1 //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This tablegen backend emits a target specifier matcher for converting parsed
11 // assembly operands in the MCInst structures. It also emits a matcher for
12 // custom operand parsing.
13 //
14 // Converting assembly operands into MCInst structures
15 // ---------------------------------------------------
16 //
17 // The input to the target specific matcher is a list of literal tokens and
18 // operands. The target specific parser should generally eliminate any syntax
19 // which is not relevant for matching; for example, comma tokens should have
20 // already been consumed and eliminated by the parser. Most instructions will
21 // end up with a single literal token (the instruction name) and some number of
22 // operands.
23 //
24 // Some example inputs, for X86:
25 //   'addl' (immediate ...) (register ...)
26 //   'add' (immediate ...) (memory ...)
27 //   'call' '*' %epc
28 //
29 // The assembly matcher is responsible for converting this input into a precise
30 // machine instruction (i.e., an instruction with a well defined encoding). This
31 // mapping has several properties which complicate matching:
32 //
33 //  - It may be ambiguous; many architectures can legally encode particular
34 //    variants of an instruction in different ways (for example, using a smaller
35 //    encoding for small immediates). Such ambiguities should never be
36 //    arbitrarily resolved by the assembler, the assembler is always responsible
37 //    for choosing the "best" available instruction.
38 //
39 //  - It may depend on the subtarget or the assembler context. Instructions
40 //    which are invalid for the current mode, but otherwise unambiguous (e.g.,
41 //    an SSE instruction in a file being assembled for i486) should be accepted
42 //    and rejected by the assembler front end. However, if the proper encoding
43 //    for an instruction is dependent on the assembler context then the matcher
44 //    is responsible for selecting the correct machine instruction for the
45 //    current mode.
46 //
47 // The core matching algorithm attempts to exploit the regularity in most
48 // instruction sets to quickly determine the set of possibly matching
49 // instructions, and the simplify the generated code. Additionally, this helps
50 // to ensure that the ambiguities are intentionally resolved by the user.
51 //
52 // The matching is divided into two distinct phases:
53 //
54 //   1. Classification: Each operand is mapped to the unique set which (a)
55 //      contains it, and (b) is the largest such subset for which a single
56 //      instruction could match all members.
57 //
58 //      For register classes, we can generate these subgroups automatically. For
59 //      arbitrary operands, we expect the user to define the classes and their
60 //      relations to one another (for example, 8-bit signed immediates as a
61 //      subset of 32-bit immediates).
62 //
63 //      By partitioning the operands in this way, we guarantee that for any
64 //      tuple of classes, any single instruction must match either all or none
65 //      of the sets of operands which could classify to that tuple.
66 //
67 //      In addition, the subset relation amongst classes induces a partial order
68 //      on such tuples, which we use to resolve ambiguities.
69 //
70 //   2. The input can now be treated as a tuple of classes (static tokens are
71 //      simple singleton sets). Each such tuple should generally map to a single
72 //      instruction (we currently ignore cases where this isn't true, whee!!!),
73 //      which we can emit a simple matcher for.
74 //
75 // Custom Operand Parsing
76 // ----------------------
77 //
78 //  Some targets need a custom way to parse operands, some specific instructions
79 //  can contain arguments that can represent processor flags and other kinds of
80 //  identifiers that need to be mapped to specific values in the final encoded
81 //  instructions. The target specific custom operand parsing works in the
82 //  following way:
83 //
84 //   1. A operand match table is built, each entry contains a mnemonic, an
85 //      operand class, a mask for all operand positions for that same
86 //      class/mnemonic and target features to be checked while trying to match.
87 //
88 //   2. The operand matcher will try every possible entry with the same
89 //      mnemonic and will check if the target feature for this mnemonic also
90 //      matches. After that, if the operand to be matched has its index
91 //      present in the mask, a successful match occurs. Otherwise, fallback
92 //      to the regular operand parsing.
93 //
94 //   3. For a match success, each operand class that has a 'ParserMethod'
95 //      becomes part of a switch from where the custom method is called.
96 //
97 //===----------------------------------------------------------------------===//
98 
99 #include "CodeGenTarget.h"
100 #include "SubtargetFeatureInfo.h"
101 #include "Types.h"
102 #include "llvm/ADT/CachedHashString.h"
103 #include "llvm/ADT/PointerUnion.h"
104 #include "llvm/ADT/STLExtras.h"
105 #include "llvm/ADT/SmallPtrSet.h"
106 #include "llvm/ADT/SmallVector.h"
107 #include "llvm/ADT/StringExtras.h"
108 #include "llvm/Support/CommandLine.h"
109 #include "llvm/Support/Debug.h"
110 #include "llvm/Support/ErrorHandling.h"
111 #include "llvm/TableGen/Error.h"
112 #include "llvm/TableGen/Record.h"
113 #include "llvm/TableGen/StringMatcher.h"
114 #include "llvm/TableGen/StringToOffsetTable.h"
115 #include "llvm/TableGen/TableGenBackend.h"
116 #include <cassert>
117 #include <cctype>
118 #include <forward_list>
119 #include <map>
120 #include <set>
121 
122 using namespace llvm;
123 
124 #define DEBUG_TYPE "asm-matcher-emitter"
125 
126 cl::OptionCategory AsmMatcherEmitterCat("Options for -gen-asm-matcher");
127 
128 static cl::opt<std::string>
129     MatchPrefix("match-prefix", cl::init(""),
130                 cl::desc("Only match instructions with the given prefix"),
131                 cl::cat(AsmMatcherEmitterCat));
132 
133 namespace {
134 class AsmMatcherInfo;
135 
136 // Register sets are used as keys in some second-order sets TableGen creates
137 // when generating its data structures. This means that the order of two
138 // RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and
139 // can even affect compiler output (at least seen in diagnostics produced when
140 // all matches fail). So we use a type that sorts them consistently.
141 typedef std::set<Record*, LessRecordByID> RegisterSet;
142 
143 class AsmMatcherEmitter {
144   RecordKeeper &Records;
145 public:
146   AsmMatcherEmitter(RecordKeeper &R) : Records(R) {}
147 
148   void run(raw_ostream &o);
149 };
150 
151 /// ClassInfo - Helper class for storing the information about a particular
152 /// class of operands which can be matched.
153 struct ClassInfo {
154   enum ClassInfoKind {
155     /// Invalid kind, for use as a sentinel value.
156     Invalid = 0,
157 
158     /// The class for a particular token.
159     Token,
160 
161     /// The (first) register class, subsequent register classes are
162     /// RegisterClass0+1, and so on.
163     RegisterClass0,
164 
165     /// The (first) user defined class, subsequent user defined classes are
166     /// UserClass0+1, and so on.
167     UserClass0 = 1<<16
168   };
169 
170   /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
171   /// N) for the Nth user defined class.
172   unsigned Kind;
173 
174   /// SuperClasses - The super classes of this class. Note that for simplicities
175   /// sake user operands only record their immediate super class, while register
176   /// operands include all superclasses.
177   std::vector<ClassInfo*> SuperClasses;
178 
179   /// Name - The full class name, suitable for use in an enum.
180   std::string Name;
181 
182   /// ClassName - The unadorned generic name for this class (e.g., Token).
183   std::string ClassName;
184 
185   /// ValueName - The name of the value this class represents; for a token this
186   /// is the literal token string, for an operand it is the TableGen class (or
187   /// empty if this is a derived class).
188   std::string ValueName;
189 
190   /// PredicateMethod - The name of the operand method to test whether the
191   /// operand matches this class; this is not valid for Token or register kinds.
192   std::string PredicateMethod;
193 
194   /// RenderMethod - The name of the operand method to add this operand to an
195   /// MCInst; this is not valid for Token or register kinds.
196   std::string RenderMethod;
197 
198   /// ParserMethod - The name of the operand method to do a target specific
199   /// parsing on the operand.
200   std::string ParserMethod;
201 
202   /// For register classes: the records for all the registers in this class.
203   RegisterSet Registers;
204 
205   /// For custom match classes: the diagnostic kind for when the predicate fails.
206   std::string DiagnosticType;
207 
208   /// For custom match classes: the diagnostic string for when the predicate fails.
209   std::string DiagnosticString;
210 
211   /// Is this operand optional and not always required.
212   bool IsOptional;
213 
214   /// DefaultMethod - The name of the method that returns the default operand
215   /// for optional operand
216   std::string DefaultMethod;
217 
218 public:
219   /// isRegisterClass() - Check if this is a register class.
220   bool isRegisterClass() const {
221     return Kind >= RegisterClass0 && Kind < UserClass0;
222   }
223 
224   /// isUserClass() - Check if this is a user defined class.
225   bool isUserClass() const {
226     return Kind >= UserClass0;
227   }
228 
229   /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes
230   /// are related if they are in the same class hierarchy.
231   bool isRelatedTo(const ClassInfo &RHS) const {
232     // Tokens are only related to tokens.
233     if (Kind == Token || RHS.Kind == Token)
234       return Kind == Token && RHS.Kind == Token;
235 
236     // Registers classes are only related to registers classes, and only if
237     // their intersection is non-empty.
238     if (isRegisterClass() || RHS.isRegisterClass()) {
239       if (!isRegisterClass() || !RHS.isRegisterClass())
240         return false;
241 
242       RegisterSet Tmp;
243       std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin());
244       std::set_intersection(Registers.begin(), Registers.end(),
245                             RHS.Registers.begin(), RHS.Registers.end(),
246                             II, LessRecordByID());
247 
248       return !Tmp.empty();
249     }
250 
251     // Otherwise we have two users operands; they are related if they are in the
252     // same class hierarchy.
253     //
254     // FIXME: This is an oversimplification, they should only be related if they
255     // intersect, however we don't have that information.
256     assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
257     const ClassInfo *Root = this;
258     while (!Root->SuperClasses.empty())
259       Root = Root->SuperClasses.front();
260 
261     const ClassInfo *RHSRoot = &RHS;
262     while (!RHSRoot->SuperClasses.empty())
263       RHSRoot = RHSRoot->SuperClasses.front();
264 
265     return Root == RHSRoot;
266   }
267 
268   /// isSubsetOf - Test whether this class is a subset of \p RHS.
269   bool isSubsetOf(const ClassInfo &RHS) const {
270     // This is a subset of RHS if it is the same class...
271     if (this == &RHS)
272       return true;
273 
274     // ... or if any of its super classes are a subset of RHS.
275     for (const ClassInfo *CI : SuperClasses)
276       if (CI->isSubsetOf(RHS))
277         return true;
278 
279     return false;
280   }
281 
282   int getTreeDepth() const {
283     int Depth = 0;
284     const ClassInfo *Root = this;
285     while (!Root->SuperClasses.empty()) {
286       Depth++;
287       Root = Root->SuperClasses.front();
288     }
289     return Depth;
290   }
291 
292   const ClassInfo *findRoot() const {
293     const ClassInfo *Root = this;
294     while (!Root->SuperClasses.empty())
295       Root = Root->SuperClasses.front();
296     return Root;
297   }
298 
299   /// Compare two classes. This does not produce a total ordering, but does
300   /// guarantee that subclasses are sorted before their parents, and that the
301   /// ordering is transitive.
302   bool operator<(const ClassInfo &RHS) const {
303     if (this == &RHS)
304       return false;
305 
306     // First, enforce the ordering between the three different types of class.
307     // Tokens sort before registers, which sort before user classes.
308     if (Kind == Token) {
309       if (RHS.Kind != Token)
310         return true;
311       assert(RHS.Kind == Token);
312     } else if (isRegisterClass()) {
313       if (RHS.Kind == Token)
314         return false;
315       else if (RHS.isUserClass())
316         return true;
317       assert(RHS.isRegisterClass());
318     } else if (isUserClass()) {
319       if (!RHS.isUserClass())
320         return false;
321       assert(RHS.isUserClass());
322     } else {
323       llvm_unreachable("Unknown ClassInfoKind");
324     }
325 
326     if (Kind == Token || isUserClass()) {
327       // Related tokens and user classes get sorted by depth in the inheritence
328       // tree (so that subclasses are before their parents).
329       if (isRelatedTo(RHS)) {
330         if (getTreeDepth() > RHS.getTreeDepth())
331           return true;
332         if (getTreeDepth() < RHS.getTreeDepth())
333           return false;
334       } else {
335         // Unrelated tokens and user classes are ordered by the name of their
336         // root nodes, so that there is a consistent ordering between
337         // unconnected trees.
338         return findRoot()->ValueName < RHS.findRoot()->ValueName;
339       }
340     } else if (isRegisterClass()) {
341       // For register sets, sort by number of registers. This guarantees that
342       // a set will always sort before all of it's strict supersets.
343       if (Registers.size() != RHS.Registers.size())
344         return Registers.size() < RHS.Registers.size();
345     } else {
346       llvm_unreachable("Unknown ClassInfoKind");
347     }
348 
349     // FIXME: We should be able to just return false here, as we only need a
350     // partial order (we use stable sorts, so this is deterministic) and the
351     // name of a class shouldn't be significant. However, some of the backends
352     // accidentally rely on this behaviour, so it will have to stay like this
353     // until they are fixed.
354     return ValueName < RHS.ValueName;
355   }
356 };
357 
358 class AsmVariantInfo {
359 public:
360   StringRef RegisterPrefix;
361   StringRef TokenizingCharacters;
362   StringRef SeparatorCharacters;
363   StringRef BreakCharacters;
364   StringRef Name;
365   int AsmVariantNo;
366 };
367 
368 /// MatchableInfo - Helper class for storing the necessary information for an
369 /// instruction or alias which is capable of being matched.
370 struct MatchableInfo {
371   struct AsmOperand {
372     /// Token - This is the token that the operand came from.
373     StringRef Token;
374 
375     /// The unique class instance this operand should match.
376     ClassInfo *Class;
377 
378     /// The operand name this is, if anything.
379     StringRef SrcOpName;
380 
381     /// The operand name this is, before renaming for tied operands.
382     StringRef OrigSrcOpName;
383 
384     /// The suboperand index within SrcOpName, or -1 for the entire operand.
385     int SubOpIdx;
386 
387     /// Whether the token is "isolated", i.e., it is preceded and followed
388     /// by separators.
389     bool IsIsolatedToken;
390 
391     /// Register record if this token is singleton register.
392     Record *SingletonReg;
393 
394     explicit AsmOperand(bool IsIsolatedToken, StringRef T)
395         : Token(T), Class(nullptr), SubOpIdx(-1),
396           IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {}
397   };
398 
399   /// ResOperand - This represents a single operand in the result instruction
400   /// generated by the match.  In cases (like addressing modes) where a single
401   /// assembler operand expands to multiple MCOperands, this represents the
402   /// single assembler operand, not the MCOperand.
403   struct ResOperand {
404     enum {
405       /// RenderAsmOperand - This represents an operand result that is
406       /// generated by calling the render method on the assembly operand.  The
407       /// corresponding AsmOperand is specified by AsmOperandNum.
408       RenderAsmOperand,
409 
410       /// TiedOperand - This represents a result operand that is a duplicate of
411       /// a previous result operand.
412       TiedOperand,
413 
414       /// ImmOperand - This represents an immediate value that is dumped into
415       /// the operand.
416       ImmOperand,
417 
418       /// RegOperand - This represents a fixed register that is dumped in.
419       RegOperand
420     } Kind;
421 
422     /// Tuple containing the index of the (earlier) result operand that should
423     /// be copied from, as well as the indices of the corresponding (parsed)
424     /// operands in the asm string.
425     struct TiedOperandsTuple {
426       unsigned ResOpnd;
427       unsigned SrcOpnd1Idx;
428       unsigned SrcOpnd2Idx;
429     };
430 
431     union {
432       /// This is the operand # in the AsmOperands list that this should be
433       /// copied from.
434       unsigned AsmOperandNum;
435 
436       /// Description of tied operands.
437       TiedOperandsTuple TiedOperands;
438 
439       /// ImmVal - This is the immediate value added to the instruction.
440       int64_t ImmVal;
441 
442       /// Register - This is the register record.
443       Record *Register;
444     };
445 
446     /// MINumOperands - The number of MCInst operands populated by this
447     /// operand.
448     unsigned MINumOperands;
449 
450     static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
451       ResOperand X;
452       X.Kind = RenderAsmOperand;
453       X.AsmOperandNum = AsmOpNum;
454       X.MINumOperands = NumOperands;
455       return X;
456     }
457 
458     static ResOperand getTiedOp(unsigned TiedOperandNum, unsigned SrcOperand1,
459                                 unsigned SrcOperand2) {
460       ResOperand X;
461       X.Kind = TiedOperand;
462       X.TiedOperands = { TiedOperandNum, SrcOperand1, SrcOperand2 };
463       X.MINumOperands = 1;
464       return X;
465     }
466 
467     static ResOperand getImmOp(int64_t Val) {
468       ResOperand X;
469       X.Kind = ImmOperand;
470       X.ImmVal = Val;
471       X.MINumOperands = 1;
472       return X;
473     }
474 
475     static ResOperand getRegOp(Record *Reg) {
476       ResOperand X;
477       X.Kind = RegOperand;
478       X.Register = Reg;
479       X.MINumOperands = 1;
480       return X;
481     }
482   };
483 
484   /// AsmVariantID - Target's assembly syntax variant no.
485   int AsmVariantID;
486 
487   /// AsmString - The assembly string for this instruction (with variants
488   /// removed), e.g. "movsx $src, $dst".
489   std::string AsmString;
490 
491   /// TheDef - This is the definition of the instruction or InstAlias that this
492   /// matchable came from.
493   Record *const TheDef;
494 
495   /// DefRec - This is the definition that it came from.
496   PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
497 
498   const CodeGenInstruction *getResultInst() const {
499     if (DefRec.is<const CodeGenInstruction*>())
500       return DefRec.get<const CodeGenInstruction*>();
501     return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
502   }
503 
504   /// ResOperands - This is the operand list that should be built for the result
505   /// MCInst.
506   SmallVector<ResOperand, 8> ResOperands;
507 
508   /// Mnemonic - This is the first token of the matched instruction, its
509   /// mnemonic.
510   StringRef Mnemonic;
511 
512   /// AsmOperands - The textual operands that this instruction matches,
513   /// annotated with a class and where in the OperandList they were defined.
514   /// This directly corresponds to the tokenized AsmString after the mnemonic is
515   /// removed.
516   SmallVector<AsmOperand, 8> AsmOperands;
517 
518   /// AsmOperandEqualityConstraints - an array of pairs holding operand
519   /// constraints.
520   /// Each constraint is represented as a pair holding position of the token of
521   /// the operand asm name.
522   /// For example, an "AsmString" "add $Vd.s, $Vn.s, $Xn" would be
523   /// split in the following list of tokens:
524   ///
525   ///    ['add', '$Vd', '.s', '$Vn', '.s', '$Xn']
526   ///
527   /// A constraint "$Vd = $Vn" (e.g. for a destructive operation) is rendered
528   /// as the pair {1,3} into this set (note that tokens are numbered starting
529   /// from 0).
530   SmallVector<std::pair<unsigned,unsigned>, 1> AsmOperandTiedConstraints;
531 
532   /// Predicates - The required subtarget features to match this instruction.
533   SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures;
534 
535   /// ConversionFnKind - The enum value which is passed to the generated
536   /// convertToMCInst to convert parsed operands into an MCInst for this
537   /// function.
538   std::string ConversionFnKind;
539 
540   /// If this instruction is deprecated in some form.
541   bool HasDeprecation;
542 
543   /// If this is an alias, this is use to determine whether or not to using
544   /// the conversion function defined by the instruction's AsmMatchConverter
545   /// or to use the function generated by the alias.
546   bool UseInstAsmMatchConverter;
547 
548   MatchableInfo(const CodeGenInstruction &CGI)
549     : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI),
550       UseInstAsmMatchConverter(true) {
551   }
552 
553   MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias)
554     : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef),
555       DefRec(Alias.release()),
556       UseInstAsmMatchConverter(
557         TheDef->getValueAsBit("UseInstAsmMatchConverter")) {
558   }
559 
560   // Could remove this and the dtor if PointerUnion supported unique_ptr
561   // elements with a dynamic failure/assertion (like the one below) in the case
562   // where it was copied while being in an owning state.
563   MatchableInfo(const MatchableInfo &RHS)
564       : AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString),
565         TheDef(RHS.TheDef), DefRec(RHS.DefRec), ResOperands(RHS.ResOperands),
566         Mnemonic(RHS.Mnemonic), AsmOperands(RHS.AsmOperands),
567         RequiredFeatures(RHS.RequiredFeatures),
568         ConversionFnKind(RHS.ConversionFnKind),
569         HasDeprecation(RHS.HasDeprecation),
570         UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) {
571     assert(!DefRec.is<const CodeGenInstAlias *>());
572   }
573 
574   ~MatchableInfo() {
575     delete DefRec.dyn_cast<const CodeGenInstAlias*>();
576   }
577 
578   // Two-operand aliases clone from the main matchable, but mark the second
579   // operand as a tied operand of the first for purposes of the assembler.
580   void formTwoOperandAlias(StringRef Constraint);
581 
582   void initialize(const AsmMatcherInfo &Info,
583                   SmallPtrSetImpl<Record*> &SingletonRegisters,
584                   AsmVariantInfo const &Variant,
585                   bool HasMnemonicFirst);
586 
587   /// validate - Return true if this matchable is a valid thing to match against
588   /// and perform a bunch of validity checking.
589   bool validate(StringRef CommentDelimiter, bool IsAlias) const;
590 
591   /// findAsmOperand - Find the AsmOperand with the specified name and
592   /// suboperand index.
593   int findAsmOperand(StringRef N, int SubOpIdx) const {
594     auto I = find_if(AsmOperands, [&](const AsmOperand &Op) {
595       return Op.SrcOpName == N && Op.SubOpIdx == SubOpIdx;
596     });
597     return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
598   }
599 
600   /// findAsmOperandNamed - Find the first AsmOperand with the specified name.
601   /// This does not check the suboperand index.
602   int findAsmOperandNamed(StringRef N, int LastIdx = -1) const {
603     auto I = std::find_if(AsmOperands.begin() + LastIdx + 1, AsmOperands.end(),
604                      [&](const AsmOperand &Op) { return Op.SrcOpName == N; });
605     return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
606   }
607 
608   int findAsmOperandOriginallyNamed(StringRef N) const {
609     auto I =
610         find_if(AsmOperands,
611                 [&](const AsmOperand &Op) { return Op.OrigSrcOpName == N; });
612     return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
613   }
614 
615   void buildInstructionResultOperands();
616   void buildAliasResultOperands(bool AliasConstraintsAreChecked);
617 
618   /// operator< - Compare two matchables.
619   bool operator<(const MatchableInfo &RHS) const {
620     // The primary comparator is the instruction mnemonic.
621     if (int Cmp = Mnemonic.compare(RHS.Mnemonic))
622       return Cmp == -1;
623 
624     if (AsmOperands.size() != RHS.AsmOperands.size())
625       return AsmOperands.size() < RHS.AsmOperands.size();
626 
627     // Compare lexicographically by operand. The matcher validates that other
628     // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith().
629     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
630       if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
631         return true;
632       if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
633         return false;
634     }
635 
636     // Give matches that require more features higher precedence. This is useful
637     // because we cannot define AssemblerPredicates with the negation of
638     // processor features. For example, ARM v6 "nop" may be either a HINT or
639     // MOV. With v6, we want to match HINT. The assembler has no way to
640     // predicate MOV under "NoV6", but HINT will always match first because it
641     // requires V6 while MOV does not.
642     if (RequiredFeatures.size() != RHS.RequiredFeatures.size())
643       return RequiredFeatures.size() > RHS.RequiredFeatures.size();
644 
645     return false;
646   }
647 
648   /// couldMatchAmbiguouslyWith - Check whether this matchable could
649   /// ambiguously match the same set of operands as \p RHS (without being a
650   /// strictly superior match).
651   bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const {
652     // The primary comparator is the instruction mnemonic.
653     if (Mnemonic != RHS.Mnemonic)
654       return false;
655 
656     // Different variants can't conflict.
657     if (AsmVariantID != RHS.AsmVariantID)
658       return false;
659 
660     // The number of operands is unambiguous.
661     if (AsmOperands.size() != RHS.AsmOperands.size())
662       return false;
663 
664     // Otherwise, make sure the ordering of the two instructions is unambiguous
665     // by checking that either (a) a token or operand kind discriminates them,
666     // or (b) the ordering among equivalent kinds is consistent.
667 
668     // Tokens and operand kinds are unambiguous (assuming a correct target
669     // specific parser).
670     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
671       if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
672           AsmOperands[i].Class->Kind == ClassInfo::Token)
673         if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
674             *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
675           return false;
676 
677     // Otherwise, this operand could commute if all operands are equivalent, or
678     // there is a pair of operands that compare less than and a pair that
679     // compare greater than.
680     bool HasLT = false, HasGT = false;
681     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
682       if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
683         HasLT = true;
684       if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
685         HasGT = true;
686     }
687 
688     return HasLT == HasGT;
689   }
690 
691   void dump() const;
692 
693 private:
694   void tokenizeAsmString(AsmMatcherInfo const &Info,
695                          AsmVariantInfo const &Variant);
696   void addAsmOperand(StringRef Token, bool IsIsolatedToken = false);
697 };
698 
699 struct OperandMatchEntry {
700   unsigned OperandMask;
701   const MatchableInfo* MI;
702   ClassInfo *CI;
703 
704   static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci,
705                                   unsigned opMask) {
706     OperandMatchEntry X;
707     X.OperandMask = opMask;
708     X.CI = ci;
709     X.MI = mi;
710     return X;
711   }
712 };
713 
714 class AsmMatcherInfo {
715 public:
716   /// Tracked Records
717   RecordKeeper &Records;
718 
719   /// The tablegen AsmParser record.
720   Record *AsmParser;
721 
722   /// Target - The target information.
723   CodeGenTarget &Target;
724 
725   /// The classes which are needed for matching.
726   std::forward_list<ClassInfo> Classes;
727 
728   /// The information on the matchables to match.
729   std::vector<std::unique_ptr<MatchableInfo>> Matchables;
730 
731   /// Info for custom matching operands by user defined methods.
732   std::vector<OperandMatchEntry> OperandMatchInfo;
733 
734   /// Map of Register records to their class information.
735   typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy;
736   RegisterClassesTy RegisterClasses;
737 
738   /// Map of Predicate records to their subtarget information.
739   std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures;
740 
741   /// Map of AsmOperandClass records to their class information.
742   std::map<Record*, ClassInfo*> AsmOperandClasses;
743 
744   /// Map of RegisterClass records to their class information.
745   std::map<Record*, ClassInfo*> RegisterClassClasses;
746 
747 private:
748   /// Map of token to class information which has already been constructed.
749   std::map<std::string, ClassInfo*> TokenClasses;
750 
751 private:
752   /// getTokenClass - Lookup or create the class for the given token.
753   ClassInfo *getTokenClass(StringRef Token);
754 
755   /// getOperandClass - Lookup or create the class for the given operand.
756   ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
757                              int SubOpIdx);
758   ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
759 
760   /// buildRegisterClasses - Build the ClassInfo* instances for register
761   /// classes.
762   void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters);
763 
764   /// buildOperandClasses - Build the ClassInfo* instances for user defined
765   /// operand classes.
766   void buildOperandClasses();
767 
768   void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
769                                         unsigned AsmOpIdx);
770   void buildAliasOperandReference(MatchableInfo *II, StringRef OpName,
771                                   MatchableInfo::AsmOperand &Op);
772 
773 public:
774   AsmMatcherInfo(Record *AsmParser,
775                  CodeGenTarget &Target,
776                  RecordKeeper &Records);
777 
778   /// Construct the various tables used during matching.
779   void buildInfo();
780 
781   /// buildOperandMatchInfo - Build the necessary information to handle user
782   /// defined operand parsing methods.
783   void buildOperandMatchInfo();
784 
785   /// getSubtargetFeature - Lookup or create the subtarget feature info for the
786   /// given operand.
787   const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
788     assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
789     const auto &I = SubtargetFeatures.find(Def);
790     return I == SubtargetFeatures.end() ? nullptr : &I->second;
791   }
792 
793   RecordKeeper &getRecords() const {
794     return Records;
795   }
796 
797   bool hasOptionalOperands() const {
798     return find_if(Classes, [](const ClassInfo &Class) {
799              return Class.IsOptional;
800            }) != Classes.end();
801   }
802 };
803 
804 } // end anonymous namespace
805 
806 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
807 LLVM_DUMP_METHOD void MatchableInfo::dump() const {
808   errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
809 
810   errs() << "  variant: " << AsmVariantID << "\n";
811 
812   for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
813     const AsmOperand &Op = AsmOperands[i];
814     errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
815     errs() << '\"' << Op.Token << "\"\n";
816   }
817 }
818 #endif
819 
820 static std::pair<StringRef, StringRef>
821 parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) {
822   // Split via the '='.
823   std::pair<StringRef, StringRef> Ops = S.split('=');
824   if (Ops.second == "")
825     PrintFatalError(Loc, "missing '=' in two-operand alias constraint");
826   // Trim whitespace and the leading '$' on the operand names.
827   size_t start = Ops.first.find_first_of('$');
828   if (start == std::string::npos)
829     PrintFatalError(Loc, "expected '$' prefix on asm operand name");
830   Ops.first = Ops.first.slice(start + 1, std::string::npos);
831   size_t end = Ops.first.find_last_of(" \t");
832   Ops.first = Ops.first.slice(0, end);
833   // Now the second operand.
834   start = Ops.second.find_first_of('$');
835   if (start == std::string::npos)
836     PrintFatalError(Loc, "expected '$' prefix on asm operand name");
837   Ops.second = Ops.second.slice(start + 1, std::string::npos);
838   end = Ops.second.find_last_of(" \t");
839   Ops.first = Ops.first.slice(0, end);
840   return Ops;
841 }
842 
843 void MatchableInfo::formTwoOperandAlias(StringRef Constraint) {
844   // Figure out which operands are aliased and mark them as tied.
845   std::pair<StringRef, StringRef> Ops =
846     parseTwoOperandConstraint(Constraint, TheDef->getLoc());
847 
848   // Find the AsmOperands that refer to the operands we're aliasing.
849   int SrcAsmOperand = findAsmOperandNamed(Ops.first);
850   int DstAsmOperand = findAsmOperandNamed(Ops.second);
851   if (SrcAsmOperand == -1)
852     PrintFatalError(TheDef->getLoc(),
853                     "unknown source two-operand alias operand '" + Ops.first +
854                     "'.");
855   if (DstAsmOperand == -1)
856     PrintFatalError(TheDef->getLoc(),
857                     "unknown destination two-operand alias operand '" +
858                     Ops.second + "'.");
859 
860   // Find the ResOperand that refers to the operand we're aliasing away
861   // and update it to refer to the combined operand instead.
862   for (ResOperand &Op : ResOperands) {
863     if (Op.Kind == ResOperand::RenderAsmOperand &&
864         Op.AsmOperandNum == (unsigned)SrcAsmOperand) {
865       Op.AsmOperandNum = DstAsmOperand;
866       break;
867     }
868   }
869   // Remove the AsmOperand for the alias operand.
870   AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand);
871   // Adjust the ResOperand references to any AsmOperands that followed
872   // the one we just deleted.
873   for (ResOperand &Op : ResOperands) {
874     switch(Op.Kind) {
875     default:
876       // Nothing to do for operands that don't reference AsmOperands.
877       break;
878     case ResOperand::RenderAsmOperand:
879       if (Op.AsmOperandNum > (unsigned)SrcAsmOperand)
880         --Op.AsmOperandNum;
881       break;
882     }
883   }
884 }
885 
886 /// extractSingletonRegisterForAsmOperand - Extract singleton register,
887 /// if present, from specified token.
888 static void
889 extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op,
890                                       const AsmMatcherInfo &Info,
891                                       StringRef RegisterPrefix) {
892   StringRef Tok = Op.Token;
893 
894   // If this token is not an isolated token, i.e., it isn't separated from
895   // other tokens (e.g. with whitespace), don't interpret it as a register name.
896   if (!Op.IsIsolatedToken)
897     return;
898 
899   if (RegisterPrefix.empty()) {
900     std::string LoweredTok = Tok.lower();
901     if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
902       Op.SingletonReg = Reg->TheDef;
903     return;
904   }
905 
906   if (!Tok.startswith(RegisterPrefix))
907     return;
908 
909   StringRef RegName = Tok.substr(RegisterPrefix.size());
910   if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
911     Op.SingletonReg = Reg->TheDef;
912 
913   // If there is no register prefix (i.e. "%" in "%eax"), then this may
914   // be some random non-register token, just ignore it.
915 }
916 
917 void MatchableInfo::initialize(const AsmMatcherInfo &Info,
918                                SmallPtrSetImpl<Record*> &SingletonRegisters,
919                                AsmVariantInfo const &Variant,
920                                bool HasMnemonicFirst) {
921   AsmVariantID = Variant.AsmVariantNo;
922   AsmString =
923     CodeGenInstruction::FlattenAsmStringVariants(AsmString,
924                                                  Variant.AsmVariantNo);
925 
926   tokenizeAsmString(Info, Variant);
927 
928   // The first token of the instruction is the mnemonic, which must be a
929   // simple string, not a $foo variable or a singleton register.
930   if (AsmOperands.empty())
931     PrintFatalError(TheDef->getLoc(),
932                   "Instruction '" + TheDef->getName() + "' has no tokens");
933 
934   assert(!AsmOperands[0].Token.empty());
935   if (HasMnemonicFirst) {
936     Mnemonic = AsmOperands[0].Token;
937     if (Mnemonic[0] == '$')
938       PrintFatalError(TheDef->getLoc(),
939                       "Invalid instruction mnemonic '" + Mnemonic + "'!");
940 
941     // Remove the first operand, it is tracked in the mnemonic field.
942     AsmOperands.erase(AsmOperands.begin());
943   } else if (AsmOperands[0].Token[0] != '$')
944     Mnemonic = AsmOperands[0].Token;
945 
946   // Compute the require features.
947   for (Record *Predicate : TheDef->getValueAsListOfDefs("Predicates"))
948     if (const SubtargetFeatureInfo *Feature =
949             Info.getSubtargetFeature(Predicate))
950       RequiredFeatures.push_back(Feature);
951 
952   // Collect singleton registers, if used.
953   for (MatchableInfo::AsmOperand &Op : AsmOperands) {
954     extractSingletonRegisterForAsmOperand(Op, Info, Variant.RegisterPrefix);
955     if (Record *Reg = Op.SingletonReg)
956       SingletonRegisters.insert(Reg);
957   }
958 
959   const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask");
960   if (!DepMask)
961     DepMask = TheDef->getValue("ComplexDeprecationPredicate");
962 
963   HasDeprecation =
964       DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false;
965 }
966 
967 /// Append an AsmOperand for the given substring of AsmString.
968 void MatchableInfo::addAsmOperand(StringRef Token, bool IsIsolatedToken) {
969   AsmOperands.push_back(AsmOperand(IsIsolatedToken, Token));
970 }
971 
972 /// tokenizeAsmString - Tokenize a simplified assembly string.
973 void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info,
974                                       AsmVariantInfo const &Variant) {
975   StringRef String = AsmString;
976   size_t Prev = 0;
977   bool InTok = false;
978   bool IsIsolatedToken = true;
979   for (size_t i = 0, e = String.size(); i != e; ++i) {
980     char Char = String[i];
981     if (Variant.BreakCharacters.find(Char) != std::string::npos) {
982       if (InTok) {
983         addAsmOperand(String.slice(Prev, i), false);
984         Prev = i;
985         IsIsolatedToken = false;
986       }
987       InTok = true;
988       continue;
989     }
990     if (Variant.TokenizingCharacters.find(Char) != std::string::npos) {
991       if (InTok) {
992         addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
993         InTok = false;
994         IsIsolatedToken = false;
995       }
996       addAsmOperand(String.slice(i, i + 1), IsIsolatedToken);
997       Prev = i + 1;
998       IsIsolatedToken = true;
999       continue;
1000     }
1001     if (Variant.SeparatorCharacters.find(Char) != std::string::npos) {
1002       if (InTok) {
1003         addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
1004         InTok = false;
1005       }
1006       Prev = i + 1;
1007       IsIsolatedToken = true;
1008       continue;
1009     }
1010 
1011     switch (Char) {
1012     case '\\':
1013       if (InTok) {
1014         addAsmOperand(String.slice(Prev, i), false);
1015         InTok = false;
1016         IsIsolatedToken = false;
1017       }
1018       ++i;
1019       assert(i != String.size() && "Invalid quoted character");
1020       addAsmOperand(String.slice(i, i + 1), IsIsolatedToken);
1021       Prev = i + 1;
1022       IsIsolatedToken = false;
1023       break;
1024 
1025     case '$': {
1026       if (InTok) {
1027         addAsmOperand(String.slice(Prev, i), false);
1028         InTok = false;
1029         IsIsolatedToken = false;
1030       }
1031 
1032       // If this isn't "${", start new identifier looking like "$xxx"
1033       if (i + 1 == String.size() || String[i + 1] != '{') {
1034         Prev = i;
1035         break;
1036       }
1037 
1038       size_t EndPos = String.find('}', i);
1039       assert(EndPos != StringRef::npos &&
1040              "Missing brace in operand reference!");
1041       addAsmOperand(String.slice(i, EndPos+1), IsIsolatedToken);
1042       Prev = EndPos + 1;
1043       i = EndPos;
1044       IsIsolatedToken = false;
1045       break;
1046     }
1047 
1048     default:
1049       InTok = true;
1050       break;
1051     }
1052   }
1053   if (InTok && Prev != String.size())
1054     addAsmOperand(String.substr(Prev), IsIsolatedToken);
1055 }
1056 
1057 bool MatchableInfo::validate(StringRef CommentDelimiter, bool IsAlias) const {
1058   // Reject matchables with no .s string.
1059   if (AsmString.empty())
1060     PrintFatalError(TheDef->getLoc(), "instruction with empty asm string");
1061 
1062   // Reject any matchables with a newline in them, they should be marked
1063   // isCodeGenOnly if they are pseudo instructions.
1064   if (AsmString.find('\n') != std::string::npos)
1065     PrintFatalError(TheDef->getLoc(),
1066                   "multiline instruction is not valid for the asmparser, "
1067                   "mark it isCodeGenOnly");
1068 
1069   // Remove comments from the asm string.  We know that the asmstring only
1070   // has one line.
1071   if (!CommentDelimiter.empty() &&
1072       StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
1073     PrintFatalError(TheDef->getLoc(),
1074                   "asmstring for instruction has comment character in it, "
1075                   "mark it isCodeGenOnly");
1076 
1077   // Reject matchables with operand modifiers, these aren't something we can
1078   // handle, the target should be refactored to use operands instead of
1079   // modifiers.
1080   //
1081   // Also, check for instructions which reference the operand multiple times;
1082   // this implies a constraint we would not honor.
1083   std::set<std::string> OperandNames;
1084   for (const AsmOperand &Op : AsmOperands) {
1085     StringRef Tok = Op.Token;
1086     if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
1087       PrintFatalError(TheDef->getLoc(),
1088                       "matchable with operand modifier '" + Tok +
1089                       "' not supported by asm matcher.  Mark isCodeGenOnly!");
1090     // Verify that any operand is only mentioned once.
1091     // We reject aliases and ignore instructions for now.
1092     if (!IsAlias && Tok[0] == '$' && !OperandNames.insert(Tok).second) {
1093       DEBUG({
1094         errs() << "warning: '" << TheDef->getName() << "': "
1095                << "ignoring instruction with tied operand '"
1096                << Tok << "'\n";
1097       });
1098       return false;
1099     }
1100   }
1101 
1102   return true;
1103 }
1104 
1105 static std::string getEnumNameForToken(StringRef Str) {
1106   std::string Res;
1107 
1108   for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
1109     switch (*it) {
1110     case '*': Res += "_STAR_"; break;
1111     case '%': Res += "_PCT_"; break;
1112     case ':': Res += "_COLON_"; break;
1113     case '!': Res += "_EXCLAIM_"; break;
1114     case '.': Res += "_DOT_"; break;
1115     case '<': Res += "_LT_"; break;
1116     case '>': Res += "_GT_"; break;
1117     case '-': Res += "_MINUS_"; break;
1118     default:
1119       if ((*it >= 'A' && *it <= 'Z') ||
1120           (*it >= 'a' && *it <= 'z') ||
1121           (*it >= '0' && *it <= '9'))
1122         Res += *it;
1123       else
1124         Res += "_" + utostr((unsigned) *it) + "_";
1125     }
1126   }
1127 
1128   return Res;
1129 }
1130 
1131 ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
1132   ClassInfo *&Entry = TokenClasses[Token];
1133 
1134   if (!Entry) {
1135     Classes.emplace_front();
1136     Entry = &Classes.front();
1137     Entry->Kind = ClassInfo::Token;
1138     Entry->ClassName = "Token";
1139     Entry->Name = "MCK_" + getEnumNameForToken(Token);
1140     Entry->ValueName = Token;
1141     Entry->PredicateMethod = "<invalid>";
1142     Entry->RenderMethod = "<invalid>";
1143     Entry->ParserMethod = "";
1144     Entry->DiagnosticType = "";
1145     Entry->IsOptional = false;
1146     Entry->DefaultMethod = "<invalid>";
1147   }
1148 
1149   return Entry;
1150 }
1151 
1152 ClassInfo *
1153 AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
1154                                 int SubOpIdx) {
1155   Record *Rec = OI.Rec;
1156   if (SubOpIdx != -1)
1157     Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
1158   return getOperandClass(Rec, SubOpIdx);
1159 }
1160 
1161 ClassInfo *
1162 AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
1163   if (Rec->isSubClassOf("RegisterOperand")) {
1164     // RegisterOperand may have an associated ParserMatchClass. If it does,
1165     // use it, else just fall back to the underlying register class.
1166     const RecordVal *R = Rec->getValue("ParserMatchClass");
1167     if (!R || !R->getValue())
1168       PrintFatalError("Record `" + Rec->getName() +
1169         "' does not have a ParserMatchClass!\n");
1170 
1171     if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) {
1172       Record *MatchClass = DI->getDef();
1173       if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1174         return CI;
1175     }
1176 
1177     // No custom match class. Just use the register class.
1178     Record *ClassRec = Rec->getValueAsDef("RegClass");
1179     if (!ClassRec)
1180       PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
1181                     "' has no associated register class!\n");
1182     if (ClassInfo *CI = RegisterClassClasses[ClassRec])
1183       return CI;
1184     PrintFatalError(Rec->getLoc(), "register class has no class info!");
1185   }
1186 
1187   if (Rec->isSubClassOf("RegisterClass")) {
1188     if (ClassInfo *CI = RegisterClassClasses[Rec])
1189       return CI;
1190     PrintFatalError(Rec->getLoc(), "register class has no class info!");
1191   }
1192 
1193   if (!Rec->isSubClassOf("Operand"))
1194     PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() +
1195                   "' does not derive from class Operand!\n");
1196   Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1197   if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1198     return CI;
1199 
1200   PrintFatalError(Rec->getLoc(), "operand has no match class!");
1201 }
1202 
1203 struct LessRegisterSet {
1204   bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const {
1205     // std::set<T> defines its own compariso "operator<", but it
1206     // performs a lexicographical comparison by T's innate comparison
1207     // for some reason. We don't want non-deterministic pointer
1208     // comparisons so use this instead.
1209     return std::lexicographical_compare(LHS.begin(), LHS.end(),
1210                                         RHS.begin(), RHS.end(),
1211                                         LessRecordByID());
1212   }
1213 };
1214 
1215 void AsmMatcherInfo::
1216 buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) {
1217   const auto &Registers = Target.getRegBank().getRegisters();
1218   auto &RegClassList = Target.getRegBank().getRegClasses();
1219 
1220   typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet;
1221 
1222   // The register sets used for matching.
1223   RegisterSetSet RegisterSets;
1224 
1225   // Gather the defined sets.
1226   for (const CodeGenRegisterClass &RC : RegClassList)
1227     RegisterSets.insert(
1228         RegisterSet(RC.getOrder().begin(), RC.getOrder().end()));
1229 
1230   // Add any required singleton sets.
1231   for (Record *Rec : SingletonRegisters) {
1232     RegisterSets.insert(RegisterSet(&Rec, &Rec + 1));
1233   }
1234 
1235   // Introduce derived sets where necessary (when a register does not determine
1236   // a unique register set class), and build the mapping of registers to the set
1237   // they should classify to.
1238   std::map<Record*, RegisterSet> RegisterMap;
1239   for (const CodeGenRegister &CGR : Registers) {
1240     // Compute the intersection of all sets containing this register.
1241     RegisterSet ContainingSet;
1242 
1243     for (const RegisterSet &RS : RegisterSets) {
1244       if (!RS.count(CGR.TheDef))
1245         continue;
1246 
1247       if (ContainingSet.empty()) {
1248         ContainingSet = RS;
1249         continue;
1250       }
1251 
1252       RegisterSet Tmp;
1253       std::swap(Tmp, ContainingSet);
1254       std::insert_iterator<RegisterSet> II(ContainingSet,
1255                                            ContainingSet.begin());
1256       std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II,
1257                             LessRecordByID());
1258     }
1259 
1260     if (!ContainingSet.empty()) {
1261       RegisterSets.insert(ContainingSet);
1262       RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
1263     }
1264   }
1265 
1266   // Construct the register classes.
1267   std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses;
1268   unsigned Index = 0;
1269   for (const RegisterSet &RS : RegisterSets) {
1270     Classes.emplace_front();
1271     ClassInfo *CI = &Classes.front();
1272     CI->Kind = ClassInfo::RegisterClass0 + Index;
1273     CI->ClassName = "Reg" + utostr(Index);
1274     CI->Name = "MCK_Reg" + utostr(Index);
1275     CI->ValueName = "";
1276     CI->PredicateMethod = ""; // unused
1277     CI->RenderMethod = "addRegOperands";
1278     CI->Registers = RS;
1279     // FIXME: diagnostic type.
1280     CI->DiagnosticType = "";
1281     CI->IsOptional = false;
1282     CI->DefaultMethod = ""; // unused
1283     RegisterSetClasses.insert(std::make_pair(RS, CI));
1284     ++Index;
1285   }
1286 
1287   // Find the superclasses; we could compute only the subgroup lattice edges,
1288   // but there isn't really a point.
1289   for (const RegisterSet &RS : RegisterSets) {
1290     ClassInfo *CI = RegisterSetClasses[RS];
1291     for (const RegisterSet &RS2 : RegisterSets)
1292       if (RS != RS2 &&
1293           std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(),
1294                         LessRecordByID()))
1295         CI->SuperClasses.push_back(RegisterSetClasses[RS2]);
1296   }
1297 
1298   // Name the register classes which correspond to a user defined RegisterClass.
1299   for (const CodeGenRegisterClass &RC : RegClassList) {
1300     // Def will be NULL for non-user defined register classes.
1301     Record *Def = RC.getDef();
1302     if (!Def)
1303       continue;
1304     ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(),
1305                                                    RC.getOrder().end())];
1306     if (CI->ValueName.empty()) {
1307       CI->ClassName = RC.getName();
1308       CI->Name = "MCK_" + RC.getName();
1309       CI->ValueName = RC.getName();
1310     } else
1311       CI->ValueName = CI->ValueName + "," + RC.getName();
1312 
1313     Init *DiagnosticType = Def->getValueInit("DiagnosticType");
1314     if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
1315       CI->DiagnosticType = SI->getValue();
1316 
1317     Init *DiagnosticString = Def->getValueInit("DiagnosticString");
1318     if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString))
1319       CI->DiagnosticString = SI->getValue();
1320 
1321     // If we have a diagnostic string but the diagnostic type is not specified
1322     // explicitly, create an anonymous diagnostic type.
1323     if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty())
1324       CI->DiagnosticType = RC.getName();
1325 
1326     RegisterClassClasses.insert(std::make_pair(Def, CI));
1327   }
1328 
1329   // Populate the map for individual registers.
1330   for (std::map<Record*, RegisterSet>::iterator it = RegisterMap.begin(),
1331          ie = RegisterMap.end(); it != ie; ++it)
1332     RegisterClasses[it->first] = RegisterSetClasses[it->second];
1333 
1334   // Name the register classes which correspond to singleton registers.
1335   for (Record *Rec : SingletonRegisters) {
1336     ClassInfo *CI = RegisterClasses[Rec];
1337     assert(CI && "Missing singleton register class info!");
1338 
1339     if (CI->ValueName.empty()) {
1340       CI->ClassName = Rec->getName();
1341       CI->Name = "MCK_" + Rec->getName().str();
1342       CI->ValueName = Rec->getName();
1343     } else
1344       CI->ValueName = CI->ValueName + "," + Rec->getName().str();
1345   }
1346 }
1347 
1348 void AsmMatcherInfo::buildOperandClasses() {
1349   std::vector<Record*> AsmOperands =
1350     Records.getAllDerivedDefinitions("AsmOperandClass");
1351 
1352   // Pre-populate AsmOperandClasses map.
1353   for (Record *Rec : AsmOperands) {
1354     Classes.emplace_front();
1355     AsmOperandClasses[Rec] = &Classes.front();
1356   }
1357 
1358   unsigned Index = 0;
1359   for (Record *Rec : AsmOperands) {
1360     ClassInfo *CI = AsmOperandClasses[Rec];
1361     CI->Kind = ClassInfo::UserClass0 + Index;
1362 
1363     ListInit *Supers = Rec->getValueAsListInit("SuperClasses");
1364     for (Init *I : Supers->getValues()) {
1365       DefInit *DI = dyn_cast<DefInit>(I);
1366       if (!DI) {
1367         PrintError(Rec->getLoc(), "Invalid super class reference!");
1368         continue;
1369       }
1370 
1371       ClassInfo *SC = AsmOperandClasses[DI->getDef()];
1372       if (!SC)
1373         PrintError(Rec->getLoc(), "Invalid super class reference!");
1374       else
1375         CI->SuperClasses.push_back(SC);
1376     }
1377     CI->ClassName = Rec->getValueAsString("Name");
1378     CI->Name = "MCK_" + CI->ClassName;
1379     CI->ValueName = Rec->getName();
1380 
1381     // Get or construct the predicate method name.
1382     Init *PMName = Rec->getValueInit("PredicateMethod");
1383     if (StringInit *SI = dyn_cast<StringInit>(PMName)) {
1384       CI->PredicateMethod = SI->getValue();
1385     } else {
1386       assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!");
1387       CI->PredicateMethod = "is" + CI->ClassName;
1388     }
1389 
1390     // Get or construct the render method name.
1391     Init *RMName = Rec->getValueInit("RenderMethod");
1392     if (StringInit *SI = dyn_cast<StringInit>(RMName)) {
1393       CI->RenderMethod = SI->getValue();
1394     } else {
1395       assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!");
1396       CI->RenderMethod = "add" + CI->ClassName + "Operands";
1397     }
1398 
1399     // Get the parse method name or leave it as empty.
1400     Init *PRMName = Rec->getValueInit("ParserMethod");
1401     if (StringInit *SI = dyn_cast<StringInit>(PRMName))
1402       CI->ParserMethod = SI->getValue();
1403 
1404     // Get the diagnostic type and string or leave them as empty.
1405     Init *DiagnosticType = Rec->getValueInit("DiagnosticType");
1406     if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
1407       CI->DiagnosticType = SI->getValue();
1408     Init *DiagnosticString = Rec->getValueInit("DiagnosticString");
1409     if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString))
1410       CI->DiagnosticString = SI->getValue();
1411     // If we have a DiagnosticString, we need a DiagnosticType for use within
1412     // the matcher.
1413     if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty())
1414       CI->DiagnosticType = CI->ClassName;
1415 
1416     Init *IsOptional = Rec->getValueInit("IsOptional");
1417     if (BitInit *BI = dyn_cast<BitInit>(IsOptional))
1418       CI->IsOptional = BI->getValue();
1419 
1420     // Get or construct the default method name.
1421     Init *DMName = Rec->getValueInit("DefaultMethod");
1422     if (StringInit *SI = dyn_cast<StringInit>(DMName)) {
1423       CI->DefaultMethod = SI->getValue();
1424     } else {
1425       assert(isa<UnsetInit>(DMName) && "Unexpected DefaultMethod field!");
1426       CI->DefaultMethod = "default" + CI->ClassName + "Operands";
1427     }
1428 
1429     ++Index;
1430   }
1431 }
1432 
1433 AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
1434                                CodeGenTarget &target,
1435                                RecordKeeper &records)
1436   : Records(records), AsmParser(asmParser), Target(target) {
1437 }
1438 
1439 /// buildOperandMatchInfo - Build the necessary information to handle user
1440 /// defined operand parsing methods.
1441 void AsmMatcherInfo::buildOperandMatchInfo() {
1442 
1443   /// Map containing a mask with all operands indices that can be found for
1444   /// that class inside a instruction.
1445   typedef std::map<ClassInfo *, unsigned, less_ptr<ClassInfo>> OpClassMaskTy;
1446   OpClassMaskTy OpClassMask;
1447 
1448   for (const auto &MI : Matchables) {
1449     OpClassMask.clear();
1450 
1451     // Keep track of all operands of this instructions which belong to the
1452     // same class.
1453     for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
1454       const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
1455       if (Op.Class->ParserMethod.empty())
1456         continue;
1457       unsigned &OperandMask = OpClassMask[Op.Class];
1458       OperandMask |= (1 << i);
1459     }
1460 
1461     // Generate operand match info for each mnemonic/operand class pair.
1462     for (const auto &OCM : OpClassMask) {
1463       unsigned OpMask = OCM.second;
1464       ClassInfo *CI = OCM.first;
1465       OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI,
1466                                                            OpMask));
1467     }
1468   }
1469 }
1470 
1471 void AsmMatcherInfo::buildInfo() {
1472   // Build information about all of the AssemblerPredicates.
1473   const std::vector<std::pair<Record *, SubtargetFeatureInfo>>
1474       &SubtargetFeaturePairs = SubtargetFeatureInfo::getAll(Records);
1475   SubtargetFeatures.insert(SubtargetFeaturePairs.begin(),
1476                            SubtargetFeaturePairs.end());
1477 #ifndef NDEBUG
1478   for (const auto &Pair : SubtargetFeatures)
1479     DEBUG(Pair.second.dump());
1480 #endif // NDEBUG
1481   assert(SubtargetFeatures.size() <= 64 && "Too many subtarget features!");
1482 
1483   bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
1484   bool ReportMultipleNearMisses =
1485       AsmParser->getValueAsBit("ReportMultipleNearMisses");
1486 
1487   // Parse the instructions; we need to do this first so that we can gather the
1488   // singleton register classes.
1489   SmallPtrSet<Record*, 16> SingletonRegisters;
1490   unsigned VariantCount = Target.getAsmParserVariantCount();
1491   for (unsigned VC = 0; VC != VariantCount; ++VC) {
1492     Record *AsmVariant = Target.getAsmParserVariant(VC);
1493     StringRef CommentDelimiter =
1494         AsmVariant->getValueAsString("CommentDelimiter");
1495     AsmVariantInfo Variant;
1496     Variant.RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
1497     Variant.TokenizingCharacters =
1498         AsmVariant->getValueAsString("TokenizingCharacters");
1499     Variant.SeparatorCharacters =
1500         AsmVariant->getValueAsString("SeparatorCharacters");
1501     Variant.BreakCharacters =
1502         AsmVariant->getValueAsString("BreakCharacters");
1503     Variant.Name = AsmVariant->getValueAsString("Name");
1504     Variant.AsmVariantNo = AsmVariant->getValueAsInt("Variant");
1505 
1506     for (const CodeGenInstruction *CGI : Target.getInstructionsByEnumValue()) {
1507 
1508       // If the tblgen -match-prefix option is specified (for tblgen hackers),
1509       // filter the set of instructions we consider.
1510       if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix))
1511         continue;
1512 
1513       // Ignore "codegen only" instructions.
1514       if (CGI->TheDef->getValueAsBit("isCodeGenOnly"))
1515         continue;
1516 
1517       // Ignore instructions for different instructions
1518       StringRef V = CGI->TheDef->getValueAsString("AsmVariantName");
1519       if (!V.empty() && V != Variant.Name)
1520         continue;
1521 
1522       auto II = llvm::make_unique<MatchableInfo>(*CGI);
1523 
1524       II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);
1525 
1526       // Ignore instructions which shouldn't be matched and diagnose invalid
1527       // instruction definitions with an error.
1528       if (!II->validate(CommentDelimiter, false))
1529         continue;
1530 
1531       Matchables.push_back(std::move(II));
1532     }
1533 
1534     // Parse all of the InstAlias definitions and stick them in the list of
1535     // matchables.
1536     std::vector<Record*> AllInstAliases =
1537       Records.getAllDerivedDefinitions("InstAlias");
1538     for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
1539       auto Alias = llvm::make_unique<CodeGenInstAlias>(AllInstAliases[i],
1540                                                        Variant.AsmVariantNo,
1541                                                        Target);
1542 
1543       // If the tblgen -match-prefix option is specified (for tblgen hackers),
1544       // filter the set of instruction aliases we consider, based on the target
1545       // instruction.
1546       if (!StringRef(Alias->ResultInst->TheDef->getName())
1547             .startswith( MatchPrefix))
1548         continue;
1549 
1550       StringRef V = Alias->TheDef->getValueAsString("AsmVariantName");
1551       if (!V.empty() && V != Variant.Name)
1552         continue;
1553 
1554       auto II = llvm::make_unique<MatchableInfo>(std::move(Alias));
1555 
1556       II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);
1557 
1558       // Validate the alias definitions.
1559       II->validate(CommentDelimiter, true);
1560 
1561       Matchables.push_back(std::move(II));
1562     }
1563   }
1564 
1565   // Build info for the register classes.
1566   buildRegisterClasses(SingletonRegisters);
1567 
1568   // Build info for the user defined assembly operand classes.
1569   buildOperandClasses();
1570 
1571   // Build the information about matchables, now that we have fully formed
1572   // classes.
1573   std::vector<std::unique_ptr<MatchableInfo>> NewMatchables;
1574   for (auto &II : Matchables) {
1575     // Parse the tokens after the mnemonic.
1576     // Note: buildInstructionOperandReference may insert new AsmOperands, so
1577     // don't precompute the loop bound.
1578     for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
1579       MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
1580       StringRef Token = Op.Token;
1581 
1582       // Check for singleton registers.
1583       if (Record *RegRecord = Op.SingletonReg) {
1584         Op.Class = RegisterClasses[RegRecord];
1585         assert(Op.Class && Op.Class->Registers.size() == 1 &&
1586                "Unexpected class for singleton register");
1587         continue;
1588       }
1589 
1590       // Check for simple tokens.
1591       if (Token[0] != '$') {
1592         Op.Class = getTokenClass(Token);
1593         continue;
1594       }
1595 
1596       if (Token.size() > 1 && isdigit(Token[1])) {
1597         Op.Class = getTokenClass(Token);
1598         continue;
1599       }
1600 
1601       // Otherwise this is an operand reference.
1602       StringRef OperandName;
1603       if (Token[1] == '{')
1604         OperandName = Token.substr(2, Token.size() - 3);
1605       else
1606         OperandName = Token.substr(1);
1607 
1608       if (II->DefRec.is<const CodeGenInstruction*>())
1609         buildInstructionOperandReference(II.get(), OperandName, i);
1610       else
1611         buildAliasOperandReference(II.get(), OperandName, Op);
1612     }
1613 
1614     if (II->DefRec.is<const CodeGenInstruction*>()) {
1615       II->buildInstructionResultOperands();
1616       // If the instruction has a two-operand alias, build up the
1617       // matchable here. We'll add them in bulk at the end to avoid
1618       // confusing this loop.
1619       StringRef Constraint =
1620           II->TheDef->getValueAsString("TwoOperandAliasConstraint");
1621       if (Constraint != "") {
1622         // Start by making a copy of the original matchable.
1623         auto AliasII = llvm::make_unique<MatchableInfo>(*II);
1624 
1625         // Adjust it to be a two-operand alias.
1626         AliasII->formTwoOperandAlias(Constraint);
1627 
1628         // Add the alias to the matchables list.
1629         NewMatchables.push_back(std::move(AliasII));
1630       }
1631     } else
1632       // FIXME: The tied operands checking is not yet integrated with the
1633       // framework for reporting multiple near misses. To prevent invalid
1634       // formats from being matched with an alias if a tied-operands check
1635       // would otherwise have disallowed it, we just disallow such constructs
1636       // in TableGen completely.
1637       II->buildAliasResultOperands(!ReportMultipleNearMisses);
1638   }
1639   if (!NewMatchables.empty())
1640     Matchables.insert(Matchables.end(),
1641                       std::make_move_iterator(NewMatchables.begin()),
1642                       std::make_move_iterator(NewMatchables.end()));
1643 
1644   // Process token alias definitions and set up the associated superclass
1645   // information.
1646   std::vector<Record*> AllTokenAliases =
1647     Records.getAllDerivedDefinitions("TokenAlias");
1648   for (Record *Rec : AllTokenAliases) {
1649     ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
1650     ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
1651     if (FromClass == ToClass)
1652       PrintFatalError(Rec->getLoc(),
1653                     "error: Destination value identical to source value.");
1654     FromClass->SuperClasses.push_back(ToClass);
1655   }
1656 
1657   // Reorder classes so that classes precede super classes.
1658   Classes.sort();
1659 
1660 #ifdef EXPENSIVE_CHECKS
1661   // Verify that the table is sorted and operator < works transitively.
1662   for (auto I = Classes.begin(), E = Classes.end(); I != E; ++I) {
1663     for (auto J = I; J != E; ++J) {
1664       assert(!(*J < *I));
1665       assert(I == J || !J->isSubsetOf(*I));
1666     }
1667   }
1668 #endif
1669 }
1670 
1671 /// buildInstructionOperandReference - The specified operand is a reference to a
1672 /// named operand such as $src.  Resolve the Class and OperandInfo pointers.
1673 void AsmMatcherInfo::
1674 buildInstructionOperandReference(MatchableInfo *II,
1675                                  StringRef OperandName,
1676                                  unsigned AsmOpIdx) {
1677   const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
1678   const CGIOperandList &Operands = CGI.Operands;
1679   MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
1680 
1681   // Map this token to an operand.
1682   unsigned Idx;
1683   if (!Operands.hasOperandNamed(OperandName, Idx))
1684     PrintFatalError(II->TheDef->getLoc(),
1685                     "error: unable to find operand: '" + OperandName + "'");
1686 
1687   // If the instruction operand has multiple suboperands, but the parser
1688   // match class for the asm operand is still the default "ImmAsmOperand",
1689   // then handle each suboperand separately.
1690   if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
1691     Record *Rec = Operands[Idx].Rec;
1692     assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
1693     Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1694     if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
1695       // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
1696       StringRef Token = Op->Token; // save this in case Op gets moved
1697       for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
1698         MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token);
1699         NewAsmOp.SubOpIdx = SI;
1700         II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
1701       }
1702       // Replace Op with first suboperand.
1703       Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
1704       Op->SubOpIdx = 0;
1705     }
1706   }
1707 
1708   // Set up the operand class.
1709   Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
1710   Op->OrigSrcOpName = OperandName;
1711 
1712   // If the named operand is tied, canonicalize it to the untied operand.
1713   // For example, something like:
1714   //   (outs GPR:$dst), (ins GPR:$src)
1715   // with an asmstring of
1716   //   "inc $src"
1717   // we want to canonicalize to:
1718   //   "inc $dst"
1719   // so that we know how to provide the $dst operand when filling in the result.
1720   int OITied = -1;
1721   if (Operands[Idx].MINumOperands == 1)
1722     OITied = Operands[Idx].getTiedRegister();
1723   if (OITied != -1) {
1724     // The tied operand index is an MIOperand index, find the operand that
1725     // contains it.
1726     std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
1727     OperandName = Operands[Idx.first].Name;
1728     Op->SubOpIdx = Idx.second;
1729   }
1730 
1731   Op->SrcOpName = OperandName;
1732 }
1733 
1734 /// buildAliasOperandReference - When parsing an operand reference out of the
1735 /// matching string (e.g. "movsx $src, $dst"), determine what the class of the
1736 /// operand reference is by looking it up in the result pattern definition.
1737 void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II,
1738                                                 StringRef OperandName,
1739                                                 MatchableInfo::AsmOperand &Op) {
1740   const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
1741 
1742   // Set up the operand class.
1743   for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
1744     if (CGA.ResultOperands[i].isRecord() &&
1745         CGA.ResultOperands[i].getName() == OperandName) {
1746       // It's safe to go with the first one we find, because CodeGenInstAlias
1747       // validates that all operands with the same name have the same record.
1748       Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
1749       // Use the match class from the Alias definition, not the
1750       // destination instruction, as we may have an immediate that's
1751       // being munged by the match class.
1752       Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
1753                                  Op.SubOpIdx);
1754       Op.SrcOpName = OperandName;
1755       Op.OrigSrcOpName = OperandName;
1756       return;
1757     }
1758 
1759   PrintFatalError(II->TheDef->getLoc(),
1760                   "error: unable to find operand: '" + OperandName + "'");
1761 }
1762 
1763 void MatchableInfo::buildInstructionResultOperands() {
1764   const CodeGenInstruction *ResultInst = getResultInst();
1765 
1766   // Loop over all operands of the result instruction, determining how to
1767   // populate them.
1768   for (const CGIOperandList::OperandInfo &OpInfo : ResultInst->Operands) {
1769     // If this is a tied operand, just copy from the previously handled operand.
1770     int TiedOp = -1;
1771     if (OpInfo.MINumOperands == 1)
1772       TiedOp = OpInfo.getTiedRegister();
1773     if (TiedOp != -1) {
1774       int TiedSrcOperand = findAsmOperandOriginallyNamed(OpInfo.Name);
1775       if (TiedSrcOperand != -1 &&
1776           ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand)
1777         ResOperands.push_back(ResOperand::getTiedOp(
1778             TiedOp, ResOperands[TiedOp].AsmOperandNum, TiedSrcOperand));
1779       else
1780         ResOperands.push_back(ResOperand::getTiedOp(TiedOp, 0, 0));
1781       continue;
1782     }
1783 
1784     int SrcOperand = findAsmOperandNamed(OpInfo.Name);
1785     if (OpInfo.Name.empty() || SrcOperand == -1) {
1786       // This may happen for operands that are tied to a suboperand of a
1787       // complex operand.  Simply use a dummy value here; nobody should
1788       // use this operand slot.
1789       // FIXME: The long term goal is for the MCOperand list to not contain
1790       // tied operands at all.
1791       ResOperands.push_back(ResOperand::getImmOp(0));
1792       continue;
1793     }
1794 
1795     // Check if the one AsmOperand populates the entire operand.
1796     unsigned NumOperands = OpInfo.MINumOperands;
1797     if (AsmOperands[SrcOperand].SubOpIdx == -1) {
1798       ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
1799       continue;
1800     }
1801 
1802     // Add a separate ResOperand for each suboperand.
1803     for (unsigned AI = 0; AI < NumOperands; ++AI) {
1804       assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
1805              AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
1806              "unexpected AsmOperands for suboperands");
1807       ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
1808     }
1809   }
1810 }
1811 
1812 void MatchableInfo::buildAliasResultOperands(bool AliasConstraintsAreChecked) {
1813   const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
1814   const CodeGenInstruction *ResultInst = getResultInst();
1815 
1816   // Map of:  $reg -> #lastref
1817   //   where $reg is the name of the operand in the asm string
1818   //   where #lastref is the last processed index where $reg was referenced in
1819   //   the asm string.
1820   SmallDenseMap<StringRef, int> OperandRefs;
1821 
1822   // Loop over all operands of the result instruction, determining how to
1823   // populate them.
1824   unsigned AliasOpNo = 0;
1825   unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
1826   for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1827     const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
1828 
1829     // If this is a tied operand, just copy from the previously handled operand.
1830     int TiedOp = -1;
1831     if (OpInfo->MINumOperands == 1)
1832       TiedOp = OpInfo->getTiedRegister();
1833     if (TiedOp != -1) {
1834       unsigned SrcOp1 = 0;
1835       unsigned SrcOp2 = 0;
1836 
1837       // If an operand has been specified twice in the asm string,
1838       // add the two source operand's indices to the TiedOp so that
1839       // at runtime the 'tied' constraint is checked.
1840       if (ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) {
1841         SrcOp1 = ResOperands[TiedOp].AsmOperandNum;
1842 
1843         // Find the next operand (similarly named operand) in the string.
1844         StringRef Name = AsmOperands[SrcOp1].SrcOpName;
1845         auto Insert = OperandRefs.try_emplace(Name, SrcOp1);
1846         SrcOp2 = findAsmOperandNamed(Name, Insert.first->second);
1847 
1848         // Not updating the record in OperandRefs will cause TableGen
1849         // to fail with an error at the end of this function.
1850         if (AliasConstraintsAreChecked)
1851           Insert.first->second = SrcOp2;
1852 
1853         // In case it only has one reference in the asm string,
1854         // it doesn't need to be checked for tied constraints.
1855         SrcOp2 = (SrcOp2 == (unsigned)-1) ? SrcOp1 : SrcOp2;
1856       }
1857 
1858       ResOperands.push_back(ResOperand::getTiedOp(TiedOp, SrcOp1, SrcOp2));
1859       continue;
1860     }
1861 
1862     // Handle all the suboperands for this operand.
1863     const std::string &OpName = OpInfo->Name;
1864     for ( ; AliasOpNo <  LastOpNo &&
1865             CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
1866       int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1867 
1868       // Find out what operand from the asmparser that this MCInst operand
1869       // comes from.
1870       switch (CGA.ResultOperands[AliasOpNo].Kind) {
1871       case CodeGenInstAlias::ResultOperand::K_Record: {
1872         StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1873         int SrcOperand = findAsmOperand(Name, SubIdx);
1874         if (SrcOperand == -1)
1875           PrintFatalError(TheDef->getLoc(), "Instruction '" +
1876                         TheDef->getName() + "' has operand '" + OpName +
1877                         "' that doesn't appear in asm string!");
1878 
1879         // Add it to the operand references. If it is added a second time, the
1880         // record won't be updated and it will fail later on.
1881         OperandRefs.try_emplace(Name, SrcOperand);
1882 
1883         unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
1884         ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
1885                                                         NumOperands));
1886         break;
1887       }
1888       case CodeGenInstAlias::ResultOperand::K_Imm: {
1889         int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
1890         ResOperands.push_back(ResOperand::getImmOp(ImmVal));
1891         break;
1892       }
1893       case CodeGenInstAlias::ResultOperand::K_Reg: {
1894         Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
1895         ResOperands.push_back(ResOperand::getRegOp(Reg));
1896         break;
1897       }
1898       }
1899     }
1900   }
1901 
1902   // Check that operands are not repeated more times than is supported.
1903   for (auto &T : OperandRefs) {
1904     if (T.second != -1 && findAsmOperandNamed(T.first, T.second) != -1)
1905       PrintFatalError(TheDef->getLoc(),
1906                       "Operand '" + T.first + "' can never be matched");
1907   }
1908 }
1909 
1910 static unsigned
1911 getConverterOperandID(const std::string &Name,
1912                       SmallSetVector<CachedHashString, 16> &Table,
1913                       bool &IsNew) {
1914   IsNew = Table.insert(CachedHashString(Name));
1915 
1916   unsigned ID = IsNew ? Table.size() - 1 : find(Table, Name) - Table.begin();
1917 
1918   assert(ID < Table.size());
1919 
1920   return ID;
1921 }
1922 
1923 static void emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName,
1924                              std::vector<std::unique_ptr<MatchableInfo>> &Infos,
1925                              bool HasMnemonicFirst, bool HasOptionalOperands,
1926                              raw_ostream &OS) {
1927   SmallSetVector<CachedHashString, 16> OperandConversionKinds;
1928   SmallSetVector<CachedHashString, 16> InstructionConversionKinds;
1929   std::vector<std::vector<uint8_t> > ConversionTable;
1930   size_t MaxRowLength = 2; // minimum is custom converter plus terminator.
1931 
1932   // TargetOperandClass - This is the target's operand class, like X86Operand.
1933   std::string TargetOperandClass = Target.getName().str() + "Operand";
1934 
1935   // Write the convert function to a separate stream, so we can drop it after
1936   // the enum. We'll build up the conversion handlers for the individual
1937   // operand types opportunistically as we encounter them.
1938   std::string ConvertFnBody;
1939   raw_string_ostream CvtOS(ConvertFnBody);
1940   // Start the unified conversion function.
1941   if (HasOptionalOperands) {
1942     CvtOS << "void " << Target.getName() << ClassName << "::\n"
1943           << "convertToMCInst(unsigned Kind, MCInst &Inst, "
1944           << "unsigned Opcode,\n"
1945           << "                const OperandVector &Operands,\n"
1946           << "                const SmallBitVector &OptionalOperandsMask) {\n";
1947   } else {
1948     CvtOS << "void " << Target.getName() << ClassName << "::\n"
1949           << "convertToMCInst(unsigned Kind, MCInst &Inst, "
1950           << "unsigned Opcode,\n"
1951           << "                const OperandVector &Operands) {\n";
1952   }
1953   CvtOS << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n";
1954   CvtOS << "  const uint8_t *Converter = ConversionTable[Kind];\n";
1955   if (HasOptionalOperands) {
1956     size_t MaxNumOperands = 0;
1957     for (const auto &MI : Infos) {
1958       MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
1959     }
1960     CvtOS << "  unsigned DefaultsOffset[" << (MaxNumOperands + 1)
1961           << "] = { 0 };\n";
1962     CvtOS << "  assert(OptionalOperandsMask.size() == " << (MaxNumOperands)
1963           << ");\n";
1964     CvtOS << "  for (unsigned i = 0, NumDefaults = 0; i < " << (MaxNumOperands)
1965           << "; ++i) {\n";
1966     CvtOS << "    DefaultsOffset[i + 1] = NumDefaults;\n";
1967     CvtOS << "    NumDefaults += (OptionalOperandsMask[i] ? 1 : 0);\n";
1968     CvtOS << "  }\n";
1969   }
1970   CvtOS << "  unsigned OpIdx;\n";
1971   CvtOS << "  Inst.setOpcode(Opcode);\n";
1972   CvtOS << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n";
1973   if (HasOptionalOperands) {
1974     CvtOS << "    OpIdx = *(p + 1) - DefaultsOffset[*(p + 1)];\n";
1975   } else {
1976     CvtOS << "    OpIdx = *(p + 1);\n";
1977   }
1978   CvtOS << "    switch (*p) {\n";
1979   CvtOS << "    default: llvm_unreachable(\"invalid conversion entry!\");\n";
1980   CvtOS << "    case CVT_Reg:\n";
1981   CvtOS << "      static_cast<" << TargetOperandClass
1982         << "&>(*Operands[OpIdx]).addRegOperands(Inst, 1);\n";
1983   CvtOS << "      break;\n";
1984   CvtOS << "    case CVT_Tied: {\n";
1985   CvtOS << "      assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n";
1986   CvtOS << "                          std::begin(TiedAsmOperandTable)) &&\n";
1987   CvtOS << "             \"Tied operand not found\");\n";
1988   CvtOS << "      unsigned TiedResOpnd = TiedAsmOperandTable[OpIdx][0];\n";
1989   CvtOS << "      Inst.addOperand(Inst.getOperand(TiedResOpnd));\n";
1990   CvtOS << "      break;\n";
1991   CvtOS << "    }\n";
1992 
1993   std::string OperandFnBody;
1994   raw_string_ostream OpOS(OperandFnBody);
1995   // Start the operand number lookup function.
1996   OpOS << "void " << Target.getName() << ClassName << "::\n"
1997        << "convertToMapAndConstraints(unsigned Kind,\n";
1998   OpOS.indent(27);
1999   OpOS << "const OperandVector &Operands) {\n"
2000        << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
2001        << "  unsigned NumMCOperands = 0;\n"
2002        << "  const uint8_t *Converter = ConversionTable[Kind];\n"
2003        << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n"
2004        << "    switch (*p) {\n"
2005        << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
2006        << "    case CVT_Reg:\n"
2007        << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2008        << "      Operands[*(p + 1)]->setConstraint(\"r\");\n"
2009        << "      ++NumMCOperands;\n"
2010        << "      break;\n"
2011        << "    case CVT_Tied:\n"
2012        << "      ++NumMCOperands;\n"
2013        << "      break;\n";
2014 
2015   // Pre-populate the operand conversion kinds with the standard always
2016   // available entries.
2017   OperandConversionKinds.insert(CachedHashString("CVT_Done"));
2018   OperandConversionKinds.insert(CachedHashString("CVT_Reg"));
2019   OperandConversionKinds.insert(CachedHashString("CVT_Tied"));
2020   enum { CVT_Done, CVT_Reg, CVT_Tied };
2021 
2022   // Map of e.g. <0, 2, 3> -> "Tie_0_2_3" enum label.
2023   std::map<std::tuple<unsigned, unsigned, unsigned>, std::string>
2024   TiedOperandsEnumMap;
2025 
2026   for (auto &II : Infos) {
2027     // Check if we have a custom match function.
2028     StringRef AsmMatchConverter =
2029         II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
2030     if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) {
2031       std::string Signature = ("ConvertCustom_" + AsmMatchConverter).str();
2032       II->ConversionFnKind = Signature;
2033 
2034       // Check if we have already generated this signature.
2035       if (!InstructionConversionKinds.insert(CachedHashString(Signature)))
2036         continue;
2037 
2038       // Remember this converter for the kind enum.
2039       unsigned KindID = OperandConversionKinds.size();
2040       OperandConversionKinds.insert(
2041           CachedHashString("CVT_" + getEnumNameForToken(AsmMatchConverter)));
2042 
2043       // Add the converter row for this instruction.
2044       ConversionTable.emplace_back();
2045       ConversionTable.back().push_back(KindID);
2046       ConversionTable.back().push_back(CVT_Done);
2047 
2048       // Add the handler to the conversion driver function.
2049       CvtOS << "    case CVT_"
2050             << getEnumNameForToken(AsmMatchConverter) << ":\n"
2051             << "      " << AsmMatchConverter << "(Inst, Operands);\n"
2052             << "      break;\n";
2053 
2054       // FIXME: Handle the operand number lookup for custom match functions.
2055       continue;
2056     }
2057 
2058     // Build the conversion function signature.
2059     std::string Signature = "Convert";
2060 
2061     std::vector<uint8_t> ConversionRow;
2062 
2063     // Compute the convert enum and the case body.
2064     MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 );
2065 
2066     for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) {
2067       const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i];
2068 
2069       // Generate code to populate each result operand.
2070       switch (OpInfo.Kind) {
2071       case MatchableInfo::ResOperand::RenderAsmOperand: {
2072         // This comes from something we parsed.
2073         const MatchableInfo::AsmOperand &Op =
2074           II->AsmOperands[OpInfo.AsmOperandNum];
2075 
2076         // Registers are always converted the same, don't duplicate the
2077         // conversion function based on them.
2078         Signature += "__";
2079         std::string Class;
2080         Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName;
2081         Signature += Class;
2082         Signature += utostr(OpInfo.MINumOperands);
2083         Signature += "_" + itostr(OpInfo.AsmOperandNum);
2084 
2085         // Add the conversion kind, if necessary, and get the associated ID
2086         // the index of its entry in the vector).
2087         std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" :
2088                                      Op.Class->RenderMethod);
2089         if (Op.Class->IsOptional) {
2090           // For optional operands we must also care about DefaultMethod
2091           assert(HasOptionalOperands);
2092           Name += "_" + Op.Class->DefaultMethod;
2093         }
2094         Name = getEnumNameForToken(Name);
2095 
2096         bool IsNewConverter = false;
2097         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
2098                                             IsNewConverter);
2099 
2100         // Add the operand entry to the instruction kind conversion row.
2101         ConversionRow.push_back(ID);
2102         ConversionRow.push_back(OpInfo.AsmOperandNum + HasMnemonicFirst);
2103 
2104         if (!IsNewConverter)
2105           break;
2106 
2107         // This is a new operand kind. Add a handler for it to the
2108         // converter driver.
2109         CvtOS << "    case " << Name << ":\n";
2110         if (Op.Class->IsOptional) {
2111           // If optional operand is not present in actual instruction then we
2112           // should call its DefaultMethod before RenderMethod
2113           assert(HasOptionalOperands);
2114           CvtOS << "      if (OptionalOperandsMask[*(p + 1) - 1]) {\n"
2115                 << "        " << Op.Class->DefaultMethod << "()"
2116                 << "->" << Op.Class->RenderMethod << "(Inst, "
2117                 << OpInfo.MINumOperands << ");\n"
2118                 << "      } else {\n"
2119                 << "        static_cast<" << TargetOperandClass
2120                 << "&>(*Operands[OpIdx])." << Op.Class->RenderMethod
2121                 << "(Inst, " << OpInfo.MINumOperands << ");\n"
2122                 << "      }\n";
2123         } else {
2124           CvtOS << "      static_cast<" << TargetOperandClass
2125                 << "&>(*Operands[OpIdx])." << Op.Class->RenderMethod
2126                 << "(Inst, " << OpInfo.MINumOperands << ");\n";
2127         }
2128         CvtOS << "      break;\n";
2129 
2130         // Add a handler for the operand number lookup.
2131         OpOS << "    case " << Name << ":\n"
2132              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n";
2133 
2134         if (Op.Class->isRegisterClass())
2135           OpOS << "      Operands[*(p + 1)]->setConstraint(\"r\");\n";
2136         else
2137           OpOS << "      Operands[*(p + 1)]->setConstraint(\"m\");\n";
2138         OpOS << "      NumMCOperands += " << OpInfo.MINumOperands << ";\n"
2139              << "      break;\n";
2140         break;
2141       }
2142       case MatchableInfo::ResOperand::TiedOperand: {
2143         // If this operand is tied to a previous one, just copy the MCInst
2144         // operand from the earlier one.We can only tie single MCOperand values.
2145         assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
2146         unsigned TiedOp = OpInfo.TiedOperands.ResOpnd;
2147         unsigned SrcOp1 = OpInfo.TiedOperands.SrcOpnd1Idx + HasMnemonicFirst;
2148         unsigned SrcOp2 = OpInfo.TiedOperands.SrcOpnd2Idx + HasMnemonicFirst;
2149         assert(i > TiedOp && "Tied operand precedes its target!");
2150         auto TiedTupleName = std::string("Tie") + utostr(TiedOp) + '_' +
2151                              utostr(SrcOp1) + '_' + utostr(SrcOp2);
2152         Signature += "__" + TiedTupleName;
2153         ConversionRow.push_back(CVT_Tied);
2154         ConversionRow.push_back(TiedOp);
2155         ConversionRow.push_back(SrcOp1);
2156         ConversionRow.push_back(SrcOp2);
2157 
2158         // Also create an 'enum' for this combination of tied operands.
2159         auto Key = std::make_tuple(TiedOp, SrcOp1, SrcOp2);
2160         TiedOperandsEnumMap.emplace(Key, TiedTupleName);
2161         break;
2162       }
2163       case MatchableInfo::ResOperand::ImmOperand: {
2164         int64_t Val = OpInfo.ImmVal;
2165         std::string Ty = "imm_" + itostr(Val);
2166         Ty = getEnumNameForToken(Ty);
2167         Signature += "__" + Ty;
2168 
2169         std::string Name = "CVT_" + Ty;
2170         bool IsNewConverter = false;
2171         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
2172                                             IsNewConverter);
2173         // Add the operand entry to the instruction kind conversion row.
2174         ConversionRow.push_back(ID);
2175         ConversionRow.push_back(0);
2176 
2177         if (!IsNewConverter)
2178           break;
2179 
2180         CvtOS << "    case " << Name << ":\n"
2181               << "      Inst.addOperand(MCOperand::createImm(" << Val << "));\n"
2182               << "      break;\n";
2183 
2184         OpOS << "    case " << Name << ":\n"
2185              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2186              << "      Operands[*(p + 1)]->setConstraint(\"\");\n"
2187              << "      ++NumMCOperands;\n"
2188              << "      break;\n";
2189         break;
2190       }
2191       case MatchableInfo::ResOperand::RegOperand: {
2192         std::string Reg, Name;
2193         if (!OpInfo.Register) {
2194           Name = "reg0";
2195           Reg = "0";
2196         } else {
2197           Reg = getQualifiedName(OpInfo.Register);
2198           Name = "reg" + OpInfo.Register->getName().str();
2199         }
2200         Signature += "__" + Name;
2201         Name = "CVT_" + Name;
2202         bool IsNewConverter = false;
2203         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
2204                                             IsNewConverter);
2205         // Add the operand entry to the instruction kind conversion row.
2206         ConversionRow.push_back(ID);
2207         ConversionRow.push_back(0);
2208 
2209         if (!IsNewConverter)
2210           break;
2211         CvtOS << "    case " << Name << ":\n"
2212               << "      Inst.addOperand(MCOperand::createReg(" << Reg << "));\n"
2213               << "      break;\n";
2214 
2215         OpOS << "    case " << Name << ":\n"
2216              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2217              << "      Operands[*(p + 1)]->setConstraint(\"m\");\n"
2218              << "      ++NumMCOperands;\n"
2219              << "      break;\n";
2220       }
2221       }
2222     }
2223 
2224     // If there were no operands, add to the signature to that effect
2225     if (Signature == "Convert")
2226       Signature += "_NoOperands";
2227 
2228     II->ConversionFnKind = Signature;
2229 
2230     // Save the signature. If we already have it, don't add a new row
2231     // to the table.
2232     if (!InstructionConversionKinds.insert(CachedHashString(Signature)))
2233       continue;
2234 
2235     // Add the row to the table.
2236     ConversionTable.push_back(std::move(ConversionRow));
2237   }
2238 
2239   // Finish up the converter driver function.
2240   CvtOS << "    }\n  }\n}\n\n";
2241 
2242   // Finish up the operand number lookup function.
2243   OpOS << "    }\n  }\n}\n\n";
2244 
2245   // Output a static table for tied operands.
2246   if (TiedOperandsEnumMap.size()) {
2247     // The number of tied operand combinations will be small in practice,
2248     // but just add the assert to be sure.
2249     assert(TiedOperandsEnumMap.size() <= 255 &&
2250            "Too many tied-operand combinations to reference with "
2251            "an 8bit offset from the conversion table");
2252 
2253     OS << "enum {\n";
2254     for (auto &KV : TiedOperandsEnumMap) {
2255       OS << "  " << KV.second << ",\n";
2256     }
2257     OS << "};\n\n";
2258 
2259     OS << "const char TiedAsmOperandTable[][3] = {\n";
2260     for (auto &KV : TiedOperandsEnumMap) {
2261       OS << "  /* " << KV.second << " */ { " << std::get<0>(KV.first) << ", "
2262          << std::get<1>(KV.first) << ", " << std::get<2>(KV.first) << " },\n";
2263     }
2264     OS << "};\n\n";
2265   } else
2266     OS << "const char TiedAsmOperandTable[][3] = { /* empty  */ {0, 0, 0} "
2267           "};\n\n";
2268 
2269   OS << "namespace {\n";
2270 
2271   // Output the operand conversion kind enum.
2272   OS << "enum OperatorConversionKind {\n";
2273   for (const auto &Converter : OperandConversionKinds)
2274     OS << "  " << Converter << ",\n";
2275   OS << "  CVT_NUM_CONVERTERS\n";
2276   OS << "};\n\n";
2277 
2278   // Output the instruction conversion kind enum.
2279   OS << "enum InstructionConversionKind {\n";
2280   for (const auto &Signature : InstructionConversionKinds)
2281     OS << "  " << Signature << ",\n";
2282   OS << "  CVT_NUM_SIGNATURES\n";
2283   OS << "};\n\n";
2284 
2285   OS << "} // end anonymous namespace\n\n";
2286 
2287   // Output the conversion table.
2288   OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES]["
2289      << MaxRowLength << "] = {\n";
2290 
2291   for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) {
2292     assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!");
2293     OS << "  // " << InstructionConversionKinds[Row] << "\n";
2294     OS << "  { ";
2295     for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2) {
2296       OS << OperandConversionKinds[ConversionTable[Row][i]] << ", ";
2297       if (OperandConversionKinds[ConversionTable[Row][i]] !=
2298           CachedHashString("CVT_Tied")) {
2299         OS << (unsigned)(ConversionTable[Row][i + 1]) << ", ";
2300         continue;
2301       }
2302 
2303       // For a tied operand, emit a reference to the TiedAsmOperandTable
2304       // that contains the operand to copy, and the parsed operands to
2305       // check for their tied constraints.
2306       auto Key = std::make_tuple((unsigned)ConversionTable[Row][i + 1],
2307                                  (unsigned)ConversionTable[Row][i + 2],
2308                                  (unsigned)ConversionTable[Row][i + 3]);
2309       auto TiedOpndEnum = TiedOperandsEnumMap.find(Key);
2310       assert(TiedOpndEnum != TiedOperandsEnumMap.end() &&
2311              "No record for tied operand pair");
2312       OS << TiedOpndEnum->second << ", ";
2313       i += 2;
2314     }
2315     OS << "CVT_Done },\n";
2316   }
2317 
2318   OS << "};\n\n";
2319 
2320   // Spit out the conversion driver function.
2321   OS << CvtOS.str();
2322 
2323   // Spit out the operand number lookup function.
2324   OS << OpOS.str();
2325 }
2326 
2327 /// emitMatchClassEnumeration - Emit the enumeration for match class kinds.
2328 static void emitMatchClassEnumeration(CodeGenTarget &Target,
2329                                       std::forward_list<ClassInfo> &Infos,
2330                                       raw_ostream &OS) {
2331   OS << "namespace {\n\n";
2332 
2333   OS << "/// MatchClassKind - The kinds of classes which participate in\n"
2334      << "/// instruction matching.\n";
2335   OS << "enum MatchClassKind {\n";
2336   OS << "  InvalidMatchClass = 0,\n";
2337   OS << "  OptionalMatchClass = 1,\n";
2338   ClassInfo::ClassInfoKind LastKind = ClassInfo::Token;
2339   StringRef LastName = "OptionalMatchClass";
2340   for (const auto &CI : Infos) {
2341     if (LastKind == ClassInfo::Token && CI.Kind != ClassInfo::Token) {
2342       OS << "  MCK_LAST_TOKEN = " << LastName << ",\n";
2343     } else if (LastKind < ClassInfo::UserClass0 &&
2344                CI.Kind >= ClassInfo::UserClass0) {
2345       OS << "  MCK_LAST_REGISTER = " << LastName << ",\n";
2346     }
2347     LastKind = (ClassInfo::ClassInfoKind)CI.Kind;
2348     LastName = CI.Name;
2349 
2350     OS << "  " << CI.Name << ", // ";
2351     if (CI.Kind == ClassInfo::Token) {
2352       OS << "'" << CI.ValueName << "'\n";
2353     } else if (CI.isRegisterClass()) {
2354       if (!CI.ValueName.empty())
2355         OS << "register class '" << CI.ValueName << "'\n";
2356       else
2357         OS << "derived register class\n";
2358     } else {
2359       OS << "user defined class '" << CI.ValueName << "'\n";
2360     }
2361   }
2362   OS << "  NumMatchClassKinds\n";
2363   OS << "};\n\n";
2364 
2365   OS << "}\n\n";
2366 }
2367 
2368 /// emitMatchClassDiagStrings - Emit a function to get the diagnostic text to be
2369 /// used when an assembly operand does not match the expected operand class.
2370 static void emitOperandMatchErrorDiagStrings(AsmMatcherInfo &Info, raw_ostream &OS) {
2371   // If the target does not use DiagnosticString for any operands, don't emit
2372   // an unused function.
2373   if (std::all_of(
2374           Info.Classes.begin(), Info.Classes.end(),
2375           [](const ClassInfo &CI) { return CI.DiagnosticString.empty(); }))
2376     return;
2377 
2378   OS << "static const char *getMatchKindDiag(" << Info.Target.getName()
2379      << "AsmParser::" << Info.Target.getName()
2380      << "MatchResultTy MatchResult) {\n";
2381   OS << "  switch (MatchResult) {\n";
2382 
2383   for (const auto &CI: Info.Classes) {
2384     if (!CI.DiagnosticString.empty()) {
2385       assert(!CI.DiagnosticType.empty() &&
2386              "DiagnosticString set without DiagnosticType");
2387       OS << "  case " << Info.Target.getName()
2388          << "AsmParser::Match_" << CI.DiagnosticType << ":\n";
2389       OS << "    return \"" << CI.DiagnosticString << "\";\n";
2390     }
2391   }
2392 
2393   OS << "  default:\n";
2394   OS << "    return nullptr;\n";
2395 
2396   OS << "  }\n";
2397   OS << "}\n\n";
2398 }
2399 
2400 static void emitRegisterMatchErrorFunc(AsmMatcherInfo &Info, raw_ostream &OS) {
2401   OS << "static unsigned getDiagKindFromRegisterClass(MatchClassKind "
2402         "RegisterClass) {\n";
2403   if (std::none_of(Info.Classes.begin(), Info.Classes.end(),
2404                    [](const ClassInfo &CI) {
2405                      return CI.isRegisterClass() && !CI.DiagnosticType.empty();
2406                    })) {
2407     OS << "  return MCTargetAsmParser::Match_InvalidOperand;\n";
2408   } else {
2409     OS << "  switch (RegisterClass) {\n";
2410     for (const auto &CI: Info.Classes) {
2411       if (CI.isRegisterClass() && !CI.DiagnosticType.empty()) {
2412         OS << "  case " << CI.Name << ":\n";
2413         OS << "    return " << Info.Target.getName() << "AsmParser::Match_"
2414            << CI.DiagnosticType << ";\n";
2415       }
2416     }
2417 
2418     OS << "  default:\n";
2419     OS << "    return MCTargetAsmParser::Match_InvalidOperand;\n";
2420 
2421     OS << "  }\n";
2422   }
2423   OS << "}\n\n";
2424 }
2425 
2426 /// emitValidateOperandClass - Emit the function to validate an operand class.
2427 static void emitValidateOperandClass(AsmMatcherInfo &Info,
2428                                      raw_ostream &OS) {
2429   OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, "
2430      << "MatchClassKind Kind) {\n";
2431   OS << "  " << Info.Target.getName() << "Operand &Operand = ("
2432      << Info.Target.getName() << "Operand&)GOp;\n";
2433 
2434   // The InvalidMatchClass is not to match any operand.
2435   OS << "  if (Kind == InvalidMatchClass)\n";
2436   OS << "    return MCTargetAsmParser::Match_InvalidOperand;\n\n";
2437 
2438   // Check for Token operands first.
2439   // FIXME: Use a more specific diagnostic type.
2440   OS << "  if (Operand.isToken() && Kind <= MCK_LAST_TOKEN)\n";
2441   OS << "    return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n"
2442      << "             MCTargetAsmParser::Match_Success :\n"
2443      << "             MCTargetAsmParser::Match_InvalidOperand;\n\n";
2444 
2445   // Check the user classes. We don't care what order since we're only
2446   // actually matching against one of them.
2447   OS << "  switch (Kind) {\n"
2448         "  default: break;\n";
2449   for (const auto &CI : Info.Classes) {
2450     if (!CI.isUserClass())
2451       continue;
2452 
2453     OS << "  // '" << CI.ClassName << "' class\n";
2454     OS << "  case " << CI.Name << ":\n";
2455     OS << "    if (Operand." << CI.PredicateMethod << "())\n";
2456     OS << "      return MCTargetAsmParser::Match_Success;\n";
2457     if (!CI.DiagnosticType.empty())
2458       OS << "    return " << Info.Target.getName() << "AsmParser::Match_"
2459          << CI.DiagnosticType << ";\n";
2460     else
2461       OS << "    break;\n";
2462   }
2463   OS << "  } // end switch (Kind)\n\n";
2464 
2465   // Check for register operands, including sub-classes.
2466   OS << "  if (Operand.isReg()) {\n";
2467   OS << "    MatchClassKind OpKind;\n";
2468   OS << "    switch (Operand.getReg()) {\n";
2469   OS << "    default: OpKind = InvalidMatchClass; break;\n";
2470   for (const auto &RC : Info.RegisterClasses)
2471     OS << "    case " << RC.first->getValueAsString("Namespace") << "::"
2472        << RC.first->getName() << ": OpKind = " << RC.second->Name
2473        << "; break;\n";
2474   OS << "    }\n";
2475   OS << "    return isSubclass(OpKind, Kind) ? "
2476      << "(unsigned)MCTargetAsmParser::Match_Success :\n                     "
2477      << "                 getDiagKindFromRegisterClass(Kind);\n  }\n\n";
2478 
2479   // Expected operand is a register, but actual is not.
2480   OS << "  if (Kind > MCK_LAST_TOKEN && Kind <= MCK_LAST_REGISTER)\n";
2481   OS << "    return getDiagKindFromRegisterClass(Kind);\n\n";
2482 
2483   // Generic fallthrough match failure case for operands that don't have
2484   // specialized diagnostic types.
2485   OS << "  return MCTargetAsmParser::Match_InvalidOperand;\n";
2486   OS << "}\n\n";
2487 }
2488 
2489 /// emitIsSubclass - Emit the subclass predicate function.
2490 static void emitIsSubclass(CodeGenTarget &Target,
2491                            std::forward_list<ClassInfo> &Infos,
2492                            raw_ostream &OS) {
2493   OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n";
2494   OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
2495   OS << "  if (A == B)\n";
2496   OS << "    return true;\n\n";
2497 
2498   bool EmittedSwitch = false;
2499   for (const auto &A : Infos) {
2500     std::vector<StringRef> SuperClasses;
2501     if (A.IsOptional)
2502       SuperClasses.push_back("OptionalMatchClass");
2503     for (const auto &B : Infos) {
2504       if (&A != &B && A.isSubsetOf(B))
2505         SuperClasses.push_back(B.Name);
2506     }
2507 
2508     if (SuperClasses.empty())
2509       continue;
2510 
2511     // If this is the first SuperClass, emit the switch header.
2512     if (!EmittedSwitch) {
2513       OS << "  switch (A) {\n";
2514       OS << "  default:\n";
2515       OS << "    return false;\n";
2516       EmittedSwitch = true;
2517     }
2518 
2519     OS << "\n  case " << A.Name << ":\n";
2520 
2521     if (SuperClasses.size() == 1) {
2522       OS << "    return B == " << SuperClasses.back() << ";\n";
2523       continue;
2524     }
2525 
2526     if (!SuperClasses.empty()) {
2527       OS << "    switch (B) {\n";
2528       OS << "    default: return false;\n";
2529       for (StringRef SC : SuperClasses)
2530         OS << "    case " << SC << ": return true;\n";
2531       OS << "    }\n";
2532     } else {
2533       // No case statement to emit
2534       OS << "    return false;\n";
2535     }
2536   }
2537 
2538   // If there were case statements emitted into the string stream write the
2539   // default.
2540   if (EmittedSwitch)
2541     OS << "  }\n";
2542   else
2543     OS << "  return false;\n";
2544 
2545   OS << "}\n\n";
2546 }
2547 
2548 /// emitMatchTokenString - Emit the function to match a token string to the
2549 /// appropriate match class value.
2550 static void emitMatchTokenString(CodeGenTarget &Target,
2551                                  std::forward_list<ClassInfo> &Infos,
2552                                  raw_ostream &OS) {
2553   // Construct the match list.
2554   std::vector<StringMatcher::StringPair> Matches;
2555   for (const auto &CI : Infos) {
2556     if (CI.Kind == ClassInfo::Token)
2557       Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";");
2558   }
2559 
2560   OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
2561 
2562   StringMatcher("Name", Matches, OS).Emit();
2563 
2564   OS << "  return InvalidMatchClass;\n";
2565   OS << "}\n\n";
2566 }
2567 
2568 /// emitMatchRegisterName - Emit the function to match a string to the target
2569 /// specific register enum.
2570 static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
2571                                   raw_ostream &OS) {
2572   // Construct the match list.
2573   std::vector<StringMatcher::StringPair> Matches;
2574   const auto &Regs = Target.getRegBank().getRegisters();
2575   for (const CodeGenRegister &Reg : Regs) {
2576     if (Reg.TheDef->getValueAsString("AsmName").empty())
2577       continue;
2578 
2579     Matches.emplace_back(Reg.TheDef->getValueAsString("AsmName"),
2580                          "return " + utostr(Reg.EnumValue) + ";");
2581   }
2582 
2583   OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
2584 
2585   bool IgnoreDuplicates =
2586       AsmParser->getValueAsBit("AllowDuplicateRegisterNames");
2587   StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates);
2588 
2589   OS << "  return 0;\n";
2590   OS << "}\n\n";
2591 }
2592 
2593 /// Emit the function to match a string to the target
2594 /// specific register enum.
2595 static void emitMatchRegisterAltName(CodeGenTarget &Target, Record *AsmParser,
2596                                      raw_ostream &OS) {
2597   // Construct the match list.
2598   std::vector<StringMatcher::StringPair> Matches;
2599   const auto &Regs = Target.getRegBank().getRegisters();
2600   for (const CodeGenRegister &Reg : Regs) {
2601 
2602     auto AltNames = Reg.TheDef->getValueAsListOfStrings("AltNames");
2603 
2604     for (auto AltName : AltNames) {
2605       AltName = StringRef(AltName).trim();
2606 
2607       // don't handle empty alternative names
2608       if (AltName.empty())
2609         continue;
2610 
2611       Matches.emplace_back(AltName,
2612                            "return " + utostr(Reg.EnumValue) + ";");
2613     }
2614   }
2615 
2616   OS << "static unsigned MatchRegisterAltName(StringRef Name) {\n";
2617 
2618   bool IgnoreDuplicates =
2619       AsmParser->getValueAsBit("AllowDuplicateRegisterNames");
2620   StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates);
2621 
2622   OS << "  return 0;\n";
2623   OS << "}\n\n";
2624 }
2625 
2626 /// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types.
2627 static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) {
2628   // Get the set of diagnostic types from all of the operand classes.
2629   std::set<StringRef> Types;
2630   for (const auto &OpClassEntry : Info.AsmOperandClasses) {
2631     if (!OpClassEntry.second->DiagnosticType.empty())
2632       Types.insert(OpClassEntry.second->DiagnosticType);
2633   }
2634   for (const auto &OpClassEntry : Info.RegisterClassClasses) {
2635     if (!OpClassEntry.second->DiagnosticType.empty())
2636       Types.insert(OpClassEntry.second->DiagnosticType);
2637   }
2638 
2639   if (Types.empty()) return;
2640 
2641   // Now emit the enum entries.
2642   for (StringRef Type : Types)
2643     OS << "  Match_" << Type << ",\n";
2644   OS << "  END_OPERAND_DIAGNOSTIC_TYPES\n";
2645 }
2646 
2647 /// emitGetSubtargetFeatureName - Emit the helper function to get the
2648 /// user-level name for a subtarget feature.
2649 static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) {
2650   OS << "// User-level names for subtarget features that participate in\n"
2651      << "// instruction matching.\n"
2652      << "static const char *getSubtargetFeatureName(uint64_t Val) {\n";
2653   if (!Info.SubtargetFeatures.empty()) {
2654     OS << "  switch(Val) {\n";
2655     for (const auto &SF : Info.SubtargetFeatures) {
2656       const SubtargetFeatureInfo &SFI = SF.second;
2657       // FIXME: Totally just a placeholder name to get the algorithm working.
2658       OS << "  case " << SFI.getEnumName() << ": return \""
2659          << SFI.TheDef->getValueAsString("PredicateName") << "\";\n";
2660     }
2661     OS << "  default: return \"(unknown)\";\n";
2662     OS << "  }\n";
2663   } else {
2664     // Nothing to emit, so skip the switch
2665     OS << "  return \"(unknown)\";\n";
2666   }
2667   OS << "}\n\n";
2668 }
2669 
2670 static std::string GetAliasRequiredFeatures(Record *R,
2671                                             const AsmMatcherInfo &Info) {
2672   std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
2673   std::string Result;
2674   unsigned NumFeatures = 0;
2675   for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
2676     const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
2677 
2678     if (!F)
2679       PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
2680                     "' is not marked as an AssemblerPredicate!");
2681 
2682     if (NumFeatures)
2683       Result += '|';
2684 
2685     Result += F->getEnumName();
2686     ++NumFeatures;
2687   }
2688 
2689   if (NumFeatures > 1)
2690     Result = '(' + Result + ')';
2691   return Result;
2692 }
2693 
2694 static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info,
2695                                      std::vector<Record*> &Aliases,
2696                                      unsigned Indent = 0,
2697                                   StringRef AsmParserVariantName = StringRef()){
2698   // Keep track of all the aliases from a mnemonic.  Use an std::map so that the
2699   // iteration order of the map is stable.
2700   std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
2701 
2702   for (Record *R : Aliases) {
2703     // FIXME: Allow AssemblerVariantName to be a comma separated list.
2704     StringRef AsmVariantName = R->getValueAsString("AsmVariantName");
2705     if (AsmVariantName != AsmParserVariantName)
2706       continue;
2707     AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
2708   }
2709   if (AliasesFromMnemonic.empty())
2710     return;
2711 
2712   // Process each alias a "from" mnemonic at a time, building the code executed
2713   // by the string remapper.
2714   std::vector<StringMatcher::StringPair> Cases;
2715   for (const auto &AliasEntry : AliasesFromMnemonic) {
2716     const std::vector<Record*> &ToVec = AliasEntry.second;
2717 
2718     // Loop through each alias and emit code that handles each case.  If there
2719     // are two instructions without predicates, emit an error.  If there is one,
2720     // emit it last.
2721     std::string MatchCode;
2722     int AliasWithNoPredicate = -1;
2723 
2724     for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
2725       Record *R = ToVec[i];
2726       std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
2727 
2728       // If this unconditionally matches, remember it for later and diagnose
2729       // duplicates.
2730       if (FeatureMask.empty()) {
2731         if (AliasWithNoPredicate != -1) {
2732           // We can't have two aliases from the same mnemonic with no predicate.
2733           PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
2734                      "two MnemonicAliases with the same 'from' mnemonic!");
2735           PrintFatalError(R->getLoc(), "this is the other MnemonicAlias.");
2736         }
2737 
2738         AliasWithNoPredicate = i;
2739         continue;
2740       }
2741       if (R->getValueAsString("ToMnemonic") == AliasEntry.first)
2742         PrintFatalError(R->getLoc(), "MnemonicAlias to the same string");
2743 
2744       if (!MatchCode.empty())
2745         MatchCode += "else ";
2746       MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
2747       MatchCode += "  Mnemonic = \"";
2748       MatchCode += R->getValueAsString("ToMnemonic");
2749       MatchCode += "\";\n";
2750     }
2751 
2752     if (AliasWithNoPredicate != -1) {
2753       Record *R = ToVec[AliasWithNoPredicate];
2754       if (!MatchCode.empty())
2755         MatchCode += "else\n  ";
2756       MatchCode += "Mnemonic = \"";
2757       MatchCode += R->getValueAsString("ToMnemonic");
2758       MatchCode += "\";\n";
2759     }
2760 
2761     MatchCode += "return;";
2762 
2763     Cases.push_back(std::make_pair(AliasEntry.first, MatchCode));
2764   }
2765   StringMatcher("Mnemonic", Cases, OS).Emit(Indent);
2766 }
2767 
2768 /// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
2769 /// emit a function for them and return true, otherwise return false.
2770 static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info,
2771                                 CodeGenTarget &Target) {
2772   // Ignore aliases when match-prefix is set.
2773   if (!MatchPrefix.empty())
2774     return false;
2775 
2776   std::vector<Record*> Aliases =
2777     Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
2778   if (Aliases.empty()) return false;
2779 
2780   OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
2781     "uint64_t Features, unsigned VariantID) {\n";
2782   OS << "  switch (VariantID) {\n";
2783   unsigned VariantCount = Target.getAsmParserVariantCount();
2784   for (unsigned VC = 0; VC != VariantCount; ++VC) {
2785     Record *AsmVariant = Target.getAsmParserVariant(VC);
2786     int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant");
2787     StringRef AsmParserVariantName = AsmVariant->getValueAsString("Name");
2788     OS << "    case " << AsmParserVariantNo << ":\n";
2789     emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2,
2790                              AsmParserVariantName);
2791     OS << "    break;\n";
2792   }
2793   OS << "  }\n";
2794 
2795   // Emit aliases that apply to all variants.
2796   emitMnemonicAliasVariant(OS, Info, Aliases);
2797 
2798   OS << "}\n\n";
2799 
2800   return true;
2801 }
2802 
2803 static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
2804                               const AsmMatcherInfo &Info, StringRef ClassName,
2805                               StringToOffsetTable &StringTable,
2806                               unsigned MaxMnemonicIndex, bool HasMnemonicFirst) {
2807   unsigned MaxMask = 0;
2808   for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
2809     MaxMask |= OMI.OperandMask;
2810   }
2811 
2812   // Emit the static custom operand parsing table;
2813   OS << "namespace {\n";
2814   OS << "  struct OperandMatchEntry {\n";
2815   OS << "    " << getMinimalTypeForEnumBitfield(Info.SubtargetFeatures.size())
2816                << " RequiredFeatures;\n";
2817   OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
2818                << " Mnemonic;\n";
2819   OS << "    " << getMinimalTypeForRange(std::distance(
2820                       Info.Classes.begin(), Info.Classes.end())) << " Class;\n";
2821   OS << "    " << getMinimalTypeForRange(MaxMask)
2822                << " OperandMask;\n\n";
2823   OS << "    StringRef getMnemonic() const {\n";
2824   OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
2825   OS << "                       MnemonicTable[Mnemonic]);\n";
2826   OS << "    }\n";
2827   OS << "  };\n\n";
2828 
2829   OS << "  // Predicate for searching for an opcode.\n";
2830   OS << "  struct LessOpcodeOperand {\n";
2831   OS << "    bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
2832   OS << "      return LHS.getMnemonic()  < RHS;\n";
2833   OS << "    }\n";
2834   OS << "    bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
2835   OS << "      return LHS < RHS.getMnemonic();\n";
2836   OS << "    }\n";
2837   OS << "    bool operator()(const OperandMatchEntry &LHS,";
2838   OS << " const OperandMatchEntry &RHS) {\n";
2839   OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
2840   OS << "    }\n";
2841   OS << "  };\n";
2842 
2843   OS << "} // end anonymous namespace.\n\n";
2844 
2845   OS << "static const OperandMatchEntry OperandMatchTable["
2846      << Info.OperandMatchInfo.size() << "] = {\n";
2847 
2848   OS << "  /* Operand List Mask, Mnemonic, Operand Class, Features */\n";
2849   for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
2850     const MatchableInfo &II = *OMI.MI;
2851 
2852     OS << "  { ";
2853 
2854     // Write the required features mask.
2855     if (!II.RequiredFeatures.empty()) {
2856       for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
2857         if (i) OS << "|";
2858         OS << II.RequiredFeatures[i]->getEnumName();
2859       }
2860     } else
2861       OS << "0";
2862 
2863     // Store a pascal-style length byte in the mnemonic.
2864     std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
2865     OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
2866        << " /* " << II.Mnemonic << " */, ";
2867 
2868     OS << OMI.CI->Name;
2869 
2870     OS << ", " << OMI.OperandMask;
2871     OS << " /* ";
2872     bool printComma = false;
2873     for (int i = 0, e = 31; i !=e; ++i)
2874       if (OMI.OperandMask & (1 << i)) {
2875         if (printComma)
2876           OS << ", ";
2877         OS << i;
2878         printComma = true;
2879       }
2880     OS << " */";
2881 
2882     OS << " },\n";
2883   }
2884   OS << "};\n\n";
2885 
2886   // Emit the operand class switch to call the correct custom parser for
2887   // the found operand class.
2888   OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n"
2889      << "tryCustomParseOperand(OperandVector"
2890      << " &Operands,\n                      unsigned MCK) {\n\n"
2891      << "  switch(MCK) {\n";
2892 
2893   for (const auto &CI : Info.Classes) {
2894     if (CI.ParserMethod.empty())
2895       continue;
2896     OS << "  case " << CI.Name << ":\n"
2897        << "    return " << CI.ParserMethod << "(Operands);\n";
2898   }
2899 
2900   OS << "  default:\n";
2901   OS << "    return MatchOperand_NoMatch;\n";
2902   OS << "  }\n";
2903   OS << "  return MatchOperand_NoMatch;\n";
2904   OS << "}\n\n";
2905 
2906   // Emit the static custom operand parser. This code is very similar with
2907   // the other matcher. Also use MatchResultTy here just in case we go for
2908   // a better error handling.
2909   OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n"
2910      << "MatchOperandParserImpl(OperandVector"
2911      << " &Operands,\n                       StringRef Mnemonic,\n"
2912      << "                       bool ParseForAllFeatures) {\n";
2913 
2914   // Emit code to get the available features.
2915   OS << "  // Get the current feature set.\n";
2916   OS << "  uint64_t AvailableFeatures = getAvailableFeatures();\n\n";
2917 
2918   OS << "  // Get the next operand index.\n";
2919   OS << "  unsigned NextOpNum = Operands.size()"
2920      << (HasMnemonicFirst ? " - 1" : "") << ";\n";
2921 
2922   // Emit code to search the table.
2923   OS << "  // Search the table.\n";
2924   if (HasMnemonicFirst) {
2925     OS << "  auto MnemonicRange =\n";
2926     OS << "    std::equal_range(std::begin(OperandMatchTable), "
2927           "std::end(OperandMatchTable),\n";
2928     OS << "                     Mnemonic, LessOpcodeOperand());\n\n";
2929   } else {
2930     OS << "  auto MnemonicRange = std::make_pair(std::begin(OperandMatchTable),"
2931           " std::end(OperandMatchTable));\n";
2932     OS << "  if (!Mnemonic.empty())\n";
2933     OS << "    MnemonicRange =\n";
2934     OS << "      std::equal_range(std::begin(OperandMatchTable), "
2935           "std::end(OperandMatchTable),\n";
2936     OS << "                       Mnemonic, LessOpcodeOperand());\n\n";
2937   }
2938 
2939   OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
2940   OS << "    return MatchOperand_NoMatch;\n\n";
2941 
2942   OS << "  for (const OperandMatchEntry *it = MnemonicRange.first,\n"
2943      << "       *ie = MnemonicRange.second; it != ie; ++it) {\n";
2944 
2945   OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
2946   OS << "    assert(Mnemonic == it->getMnemonic());\n\n";
2947 
2948   // Emit check that the required features are available.
2949   OS << "    // check if the available features match\n";
2950   OS << "    if (!ParseForAllFeatures && (AvailableFeatures & "
2951         "it->RequiredFeatures) != it->RequiredFeatures)\n";
2952   OS << "        continue;\n\n";
2953 
2954   // Emit check to ensure the operand number matches.
2955   OS << "    // check if the operand in question has a custom parser.\n";
2956   OS << "    if (!(it->OperandMask & (1 << NextOpNum)))\n";
2957   OS << "      continue;\n\n";
2958 
2959   // Emit call to the custom parser method
2960   OS << "    // call custom parse method to handle the operand\n";
2961   OS << "    OperandMatchResultTy Result = ";
2962   OS << "tryCustomParseOperand(Operands, it->Class);\n";
2963   OS << "    if (Result != MatchOperand_NoMatch)\n";
2964   OS << "      return Result;\n";
2965   OS << "  }\n\n";
2966 
2967   OS << "  // Okay, we had no match.\n";
2968   OS << "  return MatchOperand_NoMatch;\n";
2969   OS << "}\n\n";
2970 }
2971 
2972 static void emitAsmTiedOperandConstraints(CodeGenTarget &Target,
2973                                           AsmMatcherInfo &Info,
2974                                           raw_ostream &OS) {
2975   OS << "static bool ";
2976   OS << "checkAsmTiedOperandConstraints(unsigned Kind,\n";
2977   OS << "                               const OperandVector &Operands,\n";
2978   OS << "                               uint64_t &ErrorInfo) {\n";
2979   OS << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n";
2980   OS << "  const uint8_t *Converter = ConversionTable[Kind];\n";
2981   OS << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n";
2982   OS << "    switch (*p) {\n";
2983   OS << "    case CVT_Tied: {\n";
2984   OS << "      unsigned OpIdx = *(p+1);\n";
2985   OS << "      assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n";
2986   OS << "                              std::begin(TiedAsmOperandTable)) &&\n";
2987   OS << "             \"Tied operand not found\");\n";
2988   OS << "      unsigned OpndNum1 = TiedAsmOperandTable[OpIdx][1];\n";
2989   OS << "      unsigned OpndNum2 = TiedAsmOperandTable[OpIdx][2];\n";
2990   OS << "      if (OpndNum1 != OpndNum2) {\n";
2991   OS << "        auto &SrcOp1 = Operands[OpndNum1];\n";
2992   OS << "        auto &SrcOp2 = Operands[OpndNum2];\n";
2993   OS << "        if (SrcOp1->isReg() && SrcOp2->isReg() &&\n";
2994   OS << "            SrcOp1->getReg() != SrcOp2->getReg()) {\n";
2995   OS << "          ErrorInfo = OpndNum2;\n";
2996   OS << "          return false;\n";
2997   OS << "        }\n";
2998   OS << "      }\n";
2999   OS << "      break;\n";
3000   OS << "    }\n";
3001   OS << "    default:\n";
3002   OS << "      break;\n";
3003   OS << "    }\n";
3004   OS << "  }\n";
3005   OS << "  return true;\n";
3006   OS << "}\n\n";
3007 }
3008 
3009 static void emitMnemonicSpellChecker(raw_ostream &OS, CodeGenTarget &Target,
3010                                      unsigned VariantCount) {
3011   OS << "static std::string " << Target.getName()
3012      << "MnemonicSpellCheck(StringRef S, uint64_t FBS, unsigned VariantID) {\n";
3013   if (!VariantCount)
3014     OS <<  "  return \"\";";
3015   else {
3016     OS << "  const unsigned MaxEditDist = 2;\n";
3017     OS << "  std::vector<StringRef> Candidates;\n";
3018     OS << "  StringRef Prev = \"\";\n\n";
3019 
3020     OS << "  // Find the appropriate table for this asm variant.\n";
3021     OS << "  const MatchEntry *Start, *End;\n";
3022     OS << "  switch (VariantID) {\n";
3023     OS << "  default: llvm_unreachable(\"invalid variant!\");\n";
3024     for (unsigned VC = 0; VC != VariantCount; ++VC) {
3025       Record *AsmVariant = Target.getAsmParserVariant(VC);
3026       int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3027       OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3028          << "); End = std::end(MatchTable" << VC << "); break;\n";
3029     }
3030     OS << "  }\n\n";
3031     OS << "  for (auto I = Start; I < End; I++) {\n";
3032     OS << "    // Ignore unsupported instructions.\n";
3033     OS << "    if ((FBS & I->RequiredFeatures) != I->RequiredFeatures)\n";
3034     OS << "      continue;\n";
3035     OS << "\n";
3036     OS << "    StringRef T = I->getMnemonic();\n";
3037     OS << "    // Avoid recomputing the edit distance for the same string.\n";
3038     OS << "    if (T.equals(Prev))\n";
3039     OS << "      continue;\n";
3040     OS << "\n";
3041     OS << "    Prev = T;\n";
3042     OS << "    unsigned Dist = S.edit_distance(T, false, MaxEditDist);\n";
3043     OS << "    if (Dist <= MaxEditDist)\n";
3044     OS << "      Candidates.push_back(T);\n";
3045     OS << "  }\n";
3046     OS << "\n";
3047     OS << "  if (Candidates.empty())\n";
3048     OS << "    return \"\";\n";
3049     OS << "\n";
3050     OS << "  std::string Res = \", did you mean: \";\n";
3051     OS << "  unsigned i = 0;\n";
3052     OS << "  for( ; i < Candidates.size() - 1; i++)\n";
3053     OS << "    Res += Candidates[i].str() + \", \";\n";
3054     OS << "  return Res + Candidates[i].str() + \"?\";\n";
3055   }
3056   OS << "}\n";
3057   OS << "\n";
3058 }
3059 
3060 
3061 // Emit a function mapping match classes to strings, for debugging.
3062 static void emitMatchClassKindNames(std::forward_list<ClassInfo> &Infos,
3063                                     raw_ostream &OS) {
3064   OS << "#ifndef NDEBUG\n";
3065   OS << "const char *getMatchClassName(MatchClassKind Kind) {\n";
3066   OS << "  switch (Kind) {\n";
3067 
3068   OS << "  case InvalidMatchClass: return \"InvalidMatchClass\";\n";
3069   OS << "  case OptionalMatchClass: return \"OptionalMatchClass\";\n";
3070   for (const auto &CI : Infos) {
3071     OS << "  case " << CI.Name << ": return \"" << CI.Name << "\";\n";
3072   }
3073   OS << "  case NumMatchClassKinds: return \"NumMatchClassKinds\";\n";
3074 
3075   OS << "  }\n";
3076   OS << "  llvm_unreachable(\"unhandled MatchClassKind!\");\n";
3077   OS << "}\n\n";
3078   OS << "#endif // NDEBUG\n";
3079 }
3080 
3081 void AsmMatcherEmitter::run(raw_ostream &OS) {
3082   CodeGenTarget Target(Records);
3083   Record *AsmParser = Target.getAsmParser();
3084   StringRef ClassName = AsmParser->getValueAsString("AsmParserClassName");
3085 
3086   // Compute the information on the instructions to match.
3087   AsmMatcherInfo Info(AsmParser, Target, Records);
3088   Info.buildInfo();
3089 
3090   // Sort the instruction table using the partial order on classes. We use
3091   // stable_sort to ensure that ambiguous instructions are still
3092   // deterministically ordered.
3093   std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(),
3094                    [](const std::unique_ptr<MatchableInfo> &a,
3095                       const std::unique_ptr<MatchableInfo> &b){
3096                      return *a < *b;});
3097 
3098 #ifdef EXPENSIVE_CHECKS
3099   // Verify that the table is sorted and operator < works transitively.
3100   for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
3101        ++I) {
3102     for (auto J = I; J != E; ++J) {
3103       assert(!(**J < **I));
3104     }
3105   }
3106 #endif
3107 
3108   DEBUG_WITH_TYPE("instruction_info", {
3109       for (const auto &MI : Info.Matchables)
3110         MI->dump();
3111     });
3112 
3113   // Check for ambiguous matchables.
3114   DEBUG_WITH_TYPE("ambiguous_instrs", {
3115     unsigned NumAmbiguous = 0;
3116     for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
3117          ++I) {
3118       for (auto J = std::next(I); J != E; ++J) {
3119         const MatchableInfo &A = **I;
3120         const MatchableInfo &B = **J;
3121 
3122         if (A.couldMatchAmbiguouslyWith(B)) {
3123           errs() << "warning: ambiguous matchables:\n";
3124           A.dump();
3125           errs() << "\nis incomparable with:\n";
3126           B.dump();
3127           errs() << "\n\n";
3128           ++NumAmbiguous;
3129         }
3130       }
3131     }
3132     if (NumAmbiguous)
3133       errs() << "warning: " << NumAmbiguous
3134              << " ambiguous matchables!\n";
3135   });
3136 
3137   // Compute the information on the custom operand parsing.
3138   Info.buildOperandMatchInfo();
3139 
3140   bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
3141   bool HasOptionalOperands = Info.hasOptionalOperands();
3142   bool ReportMultipleNearMisses =
3143       AsmParser->getValueAsBit("ReportMultipleNearMisses");
3144 
3145   // Write the output.
3146 
3147   // Information for the class declaration.
3148   OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
3149   OS << "#undef GET_ASSEMBLER_HEADER\n";
3150   OS << "  // This should be included into the middle of the declaration of\n";
3151   OS << "  // your subclasses implementation of MCTargetAsmParser.\n";
3152   OS << "  uint64_t ComputeAvailableFeatures(const FeatureBitset& FB) const;\n";
3153   if (HasOptionalOperands) {
3154     OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, "
3155        << "unsigned Opcode,\n"
3156        << "                       const OperandVector &Operands,\n"
3157        << "                       const SmallBitVector &OptionalOperandsMask);\n";
3158   } else {
3159     OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, "
3160        << "unsigned Opcode,\n"
3161        << "                       const OperandVector &Operands);\n";
3162   }
3163   OS << "  void convertToMapAndConstraints(unsigned Kind,\n                ";
3164   OS << "           const OperandVector &Operands) override;\n";
3165   OS << "  unsigned MatchInstructionImpl(const OperandVector &Operands,\n"
3166      << "                                MCInst &Inst,\n";
3167   if (ReportMultipleNearMisses)
3168     OS << "                                SmallVectorImpl<NearMissInfo> *NearMisses,\n";
3169   else
3170     OS << "                                uint64_t &ErrorInfo,\n";
3171   OS << "                                bool matchingInlineAsm,\n"
3172      << "                                unsigned VariantID = 0);\n";
3173 
3174   if (!Info.OperandMatchInfo.empty()) {
3175     OS << "  OperandMatchResultTy MatchOperandParserImpl(\n";
3176     OS << "    OperandVector &Operands,\n";
3177     OS << "    StringRef Mnemonic,\n";
3178     OS << "    bool ParseForAllFeatures = false);\n";
3179 
3180     OS << "  OperandMatchResultTy tryCustomParseOperand(\n";
3181     OS << "    OperandVector &Operands,\n";
3182     OS << "    unsigned MCK);\n\n";
3183   }
3184 
3185   OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
3186 
3187   // Emit the operand match diagnostic enum names.
3188   OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n";
3189   OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
3190   emitOperandDiagnosticTypes(Info, OS);
3191   OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
3192 
3193   OS << "\n#ifdef GET_REGISTER_MATCHER\n";
3194   OS << "#undef GET_REGISTER_MATCHER\n\n";
3195 
3196   // Emit the subtarget feature enumeration.
3197   SubtargetFeatureInfo::emitSubtargetFeatureFlagEnumeration(
3198       Info.SubtargetFeatures, OS);
3199 
3200   // Emit the function to match a register name to number.
3201   // This should be omitted for Mips target
3202   if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName"))
3203     emitMatchRegisterName(Target, AsmParser, OS);
3204 
3205   if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterAltName"))
3206     emitMatchRegisterAltName(Target, AsmParser, OS);
3207 
3208   OS << "#endif // GET_REGISTER_MATCHER\n\n";
3209 
3210   OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n";
3211   OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n";
3212 
3213   // Generate the helper function to get the names for subtarget features.
3214   emitGetSubtargetFeatureName(Info, OS);
3215 
3216   OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n";
3217 
3218   OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
3219   OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
3220 
3221   // Generate the function that remaps for mnemonic aliases.
3222   bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target);
3223 
3224   // Generate the convertToMCInst function to convert operands into an MCInst.
3225   // Also, generate the convertToMapAndConstraints function for MS-style inline
3226   // assembly.  The latter doesn't actually generate a MCInst.
3227   emitConvertFuncs(Target, ClassName, Info.Matchables, HasMnemonicFirst,
3228                    HasOptionalOperands, OS);
3229 
3230   // Emit the enumeration for classes which participate in matching.
3231   emitMatchClassEnumeration(Target, Info.Classes, OS);
3232 
3233   // Emit a function to get the user-visible string to describe an operand
3234   // match failure in diagnostics.
3235   emitOperandMatchErrorDiagStrings(Info, OS);
3236 
3237   // Emit a function to map register classes to operand match failure codes.
3238   emitRegisterMatchErrorFunc(Info, OS);
3239 
3240   // Emit the routine to match token strings to their match class.
3241   emitMatchTokenString(Target, Info.Classes, OS);
3242 
3243   // Emit the subclass predicate routine.
3244   emitIsSubclass(Target, Info.Classes, OS);
3245 
3246   // Emit the routine to validate an operand against a match class.
3247   emitValidateOperandClass(Info, OS);
3248 
3249   emitMatchClassKindNames(Info.Classes, OS);
3250 
3251   // Emit the available features compute function.
3252   SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures(
3253       Info.Target.getName(), ClassName, "ComputeAvailableFeatures",
3254       Info.SubtargetFeatures, OS);
3255 
3256   if (!ReportMultipleNearMisses)
3257     emitAsmTiedOperandConstraints(Target, Info, OS);
3258 
3259   StringToOffsetTable StringTable;
3260 
3261   size_t MaxNumOperands = 0;
3262   unsigned MaxMnemonicIndex = 0;
3263   bool HasDeprecation = false;
3264   for (const auto &MI : Info.Matchables) {
3265     MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
3266     HasDeprecation |= MI->HasDeprecation;
3267 
3268     // Store a pascal-style length byte in the mnemonic.
3269     std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str();
3270     MaxMnemonicIndex = std::max(MaxMnemonicIndex,
3271                         StringTable.GetOrAddStringOffset(LenMnemonic, false));
3272   }
3273 
3274   OS << "static const char *const MnemonicTable =\n";
3275   StringTable.EmitString(OS);
3276   OS << ";\n\n";
3277 
3278   // Emit the static match table; unused classes get initialized to 0 which is
3279   // guaranteed to be InvalidMatchClass.
3280   //
3281   // FIXME: We can reduce the size of this table very easily. First, we change
3282   // it so that store the kinds in separate bit-fields for each index, which
3283   // only needs to be the max width used for classes at that index (we also need
3284   // to reject based on this during classification). If we then make sure to
3285   // order the match kinds appropriately (putting mnemonics last), then we
3286   // should only end up using a few bits for each class, especially the ones
3287   // following the mnemonic.
3288   OS << "namespace {\n";
3289   OS << "  struct MatchEntry {\n";
3290   OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
3291                << " Mnemonic;\n";
3292   OS << "    uint16_t Opcode;\n";
3293   OS << "    " << getMinimalTypeForRange(Info.Matchables.size())
3294                << " ConvertFn;\n";
3295   OS << "    " << getMinimalTypeForEnumBitfield(Info.SubtargetFeatures.size())
3296                << " RequiredFeatures;\n";
3297   OS << "    " << getMinimalTypeForRange(
3298                       std::distance(Info.Classes.begin(), Info.Classes.end()))
3299      << " Classes[" << MaxNumOperands << "];\n";
3300   OS << "    StringRef getMnemonic() const {\n";
3301   OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
3302   OS << "                       MnemonicTable[Mnemonic]);\n";
3303   OS << "    }\n";
3304   OS << "  };\n\n";
3305 
3306   OS << "  // Predicate for searching for an opcode.\n";
3307   OS << "  struct LessOpcode {\n";
3308   OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
3309   OS << "      return LHS.getMnemonic() < RHS;\n";
3310   OS << "    }\n";
3311   OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
3312   OS << "      return LHS < RHS.getMnemonic();\n";
3313   OS << "    }\n";
3314   OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
3315   OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
3316   OS << "    }\n";
3317   OS << "  };\n";
3318 
3319   OS << "} // end anonymous namespace.\n\n";
3320 
3321   unsigned VariantCount = Target.getAsmParserVariantCount();
3322   for (unsigned VC = 0; VC != VariantCount; ++VC) {
3323     Record *AsmVariant = Target.getAsmParserVariant(VC);
3324     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3325 
3326     OS << "static const MatchEntry MatchTable" << VC << "[] = {\n";
3327 
3328     for (const auto &MI : Info.Matchables) {
3329       if (MI->AsmVariantID != AsmVariantNo)
3330         continue;
3331 
3332       // Store a pascal-style length byte in the mnemonic.
3333       std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str();
3334       OS << "  { " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
3335          << " /* " << MI->Mnemonic << " */, "
3336          << Target.getInstNamespace() << "::"
3337          << MI->getResultInst()->TheDef->getName() << ", "
3338          << MI->ConversionFnKind << ", ";
3339 
3340       // Write the required features mask.
3341       if (!MI->RequiredFeatures.empty()) {
3342         for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i) {
3343           if (i) OS << "|";
3344           OS << MI->RequiredFeatures[i]->getEnumName();
3345         }
3346       } else
3347         OS << "0";
3348 
3349       OS << ", { ";
3350       for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
3351         const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
3352 
3353         if (i) OS << ", ";
3354         OS << Op.Class->Name;
3355       }
3356       OS << " }, },\n";
3357     }
3358 
3359     OS << "};\n\n";
3360   }
3361 
3362   OS << "#include \"llvm/Support/Debug.h\"\n";
3363   OS << "#include \"llvm/Support/Format.h\"\n\n";
3364 
3365   // Finally, build the match function.
3366   OS << "unsigned " << Target.getName() << ClassName << "::\n"
3367      << "MatchInstructionImpl(const OperandVector &Operands,\n";
3368   OS << "                     MCInst &Inst,\n";
3369   if (ReportMultipleNearMisses)
3370     OS << "                     SmallVectorImpl<NearMissInfo> *NearMisses,\n";
3371   else
3372     OS << "                     uint64_t &ErrorInfo,\n";
3373   OS << "                     bool matchingInlineAsm, unsigned VariantID) {\n";
3374 
3375   if (!ReportMultipleNearMisses) {
3376     OS << "  // Eliminate obvious mismatches.\n";
3377     OS << "  if (Operands.size() > "
3378        << (MaxNumOperands + HasMnemonicFirst) << ") {\n";
3379     OS << "    ErrorInfo = "
3380        << (MaxNumOperands + HasMnemonicFirst) << ";\n";
3381     OS << "    return Match_InvalidOperand;\n";
3382     OS << "  }\n\n";
3383   }
3384 
3385   // Emit code to get the available features.
3386   OS << "  // Get the current feature set.\n";
3387   OS << "  uint64_t AvailableFeatures = getAvailableFeatures();\n\n";
3388 
3389   OS << "  // Get the instruction mnemonic, which is the first token.\n";
3390   if (HasMnemonicFirst) {
3391     OS << "  StringRef Mnemonic = ((" << Target.getName()
3392        << "Operand&)*Operands[0]).getToken();\n\n";
3393   } else {
3394     OS << "  StringRef Mnemonic;\n";
3395     OS << "  if (Operands[0]->isToken())\n";
3396     OS << "    Mnemonic = ((" << Target.getName()
3397        << "Operand&)*Operands[0]).getToken();\n\n";
3398   }
3399 
3400   if (HasMnemonicAliases) {
3401     OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
3402     OS << "  applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n";
3403   }
3404 
3405   // Emit code to compute the class list for this operand vector.
3406   if (!ReportMultipleNearMisses) {
3407     OS << "  // Some state to try to produce better error messages.\n";
3408     OS << "  bool HadMatchOtherThanFeatures = false;\n";
3409     OS << "  bool HadMatchOtherThanPredicate = false;\n";
3410     OS << "  unsigned RetCode = Match_InvalidOperand;\n";
3411     OS << "  uint64_t MissingFeatures = ~0ULL;\n";
3412     OS << "  // Set ErrorInfo to the operand that mismatches if it is\n";
3413     OS << "  // wrong for all instances of the instruction.\n";
3414     OS << "  ErrorInfo = ~0ULL;\n";
3415   }
3416 
3417   if (HasOptionalOperands) {
3418     OS << "  SmallBitVector OptionalOperandsMask(" << MaxNumOperands << ");\n";
3419   }
3420 
3421   // Emit code to search the table.
3422   OS << "  // Find the appropriate table for this asm variant.\n";
3423   OS << "  const MatchEntry *Start, *End;\n";
3424   OS << "  switch (VariantID) {\n";
3425   OS << "  default: llvm_unreachable(\"invalid variant!\");\n";
3426   for (unsigned VC = 0; VC != VariantCount; ++VC) {
3427     Record *AsmVariant = Target.getAsmParserVariant(VC);
3428     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3429     OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3430        << "); End = std::end(MatchTable" << VC << "); break;\n";
3431   }
3432   OS << "  }\n";
3433 
3434   OS << "  // Search the table.\n";
3435   if (HasMnemonicFirst) {
3436     OS << "  auto MnemonicRange = "
3437           "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
3438   } else {
3439     OS << "  auto MnemonicRange = std::make_pair(Start, End);\n";
3440     OS << "  unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n";
3441     OS << "  if (!Mnemonic.empty())\n";
3442     OS << "    MnemonicRange = "
3443           "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n";
3444   }
3445 
3446   OS << "  DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"AsmMatcher: found \" <<\n"
3447      << "  std::distance(MnemonicRange.first, MnemonicRange.second) << \n"
3448      << "  \" encodings with mnemonic '\" << Mnemonic << \"'\\n\");\n\n";
3449 
3450   OS << "  // Return a more specific error code if no mnemonics match.\n";
3451   OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
3452   OS << "    return Match_MnemonicFail;\n\n";
3453 
3454   OS << "  for (const MatchEntry *it = MnemonicRange.first, "
3455      << "*ie = MnemonicRange.second;\n";
3456   OS << "       it != ie; ++it) {\n";
3457   OS << "    bool HasRequiredFeatures =\n";
3458   OS << "      (AvailableFeatures & it->RequiredFeatures) == "
3459         "it->RequiredFeatures;\n";
3460   OS << "    DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Trying to match opcode \"\n";
3461   OS << "                                          << MII.getName(it->Opcode) << \"\\n\");\n";
3462 
3463   if (ReportMultipleNearMisses) {
3464     OS << "    // Some state to record ways in which this instruction did not match.\n";
3465     OS << "    NearMissInfo OperandNearMiss = NearMissInfo::getSuccess();\n";
3466     OS << "    NearMissInfo FeaturesNearMiss = NearMissInfo::getSuccess();\n";
3467     OS << "    NearMissInfo EarlyPredicateNearMiss = NearMissInfo::getSuccess();\n";
3468     OS << "    NearMissInfo LatePredicateNearMiss = NearMissInfo::getSuccess();\n";
3469     OS << "    bool MultipleInvalidOperands = false;\n";
3470   }
3471 
3472   if (HasMnemonicFirst) {
3473     OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
3474     OS << "    assert(Mnemonic == it->getMnemonic());\n";
3475   }
3476 
3477   // Emit check that the subclasses match.
3478   if (!ReportMultipleNearMisses)
3479     OS << "    bool OperandsValid = true;\n";
3480   if (HasOptionalOperands) {
3481     OS << "    OptionalOperandsMask.reset(0, " << MaxNumOperands << ");\n";
3482   }
3483   OS << "    for (unsigned FormalIdx = " << (HasMnemonicFirst ? "0" : "SIndex")
3484      << ", ActualIdx = " << (HasMnemonicFirst ? "1" : "SIndex")
3485      << "; FormalIdx != " << MaxNumOperands << "; ++FormalIdx) {\n";
3486   OS << "      auto Formal = "
3487      << "static_cast<MatchClassKind>(it->Classes[FormalIdx]);\n";
3488   OS << "      DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3489   OS << "                      dbgs() << \"  Matching formal operand class \" << getMatchClassName(Formal)\n";
3490   OS << "                             << \" against actual operand at index \" << ActualIdx);\n";
3491   OS << "      if (ActualIdx < Operands.size())\n";
3492   OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \" (\";\n";
3493   OS << "                        Operands[ActualIdx]->print(dbgs()); dbgs() << \"): \");\n";
3494   OS << "      else\n";
3495   OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \": \");\n";
3496   OS << "      if (ActualIdx >= Operands.size()) {\n";
3497   OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"actual operand index out of range \");\n";
3498   if (ReportMultipleNearMisses) {
3499     OS << "        bool ThisOperandValid = (Formal == " <<"InvalidMatchClass) || "
3500                                    "isSubclass(Formal, OptionalMatchClass);\n";
3501     OS << "        if (!ThisOperandValid) {\n";
3502     OS << "          if (!OperandNearMiss) {\n";
3503     OS << "            // Record info about match failure for later use.\n";
3504     OS << "            DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"recording too-few-operands near miss\\n\");\n";
3505     OS << "            OperandNearMiss =\n";
3506     OS << "                NearMissInfo::getTooFewOperands(Formal, it->Opcode);\n";
3507     OS << "          } else if (OperandNearMiss.getKind() != NearMissInfo::NearMissTooFewOperands) {\n";
3508     OS << "            // If more than one operand is invalid, give up on this match entry.\n";
3509     OS << "            DEBUG_WITH_TYPE(\n";
3510     OS << "                \"asm-matcher\",\n";
3511     OS << "                dbgs() << \"second invalid operand, giving up on this opcode\\n\");\n";
3512     OS << "            MultipleInvalidOperands = true;\n";
3513     OS << "            break;\n";
3514     OS << "          }\n";
3515     OS << "        } else {\n";
3516     OS << "          DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"but formal operand not required\\n\");\n";
3517     OS << "          break;\n";
3518     OS << "        }\n";
3519     OS << "        continue;\n";
3520   } else {
3521     OS << "        OperandsValid = (Formal == InvalidMatchClass) || isSubclass(Formal, OptionalMatchClass);\n";
3522     OS << "        if (!OperandsValid) ErrorInfo = ActualIdx;\n";
3523     if (HasOptionalOperands) {
3524       OS << "        OptionalOperandsMask.set(FormalIdx, " << MaxNumOperands
3525          << ");\n";
3526     }
3527     OS << "        break;\n";
3528   }
3529   OS << "      }\n";
3530   OS << "      MCParsedAsmOperand &Actual = *Operands[ActualIdx];\n";
3531   OS << "      unsigned Diag = validateOperandClass(Actual, Formal);\n";
3532   OS << "      if (Diag == Match_Success) {\n";
3533   OS << "        DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3534   OS << "                        dbgs() << \"match success using generic matcher\\n\");\n";
3535   OS << "        ++ActualIdx;\n";
3536   OS << "        continue;\n";
3537   OS << "      }\n";
3538   OS << "      // If the generic handler indicates an invalid operand\n";
3539   OS << "      // failure, check for a special case.\n";
3540   OS << "      if (Diag != Match_Success) {\n";
3541   OS << "        unsigned TargetDiag = validateTargetOperandClass(Actual, Formal);\n";
3542   OS << "        if (TargetDiag == Match_Success) {\n";
3543   OS << "          DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3544   OS << "                          dbgs() << \"match success using target matcher\\n\");\n";
3545   OS << "          ++ActualIdx;\n";
3546   OS << "          continue;\n";
3547   OS << "        }\n";
3548   OS << "        // If the target matcher returned a specific error code use\n";
3549   OS << "        // that, else use the one from the generic matcher.\n";
3550   OS << "        if (TargetDiag != Match_InvalidOperand && "
3551         "HasRequiredFeatures)\n";
3552   OS << "          Diag = TargetDiag;\n";
3553   OS << "      }\n";
3554   OS << "      // If current formal operand wasn't matched and it is optional\n"
3555      << "      // then try to match next formal operand\n";
3556   OS << "      if (Diag == Match_InvalidOperand "
3557      << "&& isSubclass(Formal, OptionalMatchClass)) {\n";
3558   if (HasOptionalOperands) {
3559     OS << "        OptionalOperandsMask.set(FormalIdx);\n";
3560   }
3561     OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"ignoring optional operand\\n\");\n";
3562   OS << "        continue;\n";
3563   OS << "      }\n";
3564 
3565   if (ReportMultipleNearMisses) {
3566     OS << "      if (!OperandNearMiss) {\n";
3567     OS << "        // If this is the first invalid operand we have seen, record some\n";
3568     OS << "        // information about it.\n";
3569     OS << "        DEBUG_WITH_TYPE(\n";
3570     OS << "            \"asm-matcher\",\n";
3571     OS << "            dbgs()\n";
3572     OS << "                << \"operand match failed, recording near-miss with diag code \"\n";
3573     OS << "                << Diag << \"\\n\");\n";
3574     OS << "        OperandNearMiss =\n";
3575     OS << "            NearMissInfo::getMissedOperand(Diag, Formal, it->Opcode, ActualIdx);\n";
3576     OS << "        ++ActualIdx;\n";
3577     OS << "      } else {\n";
3578     OS << "        // If more than one operand is invalid, give up on this match entry.\n";
3579     OS << "        DEBUG_WITH_TYPE(\n";
3580     OS << "            \"asm-matcher\",\n";
3581     OS << "            dbgs() << \"second operand mismatch, skipping this opcode\\n\");\n";
3582     OS << "        MultipleInvalidOperands = true;\n";
3583     OS << "        break;\n";
3584     OS << "      }\n";
3585     OS << "    }\n\n";
3586   } else {
3587     OS << "      // If this operand is broken for all of the instances of this\n";
3588     OS << "      // mnemonic, keep track of it so we can report loc info.\n";
3589     OS << "      // If we already had a match that only failed due to a\n";
3590     OS << "      // target predicate, that diagnostic is preferred.\n";
3591     OS << "      if (!HadMatchOtherThanPredicate &&\n";
3592     OS << "          (it == MnemonicRange.first || ErrorInfo <= ActualIdx)) {\n";
3593     OS << "        if (HasRequiredFeatures && (ErrorInfo != ActualIdx || Diag "
3594           "!= Match_InvalidOperand))\n";
3595     OS << "          RetCode = Diag;\n";
3596     OS << "        ErrorInfo = ActualIdx;\n";
3597     OS << "      }\n";
3598     OS << "      // Otherwise, just reject this instance of the mnemonic.\n";
3599     OS << "      OperandsValid = false;\n";
3600     OS << "      break;\n";
3601     OS << "    }\n\n";
3602   }
3603 
3604   if (ReportMultipleNearMisses)
3605     OS << "    if (MultipleInvalidOperands) {\n";
3606   else
3607     OS << "    if (!OperandsValid) {\n";
3608   OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n";
3609   OS << "                                               \"operand mismatches, ignoring \"\n";
3610   OS << "                                               \"this opcode\\n\");\n";
3611   OS << "      continue;\n";
3612   OS << "    }\n";
3613 
3614   // Emit check that the required features are available.
3615   OS << "    if (!HasRequiredFeatures) {\n";
3616   if (!ReportMultipleNearMisses)
3617     OS << "      HadMatchOtherThanFeatures = true;\n";
3618   OS << "      uint64_t NewMissingFeatures = it->RequiredFeatures & "
3619         "~AvailableFeatures;\n";
3620   OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Missing target features: \"\n";
3621   OS << "                                            << format_hex(NewMissingFeatures, 18)\n";
3622   OS << "                                            << \"\\n\");\n";
3623   if (ReportMultipleNearMisses) {
3624     OS << "      FeaturesNearMiss = NearMissInfo::getMissedFeature(NewMissingFeatures);\n";
3625   } else {
3626     OS << "      if (countPopulation(NewMissingFeatures) <=\n"
3627           "          countPopulation(MissingFeatures))\n";
3628     OS << "        MissingFeatures = NewMissingFeatures;\n";
3629     OS << "      continue;\n";
3630   }
3631   OS << "    }\n";
3632   OS << "\n";
3633   OS << "    Inst.clear();\n\n";
3634   OS << "    Inst.setOpcode(it->Opcode);\n";
3635   // Verify the instruction with the target-specific match predicate function.
3636   OS << "    // We have a potential match but have not rendered the operands.\n"
3637      << "    // Check the target predicate to handle any context sensitive\n"
3638         "    // constraints.\n"
3639      << "    // For example, Ties that are referenced multiple times must be\n"
3640         "    // checked here to ensure the input is the same for each match\n"
3641         "    // constraints. If we leave it any later the ties will have been\n"
3642         "    // canonicalized\n"
3643      << "    unsigned MatchResult;\n"
3644      << "    if ((MatchResult = checkEarlyTargetMatchPredicate(Inst, "
3645         "Operands)) != Match_Success) {\n"
3646      << "      Inst.clear();\n";
3647   OS << "      DEBUG_WITH_TYPE(\n";
3648   OS << "          \"asm-matcher\",\n";
3649   OS << "          dbgs() << \"Early target match predicate failed with diag code \"\n";
3650   OS << "                 << MatchResult << \"\\n\");\n";
3651   if (ReportMultipleNearMisses) {
3652     OS << "      EarlyPredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n";
3653   } else {
3654     OS << "      RetCode = MatchResult;\n"
3655        << "      HadMatchOtherThanPredicate = true;\n"
3656        << "      continue;\n";
3657   }
3658   OS << "    }\n\n";
3659 
3660   if (ReportMultipleNearMisses) {
3661     OS << "    // If we did not successfully match the operands, then we can't convert to\n";
3662     OS << "    // an MCInst, so bail out on this instruction variant now.\n";
3663     OS << "    if (OperandNearMiss) {\n";
3664     OS << "      // If the operand mismatch was the only problem, reprrt it as a near-miss.\n";
3665     OS << "      if (NearMisses && !FeaturesNearMiss && !EarlyPredicateNearMiss) {\n";
3666     OS << "        DEBUG_WITH_TYPE(\n";
3667     OS << "            \"asm-matcher\",\n";
3668     OS << "            dbgs()\n";
3669     OS << "                << \"Opcode result: one mismatched operand, adding near-miss\\n\");\n";
3670     OS << "        NearMisses->push_back(OperandNearMiss);\n";
3671     OS << "      } else {\n";
3672     OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n";
3673     OS << "                                                 \"types of mismatch, so not \"\n";
3674     OS << "                                                 \"reporting near-miss\\n\");\n";
3675     OS << "      }\n";
3676     OS << "      continue;\n";
3677     OS << "    }\n\n";
3678   }
3679 
3680   OS << "    if (matchingInlineAsm) {\n";
3681   OS << "      convertToMapAndConstraints(it->ConvertFn, Operands);\n";
3682   if (!ReportMultipleNearMisses) {
3683     OS << "      if (!checkAsmTiedOperandConstraints(it->ConvertFn, Operands, ErrorInfo))\n";
3684     OS << "        return Match_InvalidTiedOperand;\n";
3685     OS << "\n";
3686   }
3687   OS << "      return Match_Success;\n";
3688   OS << "    }\n\n";
3689   OS << "    // We have selected a definite instruction, convert the parsed\n"
3690      << "    // operands into the appropriate MCInst.\n";
3691   if (HasOptionalOperands) {
3692     OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands,\n"
3693        << "                    OptionalOperandsMask);\n";
3694   } else {
3695     OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
3696   }
3697   OS << "\n";
3698 
3699   // Verify the instruction with the target-specific match predicate function.
3700   OS << "    // We have a potential match. Check the target predicate to\n"
3701      << "    // handle any context sensitive constraints.\n"
3702      << "    if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
3703      << " Match_Success) {\n"
3704      << "      DEBUG_WITH_TYPE(\"asm-matcher\",\n"
3705      << "                      dbgs() << \"Target match predicate failed with diag code \"\n"
3706      << "                             << MatchResult << \"\\n\");\n"
3707      << "      Inst.clear();\n";
3708   if (ReportMultipleNearMisses) {
3709     OS << "      LatePredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n";
3710   } else {
3711     OS << "      RetCode = MatchResult;\n"
3712        << "      HadMatchOtherThanPredicate = true;\n"
3713        << "      continue;\n";
3714   }
3715   OS << "    }\n\n";
3716 
3717   if (ReportMultipleNearMisses) {
3718     OS << "    int NumNearMisses = ((int)(bool)OperandNearMiss +\n";
3719     OS << "                         (int)(bool)FeaturesNearMiss +\n";
3720     OS << "                         (int)(bool)EarlyPredicateNearMiss +\n";
3721     OS << "                         (int)(bool)LatePredicateNearMiss);\n";
3722     OS << "    if (NumNearMisses == 1) {\n";
3723     OS << "      // We had exactly one type of near-miss, so add that to the list.\n";
3724     OS << "      assert(!OperandNearMiss && \"OperandNearMiss was handled earlier\");\n";
3725     OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: found one type of \"\n";
3726     OS << "                                            \"mismatch, so reporting a \"\n";
3727     OS << "                                            \"near-miss\\n\");\n";
3728     OS << "      if (NearMisses && FeaturesNearMiss)\n";
3729     OS << "        NearMisses->push_back(FeaturesNearMiss);\n";
3730     OS << "      else if (NearMisses && EarlyPredicateNearMiss)\n";
3731     OS << "        NearMisses->push_back(EarlyPredicateNearMiss);\n";
3732     OS << "      else if (NearMisses && LatePredicateNearMiss)\n";
3733     OS << "        NearMisses->push_back(LatePredicateNearMiss);\n";
3734     OS << "\n";
3735     OS << "      continue;\n";
3736     OS << "    } else if (NumNearMisses > 1) {\n";
3737     OS << "      // This instruction missed in more than one way, so ignore it.\n";
3738     OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n";
3739     OS << "                                               \"types of mismatch, so not \"\n";
3740     OS << "                                               \"reporting near-miss\\n\");\n";
3741     OS << "      continue;\n";
3742     OS << "    }\n";
3743   }
3744 
3745   // Call the post-processing function, if used.
3746   StringRef InsnCleanupFn = AsmParser->getValueAsString("AsmParserInstCleanup");
3747   if (!InsnCleanupFn.empty())
3748     OS << "    " << InsnCleanupFn << "(Inst);\n";
3749 
3750   if (HasDeprecation) {
3751     OS << "    std::string Info;\n";
3752     OS << "    if (!getParser().getTargetParser().\n";
3753     OS << "        getTargetOptions().MCNoDeprecatedWarn &&\n";
3754     OS << "        MII.get(Inst.getOpcode()).getDeprecatedInfo(Inst, getSTI(), Info)) {\n";
3755     OS << "      SMLoc Loc = ((" << Target.getName()
3756        << "Operand&)*Operands[0]).getStartLoc();\n";
3757     OS << "      getParser().Warning(Loc, Info, None);\n";
3758     OS << "    }\n";
3759   }
3760 
3761   if (!ReportMultipleNearMisses) {
3762     OS << "      if (!checkAsmTiedOperandConstraints(it->ConvertFn, Operands, ErrorInfo))\n";
3763     OS << "        return Match_InvalidTiedOperand;\n";
3764     OS << "\n";
3765   }
3766 
3767   OS << "    DEBUG_WITH_TYPE(\n";
3768   OS << "        \"asm-matcher\",\n";
3769   OS << "        dbgs() << \"Opcode result: complete match, selecting this opcode\\n\");\n";
3770   OS << "    return Match_Success;\n";
3771   OS << "  }\n\n";
3772 
3773   if (ReportMultipleNearMisses) {
3774     OS << "  // No instruction variants matched exactly.\n";
3775     OS << "  return Match_NearMisses;\n";
3776   } else {
3777     OS << "  // Okay, we had no match.  Try to return a useful error code.\n";
3778     OS << "  if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n";
3779     OS << "    return RetCode;\n\n";
3780     OS << "  // Missing feature matches return which features were missing\n";
3781     OS << "  ErrorInfo = MissingFeatures;\n";
3782     OS << "  return Match_MissingFeature;\n";
3783   }
3784   OS << "}\n\n";
3785 
3786   if (!Info.OperandMatchInfo.empty())
3787     emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable,
3788                              MaxMnemonicIndex, HasMnemonicFirst);
3789 
3790   OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
3791 
3792   OS << "\n#ifdef GET_MNEMONIC_SPELL_CHECKER\n";
3793   OS << "#undef GET_MNEMONIC_SPELL_CHECKER\n\n";
3794 
3795   emitMnemonicSpellChecker(OS, Target, VariantCount);
3796 
3797   OS << "#endif // GET_MNEMONIC_SPELL_CHECKER\n\n";
3798 }
3799 
3800 namespace llvm {
3801 
3802 void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) {
3803   emitSourceFileHeader("Assembly Matcher Source Fragment", OS);
3804   AsmMatcherEmitter(RK).run(OS);
3805 }
3806 
3807 } // end namespace llvm
3808