Remember this converter for the kind enum. 1795 unsigned KindID = OperandConversionKinds.size(); 1796 OperandConversionKinds.insert("CVT_" + 1797 getEnumNameForToken(AsmMatchConverter)); 1798 1799 // Add the converter row for this instruction. 1800 ConversionTable.emplace_back(); 1801 ConversionTable.back().push_back(KindID); 1802 ConversionTable.back().push_back(CVT_Done); 1803 1804 // Add the handler to the conversion driver function. 1805 CvtOS << " case CVT_" 1806 << getEnumNameForToken(AsmMatchConverter) << ":\n" 1807 << " " << AsmMatchConverter << "(Inst, Operands);\n" 1808 << " break;\n"; 1809 1810 // FIXME: Handle the operand number lookup for custom match functions. 1811 continue; 1812 } 1813 1814 // Build the conversion function signature. 1815 std::string Signature = "Convert"; 1816 1817 std::vector<uint8_t> ConversionRow; 1818 1819 // Compute the convert enum and the case body. 1820 MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 ); 1821 1822 for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) { 1823 const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i]; 1824 1825 // Generate code to populate each result operand. 1826 switch (OpInfo.Kind) { 1827 case MatchableInfo::ResOperand::RenderAsmOperand: { 1828 // This comes from something we parsed. 1829 const MatchableInfo::AsmOperand &Op = 1830 II->AsmOperands[OpInfo.AsmOperandNum]; 1831 1832 // Registers are always converted the same, don't duplicate the 1833 // conversion function based on them. 1834 Signature += "__"; 1835 std::string Class; 1836 Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName; 1837 Signature += Class; 1838 Signature += utostr(OpInfo.MINumOperands); 1839 Signature += "_" + itostr(OpInfo.AsmOperandNum); 1840 1841 // Add the conversion kind, if necessary, and get the associated ID 1842 // the index of its entry in the vector). 1843 std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" : 1844 Op.Class->RenderMethod); 1845 Name = getEnumNameForToken(Name); 1846 1847 bool IsNewConverter = false; 1848 unsigned ID = getConverterOperandID(Name, OperandConversionKinds, 1849 IsNewConverter); 1850 1851 // Add the operand entry to the instruction kind conversion row. 1852 ConversionRow.push_back(ID); 1853 ConversionRow.push_back(OpInfo.AsmOperandNum + 1); 1854 1855 if (!IsNewConverter) 1856 break; 1857 1858 // This is a new operand kind. Add a handler for it to the 1859 // converter driver. 1860 CvtOS << " case " << Name << ":\n" 1861 << " static_cast<" << TargetOperandClass 1862 << "&>(*Operands[*(p + 1)])." << Op.Class->RenderMethod 1863 << "(Inst, " << OpInfo.MINumOperands << ");\n" 1864 << " break;\n"; 1865 1866 // Add a handler for the operand number lookup. 1867 OpOS << " case " << Name << ":\n" 1868 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"; 1869 1870 if (Op.Class->isRegisterClass()) 1871 OpOS << " Operands[*(p + 1)]->setConstraint(\"r\");\n"; 1872 else 1873 OpOS << " Operands[*(p + 1)]->setConstraint(\"m\");\n"; 1874 OpOS << " NumMCOperands += " << OpInfo.MINumOperands << ";\n" 1875 << " break;\n"; 1876 break; 1877 } 1878 case MatchableInfo::ResOperand::TiedOperand: { 1879 // If this operand is tied to a previous one, just copy the MCInst 1880 // operand from the earlier one.We can only tie single MCOperand values. 1881 assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand"); 1882 unsigned TiedOp = OpInfo.TiedOperandNum; 1883 assert(i > TiedOp && "Tied operand precedes its target!"); 1884 Signature += "__Tie" + utostr(TiedOp); 1885 ConversionRow.push_back(CVT_Tied); 1886 ConversionRow.push_back(TiedOp); 1887 break; 1888 } 1889 case MatchableInfo::ResOperand::ImmOperand: { 1890 int64_t Val = OpInfo.ImmVal; 1891 std::string Ty = "imm_" + itostr(Val); 1892 Ty = getEnumNameForToken(Ty); 1893 Signature += "__" + Ty; 1894 1895 std::string Name = "CVT_" + Ty; 1896 bool IsNewConverter = false; 1897 unsigned ID = getConverterOperandID(Name, OperandConversionKinds, 1898 IsNewConverter); 1899 // Add the operand entry to the instruction kind conversion row. 1900 ConversionRow.push_back(ID); 1901 ConversionRow.push_back(0); 1902 1903 if (!IsNewConverter) 1904 break; 1905 1906 CvtOS << " case " << Name << ":\n" 1907 << " Inst.addOperand(MCOperand::createImm(" << Val << "));\n" 1908 << " break;\n"; 1909 1910 OpOS << " case " << Name << ":\n" 1911 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" 1912 << " Operands[*(p + 1)]->setConstraint(\"\");\n" 1913 << " ++NumMCOperands;\n" 1914 << " break;\n"; 1915 break; 1916 } 1917 case MatchableInfo::ResOperand::RegOperand: { 1918 std::string Reg, Name; 1919 if (!OpInfo.Register) { 1920 Name = "reg0"; 1921 Reg = "0"; 1922 } else { 1923 Reg = getQualifiedName(OpInfo.Register); 1924 Name = "reg" + OpInfo.Register->getName(); 1925 } 1926 Signature += "__" + Name; 1927 Name = "CVT_" + Name; 1928 bool IsNewConverter = false; 1929 unsigned ID = getConverterOperandID(Name, OperandConversionKinds, 1930 IsNewConverter); 1931 // Add the operand entry to the instruction kind conversion row. 1932 ConversionRow.push_back(ID); 1933 ConversionRow.push_back(0); 1934 1935 if (!IsNewConverter) 1936 break; 1937 CvtOS << " case " << Name << ":\n" 1938 << " Inst.addOperand(MCOperand::createReg(" << Reg << "));\n" 1939 << " break;\n"; 1940 1941 OpOS << " case " << Name << ":\n" 1942 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" 1943 << " Operands[*(p + 1)]->setConstraint(\"m\");\n" 1944 << " ++NumMCOperands;\n" 1945 << " break;\n"; 1946 } 1947 } 1948 } 1949 1950 // If there were no operands, add to the signature to that effect 1951 if (Signature == "Convert") 1952 Signature += "_NoOperands"; 1953 1954 II->ConversionFnKind = Signature; 1955 1956 // Save the signature. If we already have it, don't add a new row 1957 // to the table. 1958 if (!InstructionConversionKinds.insert(Signature)) 1959 continue; 1960 1961 // Add the row to the table. 1962 ConversionTable.push_back(ConversionRow); 1963 } 1964 1965 // Finish up the converter driver function. 1966 CvtOS << " }\n }\n}\n\n"; 1967 1968 // Finish up the operand number lookup function. 1969 OpOS << " }\n }\n}\n\n"; 1970 1971 OS << "namespace {\n"; 1972 1973 // Output the operand conversion kind enum. 1974 OS << "enum OperatorConversionKind {\n"; 1975 for (unsigned i = 0, e = OperandConversionKinds.size(); i != e; ++i) 1976 OS << " " << OperandConversionKinds[i] << ",\n"; 1977 OS << " CVT_NUM_CONVERTERS\n"; 1978 OS << "};\n\n"; 1979 1980 // Output the instruction conversion kind enum. 1981 OS << "enum InstructionConversionKind {\n"; 1982 for (SetVector<std::string>::const_iterator 1983 i = InstructionConversionKinds.begin(), 1984 e = InstructionConversionKinds.end(); i != e; ++i) 1985 OS << " " << *i << ",\n"; 1986 OS << " CVT_NUM_SIGNATURES\n"; 1987 OS << "};\n\n"; 1988 1989 1990 OS << "} // end anonymous namespace\n\n"; 1991 1992 // Output the conversion table. 1993 OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES][" 1994 << MaxRowLength << "] = {\n"; 1995 1996 for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) { 1997 assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!"); 1998 OS << " // " << InstructionConversionKinds[Row] << "\n"; 1999 OS << " { "; 2000 for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2) 2001 OS << OperandConversionKinds[ConversionTable[Row][i]] << ", " 2002 << (unsigned)(ConversionTable[Row][i + 1]) << ", "; 2003 OS << "CVT_Done },\n"; 2004 } 2005 2006 OS << "};\n\n"; 2007 2008 // Spit out the conversion driver function. 2009 OS << CvtOS.str(); 2010 2011 // Spit out the operand number lookup function. 2012 OS << OpOS.str(); 2013 } 2014 2015 /// emitMatchClassEnumeration - Emit the enumeration for match class kinds. 2016 static void emitMatchClassEnumeration(CodeGenTarget &Target, 2017 std::forward_list<ClassInfo> &Infos, 2018 raw_ostream &OS) { 2019 OS << "namespace {\n\n"; 2020 2021 OS << "/// MatchClassKind - The kinds of classes which participate in\n" 2022 << "/// instruction matching.\n"; 2023 OS << "enum MatchClassKind {\n"; 2024 OS << " InvalidMatchClass = 0,\n"; 2025 for (const auto &CI : Infos) { 2026 OS << " " << CI.Name << ", // "; 2027 if (CI.Kind == ClassInfo::Token) { 2028 OS << "'" << CI.ValueName << "'\n"; 2029 } else if (CI.isRegisterClass()) { 2030 if (!CI.ValueName.empty()) 2031 OS << "register class '" << CI.ValueName << "'\n"; 2032 else 2033 OS << "derived register class\n"; 2034 } else { 2035 OS << "user defined class '" << CI.ValueName << "'\n"; 2036 } 2037 } 2038 OS << " NumMatchClassKinds\n"; 2039 OS << "};\n\n"; 2040 2041 OS << "}\n\n"; 2042 } 2043 2044 /// emitValidateOperandClass - Emit the function to validate an operand class. 2045 static void emitValidateOperandClass(AsmMatcherInfo &Info, 2046 raw_ostream &OS) { 2047 OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, " 2048 << "MatchClassKind Kind) {\n"; 2049 OS << " " << Info.Target.getName() << "Operand &Operand = (" 2050 << Info.Target.getName() << "Operand&)GOp;\n"; 2051 2052 // The InvalidMatchClass is not to match any operand. 2053 OS << " if (Kind == InvalidMatchClass)\n"; 2054 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n\n"; 2055 2056 // Check for Token operands first. 2057 // FIXME: Use a more specific diagnostic type. 2058 OS << " if (Operand.isToken())\n"; 2059 OS << " return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n" 2060 << " MCTargetAsmParser::Match_Success :\n" 2061 << " MCTargetAsmParser::Match_InvalidOperand;\n\n"; 2062 2063 // Check the user classes. We don't care what order since we're only 2064 // actually matching against one of them. 2065 for (const auto &CI : Info.Classes) { 2066 if (!CI.isUserClass()) 2067 continue; 2068 2069 OS << " // '" << CI.ClassName << "' class\n"; 2070 OS << " if (Kind == " << CI.Name << ") {\n"; 2071 OS << " if (Operand." << CI.PredicateMethod << "())\n"; 2072 OS << " return MCTargetAsmParser::Match_Success;\n"; 2073 if (!CI.DiagnosticType.empty()) 2074 OS << " return " << Info.Target.getName() << "AsmParser::Match_" 2075 << CI.DiagnosticType << ";\n"; 2076 OS << " }\n\n"; 2077 } 2078 2079 // Check for register operands, including sub-classes. 2080 OS << " if (Operand.isReg()) {\n"; 2081 OS << " MatchClassKind OpKind;\n"; 2082 OS << " switch (Operand.getReg()) {\n"; 2083 OS << " default: OpKind = InvalidMatchClass; break;\n"; 2084 for (const auto &RC : Info.RegisterClasses) 2085 OS << " case " << Info.Target.getName() << "::" 2086 << RC.first->getName() << ": OpKind = " << RC.second->Name 2087 << "; break;\n"; 2088 OS << " }\n"; 2089 OS << " return isSubclass(OpKind, Kind) ? " 2090 << "MCTargetAsmParser::Match_Success :\n " 2091 << " MCTargetAsmParser::Match_InvalidOperand;\n }\n\n"; 2092 2093 // Generic fallthrough match failure case for operands that don't have 2094 // specialized diagnostic types. 2095 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n"; 2096 OS << "}\n\n"; 2097 } 2098 2099 /// emitIsSubclass - Emit the subclass predicate function. 2100 static void emitIsSubclass(CodeGenTarget &Target, 2101 std::forward_list<ClassInfo> &Infos, 2102 raw_ostream &OS) { 2103 OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n"; 2104 OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n"; 2105 OS << " if (A == B)\n"; 2106 OS << " return true;\n\n"; 2107 2108 std::string OStr; 2109 raw_string_ostream SS(OStr); 2110 unsigned Count = 0; 2111 SS << " switch (A) {\n"; 2112 SS << " default:\n"; 2113 SS << " return false;\n"; 2114 for (const auto &A : Infos) { 2115 std::vector<StringRef> SuperClasses; 2116 for (const auto &B : Infos) { 2117 if (&A != &B && A.isSubsetOf(B)) 2118 SuperClasses.push_back(B.Name); 2119 } 2120 2121 if (SuperClasses.empty()) 2122 continue; 2123 ++Count; 2124 2125 SS << "\n case " << A.Name << ":\n"; 2126 2127 if (SuperClasses.size() == 1) { 2128 SS << " return B == " << SuperClasses.back().str() << ";\n"; 2129 continue; 2130 } 2131 2132 if (!SuperClasses.empty()) { 2133 SS << " switch (B) {\n"; 2134 SS << " default: return false;\n"; 2135 for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i) 2136 SS << " case " << SuperClasses[i].str() << ": return true;\n"; 2137 SS << " }\n"; 2138 } else { 2139 // No case statement to emit 2140 SS << " return false;\n"; 2141 } 2142 } 2143 SS << " }\n"; 2144 2145 // If there were case statements emitted into the string stream, write them 2146 // to the output stream, otherwise write the default. 2147 if (Count) 2148 OS << SS.str(); 2149 else 2150 OS << " return false;\n"; 2151 2152 OS << "}\n\n"; 2153 } 2154 2155 /// emitMatchTokenString - Emit the function to match a token string to the 2156 /// appropriate match class value. 2157 static void emitMatchTokenString(CodeGenTarget &Target, 2158 std::forward_list<ClassInfo> &Infos, 2159 raw_ostream &OS) { 2160 // Construct the match list. 2161 std::vector<StringMatcher::StringPair> Matches; 2162 for (const auto &CI : Infos) { 2163 if (CI.Kind == ClassInfo::Token) 2164 Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";"); 2165 } 2166 2167 OS << "static MatchClassKind matchTokenString(StringRef Name) {\n"; 2168 2169 StringMatcher("Name", Matches, OS).Emit(); 2170 2171 OS << " return InvalidMatchClass;\n"; 2172 OS << "}\n\n"; 2173 } 2174 2175 /// emitMatchRegisterName - Emit the function to match a string to the target 2176 /// specific register enum. 2177 static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser, 2178 raw_ostream &OS) { 2179 // Construct the match list. 2180 std::vector<StringMatcher::StringPair> Matches; 2181 const auto &Regs = Target.getRegBank().getRegisters(); 2182 for (const CodeGenRegister &Reg : Regs) { 2183 if (Reg.TheDef->getValueAsString("AsmName").empty()) 2184 continue; 2185 2186 Matches.emplace_back(Reg.TheDef->getValueAsString("AsmName"), 2187 "return " + utostr(Reg.EnumValue) + ";"); 2188 } 2189 2190 OS << "static unsigned MatchRegisterName(StringRef Name) {\n"; 2191 2192 StringMatcher("Name", Matches, OS).Emit(); 2193 2194 OS << " return 0;\n"; 2195 OS << "}\n\n"; 2196 } 2197 2198 static const char *getMinimalTypeForRange(uint64_t Range) { 2199 assert(Range <= 0xFFFFFFFFFFFFFFFFULL && "Enum too large"); 2200 if (Range > 0xFFFFFFFFULL) 2201 return "uint64_t"; 2202 if (Range > 0xFFFF) 2203 return "uint32_t"; 2204 if (Range > 0xFF) 2205 return "uint16_t"; 2206 return "uint8_t"; 2207 } 2208 2209 static const char *getMinimalRequiredFeaturesType(const AsmMatcherInfo &Info) { 2210 uint64_t MaxIndex = Info.SubtargetFeatures.size(); 2211 if (MaxIndex > 0) 2212 MaxIndex--; 2213 return getMinimalTypeForRange(1ULL << MaxIndex); 2214 } 2215 2216 /// emitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag 2217 /// definitions. 2218 static void emitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info, 2219 raw_ostream &OS) { 2220 OS << "// Flags for subtarget features that participate in " 2221 << "instruction matching.\n"; 2222 OS << "enum SubtargetFeatureFlag : " << getMinimalRequiredFeaturesType(Info) 2223 << " {\n"; 2224 for (const auto &SF : Info.SubtargetFeatures) { 2225 const SubtargetFeatureInfo &SFI = SF.second; 2226 OS << " " << SFI.getEnumName() << " = (1ULL << " << SFI.Index << "),\n"; 2227 } 2228 OS << " Feature_None = 0\n"; 2229 OS << "};\n\n"; 2230 } 2231 2232 /// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types. 2233 static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) { 2234 // Get the set of diagnostic types from all of the operand classes. 2235 std::set<StringRef> Types; 2236 for (std::map<Record*, ClassInfo*>::const_iterator 2237 I = Info.AsmOperandClasses.begin(), 2238 E = Info.AsmOperandClasses.end(); I != E; ++I) { 2239 if (!I->second->DiagnosticType.empty()) 2240 Types.insert(I->second->DiagnosticType); 2241 } 2242 2243 if (Types.empty()) return; 2244 2245 // Now emit the enum entries. 2246 for (std::set<StringRef>::const_iterator I = Types.begin(), E = Types.end(); 2247 I != E; ++I) 2248 OS << " Match_" << *I << ",\n"; 2249 OS << " END_OPERAND_DIAGNOSTIC_TYPES\n"; 2250 } 2251 2252 /// emitGetSubtargetFeatureName - Emit the helper function to get the 2253 /// user-level name for a subtarget feature. 2254 static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) { 2255 OS << "// User-level names for subtarget features that participate in\n" 2256 << "// instruction matching.\n" 2257 << "static const char *getSubtargetFeatureName(uint64_t Val) {\n"; 2258 if (!Info.SubtargetFeatures.empty()) { 2259 OS << " switch(Val) {\n"; 2260 for (const auto &SF : Info.SubtargetFeatures) { 2261 const SubtargetFeatureInfo &SFI = SF.second; 2262 // FIXME: Totally just a placeholder name to get the algorithm working. 2263 OS << " case " << SFI.getEnumName() << ": return \"" 2264 << SFI.TheDef->getValueAsString("PredicateName") << "\";\n"; 2265 } 2266 OS << " default: return \"(unknown)\";\n"; 2267 OS << " }\n"; 2268 } else { 2269 // Nothing to emit, so skip the switch 2270 OS << " return \"(unknown)\";\n"; 2271 } 2272 OS << "}\n\n"; 2273 } 2274 2275 /// emitComputeAvailableFeatures - Emit the function to compute the list of 2276 /// available features given a subtarget. 2277 static void emitComputeAvailableFeatures(AsmMatcherInfo &Info, 2278 raw_ostream &OS) { 2279 std::string ClassName = 2280 Info.AsmParser->getValueAsString("AsmParserClassName"); 2281 2282 OS << "uint64_t " << Info.Target.getName() << ClassName << "::\n" 2283 << "ComputeAvailableFeatures(const FeatureBitset& FB) const {\n"; 2284 OS << " uint64_t Features = 0;\n"; 2285 for (const auto &SF : Info.SubtargetFeatures) { 2286 const SubtargetFeatureInfo &SFI = SF.second; 2287 2288 OS << " if ("; 2289 std::string CondStorage = 2290 SFI.TheDef->getValueAsString("AssemblerCondString"); 2291 StringRef Conds = CondStorage; 2292 std::pair<StringRef,StringRef> Comma = Conds.split(','); 2293 bool First = true; 2294 do { 2295 if (!First) 2296 OS << " && "; 2297 2298 bool Neg = false; 2299 StringRef Cond = Comma.first; 2300 if (Cond[0] == '!') { 2301 Neg = true; 2302 Cond = Cond.substr(1); 2303 } 2304 2305 OS << "("; 2306 if (Neg) 2307 OS << "!"; 2308 OS << "FB[" << Info.Target.getName() << "::" << Cond << "])"; 2309 2310 if (Comma.second.empty()) 2311 break; 2312 2313 First = false; 2314 Comma = Comma.second.split(','); 2315 } while (true); 2316 2317 OS << ")\n"; 2318 OS << " Features |= " << SFI.getEnumName() << ";\n"; 2319 } 2320 OS << " return Features;\n"; 2321 OS << "}\n\n"; 2322 } 2323 2324 static std::string GetAliasRequiredFeatures(Record *R, 2325 const AsmMatcherInfo &Info) { 2326 std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates"); 2327 std::string Result; 2328 unsigned NumFeatures = 0; 2329 for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) { 2330 const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]); 2331 2332 if (!F) 2333 PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() + 2334 "' is not marked as an AssemblerPredicate!"); 2335 2336 if (NumFeatures) 2337 Result += '|'; 2338 2339 Result += F->getEnumName(); 2340 ++NumFeatures; 2341 } 2342 2343 if (NumFeatures > 1) 2344 Result = '(' + Result + ')'; 2345 return Result; 2346 } 2347 2348 static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info, 2349 std::vector<Record*> &Aliases, 2350 unsigned Indent = 0, 2351 StringRef AsmParserVariantName = StringRef()){ 2352 // Keep track of all the aliases from a mnemonic. Use an std::map so that the 2353 // iteration order of the map is stable. 2354 std::map<std::string, std::vector<Record*> > AliasesFromMnemonic; 2355 2356 for (unsigned i = 0, e = Aliases.size(); i != e; ++i) { 2357 Record *R = Aliases[i]; 2358 // FIXME: Allow AssemblerVariantName to be a comma separated list. 2359 std::string AsmVariantName = R->getValueAsString("AsmVariantName"); 2360 if (AsmVariantName != AsmParserVariantName) 2361 continue; 2362 AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R); 2363 } 2364 if (AliasesFromMnemonic.empty()) 2365 return; 2366 2367 // Process each alias a "from" mnemonic at a time, building the code executed 2368 // by the string remapper. 2369 std::vector<StringMatcher::StringPair> Cases; 2370 for (std::map<std::string, std::vector<Record*> >::iterator 2371 I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end(); 2372 I != E; ++I) { 2373 const std::vector<Record*> &ToVec = I->second; 2374 2375 // Loop through each alias and emit code that handles each case. If there 2376 // are two instructions without predicates, emit an error. If there is one, 2377 // emit it last. 2378 std::string MatchCode; 2379 int AliasWithNoPredicate = -1; 2380 2381 for (unsigned i = 0, e = ToVec.size(); i != e; ++i) { 2382 Record *R = ToVec[i]; 2383 std::string FeatureMask = GetAliasRequiredFeatures(R, Info); 2384 2385 // If this unconditionally matches, remember it for later and diagnose 2386 // duplicates. 2387 if (FeatureMask.empty()) { 2388 if (AliasWithNoPredicate != -1) { 2389 // We can't have two aliases from the same mnemonic with no predicate. 2390 PrintError(ToVec[AliasWithNoPredicate]->getLoc(), 2391 "two MnemonicAliases with the same 'from' mnemonic!"); 2392 PrintFatalError(R->getLoc(), "this is the other MnemonicAlias."); 2393 } 2394 2395 AliasWithNoPredicate = i; 2396 continue; 2397 } 2398 if (R->getValueAsString("ToMnemonic") == I->first) 2399 PrintFatalError(R->getLoc(), "MnemonicAlias to the same string"); 2400 2401 if (!MatchCode.empty()) 2402 MatchCode += "else "; 2403 MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n"; 2404 MatchCode += " Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n"; 2405 } 2406 2407 if (AliasWithNoPredicate != -1) { 2408 Record *R = ToVec[AliasWithNoPredicate]; 2409 if (!MatchCode.empty()) 2410 MatchCode += "else\n "; 2411 MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n"; 2412 } 2413 2414 MatchCode += "return;"; 2415 2416 Cases.push_back(std::make_pair(I->first, MatchCode)); 2417 } 2418 StringMatcher("Mnemonic", Cases, OS).Emit(Indent); 2419 } 2420 2421 /// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions, 2422 /// emit a function for them and return true, otherwise return false. 2423 static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info, 2424 CodeGenTarget &Target) { 2425 // Ignore aliases when match-prefix is set. 2426 if (!MatchPrefix.empty()) 2427 return false; 2428 2429 std::vector<Record*> Aliases = 2430 Info.getRecords().getAllDerivedDefinitions("MnemonicAlias"); 2431 if (Aliases.empty()) return false; 2432 2433 OS << "static void applyMnemonicAliases(StringRef &Mnemonic, " 2434 "uint64_t Features, unsigned VariantID) {\n"; 2435 OS << " switch (VariantID) {\n"; 2436 unsigned VariantCount = Target.getAsmParserVariantCount(); 2437 for (unsigned VC = 0; VC != VariantCount; ++VC) { 2438 Record *AsmVariant = Target.getAsmParserVariant(VC); 2439 int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant"); 2440 std::string AsmParserVariantName = AsmVariant->getValueAsString("Name"); 2441 OS << " case " << AsmParserVariantNo << ":\n"; 2442 emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2, 2443 AsmParserVariantName); 2444 OS << " break;\n"; 2445 } 2446 OS << " }\n"; 2447 2448 // Emit aliases that apply to all variants. 2449 emitMnemonicAliasVariant(OS, Info, Aliases); 2450 2451 OS << "}\n\n"; 2452 2453 return true; 2454 } 2455 2456 static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target, 2457 const AsmMatcherInfo &Info, StringRef ClassName, 2458 StringToOffsetTable &StringTable, 2459 unsigned MaxMnemonicIndex) { 2460 unsigned MaxMask = 0; 2461 for (std::vector<OperandMatchEntry>::const_iterator it = 2462 Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end(); 2463 it != ie; ++it) { 2464 MaxMask |= it->OperandMask; 2465 } 2466 2467 // Emit the static custom operand parsing table; 2468 OS << "namespace {\n"; 2469 OS << " struct OperandMatchEntry {\n"; 2470 OS << " " << getMinimalRequiredFeaturesType(Info) 2471 << " RequiredFeatures;\n"; 2472 OS << " " << getMinimalTypeForRange(MaxMnemonicIndex) 2473 << " Mnemonic;\n"; 2474 OS << " " << getMinimalTypeForRange(std::distance( 2475 Info.Classes.begin(), Info.Classes.end())) << " Class;\n"; 2476 OS << " " << getMinimalTypeForRange(MaxMask) 2477 << " OperandMask;\n\n"; 2478 OS << " StringRef getMnemonic() const {\n"; 2479 OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n"; 2480 OS << " MnemonicTable[Mnemonic]);\n"; 2481 OS << " }\n"; 2482 OS << " };\n\n"; 2483 2484 OS << " // Predicate for searching for an opcode.\n"; 2485 OS << " struct LessOpcodeOperand {\n"; 2486 OS << " bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n"; 2487 OS << " return LHS.getMnemonic() < RHS;\n"; 2488 OS << " }\n"; 2489 OS << " bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n"; 2490 OS << " return LHS < RHS.getMnemonic();\n"; 2491 OS << " }\n"; 2492 OS << " bool operator()(const OperandMatchEntry &LHS,"; 2493 OS << " const OperandMatchEntry &RHS) {\n"; 2494 OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n"; 2495 OS << " }\n"; 2496 OS << " };\n"; 2497 2498 OS << "} // end anonymous namespace.\n\n"; 2499 2500 OS << "static const OperandMatchEntry OperandMatchTable[" 2501 << Info.OperandMatchInfo.size() << "] = {\n"; 2502 2503 OS << " /* Operand List Mask, Mnemonic, Operand Class, Features */\n"; 2504 for (std::vector<OperandMatchEntry>::const_iterator it = 2505 Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end(); 2506 it != ie; ++it) { 2507 const OperandMatchEntry &OMI = *it; 2508 const MatchableInfo &II = *OMI.MI; 2509 2510 OS << " { "; 2511 2512 // Write the required features mask. 2513 if (!II.RequiredFeatures.empty()) { 2514 for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) { 2515 if (i) OS << "|"; 2516 OS << II.RequiredFeatures[i]->getEnumName(); 2517 } 2518 } else 2519 OS << "0"; 2520 2521 // Store a pascal-style length byte in the mnemonic. 2522 std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str(); 2523 OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false) 2524 << " /* " << II.Mnemonic << " */, "; 2525 2526 OS << OMI.CI->Name; 2527 2528 OS << ", " << OMI.OperandMask; 2529 OS << " /* "; 2530 bool printComma = false; 2531 for (int i = 0, e = 31; i !=e; ++i) 2532 if (OMI.OperandMask & (1 << i)) { 2533 if (printComma) 2534 OS << ", "; 2535 OS << i; 2536 printComma = true; 2537 } 2538 OS << " */"; 2539 2540 OS << " },\n"; 2541 } 2542 OS << "};\n\n"; 2543 2544 // Emit the operand class switch to call the correct custom parser for 2545 // the found operand class. 2546 OS << Target.getName() << ClassName << "::OperandMatchResultTy " 2547 << Target.getName() << ClassName << "::\n" 2548 << "tryCustomParseOperand(OperandVector" 2549 << " &Operands,\n unsigned MCK) {\n\n" 2550 << " switch(MCK) {\n"; 2551 2552 for (const auto &CI : Info.Classes) { 2553 if (CI.ParserMethod.empty()) 2554 continue; 2555 OS << " case " << CI.Name << ":\n" 2556 << " return " << CI.ParserMethod << "(Operands);\n"; 2557 } 2558 2559 OS << " default:\n"; 2560 OS << " return MatchOperand_NoMatch;\n"; 2561 OS << " }\n"; 2562 OS << " return MatchOperand_NoMatch;\n"; 2563 OS << "}\n\n"; 2564 2565 // Emit the static custom operand parser. This code is very similar with 2566 // the other matcher. Also use MatchResultTy here just in case we go for 2567 // a better error handling. 2568 OS << Target.getName() << ClassName << "::OperandMatchResultTy " 2569 << Target.getName() << ClassName << "::\n" 2570 << "MatchOperandParserImpl(OperandVector" 2571 << " &Operands,\n StringRef Mnemonic) {\n"; 2572 2573 // Emit code to get the available features. 2574 OS << " // Get the current feature set.\n"; 2575 OS << " uint64_t AvailableFeatures = getAvailableFeatures();\n\n"; 2576 2577 OS << " // Get the next operand index.\n"; 2578 OS << " unsigned NextOpNum = Operands.size()-1;\n"; 2579 2580 // Emit code to search the table. 2581 OS << " // Search the table.\n"; 2582 OS << " std::pair<const OperandMatchEntry*, const OperandMatchEntry*>"; 2583 OS << " MnemonicRange =\n"; 2584 OS << " std::equal_range(OperandMatchTable, OperandMatchTable+" 2585 << Info.OperandMatchInfo.size() << ", Mnemonic,\n" 2586 << " LessOpcodeOperand());\n\n"; 2587 2588 OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; 2589 OS << " return MatchOperand_NoMatch;\n\n"; 2590 2591 OS << " for (const OperandMatchEntry *it = MnemonicRange.first,\n" 2592 << " *ie = MnemonicRange.second; it != ie; ++it) {\n"; 2593 2594 OS << " // equal_range guarantees that instruction mnemonic matches.\n"; 2595 OS << " assert(Mnemonic == it->getMnemonic());\n\n"; 2596 2597 // Emit check that the required features are available. 2598 OS << " // check if the available features match\n"; 2599 OS << " if ((AvailableFeatures & it->RequiredFeatures) " 2600 << "!= it->RequiredFeatures) {\n"; 2601 OS << " continue;\n"; 2602 OS << " }\n\n"; 2603 2604 // Emit check to ensure the operand number matches. 2605 OS << " // check if the operand in question has a custom parser.\n"; 2606 OS << " if (!(it->OperandMask & (1 << NextOpNum)))\n"; 2607 OS << " continue;\n\n"; 2608 2609 // Emit call to the custom parser method 2610 OS << " // call custom parse method to handle the operand\n"; 2611 OS << " OperandMatchResultTy Result = "; 2612 OS << "tryCustomParseOperand(Operands, it->Class);\n"; 2613 OS << " if (Result != MatchOperand_NoMatch)\n"; 2614 OS << " return Result;\n"; 2615 OS << " }\n\n"; 2616 2617 OS << " // Okay, we had no match.\n"; 2618 OS << " return MatchOperand_NoMatch;\n"; 2619 OS << "}\n\n"; 2620 } 2621 2622 void AsmMatcherEmitter::run(raw_ostream &OS) { 2623 CodeGenTarget Target(Records); 2624 Record *AsmParser = Target.getAsmParser(); 2625 std::string ClassName = AsmParser->getValueAsString("AsmParserClassName"); 2626 2627 // Compute the information on the instructions to match. 2628 AsmMatcherInfo Info(AsmParser, Target, Records); 2629 Info.buildInfo(); 2630 2631 // Sort the instruction table using the partial order on classes. We use 2632 // stable_sort to ensure that ambiguous instructions are still 2633 // deterministically ordered. 2634 std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(), 2635 [](const std::unique_ptr<MatchableInfo> &a, 2636 const std::unique_ptr<MatchableInfo> &b){ 2637 return *a < *b;}); 2638 2639 DEBUG_WITH_TYPE("instruction_info", { 2640 for (const auto &MI : Info.Matchables) 2641 MI->dump(); 2642 }); 2643 2644 // Check for ambiguous matchables. 2645 DEBUG_WITH_TYPE("ambiguous_instrs", { 2646 unsigned NumAmbiguous = 0; 2647 for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E; 2648 ++I) { 2649 for (auto J = std::next(I); J != E; ++J) { 2650 const MatchableInfo &A = **I; 2651 const MatchableInfo &B = **J; 2652 2653 if (A.couldMatchAmbiguouslyWith(B)) { 2654 errs() << "warning: ambiguous matchables:\n"; 2655 A.dump(); 2656 errs() << "\nis incomparable with:\n"; 2657 B.dump(); 2658 errs() << "\n\n"; 2659 ++NumAmbiguous; 2660 } 2661 } 2662 } 2663 if (NumAmbiguous) 2664 errs() << "warning: " << NumAmbiguous 2665 << " ambiguous matchables!\n"; 2666 }); 2667 2668 // Compute the information on the custom operand parsing. 2669 Info.buildOperandMatchInfo(); 2670 2671 // Write the output. 2672 2673 // Information for the class declaration. 2674 OS << "\n#ifdef GET_ASSEMBLER_HEADER\n"; 2675 OS << "#undef GET_ASSEMBLER_HEADER\n"; 2676 OS << " // This should be included into the middle of the declaration of\n"; 2677 OS << " // your subclasses implementation of MCTargetAsmParser.\n"; 2678 OS << " uint64_t ComputeAvailableFeatures(const FeatureBitset& FB) const;\n"; 2679 OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, " 2680 << "unsigned Opcode,\n" 2681 << " const OperandVector " 2682 << "&Operands);\n"; 2683 OS << " void convertToMapAndConstraints(unsigned Kind,\n "; 2684 OS << " const OperandVector &Operands) override;\n"; 2685 OS << " bool mnemonicIsValid(StringRef Mnemonic, unsigned VariantID) override;\n"; 2686 OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n" 2687 << " MCInst &Inst,\n" 2688 << " uint64_t &ErrorInfo," 2689 << " bool matchingInlineAsm,\n" 2690 << " unsigned VariantID = 0);\n"; 2691 2692 if (!Info.OperandMatchInfo.empty()) { 2693 OS << "\n enum OperandMatchResultTy {\n"; 2694 OS << " MatchOperand_Success, // operand matched successfully\n"; 2695 OS << " MatchOperand_NoMatch, // operand did not match\n"; 2696 OS << " MatchOperand_ParseFail // operand matched but had errors\n"; 2697 OS << " };\n"; 2698 OS << " OperandMatchResultTy MatchOperandParserImpl(\n"; 2699 OS << " OperandVector &Operands,\n"; 2700 OS << " StringRef Mnemonic);\n"; 2701 2702 OS << " OperandMatchResultTy tryCustomParseOperand(\n"; 2703 OS << " OperandVector &Operands,\n"; 2704 OS << " unsigned MCK);\n\n"; 2705 } 2706 2707 OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n"; 2708 2709 // Emit the operand match diagnostic enum names. 2710 OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n"; 2711 OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n"; 2712 emitOperandDiagnosticTypes(Info, OS); 2713 OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n"; 2714 2715 2716 OS << "\n#ifdef GET_REGISTER_MATCHER\n"; 2717 OS << "#undef GET_REGISTER_MATCHER\n\n"; 2718 2719 // Emit the subtarget feature enumeration. 2720 emitSubtargetFeatureFlagEnumeration(Info, OS); 2721 2722 // Emit the function to match a register name to number. 2723 // This should be omitted for Mips target 2724 if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName")) 2725 emitMatchRegisterName(Target, AsmParser, OS); 2726 2727 OS << "#endif // GET_REGISTER_MATCHER\n\n"; 2728 2729 OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n"; 2730 OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n"; 2731 2732 // Generate the helper function to get the names for subtarget features. 2733 emitGetSubtargetFeatureName(Info, OS); 2734 2735 OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n"; 2736 2737 OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n"; 2738 OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n"; 2739 2740 // Generate the function that remaps for mnemonic aliases. 2741 bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target); 2742 2743 // Generate the convertToMCInst function to convert operands into an MCInst. 2744 // Also, generate the convertToMapAndConstraints function for MS-style inline 2745 // assembly. The latter doesn't actually generate a MCInst. 2746 emitConvertFuncs(Target, ClassName, Info.Matchables, OS); 2747 2748 // Emit the enumeration for classes which participate in matching. 2749 emitMatchClassEnumeration(Target, Info.Classes, OS); 2750 2751 // Emit the routine to match token strings to their match class. 2752 emitMatchTokenString(Target, Info.Classes, OS); 2753 2754 // Emit the subclass predicate routine. 2755 emitIsSubclass(Target, Info.Classes, OS); 2756 2757 // Emit the routine to validate an operand against a match class. 2758 emitValidateOperandClass(Info, OS); 2759 2760 // Emit the available features compute function. 2761 emitComputeAvailableFeatures(Info, OS); 2762 2763 2764 StringToOffsetTable StringTable; 2765 2766 size_t MaxNumOperands = 0; 2767 unsigned MaxMnemonicIndex = 0; 2768 bool HasDeprecation = false; 2769 for (const auto &MI : Info.Matchables) { 2770 MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size()); 2771 HasDeprecation |= MI->HasDeprecation; 2772 2773 // Store a pascal-style length byte in the mnemonic. 2774 std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str(); 2775 MaxMnemonicIndex = std::max(MaxMnemonicIndex, 2776 StringTable.GetOrAddStringOffset(LenMnemonic, false)); 2777 } 2778 2779 OS << "static const char *const MnemonicTable =\n"; 2780 StringTable.EmitString(OS); 2781 OS << ";\n\n"; 2782 2783 // Emit the static match table; unused classes get initalized to 0 which is 2784 // guaranteed to be InvalidMatchClass. 2785 // 2786 // FIXME: We can reduce the size of this table very easily. First, we change 2787 // it so that store the kinds in separate bit-fields for each index, which 2788 // only needs to be the max width used for classes at that index (we also need 2789 // to reject based on this during classification). If we then make sure to 2790 // order the match kinds appropriately (putting mnemonics last), then we 2791 // should only end up using a few bits for each class, especially the ones 2792 // following the mnemonic. 2793 OS << "namespace {\n"; 2794 OS << " struct MatchEntry {\n"; 2795 OS << " " << getMinimalTypeForRange(MaxMnemonicIndex) 2796 << " Mnemonic;\n"; 2797 OS << " uint16_t Opcode;\n"; 2798 OS << " " << getMinimalTypeForRange(Info.Matchables.size()) 2799 << " ConvertFn;\n"; 2800 OS << " " << getMinimalRequiredFeaturesType(Info) 2801 << " RequiredFeatures;\n"; 2802 OS << " " << getMinimalTypeForRange( 2803 std::distance(Info.Classes.begin(), Info.Classes.end())) 2804 << " Classes[" << MaxNumOperands << "];\n"; 2805 OS << " StringRef getMnemonic() const {\n"; 2806 OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n"; 2807 OS << " MnemonicTable[Mnemonic]);\n"; 2808 OS << " }\n"; 2809 OS << " };\n\n"; 2810 2811 OS << " // Predicate for searching for an opcode.\n"; 2812 OS << " struct LessOpcode {\n"; 2813 OS << " bool operator()(const MatchEntry &LHS, StringRef RHS) {\n"; 2814 OS << " return LHS.getMnemonic() < RHS;\n"; 2815 OS << " }\n"; 2816 OS << " bool operator()(StringRef LHS, const MatchEntry &RHS) {\n"; 2817 OS << " return LHS < RHS.getMnemonic();\n"; 2818 OS << " }\n"; 2819 OS << " bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n"; 2820 OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n"; 2821 OS << " }\n"; 2822 OS << " };\n"; 2823 2824 OS << "} // end anonymous namespace.\n\n"; 2825 2826 unsigned VariantCount = Target.getAsmParserVariantCount(); 2827 for (unsigned VC = 0; VC != VariantCount; ++VC) { 2828 Record *AsmVariant = Target.getAsmParserVariant(VC); 2829 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 2830 2831 OS << "static const MatchEntry MatchTable" << VC << "[] = {\n"; 2832 2833 for (const auto &MI : Info.Matchables) { 2834 if (MI->AsmVariantID != AsmVariantNo) 2835 continue; 2836 2837 // Store a pascal-style length byte in the mnemonic. 2838 std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str(); 2839 OS << " { " << StringTable.GetOrAddStringOffset(LenMnemonic, false) 2840 << " /* " << MI->Mnemonic << " */, " 2841 << Target.getName() << "::" 2842 << MI->getResultInst()->TheDef->getName() << ", " 2843 << MI->ConversionFnKind << ", "; 2844 2845 // Write the required features mask. 2846 if (!MI->RequiredFeatures.empty()) { 2847 for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i) { 2848 if (i) OS << "|"; 2849 OS << MI->RequiredFeatures[i]->getEnumName(); 2850 } 2851 } else 2852 OS << "0"; 2853 2854 OS << ", { "; 2855 for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) { 2856 const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i]; 2857 2858 if (i) OS << ", "; 2859 OS << Op.Class->Name; 2860 } 2861 OS << " }, },\n"; 2862 } 2863 2864 OS << "};\n\n"; 2865 } 2866 2867 // A method to determine if a mnemonic is in the list. 2868 OS << "bool " << Target.getName() << ClassName << "::\n" 2869 << "mnemonicIsValid(StringRef Mnemonic, unsigned VariantID) {\n"; 2870 OS << " // Find the appropriate table for this asm variant.\n"; 2871 OS << " const MatchEntry *Start, *End;\n"; 2872 OS << " switch (VariantID) {\n"; 2873 OS << " default: llvm_unreachable(\"invalid variant!\");\n"; 2874 for (unsigned VC = 0; VC != VariantCount; ++VC) { 2875 Record *AsmVariant = Target.getAsmParserVariant(VC); 2876 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 2877 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC 2878 << "); End = std::end(MatchTable" << VC << "); break;\n"; 2879 } 2880 OS << " }\n"; 2881 OS << " // Search the table.\n"; 2882 OS << " std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n"; 2883 OS << " std::equal_range(Start, End, Mnemonic, LessOpcode());\n"; 2884 OS << " return MnemonicRange.first != MnemonicRange.second;\n"; 2885 OS << "}\n\n"; 2886 2887 // Finally, build the match function. 2888 OS << "unsigned " << Target.getName() << ClassName << "::\n" 2889 << "MatchInstructionImpl(const OperandVector &Operands,\n"; 2890 OS << " MCInst &Inst, uint64_t &ErrorInfo,\n" 2891 << " bool matchingInlineAsm, unsigned VariantID) {\n"; 2892 2893 OS << " // Eliminate obvious mismatches.\n"; 2894 OS << " if (Operands.size() > " << (MaxNumOperands+1) << ") {\n"; 2895 OS << " ErrorInfo = " << (MaxNumOperands+1) << ";\n"; 2896 OS << " return Match_InvalidOperand;\n"; 2897 OS << " }\n\n"; 2898 2899 // Emit code to get the available features. 2900 OS << " // Get the current feature set.\n"; 2901 OS << " uint64_t AvailableFeatures = getAvailableFeatures();\n\n"; 2902 2903 OS << " // Get the instruction mnemonic, which is the first token.\n"; 2904 OS << " StringRef Mnemonic = ((" << Target.getName() 2905 << "Operand&)*Operands[0]).getToken();\n\n"; 2906 2907 if (HasMnemonicAliases) { 2908 OS << " // Process all MnemonicAliases to remap the mnemonic.\n"; 2909 OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n"; 2910 } 2911 2912 // Emit code to compute the class list for this operand vector. 2913 OS << " // Some state to try to produce better error messages.\n"; 2914 OS << " bool HadMatchOtherThanFeatures = false;\n"; 2915 OS << " bool HadMatchOtherThanPredicate = false;\n"; 2916 OS << " unsigned RetCode = Match_InvalidOperand;\n"; 2917 OS << " uint64_t MissingFeatures = ~0ULL;\n"; 2918 OS << " // Set ErrorInfo to the operand that mismatches if it is\n"; 2919 OS << " // wrong for all instances of the instruction.\n"; 2920 OS << " ErrorInfo = ~0ULL;\n"; 2921 2922 // Emit code to search the table. 2923 OS << " // Find the appropriate table for this asm variant.\n"; 2924 OS << " const MatchEntry *Start, *End;\n"; 2925 OS << " switch (VariantID) {\n"; 2926 OS << " default: llvm_unreachable(\"invalid variant!\");\n"; 2927 for (unsigned VC = 0; VC != VariantCount; ++VC) { 2928 Record *AsmVariant = Target.getAsmParserVariant(VC); 2929 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 2930 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC 2931 << "); End = std::end(MatchTable" << VC << "); break;\n"; 2932 } 2933 OS << " }\n"; 2934 OS << " // Search the table.\n"; 2935 OS << " std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n"; 2936 OS << " std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n"; 2937 2938 OS << " // Return a more specific error code if no mnemonics match.\n"; 2939 OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; 2940 OS << " return Match_MnemonicFail;\n\n"; 2941 2942 OS << " for (const MatchEntry *it = MnemonicRange.first, " 2943 << "*ie = MnemonicRange.second;\n"; 2944 OS << " it != ie; ++it) {\n"; 2945 2946 OS << " // equal_range guarantees that instruction mnemonic matches.\n"; 2947 OS << " assert(Mnemonic == it->getMnemonic());\n"; 2948 2949 // Emit check that the subclasses match. 2950 OS << " bool OperandsValid = true;\n"; 2951 OS << " for (unsigned i = 0; i != " << MaxNumOperands << "; ++i) {\n"; 2952 OS << " if (i + 1 >= Operands.size()) {\n"; 2953 OS << " OperandsValid = (it->Classes[i] == " <<"InvalidMatchClass);\n"; 2954 OS << " if (!OperandsValid) ErrorInfo = i + 1;\n"; 2955 OS << " break;\n"; 2956 OS << " }\n"; 2957 OS << " unsigned Diag = validateOperandClass(*Operands[i+1],\n"; 2958 OS.indent(43); 2959 OS << "(MatchClassKind)it->Classes[i]);\n"; 2960 OS << " if (Diag == Match_Success)\n"; 2961 OS << " continue;\n"; 2962 OS << " // If the generic handler indicates an invalid operand\n"; 2963 OS << " // failure, check for a special case.\n"; 2964 OS << " if (Diag == Match_InvalidOperand) {\n"; 2965 OS << " Diag = validateTargetOperandClass(*Operands[i+1],\n"; 2966 OS.indent(43); 2967 OS << "(MatchClassKind)it->Classes[i]);\n"; 2968 OS << " if (Diag == Match_Success)\n"; 2969 OS << " continue;\n"; 2970 OS << " }\n"; 2971 OS << " // If this operand is broken for all of the instances of this\n"; 2972 OS << " // mnemonic, keep track of it so we can report loc info.\n"; 2973 OS << " // If we already had a match that only failed due to a\n"; 2974 OS << " // target predicate, that diagnostic is preferred.\n"; 2975 OS << " if (!HadMatchOtherThanPredicate &&\n"; 2976 OS << " (it == MnemonicRange.first || ErrorInfo <= i+1)) {\n"; 2977 OS << " ErrorInfo = i+1;\n"; 2978 OS << " // InvalidOperand is the default. Prefer specificity.\n"; 2979 OS << " if (Diag != Match_InvalidOperand)\n"; 2980 OS << " RetCode = Diag;\n"; 2981 OS << " }\n"; 2982 OS << " // Otherwise, just reject this instance of the mnemonic.\n"; 2983 OS << " OperandsValid = false;\n"; 2984 OS << " break;\n"; 2985 OS << " }\n\n"; 2986 2987 OS << " if (!OperandsValid) continue;\n"; 2988 2989 // Emit check that the required features are available. 2990 OS << " if ((AvailableFeatures & it->RequiredFeatures) " 2991 << "!= it->RequiredFeatures) {\n"; 2992 OS << " HadMatchOtherThanFeatures = true;\n"; 2993 OS << " uint64_t NewMissingFeatures = it->RequiredFeatures & " 2994 "~AvailableFeatures;\n"; 2995 OS << " if (countPopulation(NewMissingFeatures) <=\n" 2996 " countPopulation(MissingFeatures))\n"; 2997 OS << " MissingFeatures = NewMissingFeatures;\n"; 2998 OS << " continue;\n"; 2999 OS << " }\n"; 3000 OS << "\n"; 3001 OS << " Inst.clear();\n\n"; 3002 OS << " if (matchingInlineAsm) {\n"; 3003 OS << " Inst.setOpcode(it->Opcode);\n"; 3004 OS << " convertToMapAndConstraints(it->ConvertFn, Operands);\n"; 3005 OS << " return Match_Success;\n"; 3006 OS << " }\n\n"; 3007 OS << " // We have selected a definite instruction, convert the parsed\n" 3008 << " // operands into the appropriate MCInst.\n"; 3009 OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n"; 3010 OS << "\n"; 3011 3012 // Verify the instruction with the target-specific match predicate function. 3013 OS << " // We have a potential match. Check the target predicate to\n" 3014 << " // handle any context sensitive constraints.\n" 3015 << " unsigned MatchResult;\n" 3016 << " if ((MatchResult = checkTargetMatchPredicate(Inst)) !=" 3017 << " Match_Success) {\n" 3018 << " Inst.clear();\n" 3019 << " RetCode = MatchResult;\n" 3020 << " HadMatchOtherThanPredicate = true;\n" 3021 << " continue;\n" 3022 << " }\n\n"; 3023 3024 // Call the post-processing function, if used. 3025 std::string InsnCleanupFn = 3026 AsmParser->getValueAsString("AsmParserInstCleanup"); 3027 if (!InsnCleanupFn.empty()) 3028 OS << " " << InsnCleanupFn << "(Inst);\n"; 3029 3030 if (HasDeprecation) { 3031 OS << " std::string Info;\n"; 3032 OS << " if (MII.get(Inst.getOpcode()).getDeprecatedInfo(Inst, STI, Info)) {\n"; 3033 OS << " SMLoc Loc = ((" << Target.getName() 3034 << "Operand&)*Operands[0]).getStartLoc();\n"; 3035 OS << " getParser().Warning(Loc, Info, None);\n"; 3036 OS << " }\n"; 3037 } 3038 3039 OS << " return Match_Success;\n"; 3040 OS << " }\n\n"; 3041 3042 OS << " // Okay, we had no match. Try to return a useful error code.\n"; 3043 OS << " if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n"; 3044 OS << " return RetCode;\n\n"; 3045 OS << " // Missing feature matches return which features were missing\n"; 3046 OS << " ErrorInfo = MissingFeatures;\n"; 3047 OS << " return Match_MissingFeature;\n"; 3048 OS << "}\n\n"; 3049 3050 if (!Info.OperandMatchInfo.empty()) 3051 emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable, 3052 MaxMnemonicIndex); 3053 3054 OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n"; 3055 } 3056 3057 namespace llvm { 3058 3059 void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) { 3060 emitSourceFileHeader("Assembly Matcher Source Fragment", OS); 3061 AsmMatcherEmitter(RK).run(OS); 3062 } 3063 3064 } // End llvm namespace 3065