1 //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This tablegen backend emits a target specifier matcher for converting parsed 11 // assembly operands in the MCInst structures. It also emits a matcher for 12 // custom operand parsing. 13 // 14 // Converting assembly operands into MCInst structures 15 // --------------------------------------------------- 16 // 17 // The input to the target specific matcher is a list of literal tokens and 18 // operands. The target specific parser should generally eliminate any syntax 19 // which is not relevant for matching; for example, comma tokens should have 20 // already been consumed and eliminated by the parser. Most instructions will 21 // end up with a single literal token (the instruction name) and some number of 22 // operands. 23 // 24 // Some example inputs, for X86: 25 // 'addl' (immediate ...) (register ...) 26 // 'add' (immediate ...) (memory ...) 27 // 'call' '*' %epc 28 // 29 // The assembly matcher is responsible for converting this input into a precise 30 // machine instruction (i.e., an instruction with a well defined encoding). This 31 // mapping has several properties which complicate matching: 32 // 33 // - It may be ambiguous; many architectures can legally encode particular 34 // variants of an instruction in different ways (for example, using a smaller 35 // encoding for small immediates). Such ambiguities should never be 36 // arbitrarily resolved by the assembler, the assembler is always responsible 37 // for choosing the "best" available instruction. 38 // 39 // - It may depend on the subtarget or the assembler context. Instructions 40 // which are invalid for the current mode, but otherwise unambiguous (e.g., 41 // an SSE instruction in a file being assembled for i486) should be accepted 42 // and rejected by the assembler front end. However, if the proper encoding 43 // for an instruction is dependent on the assembler context then the matcher 44 // is responsible for selecting the correct machine instruction for the 45 // current mode. 46 // 47 // The core matching algorithm attempts to exploit the regularity in most 48 // instruction sets to quickly determine the set of possibly matching 49 // instructions, and the simplify the generated code. Additionally, this helps 50 // to ensure that the ambiguities are intentionally resolved by the user. 51 // 52 // The matching is divided into two distinct phases: 53 // 54 // 1. Classification: Each operand is mapped to the unique set which (a) 55 // contains it, and (b) is the largest such subset for which a single 56 // instruction could match all members. 57 // 58 // For register classes, we can generate these subgroups automatically. For 59 // arbitrary operands, we expect the user to define the classes and their 60 // relations to one another (for example, 8-bit signed immediates as a 61 // subset of 32-bit immediates). 62 // 63 // By partitioning the operands in this way, we guarantee that for any 64 // tuple of classes, any single instruction must match either all or none 65 // of the sets of operands which could classify to that tuple. 66 // 67 // In addition, the subset relation amongst classes induces a partial order 68 // on such tuples, which we use to resolve ambiguities. 69 // 70 // 2. The input can now be treated as a tuple of classes (static tokens are 71 // simple singleton sets). Each such tuple should generally map to a single 72 // instruction (we currently ignore cases where this isn't true, whee!!!), 73 // which we can emit a simple matcher for. 74 // 75 // Custom Operand Parsing 76 // ---------------------- 77 // 78 // Some targets need a custom way to parse operands, some specific instructions 79 // can contain arguments that can represent processor flags and other kinds of 80 // identifiers that need to be mapped to specific values in the final encoded 81 // instructions. The target specific custom operand parsing works in the 82 // following way: 83 // 84 // 1. A operand match table is built, each entry contains a mnemonic, an 85 // operand class, a mask for all operand positions for that same 86 // class/mnemonic and target features to be checked while trying to match. 87 // 88 // 2. The operand matcher will try every possible entry with the same 89 // mnemonic and will check if the target feature for this mnemonic also 90 // matches. After that, if the operand to be matched has its index 91 // present in the mask, a successful match occurs. Otherwise, fallback 92 // to the regular operand parsing. 93 // 94 // 3. For a match success, each operand class that has a 'ParserMethod' 95 // becomes part of a switch from where the custom method is called. 96 // 97 //===----------------------------------------------------------------------===// 98 99 #include "CodeGenTarget.h" 100 #include "SubtargetFeatureInfo.h" 101 #include "Types.h" 102 #include "llvm/ADT/CachedHashString.h" 103 #include "llvm/ADT/PointerUnion.h" 104 #include "llvm/ADT/STLExtras.h" 105 #include "llvm/ADT/SmallPtrSet.h" 106 #include "llvm/ADT/SmallVector.h" 107 #include "llvm/ADT/StringExtras.h" 108 #include "llvm/Support/CommandLine.h" 109 #include "llvm/Support/Debug.h" 110 #include "llvm/Support/ErrorHandling.h" 111 #include "llvm/TableGen/Error.h" 112 #include "llvm/TableGen/Record.h" 113 #include "llvm/TableGen/StringMatcher.h" 114 #include "llvm/TableGen/StringToOffsetTable.h" 115 #include "llvm/TableGen/TableGenBackend.h" 116 #include <cassert> 117 #include <cctype> 118 #include <forward_list> 119 #include <map> 120 #include <set> 121 122 using namespace llvm; 123 124 #define DEBUG_TYPE "asm-matcher-emitter" 125 126 cl::OptionCategory AsmMatcherEmitterCat("Options for -gen-asm-matcher"); 127 128 static cl::opt<std::string> 129 MatchPrefix("match-prefix", cl::init(""), 130 cl::desc("Only match instructions with the given prefix"), 131 cl::cat(AsmMatcherEmitterCat)); 132 133 namespace { 134 class AsmMatcherInfo; 135 136 // Register sets are used as keys in some second-order sets TableGen creates 137 // when generating its data structures. This means that the order of two 138 // RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and 139 // can even affect compiler output (at least seen in diagnostics produced when 140 // all matches fail). So we use a type that sorts them consistently. 141 typedef std::set<Record*, LessRecordByID> RegisterSet; 142 143 class AsmMatcherEmitter { 144 RecordKeeper &Records; 145 public: 146 AsmMatcherEmitter(RecordKeeper &R) : Records(R) {} 147 148 void run(raw_ostream &o); 149 }; 150 151 /// ClassInfo - Helper class for storing the information about a particular 152 /// class of operands which can be matched. 153 struct ClassInfo { 154 enum ClassInfoKind { 155 /// Invalid kind, for use as a sentinel value. 156 Invalid = 0, 157 158 /// The class for a particular token. 159 Token, 160 161 /// The (first) register class, subsequent register classes are 162 /// RegisterClass0+1, and so on. 163 RegisterClass0, 164 165 /// The (first) user defined class, subsequent user defined classes are 166 /// UserClass0+1, and so on. 167 UserClass0 = 1<<16 168 }; 169 170 /// Kind - The class kind, which is either a predefined kind, or (UserClass0 + 171 /// N) for the Nth user defined class. 172 unsigned Kind; 173 174 /// SuperClasses - The super classes of this class. Note that for simplicities 175 /// sake user operands only record their immediate super class, while register 176 /// operands include all superclasses. 177 std::vector<ClassInfo*> SuperClasses; 178 179 /// Name - The full class name, suitable for use in an enum. 180 std::string Name; 181 182 /// ClassName - The unadorned generic name for this class (e.g., Token). 183 std::string ClassName; 184 185 /// ValueName - The name of the value this class represents; for a token this 186 /// is the literal token string, for an operand it is the TableGen class (or 187 /// empty if this is a derived class). 188 std::string ValueName; 189 190 /// PredicateMethod - The name of the operand method to test whether the 191 /// operand matches this class; this is not valid for Token or register kinds. 192 std::string PredicateMethod; 193 194 /// RenderMethod - The name of the operand method to add this operand to an 195 /// MCInst; this is not valid for Token or register kinds. 196 std::string RenderMethod; 197 198 /// ParserMethod - The name of the operand method to do a target specific 199 /// parsing on the operand. 200 std::string ParserMethod; 201 202 /// For register classes: the records for all the registers in this class. 203 RegisterSet Registers; 204 205 /// For custom match classes: the diagnostic kind for when the predicate fails. 206 std::string DiagnosticType; 207 208 /// Is this operand optional and not always required. 209 bool IsOptional; 210 211 /// DefaultMethod - The name of the method that returns the default operand 212 /// for optional operand 213 std::string DefaultMethod; 214 215 public: 216 /// isRegisterClass() - Check if this is a register class. 217 bool isRegisterClass() const { 218 return Kind >= RegisterClass0 && Kind < UserClass0; 219 } 220 221 /// isUserClass() - Check if this is a user defined class. 222 bool isUserClass() const { 223 return Kind >= UserClass0; 224 } 225 226 /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes 227 /// are related if they are in the same class hierarchy. 228 bool isRelatedTo(const ClassInfo &RHS) const { 229 // Tokens are only related to tokens. 230 if (Kind == Token || RHS.Kind == Token) 231 return Kind == Token && RHS.Kind == Token; 232 233 // Registers classes are only related to registers classes, and only if 234 // their intersection is non-empty. 235 if (isRegisterClass() || RHS.isRegisterClass()) { 236 if (!isRegisterClass() || !RHS.isRegisterClass()) 237 return false; 238 239 RegisterSet Tmp; 240 std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin()); 241 std::set_intersection(Registers.begin(), Registers.end(), 242 RHS.Registers.begin(), RHS.Registers.end(), 243 II, LessRecordByID()); 244 245 return !Tmp.empty(); 246 } 247 248 // Otherwise we have two users operands; they are related if they are in the 249 // same class hierarchy. 250 // 251 // FIXME: This is an oversimplification, they should only be related if they 252 // intersect, however we don't have that information. 253 assert(isUserClass() && RHS.isUserClass() && "Unexpected class!"); 254 const ClassInfo *Root = this; 255 while (!Root->SuperClasses.empty()) 256 Root = Root->SuperClasses.front(); 257 258 const ClassInfo *RHSRoot = &RHS; 259 while (!RHSRoot->SuperClasses.empty()) 260 RHSRoot = RHSRoot->SuperClasses.front(); 261 262 return Root == RHSRoot; 263 } 264 265 /// isSubsetOf - Test whether this class is a subset of \p RHS. 266 bool isSubsetOf(const ClassInfo &RHS) const { 267 // This is a subset of RHS if it is the same class... 268 if (this == &RHS) 269 return true; 270 271 // ... or if any of its super classes are a subset of RHS. 272 for (const ClassInfo *CI : SuperClasses) 273 if (CI->isSubsetOf(RHS)) 274 return true; 275 276 return false; 277 } 278 279 int getTreeDepth() const { 280 int Depth = 0; 281 const ClassInfo *Root = this; 282 while (!Root->SuperClasses.empty()) { 283 Depth++; 284 Root = Root->SuperClasses.front(); 285 } 286 return Depth; 287 } 288 289 const ClassInfo *findRoot() const { 290 const ClassInfo *Root = this; 291 while (!Root->SuperClasses.empty()) 292 Root = Root->SuperClasses.front(); 293 return Root; 294 } 295 296 /// Compare two classes. This does not produce a total ordering, but does 297 /// guarantee that subclasses are sorted before their parents, and that the 298 /// ordering is transitive. 299 bool operator<(const ClassInfo &RHS) const { 300 if (this == &RHS) 301 return false; 302 303 // First, enforce the ordering between the three different types of class. 304 // Tokens sort before registers, which sort before user classes. 305 if (Kind == Token) { 306 if (RHS.Kind != Token) 307 return true; 308 assert(RHS.Kind == Token); 309 } else if (isRegisterClass()) { 310 if (RHS.Kind == Token) 311 return false; 312 else if (RHS.isUserClass()) 313 return true; 314 assert(RHS.isRegisterClass()); 315 } else if (isUserClass()) { 316 if (!RHS.isUserClass()) 317 return false; 318 assert(RHS.isUserClass()); 319 } else { 320 llvm_unreachable("Unknown ClassInfoKind"); 321 } 322 323 if (Kind == Token || isUserClass()) { 324 // Related tokens and user classes get sorted by depth in the inheritence 325 // tree (so that subclasses are before their parents). 326 if (isRelatedTo(RHS)) { 327 if (getTreeDepth() > RHS.getTreeDepth()) 328 return true; 329 if (getTreeDepth() < RHS.getTreeDepth()) 330 return false; 331 } else { 332 // Unrelated tokens and user classes are ordered by the name of their 333 // root nodes, so that there is a consistent ordering between 334 // unconnected trees. 335 return findRoot()->ValueName < RHS.findRoot()->ValueName; 336 } 337 } else if (isRegisterClass()) { 338 // For register sets, sort by number of registers. This guarantees that 339 // a set will always sort before all of it's strict supersets. 340 if (Registers.size() != RHS.Registers.size()) 341 return Registers.size() < RHS.Registers.size(); 342 } else { 343 llvm_unreachable("Unknown ClassInfoKind"); 344 } 345 346 // FIXME: We should be able to just return false here, as we only need a 347 // partial order (we use stable sorts, so this is deterministic) and the 348 // name of a class shouldn't be significant. However, some of the backends 349 // accidentally rely on this behaviour, so it will have to stay like this 350 // until they are fixed. 351 return ValueName < RHS.ValueName; 352 } 353 }; 354 355 class AsmVariantInfo { 356 public: 357 StringRef RegisterPrefix; 358 StringRef TokenizingCharacters; 359 StringRef SeparatorCharacters; 360 StringRef BreakCharacters; 361 StringRef Name; 362 int AsmVariantNo; 363 }; 364 365 /// MatchableInfo - Helper class for storing the necessary information for an 366 /// instruction or alias which is capable of being matched. 367 struct MatchableInfo { 368 struct AsmOperand { 369 /// Token - This is the token that the operand came from. 370 StringRef Token; 371 372 /// The unique class instance this operand should match. 373 ClassInfo *Class; 374 375 /// The operand name this is, if anything. 376 StringRef SrcOpName; 377 378 /// The suboperand index within SrcOpName, or -1 for the entire operand. 379 int SubOpIdx; 380 381 /// Whether the token is "isolated", i.e., it is preceded and followed 382 /// by separators. 383 bool IsIsolatedToken; 384 385 /// Register record if this token is singleton register. 386 Record *SingletonReg; 387 388 explicit AsmOperand(bool IsIsolatedToken, StringRef T) 389 : Token(T), Class(nullptr), SubOpIdx(-1), 390 IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {} 391 }; 392 393 /// ResOperand - This represents a single operand in the result instruction 394 /// generated by the match. In cases (like addressing modes) where a single 395 /// assembler operand expands to multiple MCOperands, this represents the 396 /// single assembler operand, not the MCOperand. 397 struct ResOperand { 398 enum { 399 /// RenderAsmOperand - This represents an operand result that is 400 /// generated by calling the render method on the assembly operand. The 401 /// corresponding AsmOperand is specified by AsmOperandNum. 402 RenderAsmOperand, 403 404 /// TiedOperand - This represents a result operand that is a duplicate of 405 /// a previous result operand. 406 TiedOperand, 407 408 /// ImmOperand - This represents an immediate value that is dumped into 409 /// the operand. 410 ImmOperand, 411 412 /// RegOperand - This represents a fixed register that is dumped in. 413 RegOperand 414 } Kind; 415 416 union { 417 /// This is the operand # in the AsmOperands list that this should be 418 /// copied from. 419 unsigned AsmOperandNum; 420 421 /// TiedOperandNum - This is the (earlier) result operand that should be 422 /// copied from. 423 unsigned TiedOperandNum; 424 425 /// ImmVal - This is the immediate value added to the instruction. 426 int64_t ImmVal; 427 428 /// Register - This is the register record. 429 Record *Register; 430 }; 431 432 /// MINumOperands - The number of MCInst operands populated by this 433 /// operand. 434 unsigned MINumOperands; 435 436 static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) { 437 ResOperand X; 438 X.Kind = RenderAsmOperand; 439 X.AsmOperandNum = AsmOpNum; 440 X.MINumOperands = NumOperands; 441 return X; 442 } 443 444 static ResOperand getTiedOp(unsigned TiedOperandNum) { 445 ResOperand X; 446 X.Kind = TiedOperand; 447 X.TiedOperandNum = TiedOperandNum; 448 X.MINumOperands = 1; 449 return X; 450 } 451 452 static ResOperand getImmOp(int64_t Val) { 453 ResOperand X; 454 X.Kind = ImmOperand; 455 X.ImmVal = Val; 456 X.MINumOperands = 1; 457 return X; 458 } 459 460 static ResOperand getRegOp(Record *Reg) { 461 ResOperand X; 462 X.Kind = RegOperand; 463 X.Register = Reg; 464 X.MINumOperands = 1; 465 return X; 466 } 467 }; 468 469 /// AsmVariantID - Target's assembly syntax variant no. 470 int AsmVariantID; 471 472 /// AsmString - The assembly string for this instruction (with variants 473 /// removed), e.g. "movsx $src, $dst". 474 std::string AsmString; 475 476 /// TheDef - This is the definition of the instruction or InstAlias that this 477 /// matchable came from. 478 Record *const TheDef; 479 480 /// DefRec - This is the definition that it came from. 481 PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec; 482 483 const CodeGenInstruction *getResultInst() const { 484 if (DefRec.is<const CodeGenInstruction*>()) 485 return DefRec.get<const CodeGenInstruction*>(); 486 return DefRec.get<const CodeGenInstAlias*>()->ResultInst; 487 } 488 489 /// ResOperands - This is the operand list that should be built for the result 490 /// MCInst. 491 SmallVector<ResOperand, 8> ResOperands; 492 493 /// Mnemonic - This is the first token of the matched instruction, its 494 /// mnemonic. 495 StringRef Mnemonic; 496 497 /// AsmOperands - The textual operands that this instruction matches, 498 /// annotated with a class and where in the OperandList they were defined. 499 /// This directly corresponds to the tokenized AsmString after the mnemonic is 500 /// removed. 501 SmallVector<AsmOperand, 8> AsmOperands; 502 503 /// Predicates - The required subtarget features to match this instruction. 504 SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures; 505 506 /// ConversionFnKind - The enum value which is passed to the generated 507 /// convertToMCInst to convert parsed operands into an MCInst for this 508 /// function. 509 std::string ConversionFnKind; 510 511 /// If this instruction is deprecated in some form. 512 bool HasDeprecation; 513 514 /// If this is an alias, this is use to determine whether or not to using 515 /// the conversion function defined by the instruction's AsmMatchConverter 516 /// or to use the function generated by the alias. 517 bool UseInstAsmMatchConverter; 518 519 MatchableInfo(const CodeGenInstruction &CGI) 520 : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI), 521 UseInstAsmMatchConverter(true) { 522 } 523 524 MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias) 525 : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef), 526 DefRec(Alias.release()), 527 UseInstAsmMatchConverter( 528 TheDef->getValueAsBit("UseInstAsmMatchConverter")) { 529 } 530 531 // Could remove this and the dtor if PointerUnion supported unique_ptr 532 // elements with a dynamic failure/assertion (like the one below) in the case 533 // where it was copied while being in an owning state. 534 MatchableInfo(const MatchableInfo &RHS) 535 : AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString), 536 TheDef(RHS.TheDef), DefRec(RHS.DefRec), ResOperands(RHS.ResOperands), 537 Mnemonic(RHS.Mnemonic), AsmOperands(RHS.AsmOperands), 538 RequiredFeatures(RHS.RequiredFeatures), 539 ConversionFnKind(RHS.ConversionFnKind), 540 HasDeprecation(RHS.HasDeprecation), 541 UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) { 542 assert(!DefRec.is<const CodeGenInstAlias *>()); 543 } 544 545 ~MatchableInfo() { 546 delete DefRec.dyn_cast<const CodeGenInstAlias*>(); 547 } 548 549 // Two-operand aliases clone from the main matchable, but mark the second 550 // operand as a tied operand of the first for purposes of the assembler. 551 void formTwoOperandAlias(StringRef Constraint); 552 553 void initialize(const AsmMatcherInfo &Info, 554 SmallPtrSetImpl<Record*> &SingletonRegisters, 555 AsmVariantInfo const &Variant, 556 bool HasMnemonicFirst); 557 558 /// validate - Return true if this matchable is a valid thing to match against 559 /// and perform a bunch of validity checking. 560 bool validate(StringRef CommentDelimiter, bool Hack) const; 561 562 /// findAsmOperand - Find the AsmOperand with the specified name and 563 /// suboperand index. 564 int findAsmOperand(StringRef N, int SubOpIdx) const { 565 auto I = find_if(AsmOperands, [&](const AsmOperand &Op) { 566 return Op.SrcOpName == N && Op.SubOpIdx == SubOpIdx; 567 }); 568 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; 569 } 570 571 /// findAsmOperandNamed - Find the first AsmOperand with the specified name. 572 /// This does not check the suboperand index. 573 int findAsmOperandNamed(StringRef N) const { 574 auto I = find_if(AsmOperands, 575 [&](const AsmOperand &Op) { return Op.SrcOpName == N; }); 576 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; 577 } 578 579 void buildInstructionResultOperands(); 580 void buildAliasResultOperands(); 581 582 /// operator< - Compare two matchables. 583 bool operator<(const MatchableInfo &RHS) const { 584 // The primary comparator is the instruction mnemonic. 585 if (int Cmp = Mnemonic.compare(RHS.Mnemonic)) 586 return Cmp == -1; 587 588 if (AsmOperands.size() != RHS.AsmOperands.size()) 589 return AsmOperands.size() < RHS.AsmOperands.size(); 590 591 // Compare lexicographically by operand. The matcher validates that other 592 // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith(). 593 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { 594 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) 595 return true; 596 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) 597 return false; 598 } 599 600 // Give matches that require more features higher precedence. This is useful 601 // because we cannot define AssemblerPredicates with the negation of 602 // processor features. For example, ARM v6 "nop" may be either a HINT or 603 // MOV. With v6, we want to match HINT. The assembler has no way to 604 // predicate MOV under "NoV6", but HINT will always match first because it 605 // requires V6 while MOV does not. 606 if (RequiredFeatures.size() != RHS.RequiredFeatures.size()) 607 return RequiredFeatures.size() > RHS.RequiredFeatures.size(); 608 609 return false; 610 } 611 612 /// couldMatchAmbiguouslyWith - Check whether this matchable could 613 /// ambiguously match the same set of operands as \p RHS (without being a 614 /// strictly superior match). 615 bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const { 616 // The primary comparator is the instruction mnemonic. 617 if (Mnemonic != RHS.Mnemonic) 618 return false; 619 620 // The number of operands is unambiguous. 621 if (AsmOperands.size() != RHS.AsmOperands.size()) 622 return false; 623 624 // Otherwise, make sure the ordering of the two instructions is unambiguous 625 // by checking that either (a) a token or operand kind discriminates them, 626 // or (b) the ordering among equivalent kinds is consistent. 627 628 // Tokens and operand kinds are unambiguous (assuming a correct target 629 // specific parser). 630 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) 631 if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind || 632 AsmOperands[i].Class->Kind == ClassInfo::Token) 633 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class || 634 *RHS.AsmOperands[i].Class < *AsmOperands[i].Class) 635 return false; 636 637 // Otherwise, this operand could commute if all operands are equivalent, or 638 // there is a pair of operands that compare less than and a pair that 639 // compare greater than. 640 bool HasLT = false, HasGT = false; 641 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { 642 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) 643 HasLT = true; 644 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) 645 HasGT = true; 646 } 647 648 return HasLT == HasGT; 649 } 650 651 void dump() const; 652 653 private: 654 void tokenizeAsmString(AsmMatcherInfo const &Info, 655 AsmVariantInfo const &Variant); 656 void addAsmOperand(StringRef Token, bool IsIsolatedToken = false); 657 }; 658 659 struct OperandMatchEntry { 660 unsigned OperandMask; 661 const MatchableInfo* MI; 662 ClassInfo *CI; 663 664 static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci, 665 unsigned opMask) { 666 OperandMatchEntry X; 667 X.OperandMask = opMask; 668 X.CI = ci; 669 X.MI = mi; 670 return X; 671 } 672 }; 673 674 class AsmMatcherInfo { 675 public: 676 /// Tracked Records 677 RecordKeeper &Records; 678 679 /// The tablegen AsmParser record. 680 Record *AsmParser; 681 682 /// Target - The target information. 683 CodeGenTarget &Target; 684 685 /// The classes which are needed for matching. 686 std::forward_list<ClassInfo> Classes; 687 688 /// The information on the matchables to match. 689 std::vector<std::unique_ptr<MatchableInfo>> Matchables; 690 691 /// Info for custom matching operands by user defined methods. 692 std::vector<OperandMatchEntry> OperandMatchInfo; 693 694 /// Map of Register records to their class information. 695 typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy; 696 RegisterClassesTy RegisterClasses; 697 698 /// Map of Predicate records to their subtarget information. 699 std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures; 700 701 /// Map of AsmOperandClass records to their class information. 702 std::map<Record*, ClassInfo*> AsmOperandClasses; 703 704 private: 705 /// Map of token to class information which has already been constructed. 706 std::map<std::string, ClassInfo*> TokenClasses; 707 708 /// Map of RegisterClass records to their class information. 709 std::map<Record*, ClassInfo*> RegisterClassClasses; 710 711 private: 712 /// getTokenClass - Lookup or create the class for the given token. 713 ClassInfo *getTokenClass(StringRef Token); 714 715 /// getOperandClass - Lookup or create the class for the given operand. 716 ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI, 717 int SubOpIdx); 718 ClassInfo *getOperandClass(Record *Rec, int SubOpIdx); 719 720 /// buildRegisterClasses - Build the ClassInfo* instances for register 721 /// classes. 722 void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters); 723 724 /// buildOperandClasses - Build the ClassInfo* instances for user defined 725 /// operand classes. 726 void buildOperandClasses(); 727 728 void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName, 729 unsigned AsmOpIdx); 730 void buildAliasOperandReference(MatchableInfo *II, StringRef OpName, 731 MatchableInfo::AsmOperand &Op); 732 733 public: 734 AsmMatcherInfo(Record *AsmParser, 735 CodeGenTarget &Target, 736 RecordKeeper &Records); 737 738 /// Construct the various tables used during matching. 739 void buildInfo(); 740 741 /// buildOperandMatchInfo - Build the necessary information to handle user 742 /// defined operand parsing methods. 743 void buildOperandMatchInfo(); 744 745 /// getSubtargetFeature - Lookup or create the subtarget feature info for the 746 /// given operand. 747 const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const { 748 assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!"); 749 const auto &I = SubtargetFeatures.find(Def); 750 return I == SubtargetFeatures.end() ? nullptr : &I->second; 751 } 752 753 RecordKeeper &getRecords() const { 754 return Records; 755 } 756 757 bool hasOptionalOperands() const { 758 return find_if(Classes, [](const ClassInfo &Class) { 759 return Class.IsOptional; 760 }) != Classes.end(); 761 } 762 }; 763 764 } // end anonymous namespace 765 766 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 767 LLVM_DUMP_METHOD void MatchableInfo::dump() const { 768 errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n"; 769 770 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { 771 const AsmOperand &Op = AsmOperands[i]; 772 errs() << " op[" << i << "] = " << Op.Class->ClassName << " - "; 773 errs() << '\"' << Op.Token << "\"\n"; 774 } 775 } 776 #endif 777 778 static std::pair<StringRef, StringRef> 779 parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) { 780 // Split via the '='. 781 std::pair<StringRef, StringRef> Ops = S.split('='); 782 if (Ops.second == "") 783 PrintFatalError(Loc, "missing '=' in two-operand alias constraint"); 784 // Trim whitespace and the leading '$' on the operand names. 785 size_t start = Ops.first.find_first_of('$'); 786 if (start == std::string::npos) 787 PrintFatalError(Loc, "expected '$' prefix on asm operand name"); 788 Ops.first = Ops.first.slice(start + 1, std::string::npos); 789 size_t end = Ops.first.find_last_of(" \t"); 790 Ops.first = Ops.first.slice(0, end); 791 // Now the second operand. 792 start = Ops.second.find_first_of('$'); 793 if (start == std::string::npos) 794 PrintFatalError(Loc, "expected '$' prefix on asm operand name"); 795 Ops.second = Ops.second.slice(start + 1, std::string::npos); 796 end = Ops.second.find_last_of(" \t"); 797 Ops.first = Ops.first.slice(0, end); 798 return Ops; 799 } 800 801 void MatchableInfo::formTwoOperandAlias(StringRef Constraint) { 802 // Figure out which operands are aliased and mark them as tied. 803 std::pair<StringRef, StringRef> Ops = 804 parseTwoOperandConstraint(Constraint, TheDef->getLoc()); 805 806 // Find the AsmOperands that refer to the operands we're aliasing. 807 int SrcAsmOperand = findAsmOperandNamed(Ops.first); 808 int DstAsmOperand = findAsmOperandNamed(Ops.second); 809 if (SrcAsmOperand == -1) 810 PrintFatalError(TheDef->getLoc(), 811 "unknown source two-operand alias operand '" + Ops.first + 812 "'."); 813 if (DstAsmOperand == -1) 814 PrintFatalError(TheDef->getLoc(), 815 "unknown destination two-operand alias operand '" + 816 Ops.second + "'."); 817 818 // Find the ResOperand that refers to the operand we're aliasing away 819 // and update it to refer to the combined operand instead. 820 for (ResOperand &Op : ResOperands) { 821 if (Op.Kind == ResOperand::RenderAsmOperand && 822 Op.AsmOperandNum == (unsigned)SrcAsmOperand) { 823 Op.AsmOperandNum = DstAsmOperand; 824 break; 825 } 826 } 827 // Remove the AsmOperand for the alias operand. 828 AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand); 829 // Adjust the ResOperand references to any AsmOperands that followed 830 // the one we just deleted. 831 for (ResOperand &Op : ResOperands) { 832 switch(Op.Kind) { 833 default: 834 // Nothing to do for operands that don't reference AsmOperands. 835 break; 836 case ResOperand::RenderAsmOperand: 837 if (Op.AsmOperandNum > (unsigned)SrcAsmOperand) 838 --Op.AsmOperandNum; 839 break; 840 case ResOperand::TiedOperand: 841 if (Op.TiedOperandNum > (unsigned)SrcAsmOperand) 842 --Op.TiedOperandNum; 843 break; 844 } 845 } 846 } 847 848 /// extractSingletonRegisterForAsmOperand - Extract singleton register, 849 /// if present, from specified token. 850 static void 851 extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op, 852 const AsmMatcherInfo &Info, 853 StringRef RegisterPrefix) { 854 StringRef Tok = Op.Token; 855 856 // If this token is not an isolated token, i.e., it isn't separated from 857 // other tokens (e.g. with whitespace), don't interpret it as a register name. 858 if (!Op.IsIsolatedToken) 859 return; 860 861 if (RegisterPrefix.empty()) { 862 std::string LoweredTok = Tok.lower(); 863 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok)) 864 Op.SingletonReg = Reg->TheDef; 865 return; 866 } 867 868 if (!Tok.startswith(RegisterPrefix)) 869 return; 870 871 StringRef RegName = Tok.substr(RegisterPrefix.size()); 872 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName)) 873 Op.SingletonReg = Reg->TheDef; 874 875 // If there is no register prefix (i.e. "%" in "%eax"), then this may 876 // be some random non-register token, just ignore it. 877 } 878 879 void MatchableInfo::initialize(const AsmMatcherInfo &Info, 880 SmallPtrSetImpl<Record*> &SingletonRegisters, 881 AsmVariantInfo const &Variant, 882 bool HasMnemonicFirst) { 883 AsmVariantID = Variant.AsmVariantNo; 884 AsmString = 885 CodeGenInstruction::FlattenAsmStringVariants(AsmString, 886 Variant.AsmVariantNo); 887 888 tokenizeAsmString(Info, Variant); 889 890 // The first token of the instruction is the mnemonic, which must be a 891 // simple string, not a $foo variable or a singleton register. 892 if (AsmOperands.empty()) 893 PrintFatalError(TheDef->getLoc(), 894 "Instruction '" + TheDef->getName() + "' has no tokens"); 895 896 assert(!AsmOperands[0].Token.empty()); 897 if (HasMnemonicFirst) { 898 Mnemonic = AsmOperands[0].Token; 899 if (Mnemonic[0] == '$') 900 PrintFatalError(TheDef->getLoc(), 901 "Invalid instruction mnemonic '" + Mnemonic + "'!"); 902 903 // Remove the first operand, it is tracked in the mnemonic field. 904 AsmOperands.erase(AsmOperands.begin()); 905 } else if (AsmOperands[0].Token[0] != '$') 906 Mnemonic = AsmOperands[0].Token; 907 908 // Compute the require features. 909 for (Record *Predicate : TheDef->getValueAsListOfDefs("Predicates")) 910 if (const SubtargetFeatureInfo *Feature = 911 Info.getSubtargetFeature(Predicate)) 912 RequiredFeatures.push_back(Feature); 913 914 // Collect singleton registers, if used. 915 for (MatchableInfo::AsmOperand &Op : AsmOperands) { 916 extractSingletonRegisterForAsmOperand(Op, Info, Variant.RegisterPrefix); 917 if (Record *Reg = Op.SingletonReg) 918 SingletonRegisters.insert(Reg); 919 } 920 921 const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask"); 922 if (!DepMask) 923 DepMask = TheDef->getValue("ComplexDeprecationPredicate"); 924 925 HasDeprecation = 926 DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false; 927 } 928 929 /// Append an AsmOperand for the given substring of AsmString. 930 void MatchableInfo::addAsmOperand(StringRef Token, bool IsIsolatedToken) { 931 AsmOperands.push_back(AsmOperand(IsIsolatedToken, Token)); 932 } 933 934 /// tokenizeAsmString - Tokenize a simplified assembly string. 935 void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info, 936 AsmVariantInfo const &Variant) { 937 StringRef String = AsmString; 938 size_t Prev = 0; 939 bool InTok = false; 940 bool IsIsolatedToken = true; 941 for (size_t i = 0, e = String.size(); i != e; ++i) { 942 char Char = String[i]; 943 if (Variant.BreakCharacters.find(Char) != std::string::npos) { 944 if (InTok) { 945 addAsmOperand(String.slice(Prev, i), false); 946 Prev = i; 947 IsIsolatedToken = false; 948 } 949 InTok = true; 950 continue; 951 } 952 if (Variant.TokenizingCharacters.find(Char) != std::string::npos) { 953 if (InTok) { 954 addAsmOperand(String.slice(Prev, i), IsIsolatedToken); 955 InTok = false; 956 IsIsolatedToken = false; 957 } 958 addAsmOperand(String.slice(i, i + 1), IsIsolatedToken); 959 Prev = i + 1; 960 IsIsolatedToken = true; 961 continue; 962 } 963 if (Variant.SeparatorCharacters.find(Char) != std::string::npos) { 964 if (InTok) { 965 addAsmOperand(String.slice(Prev, i), IsIsolatedToken); 966 InTok = false; 967 } 968 Prev = i + 1; 969 IsIsolatedToken = true; 970 continue; 971 } 972 973 switch (Char) { 974 case '\\': 975 if (InTok) { 976 addAsmOperand(String.slice(Prev, i), false); 977 InTok = false; 978 IsIsolatedToken = false; 979 } 980 ++i; 981 assert(i != String.size() && "Invalid quoted character"); 982 addAsmOperand(String.slice(i, i + 1), IsIsolatedToken); 983 Prev = i + 1; 984 IsIsolatedToken = false; 985 break; 986 987 case '$': { 988 if (InTok) { 989 addAsmOperand(String.slice(Prev, i), false); 990 InTok = false; 991 IsIsolatedToken = false; 992 } 993 994 // If this isn't "${", start new identifier looking like "$xxx" 995 if (i + 1 == String.size() || String[i + 1] != '{') { 996 Prev = i; 997 break; 998 } 999 1000 size_t EndPos = String.find('}', i); 1001 assert(EndPos != StringRef::npos && 1002 "Missing brace in operand reference!"); 1003 addAsmOperand(String.slice(i, EndPos+1), IsIsolatedToken); 1004 Prev = EndPos + 1; 1005 i = EndPos; 1006 IsIsolatedToken = false; 1007 break; 1008 } 1009 1010 default: 1011 InTok = true; 1012 break; 1013 } 1014 } 1015 if (InTok && Prev != String.size()) 1016 addAsmOperand(String.substr(Prev), IsIsolatedToken); 1017 } 1018 1019 bool MatchableInfo::validate(StringRef CommentDelimiter, bool Hack) const { 1020 // Reject matchables with no .s string. 1021 if (AsmString.empty()) 1022 PrintFatalError(TheDef->getLoc(), "instruction with empty asm string"); 1023 1024 // Reject any matchables with a newline in them, they should be marked 1025 // isCodeGenOnly if they are pseudo instructions. 1026 if (AsmString.find('\n') != std::string::npos) 1027 PrintFatalError(TheDef->getLoc(), 1028 "multiline instruction is not valid for the asmparser, " 1029 "mark it isCodeGenOnly"); 1030 1031 // Remove comments from the asm string. We know that the asmstring only 1032 // has one line. 1033 if (!CommentDelimiter.empty() && 1034 StringRef(AsmString).find(CommentDelimiter) != StringRef::npos) 1035 PrintFatalError(TheDef->getLoc(), 1036 "asmstring for instruction has comment character in it, " 1037 "mark it isCodeGenOnly"); 1038 1039 // Reject matchables with operand modifiers, these aren't something we can 1040 // handle, the target should be refactored to use operands instead of 1041 // modifiers. 1042 // 1043 // Also, check for instructions which reference the operand multiple times; 1044 // this implies a constraint we would not honor. 1045 std::set<std::string> OperandNames; 1046 for (const AsmOperand &Op : AsmOperands) { 1047 StringRef Tok = Op.Token; 1048 if (Tok[0] == '$' && Tok.find(':') != StringRef::npos) 1049 PrintFatalError(TheDef->getLoc(), 1050 "matchable with operand modifier '" + Tok + 1051 "' not supported by asm matcher. Mark isCodeGenOnly!"); 1052 1053 // Verify that any operand is only mentioned once. 1054 // We reject aliases and ignore instructions for now. 1055 if (Tok[0] == '$' && !OperandNames.insert(Tok).second) { 1056 if (!Hack) 1057 PrintFatalError(TheDef->getLoc(), 1058 "ERROR: matchable with tied operand '" + Tok + 1059 "' can never be matched!"); 1060 // FIXME: Should reject these. The ARM backend hits this with $lane in a 1061 // bunch of instructions. It is unclear what the right answer is. 1062 DEBUG({ 1063 errs() << "warning: '" << TheDef->getName() << "': " 1064 << "ignoring instruction with tied operand '" 1065 << Tok << "'\n"; 1066 }); 1067 return false; 1068 } 1069 } 1070 1071 return true; 1072 } 1073 1074 static std::string getEnumNameForToken(StringRef Str) { 1075 std::string Res; 1076 1077 for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) { 1078 switch (*it) { 1079 case '*': Res += "_STAR_"; break; 1080 case '%': Res += "_PCT_"; break; 1081 case ':': Res += "_COLON_"; break; 1082 case '!': Res += "_EXCLAIM_"; break; 1083 case '.': Res += "_DOT_"; break; 1084 case '<': Res += "_LT_"; break; 1085 case '>': Res += "_GT_"; break; 1086 case '-': Res += "_MINUS_"; break; 1087 default: 1088 if ((*it >= 'A' && *it <= 'Z') || 1089 (*it >= 'a' && *it <= 'z') || 1090 (*it >= '0' && *it <= '9')) 1091 Res += *it; 1092 else 1093 Res += "_" + utostr((unsigned) *it) + "_"; 1094 } 1095 } 1096 1097 return Res; 1098 } 1099 1100 ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) { 1101 ClassInfo *&Entry = TokenClasses[Token]; 1102 1103 if (!Entry) { 1104 Classes.emplace_front(); 1105 Entry = &Classes.front(); 1106 Entry->Kind = ClassInfo::Token; 1107 Entry->ClassName = "Token"; 1108 Entry->Name = "MCK_" + getEnumNameForToken(Token); 1109 Entry->ValueName = Token; 1110 Entry->PredicateMethod = "<invalid>"; 1111 Entry->RenderMethod = "<invalid>"; 1112 Entry->ParserMethod = ""; 1113 Entry->DiagnosticType = ""; 1114 Entry->IsOptional = false; 1115 Entry->DefaultMethod = "<invalid>"; 1116 } 1117 1118 return Entry; 1119 } 1120 1121 ClassInfo * 1122 AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI, 1123 int SubOpIdx) { 1124 Record *Rec = OI.Rec; 1125 if (SubOpIdx != -1) 1126 Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef(); 1127 return getOperandClass(Rec, SubOpIdx); 1128 } 1129 1130 ClassInfo * 1131 AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) { 1132 if (Rec->isSubClassOf("RegisterOperand")) { 1133 // RegisterOperand may have an associated ParserMatchClass. If it does, 1134 // use it, else just fall back to the underlying register class. 1135 const RecordVal *R = Rec->getValue("ParserMatchClass"); 1136 if (!R || !R->getValue()) 1137 PrintFatalError("Record `" + Rec->getName() + 1138 "' does not have a ParserMatchClass!\n"); 1139 1140 if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) { 1141 Record *MatchClass = DI->getDef(); 1142 if (ClassInfo *CI = AsmOperandClasses[MatchClass]) 1143 return CI; 1144 } 1145 1146 // No custom match class. Just use the register class. 1147 Record *ClassRec = Rec->getValueAsDef("RegClass"); 1148 if (!ClassRec) 1149 PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() + 1150 "' has no associated register class!\n"); 1151 if (ClassInfo *CI = RegisterClassClasses[ClassRec]) 1152 return CI; 1153 PrintFatalError(Rec->getLoc(), "register class has no class info!"); 1154 } 1155 1156 if (Rec->isSubClassOf("RegisterClass")) { 1157 if (ClassInfo *CI = RegisterClassClasses[Rec]) 1158 return CI; 1159 PrintFatalError(Rec->getLoc(), "register class has no class info!"); 1160 } 1161 1162 if (!Rec->isSubClassOf("Operand")) 1163 PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() + 1164 "' does not derive from class Operand!\n"); 1165 Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); 1166 if (ClassInfo *CI = AsmOperandClasses[MatchClass]) 1167 return CI; 1168 1169 PrintFatalError(Rec->getLoc(), "operand has no match class!"); 1170 } 1171 1172 struct LessRegisterSet { 1173 bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const { 1174 // std::set<T> defines its own compariso "operator<", but it 1175 // performs a lexicographical comparison by T's innate comparison 1176 // for some reason. We don't want non-deterministic pointer 1177 // comparisons so use this instead. 1178 return std::lexicographical_compare(LHS.begin(), LHS.end(), 1179 RHS.begin(), RHS.end(), 1180 LessRecordByID()); 1181 } 1182 }; 1183 1184 void AsmMatcherInfo:: 1185 buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) { 1186 const auto &Registers = Target.getRegBank().getRegisters(); 1187 auto &RegClassList = Target.getRegBank().getRegClasses(); 1188 1189 typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet; 1190 1191 // The register sets used for matching. 1192 RegisterSetSet RegisterSets; 1193 1194 // Gather the defined sets. 1195 for (const CodeGenRegisterClass &RC : RegClassList) 1196 RegisterSets.insert( 1197 RegisterSet(RC.getOrder().begin(), RC.getOrder().end())); 1198 1199 // Add any required singleton sets. 1200 for (Record *Rec : SingletonRegisters) { 1201 RegisterSets.insert(RegisterSet(&Rec, &Rec + 1)); 1202 } 1203 1204 // Introduce derived sets where necessary (when a register does not determine 1205 // a unique register set class), and build the mapping of registers to the set 1206 // they should classify to. 1207 std::map<Record*, RegisterSet> RegisterMap; 1208 for (const CodeGenRegister &CGR : Registers) { 1209 // Compute the intersection of all sets containing this register. 1210 RegisterSet ContainingSet; 1211 1212 for (const RegisterSet &RS : RegisterSets) { 1213 if (!RS.count(CGR.TheDef)) 1214 continue; 1215 1216 if (ContainingSet.empty()) { 1217 ContainingSet = RS; 1218 continue; 1219 } 1220 1221 RegisterSet Tmp; 1222 std::swap(Tmp, ContainingSet); 1223 std::insert_iterator<RegisterSet> II(ContainingSet, 1224 ContainingSet.begin()); 1225 std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II, 1226 LessRecordByID()); 1227 } 1228 1229 if (!ContainingSet.empty()) { 1230 RegisterSets.insert(ContainingSet); 1231 RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet)); 1232 } 1233 } 1234 1235 // Construct the register classes. 1236 std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses; 1237 unsigned Index = 0; 1238 for (const RegisterSet &RS : RegisterSets) { 1239 Classes.emplace_front(); 1240 ClassInfo *CI = &Classes.front(); 1241 CI->Kind = ClassInfo::RegisterClass0 + Index; 1242 CI->ClassName = "Reg" + utostr(Index); 1243 CI->Name = "MCK_Reg" + utostr(Index); 1244 CI->ValueName = ""; 1245 CI->PredicateMethod = ""; // unused 1246 CI->RenderMethod = "addRegOperands"; 1247 CI->Registers = RS; 1248 // FIXME: diagnostic type. 1249 CI->DiagnosticType = ""; 1250 CI->IsOptional = false; 1251 CI->DefaultMethod = ""; // unused 1252 RegisterSetClasses.insert(std::make_pair(RS, CI)); 1253 ++Index; 1254 } 1255 1256 // Find the superclasses; we could compute only the subgroup lattice edges, 1257 // but there isn't really a point. 1258 for (const RegisterSet &RS : RegisterSets) { 1259 ClassInfo *CI = RegisterSetClasses[RS]; 1260 for (const RegisterSet &RS2 : RegisterSets) 1261 if (RS != RS2 && 1262 std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(), 1263 LessRecordByID())) 1264 CI->SuperClasses.push_back(RegisterSetClasses[RS2]); 1265 } 1266 1267 // Name the register classes which correspond to a user defined RegisterClass. 1268 for (const CodeGenRegisterClass &RC : RegClassList) { 1269 // Def will be NULL for non-user defined register classes. 1270 Record *Def = RC.getDef(); 1271 if (!Def) 1272 continue; 1273 ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(), 1274 RC.getOrder().end())]; 1275 if (CI->ValueName.empty()) { 1276 CI->ClassName = RC.getName(); 1277 CI->Name = "MCK_" + RC.getName(); 1278 CI->ValueName = RC.getName(); 1279 } else 1280 CI->ValueName = CI->ValueName + "," + RC.getName(); 1281 1282 RegisterClassClasses.insert(std::make_pair(Def, CI)); 1283 } 1284 1285 // Populate the map for individual registers. 1286 for (std::map<Record*, RegisterSet>::iterator it = RegisterMap.begin(), 1287 ie = RegisterMap.end(); it != ie; ++it) 1288 RegisterClasses[it->first] = RegisterSetClasses[it->second]; 1289 1290 // Name the register classes which correspond to singleton registers. 1291 for (Record *Rec : SingletonRegisters) { 1292 ClassInfo *CI = RegisterClasses[Rec]; 1293 assert(CI && "Missing singleton register class info!"); 1294 1295 if (CI->ValueName.empty()) { 1296 CI->ClassName = Rec->getName(); 1297 CI->Name = "MCK_" + Rec->getName().str(); 1298 CI->ValueName = Rec->getName(); 1299 } else 1300 CI->ValueName = CI->ValueName + "," + Rec->getName().str(); 1301 } 1302 } 1303 1304 void AsmMatcherInfo::buildOperandClasses() { 1305 std::vector<Record*> AsmOperands = 1306 Records.getAllDerivedDefinitions("AsmOperandClass"); 1307 1308 // Pre-populate AsmOperandClasses map. 1309 for (Record *Rec : AsmOperands) { 1310 Classes.emplace_front(); 1311 AsmOperandClasses[Rec] = &Classes.front(); 1312 } 1313 1314 unsigned Index = 0; 1315 for (Record *Rec : AsmOperands) { 1316 ClassInfo *CI = AsmOperandClasses[Rec]; 1317 CI->Kind = ClassInfo::UserClass0 + Index; 1318 1319 ListInit *Supers = Rec->getValueAsListInit("SuperClasses"); 1320 for (Init *I : Supers->getValues()) { 1321 DefInit *DI = dyn_cast<DefInit>(I); 1322 if (!DI) { 1323 PrintError(Rec->getLoc(), "Invalid super class reference!"); 1324 continue; 1325 } 1326 1327 ClassInfo *SC = AsmOperandClasses[DI->getDef()]; 1328 if (!SC) 1329 PrintError(Rec->getLoc(), "Invalid super class reference!"); 1330 else 1331 CI->SuperClasses.push_back(SC); 1332 } 1333 CI->ClassName = Rec->getValueAsString("Name"); 1334 CI->Name = "MCK_" + CI->ClassName; 1335 CI->ValueName = Rec->getName(); 1336 1337 // Get or construct the predicate method name. 1338 Init *PMName = Rec->getValueInit("PredicateMethod"); 1339 if (StringInit *SI = dyn_cast<StringInit>(PMName)) { 1340 CI->PredicateMethod = SI->getValue(); 1341 } else { 1342 assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!"); 1343 CI->PredicateMethod = "is" + CI->ClassName; 1344 } 1345 1346 // Get or construct the render method name. 1347 Init *RMName = Rec->getValueInit("RenderMethod"); 1348 if (StringInit *SI = dyn_cast<StringInit>(RMName)) { 1349 CI->RenderMethod = SI->getValue(); 1350 } else { 1351 assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!"); 1352 CI->RenderMethod = "add" + CI->ClassName + "Operands"; 1353 } 1354 1355 // Get the parse method name or leave it as empty. 1356 Init *PRMName = Rec->getValueInit("ParserMethod"); 1357 if (StringInit *SI = dyn_cast<StringInit>(PRMName)) 1358 CI->ParserMethod = SI->getValue(); 1359 1360 // Get the diagnostic type or leave it as empty. 1361 // Get the parse method name or leave it as empty. 1362 Init *DiagnosticType = Rec->getValueInit("DiagnosticType"); 1363 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType)) 1364 CI->DiagnosticType = SI->getValue(); 1365 1366 Init *IsOptional = Rec->getValueInit("IsOptional"); 1367 if (BitInit *BI = dyn_cast<BitInit>(IsOptional)) 1368 CI->IsOptional = BI->getValue(); 1369 1370 // Get or construct the default method name. 1371 Init *DMName = Rec->getValueInit("DefaultMethod"); 1372 if (StringInit *SI = dyn_cast<StringInit>(DMName)) { 1373 CI->DefaultMethod = SI->getValue(); 1374 } else { 1375 assert(isa<UnsetInit>(DMName) && "Unexpected DefaultMethod field!"); 1376 CI->DefaultMethod = "default" + CI->ClassName + "Operands"; 1377 } 1378 1379 ++Index; 1380 } 1381 } 1382 1383 AsmMatcherInfo::AsmMatcherInfo(Record *asmParser, 1384 CodeGenTarget &target, 1385 RecordKeeper &records) 1386 : Records(records), AsmParser(asmParser), Target(target) { 1387 } 1388 1389 /// buildOperandMatchInfo - Build the necessary information to handle user 1390 /// defined operand parsing methods. 1391 void AsmMatcherInfo::buildOperandMatchInfo() { 1392 1393 /// Map containing a mask with all operands indices that can be found for 1394 /// that class inside a instruction. 1395 typedef std::map<ClassInfo *, unsigned, less_ptr<ClassInfo>> OpClassMaskTy; 1396 OpClassMaskTy OpClassMask; 1397 1398 for (const auto &MI : Matchables) { 1399 OpClassMask.clear(); 1400 1401 // Keep track of all operands of this instructions which belong to the 1402 // same class. 1403 for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) { 1404 const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i]; 1405 if (Op.Class->ParserMethod.empty()) 1406 continue; 1407 unsigned &OperandMask = OpClassMask[Op.Class]; 1408 OperandMask |= (1 << i); 1409 } 1410 1411 // Generate operand match info for each mnemonic/operand class pair. 1412 for (const auto &OCM : OpClassMask) { 1413 unsigned OpMask = OCM.second; 1414 ClassInfo *CI = OCM.first; 1415 OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI, 1416 OpMask)); 1417 } 1418 } 1419 } 1420 1421 void AsmMatcherInfo::buildInfo() { 1422 // Build information about all of the AssemblerPredicates. 1423 const std::vector<std::pair<Record *, SubtargetFeatureInfo>> 1424 &SubtargetFeaturePairs = SubtargetFeatureInfo::getAll(Records); 1425 SubtargetFeatures.insert(SubtargetFeaturePairs.begin(), 1426 SubtargetFeaturePairs.end()); 1427 #ifndef NDEBUG 1428 for (const auto &Pair : SubtargetFeatures) 1429 DEBUG(Pair.second.dump()); 1430 #endif // NDEBUG 1431 assert(SubtargetFeatures.size() <= 64 && "Too many subtarget features!"); 1432 1433 bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst"); 1434 1435 // Parse the instructions; we need to do this first so that we can gather the 1436 // singleton register classes. 1437 SmallPtrSet<Record*, 16> SingletonRegisters; 1438 unsigned VariantCount = Target.getAsmParserVariantCount(); 1439 for (unsigned VC = 0; VC != VariantCount; ++VC) { 1440 Record *AsmVariant = Target.getAsmParserVariant(VC); 1441 StringRef CommentDelimiter = 1442 AsmVariant->getValueAsString("CommentDelimiter"); 1443 AsmVariantInfo Variant; 1444 Variant.RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix"); 1445 Variant.TokenizingCharacters = 1446 AsmVariant->getValueAsString("TokenizingCharacters"); 1447 Variant.SeparatorCharacters = 1448 AsmVariant->getValueAsString("SeparatorCharacters"); 1449 Variant.BreakCharacters = 1450 AsmVariant->getValueAsString("BreakCharacters"); 1451 Variant.Name = AsmVariant->getValueAsString("Name"); 1452 Variant.AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 1453 1454 for (const CodeGenInstruction *CGI : Target.getInstructionsByEnumValue()) { 1455 1456 // If the tblgen -match-prefix option is specified (for tblgen hackers), 1457 // filter the set of instructions we consider. 1458 if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix)) 1459 continue; 1460 1461 // Ignore "codegen only" instructions. 1462 if (CGI->TheDef->getValueAsBit("isCodeGenOnly")) 1463 continue; 1464 1465 // Ignore instructions for different instructions 1466 StringRef V = CGI->TheDef->getValueAsString("AsmVariantName"); 1467 if (!V.empty() && V != Variant.Name) 1468 continue; 1469 1470 auto II = llvm::make_unique<MatchableInfo>(*CGI); 1471 1472 II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst); 1473 1474 // Ignore instructions which shouldn't be matched and diagnose invalid 1475 // instruction definitions with an error. 1476 if (!II->validate(CommentDelimiter, true)) 1477 continue; 1478 1479 Matchables.push_back(std::move(II)); 1480 } 1481 1482 // Parse all of the InstAlias definitions and stick them in the list of 1483 // matchables. 1484 std::vector<Record*> AllInstAliases = 1485 Records.getAllDerivedDefinitions("InstAlias"); 1486 for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) { 1487 auto Alias = llvm::make_unique<CodeGenInstAlias>(AllInstAliases[i], 1488 Variant.AsmVariantNo, 1489 Target); 1490 1491 // If the tblgen -match-prefix option is specified (for tblgen hackers), 1492 // filter the set of instruction aliases we consider, based on the target 1493 // instruction. 1494 if (!StringRef(Alias->ResultInst->TheDef->getName()) 1495 .startswith( MatchPrefix)) 1496 continue; 1497 1498 StringRef V = Alias->TheDef->getValueAsString("AsmVariantName"); 1499 if (!V.empty() && V != Variant.Name) 1500 continue; 1501 1502 auto II = llvm::make_unique<MatchableInfo>(std::move(Alias)); 1503 1504 II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst); 1505 1506 // Validate the alias definitions. 1507 II->validate(CommentDelimiter, false); 1508 1509 Matchables.push_back(std::move(II)); 1510 } 1511 } 1512 1513 // Build info for the register classes. 1514 buildRegisterClasses(SingletonRegisters); 1515 1516 // Build info for the user defined assembly operand classes. 1517 buildOperandClasses(); 1518 1519 // Build the information about matchables, now that we have fully formed 1520 // classes. 1521 std::vector<std::unique_ptr<MatchableInfo>> NewMatchables; 1522 for (auto &II : Matchables) { 1523 // Parse the tokens after the mnemonic. 1524 // Note: buildInstructionOperandReference may insert new AsmOperands, so 1525 // don't precompute the loop bound. 1526 for (unsigned i = 0; i != II->AsmOperands.size(); ++i) { 1527 MatchableInfo::AsmOperand &Op = II->AsmOperands[i]; 1528 StringRef Token = Op.Token; 1529 1530 // Check for singleton registers. 1531 if (Record *RegRecord = Op.SingletonReg) { 1532 Op.Class = RegisterClasses[RegRecord]; 1533 assert(Op.Class && Op.Class->Registers.size() == 1 && 1534 "Unexpected class for singleton register"); 1535 continue; 1536 } 1537 1538 // Check for simple tokens. 1539 if (Token[0] != '$') { 1540 Op.Class = getTokenClass(Token); 1541 continue; 1542 } 1543 1544 if (Token.size() > 1 && isdigit(Token[1])) { 1545 Op.Class = getTokenClass(Token); 1546 continue; 1547 } 1548 1549 // Otherwise this is an operand reference. 1550 StringRef OperandName; 1551 if (Token[1] == '{') 1552 OperandName = Token.substr(2, Token.size() - 3); 1553 else 1554 OperandName = Token.substr(1); 1555 1556 if (II->DefRec.is<const CodeGenInstruction*>()) 1557 buildInstructionOperandReference(II.get(), OperandName, i); 1558 else 1559 buildAliasOperandReference(II.get(), OperandName, Op); 1560 } 1561 1562 if (II->DefRec.is<const CodeGenInstruction*>()) { 1563 II->buildInstructionResultOperands(); 1564 // If the instruction has a two-operand alias, build up the 1565 // matchable here. We'll add them in bulk at the end to avoid 1566 // confusing this loop. 1567 StringRef Constraint = 1568 II->TheDef->getValueAsString("TwoOperandAliasConstraint"); 1569 if (Constraint != "") { 1570 // Start by making a copy of the original matchable. 1571 auto AliasII = llvm::make_unique<MatchableInfo>(*II); 1572 1573 // Adjust it to be a two-operand alias. 1574 AliasII->formTwoOperandAlias(Constraint); 1575 1576 // Add the alias to the matchables list. 1577 NewMatchables.push_back(std::move(AliasII)); 1578 } 1579 } else 1580 II->buildAliasResultOperands(); 1581 } 1582 if (!NewMatchables.empty()) 1583 Matchables.insert(Matchables.end(), 1584 std::make_move_iterator(NewMatchables.begin()), 1585 std::make_move_iterator(NewMatchables.end())); 1586 1587 // Process token alias definitions and set up the associated superclass 1588 // information. 1589 std::vector<Record*> AllTokenAliases = 1590 Records.getAllDerivedDefinitions("TokenAlias"); 1591 for (Record *Rec : AllTokenAliases) { 1592 ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken")); 1593 ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken")); 1594 if (FromClass == ToClass) 1595 PrintFatalError(Rec->getLoc(), 1596 "error: Destination value identical to source value."); 1597 FromClass->SuperClasses.push_back(ToClass); 1598 } 1599 1600 // Reorder classes so that classes precede super classes. 1601 Classes.sort(); 1602 1603 #ifdef EXPENSIVE_CHECKS 1604 // Verify that the table is sorted and operator < works transitively. 1605 for (auto I = Classes.begin(), E = Classes.end(); I != E; ++I) { 1606 for (auto J = I; J != E; ++J) { 1607 assert(!(*J < *I)); 1608 assert(I == J || !J->isSubsetOf(*I)); 1609 } 1610 } 1611 #endif 1612 } 1613 1614 /// buildInstructionOperandReference - The specified operand is a reference to a 1615 /// named operand such as $src. Resolve the Class and OperandInfo pointers. 1616 void AsmMatcherInfo:: 1617 buildInstructionOperandReference(MatchableInfo *II, 1618 StringRef OperandName, 1619 unsigned AsmOpIdx) { 1620 const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>(); 1621 const CGIOperandList &Operands = CGI.Operands; 1622 MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx]; 1623 1624 // Map this token to an operand. 1625 unsigned Idx; 1626 if (!Operands.hasOperandNamed(OperandName, Idx)) 1627 PrintFatalError(II->TheDef->getLoc(), 1628 "error: unable to find operand: '" + OperandName + "'"); 1629 1630 // If the instruction operand has multiple suboperands, but the parser 1631 // match class for the asm operand is still the default "ImmAsmOperand", 1632 // then handle each suboperand separately. 1633 if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) { 1634 Record *Rec = Operands[Idx].Rec; 1635 assert(Rec->isSubClassOf("Operand") && "Unexpected operand!"); 1636 Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); 1637 if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") { 1638 // Insert remaining suboperands after AsmOpIdx in II->AsmOperands. 1639 StringRef Token = Op->Token; // save this in case Op gets moved 1640 for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) { 1641 MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token); 1642 NewAsmOp.SubOpIdx = SI; 1643 II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp); 1644 } 1645 // Replace Op with first suboperand. 1646 Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved 1647 Op->SubOpIdx = 0; 1648 } 1649 } 1650 1651 // Set up the operand class. 1652 Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx); 1653 1654 // If the named operand is tied, canonicalize it to the untied operand. 1655 // For example, something like: 1656 // (outs GPR:$dst), (ins GPR:$src) 1657 // with an asmstring of 1658 // "inc $src" 1659 // we want to canonicalize to: 1660 // "inc $dst" 1661 // so that we know how to provide the $dst operand when filling in the result. 1662 int OITied = -1; 1663 if (Operands[Idx].MINumOperands == 1) 1664 OITied = Operands[Idx].getTiedRegister(); 1665 if (OITied != -1) { 1666 // The tied operand index is an MIOperand index, find the operand that 1667 // contains it. 1668 std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied); 1669 OperandName = Operands[Idx.first].Name; 1670 Op->SubOpIdx = Idx.second; 1671 } 1672 1673 Op->SrcOpName = OperandName; 1674 } 1675 1676 /// buildAliasOperandReference - When parsing an operand reference out of the 1677 /// matching string (e.g. "movsx $src, $dst"), determine what the class of the 1678 /// operand reference is by looking it up in the result pattern definition. 1679 void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II, 1680 StringRef OperandName, 1681 MatchableInfo::AsmOperand &Op) { 1682 const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>(); 1683 1684 // Set up the operand class. 1685 for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i) 1686 if (CGA.ResultOperands[i].isRecord() && 1687 CGA.ResultOperands[i].getName() == OperandName) { 1688 // It's safe to go with the first one we find, because CodeGenInstAlias 1689 // validates that all operands with the same name have the same record. 1690 Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second; 1691 // Use the match class from the Alias definition, not the 1692 // destination instruction, as we may have an immediate that's 1693 // being munged by the match class. 1694 Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(), 1695 Op.SubOpIdx); 1696 Op.SrcOpName = OperandName; 1697 return; 1698 } 1699 1700 PrintFatalError(II->TheDef->getLoc(), 1701 "error: unable to find operand: '" + OperandName + "'"); 1702 } 1703 1704 void MatchableInfo::buildInstructionResultOperands() { 1705 const CodeGenInstruction *ResultInst = getResultInst(); 1706 1707 // Loop over all operands of the result instruction, determining how to 1708 // populate them. 1709 for (const CGIOperandList::OperandInfo &OpInfo : ResultInst->Operands) { 1710 // If this is a tied operand, just copy from the previously handled operand. 1711 int TiedOp = -1; 1712 if (OpInfo.MINumOperands == 1) 1713 TiedOp = OpInfo.getTiedRegister(); 1714 if (TiedOp != -1) { 1715 ResOperands.push_back(ResOperand::getTiedOp(TiedOp)); 1716 continue; 1717 } 1718 1719 // Find out what operand from the asmparser this MCInst operand comes from. 1720 int SrcOperand = findAsmOperandNamed(OpInfo.Name); 1721 if (OpInfo.Name.empty() || SrcOperand == -1) { 1722 // This may happen for operands that are tied to a suboperand of a 1723 // complex operand. Simply use a dummy value here; nobody should 1724 // use this operand slot. 1725 // FIXME: The long term goal is for the MCOperand list to not contain 1726 // tied operands at all. 1727 ResOperands.push_back(ResOperand::getImmOp(0)); 1728 continue; 1729 } 1730 1731 // Check if the one AsmOperand populates the entire operand. 1732 unsigned NumOperands = OpInfo.MINumOperands; 1733 if (AsmOperands[SrcOperand].SubOpIdx == -1) { 1734 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands)); 1735 continue; 1736 } 1737 1738 // Add a separate ResOperand for each suboperand. 1739 for (unsigned AI = 0; AI < NumOperands; ++AI) { 1740 assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI && 1741 AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name && 1742 "unexpected AsmOperands for suboperands"); 1743 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1)); 1744 } 1745 } 1746 } 1747 1748 void MatchableInfo::buildAliasResultOperands() { 1749 const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>(); 1750 const CodeGenInstruction *ResultInst = getResultInst(); 1751 1752 // Loop over all operands of the result instruction, determining how to 1753 // populate them. 1754 unsigned AliasOpNo = 0; 1755 unsigned LastOpNo = CGA.ResultInstOperandIndex.size(); 1756 for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) { 1757 const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i]; 1758 1759 // If this is a tied operand, just copy from the previously handled operand. 1760 int TiedOp = -1; 1761 if (OpInfo->MINumOperands == 1) 1762 TiedOp = OpInfo->getTiedRegister(); 1763 if (TiedOp != -1) { 1764 ResOperands.push_back(ResOperand::getTiedOp(TiedOp)); 1765 continue; 1766 } 1767 1768 // Handle all the suboperands for this operand. 1769 const std::string &OpName = OpInfo->Name; 1770 for ( ; AliasOpNo < LastOpNo && 1771 CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) { 1772 int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second; 1773 1774 // Find out what operand from the asmparser that this MCInst operand 1775 // comes from. 1776 switch (CGA.ResultOperands[AliasOpNo].Kind) { 1777 case CodeGenInstAlias::ResultOperand::K_Record: { 1778 StringRef Name = CGA.ResultOperands[AliasOpNo].getName(); 1779 int SrcOperand = findAsmOperand(Name, SubIdx); 1780 if (SrcOperand == -1) 1781 PrintFatalError(TheDef->getLoc(), "Instruction '" + 1782 TheDef->getName() + "' has operand '" + OpName + 1783 "' that doesn't appear in asm string!"); 1784 unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1); 1785 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, 1786 NumOperands)); 1787 break; 1788 } 1789 case CodeGenInstAlias::ResultOperand::K_Imm: { 1790 int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm(); 1791 ResOperands.push_back(ResOperand::getImmOp(ImmVal)); 1792 break; 1793 } 1794 case CodeGenInstAlias::ResultOperand::K_Reg: { 1795 Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister(); 1796 ResOperands.push_back(ResOperand::getRegOp(Reg)); 1797 break; 1798 } 1799 } 1800 } 1801 } 1802 } 1803 1804 static unsigned 1805 getConverterOperandID(const std::string &Name, 1806 SmallSetVector<CachedHashString, 16> &Table, 1807 bool &IsNew) { 1808 IsNew = Table.insert(CachedHashString(Name)); 1809 1810 unsigned ID = IsNew ? Table.size() - 1 : find(Table, Name) - Table.begin(); 1811 1812 assert(ID < Table.size()); 1813 1814 return ID; 1815 } 1816 1817 static void emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName, 1818 std::vector<std::unique_ptr<MatchableInfo>> &Infos, 1819 bool HasMnemonicFirst, bool HasOptionalOperands, 1820 raw_ostream &OS) { 1821 SmallSetVector<CachedHashString, 16> OperandConversionKinds; 1822 SmallSetVector<CachedHashString, 16> InstructionConversionKinds; 1823 std::vector<std::vector<uint8_t> > ConversionTable; 1824 size_t MaxRowLength = 2; // minimum is custom converter plus terminator. 1825 1826 // TargetOperandClass - This is the target's operand class, like X86Operand. 1827 std::string TargetOperandClass = Target.getName().str() + "Operand"; 1828 1829 // Write the convert function to a separate stream, so we can drop it after 1830 // the enum. We'll build up the conversion handlers for the individual 1831 // operand types opportunistically as we encounter them. 1832 std::string ConvertFnBody; 1833 raw_string_ostream CvtOS(ConvertFnBody); 1834 // Start the unified conversion function. 1835 if (HasOptionalOperands) { 1836 CvtOS << "void " << Target.getName() << ClassName << "::\n" 1837 << "convertToMCInst(unsigned Kind, MCInst &Inst, " 1838 << "unsigned Opcode,\n" 1839 << " const OperandVector &Operands,\n" 1840 << " const SmallBitVector &OptionalOperandsMask) {\n"; 1841 } else { 1842 CvtOS << "void " << Target.getName() << ClassName << "::\n" 1843 << "convertToMCInst(unsigned Kind, MCInst &Inst, " 1844 << "unsigned Opcode,\n" 1845 << " const OperandVector &Operands) {\n"; 1846 } 1847 CvtOS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"; 1848 CvtOS << " const uint8_t *Converter = ConversionTable[Kind];\n"; 1849 if (HasOptionalOperands) { 1850 CvtOS << " unsigned NumDefaults = 0;\n"; 1851 } 1852 CvtOS << " unsigned OpIdx;\n"; 1853 CvtOS << " Inst.setOpcode(Opcode);\n"; 1854 CvtOS << " for (const uint8_t *p = Converter; *p; p+= 2) {\n"; 1855 if (HasOptionalOperands) { 1856 CvtOS << " OpIdx = *(p + 1) - NumDefaults;\n"; 1857 } else { 1858 CvtOS << " OpIdx = *(p + 1);\n"; 1859 } 1860 CvtOS << " switch (*p) {\n"; 1861 CvtOS << " default: llvm_unreachable(\"invalid conversion entry!\");\n"; 1862 CvtOS << " case CVT_Reg:\n"; 1863 CvtOS << " static_cast<" << TargetOperandClass 1864 << "&>(*Operands[OpIdx]).addRegOperands(Inst, 1);\n"; 1865 CvtOS << " break;\n"; 1866 CvtOS << " case CVT_Tied:\n"; 1867 CvtOS << " Inst.addOperand(Inst.getOperand(OpIdx));\n"; 1868 CvtOS << " break;\n"; 1869 1870 std::string OperandFnBody; 1871 raw_string_ostream OpOS(OperandFnBody); 1872 // Start the operand number lookup function. 1873 OpOS << "void " << Target.getName() << ClassName << "::\n" 1874 << "convertToMapAndConstraints(unsigned Kind,\n"; 1875 OpOS.indent(27); 1876 OpOS << "const OperandVector &Operands) {\n" 1877 << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n" 1878 << " unsigned NumMCOperands = 0;\n" 1879 << " const uint8_t *Converter = ConversionTable[Kind];\n" 1880 << " for (const uint8_t *p = Converter; *p; p+= 2) {\n" 1881 << " switch (*p) {\n" 1882 << " default: llvm_unreachable(\"invalid conversion entry!\");\n" 1883 << " case CVT_Reg:\n" 1884 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" 1885 << " Operands[*(p + 1)]->setConstraint(\"r\");\n" 1886 << " ++NumMCOperands;\n" 1887 << " break;\n" 1888 << " case CVT_Tied:\n" 1889 << " ++NumMCOperands;\n" 1890 << " break;\n"; 1891 1892 // Pre-populate the operand conversion kinds with the standard always 1893 // available entries. 1894 OperandConversionKinds.insert(CachedHashString("CVT_Done")); 1895 OperandConversionKinds.insert(CachedHashString("CVT_Reg")); 1896 OperandConversionKinds.insert(CachedHashString("CVT_Tied")); 1897 enum { CVT_Done, CVT_Reg, CVT_Tied }; 1898 1899 for (auto &II : Infos) { 1900 // Check if we have a custom match function. 1901 StringRef AsmMatchConverter = 1902 II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter"); 1903 if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) { 1904 std::string Signature = ("ConvertCustom_" + AsmMatchConverter).str(); 1905 II->ConversionFnKind = Signature; 1906 1907 // Check if we have already generated this signature. 1908 if (!InstructionConversionKinds.insert(CachedHashString(Signature))) 1909 continue; 1910 1911 // Remember this converter for the kind enum. 1912 unsigned KindID = OperandConversionKinds.size(); 1913 OperandConversionKinds.insert( 1914 CachedHashString("CVT_" + getEnumNameForToken(AsmMatchConverter))); 1915 1916 // Add the converter row for this instruction. 1917 ConversionTable.emplace_back(); 1918 ConversionTable.back().push_back(KindID); 1919 ConversionTable.back().push_back(CVT_Done); 1920 1921 // Add the handler to the conversion driver function. 1922 CvtOS << " case CVT_" 1923 << getEnumNameForToken(AsmMatchConverter) << ":\n" 1924 << " " << AsmMatchConverter << "(Inst, Operands);\n" 1925 << " break;\n"; 1926 1927 // FIXME: Handle the operand number lookup for custom match functions. 1928 continue; 1929 } 1930 1931 // Build the conversion function signature. 1932 std::string Signature = "Convert"; 1933 1934 std::vector<uint8_t> ConversionRow; 1935 1936 // Compute the convert enum and the case body. 1937 MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 ); 1938 1939 for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) { 1940 const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i]; 1941 1942 // Generate code to populate each result operand. 1943 switch (OpInfo.Kind) { 1944 case MatchableInfo::ResOperand::RenderAsmOperand: { 1945 // This comes from something we parsed. 1946 const MatchableInfo::AsmOperand &Op = 1947 II->AsmOperands[OpInfo.AsmOperandNum]; 1948 1949 // Registers are always converted the same, don't duplicate the 1950 // conversion function based on them. 1951 Signature += "__"; 1952 std::string Class; 1953 Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName; 1954 Signature += Class; 1955 Signature += utostr(OpInfo.MINumOperands); 1956 Signature += "_" + itostr(OpInfo.AsmOperandNum); 1957 1958 // Add the conversion kind, if necessary, and get the associated ID 1959 // the index of its entry in the vector). 1960 std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" : 1961 Op.Class->RenderMethod); 1962 if (Op.Class->IsOptional) { 1963 // For optional operands we must also care about DefaultMethod 1964 assert(HasOptionalOperands); 1965 Name += "_" + Op.Class->DefaultMethod; 1966 } 1967 Name = getEnumNameForToken(Name); 1968 1969 bool IsNewConverter = false; 1970 unsigned ID = getConverterOperandID(Name, OperandConversionKinds, 1971 IsNewConverter); 1972 1973 // Add the operand entry to the instruction kind conversion row. 1974 ConversionRow.push_back(ID); 1975 ConversionRow.push_back(OpInfo.AsmOperandNum + HasMnemonicFirst); 1976 1977 if (!IsNewConverter) 1978 break; 1979 1980 // This is a new operand kind. Add a handler for it to the 1981 // converter driver. 1982 CvtOS << " case " << Name << ":\n"; 1983 if (Op.Class->IsOptional) { 1984 // If optional operand is not present in actual instruction then we 1985 // should call its DefaultMethod before RenderMethod 1986 assert(HasOptionalOperands); 1987 CvtOS << " if (OptionalOperandsMask[*(p + 1) - 1]) {\n" 1988 << " " << Op.Class->DefaultMethod << "()" 1989 << "->" << Op.Class->RenderMethod << "(Inst, " 1990 << OpInfo.MINumOperands << ");\n" 1991 << " ++NumDefaults;\n" 1992 << " } else {\n" 1993 << " static_cast<" << TargetOperandClass 1994 << "&>(*Operands[OpIdx])." << Op.Class->RenderMethod 1995 << "(Inst, " << OpInfo.MINumOperands << ");\n" 1996 << " }\n"; 1997 } else { 1998 CvtOS << " static_cast<" << TargetOperandClass 1999 << "&>(*Operands[OpIdx])." << Op.Class->RenderMethod 2000 << "(Inst, " << OpInfo.MINumOperands << ");\n"; 2001 } 2002 CvtOS << " break;\n"; 2003 2004 // Add a handler for the operand number lookup. 2005 OpOS << " case " << Name << ":\n" 2006 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"; 2007 2008 if (Op.Class->isRegisterClass()) 2009 OpOS << " Operands[*(p + 1)]->setConstraint(\"r\");\n"; 2010 else 2011 OpOS << " Operands[*(p + 1)]->setConstraint(\"m\");\n"; 2012 OpOS << " NumMCOperands += " << OpInfo.MINumOperands << ";\n" 2013 << " break;\n"; 2014 break; 2015 } 2016 case MatchableInfo::ResOperand::TiedOperand: { 2017 // If this operand is tied to a previous one, just copy the MCInst 2018 // operand from the earlier one.We can only tie single MCOperand values. 2019 assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand"); 2020 unsigned TiedOp = OpInfo.TiedOperandNum; 2021 assert(i > TiedOp && "Tied operand precedes its target!"); 2022 Signature += "__Tie" + utostr(TiedOp); 2023 ConversionRow.push_back(CVT_Tied); 2024 ConversionRow.push_back(TiedOp); 2025 break; 2026 } 2027 case MatchableInfo::ResOperand::ImmOperand: { 2028 int64_t Val = OpInfo.ImmVal; 2029 std::string Ty = "imm_" + itostr(Val); 2030 Ty = getEnumNameForToken(Ty); 2031 Signature += "__" + Ty; 2032 2033 std::string Name = "CVT_" + Ty; 2034 bool IsNewConverter = false; 2035 unsigned ID = getConverterOperandID(Name, OperandConversionKinds, 2036 IsNewConverter); 2037 // Add the operand entry to the instruction kind conversion row. 2038 ConversionRow.push_back(ID); 2039 ConversionRow.push_back(0); 2040 2041 if (!IsNewConverter) 2042 break; 2043 2044 CvtOS << " case " << Name << ":\n" 2045 << " Inst.addOperand(MCOperand::createImm(" << Val << "));\n" 2046 << " break;\n"; 2047 2048 OpOS << " case " << Name << ":\n" 2049 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" 2050 << " Operands[*(p + 1)]->setConstraint(\"\");\n" 2051 << " ++NumMCOperands;\n" 2052 << " break;\n"; 2053 break; 2054 } 2055 case MatchableInfo::ResOperand::RegOperand: { 2056 std::string Reg, Name; 2057 if (!OpInfo.Register) { 2058 Name = "reg0"; 2059 Reg = "0"; 2060 } else { 2061 Reg = getQualifiedName(OpInfo.Register); 2062 Name = "reg" + OpInfo.Register->getName().str(); 2063 } 2064 Signature += "__" + Name; 2065 Name = "CVT_" + Name; 2066 bool IsNewConverter = false; 2067 unsigned ID = getConverterOperandID(Name, OperandConversionKinds, 2068 IsNewConverter); 2069 // Add the operand entry to the instruction kind conversion row. 2070 ConversionRow.push_back(ID); 2071 ConversionRow.push_back(0); 2072 2073 if (!IsNewConverter) 2074 break; 2075 CvtOS << " case " << Name << ":\n" 2076 << " Inst.addOperand(MCOperand::createReg(" << Reg << "));\n" 2077 << " break;\n"; 2078 2079 OpOS << " case " << Name << ":\n" 2080 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" 2081 << " Operands[*(p + 1)]->setConstraint(\"m\");\n" 2082 << " ++NumMCOperands;\n" 2083 << " break;\n"; 2084 } 2085 } 2086 } 2087 2088 // If there were no operands, add to the signature to that effect 2089 if (Signature == "Convert") 2090 Signature += "_NoOperands"; 2091 2092 II->ConversionFnKind = Signature; 2093 2094 // Save the signature. If we already have it, don't add a new row 2095 // to the table. 2096 if (!InstructionConversionKinds.insert(CachedHashString(Signature))) 2097 continue; 2098 2099 // Add the row to the table. 2100 ConversionTable.push_back(std::move(ConversionRow)); 2101 } 2102 2103 // Finish up the converter driver function. 2104 CvtOS << " }\n }\n}\n\n"; 2105 2106 // Finish up the operand number lookup function. 2107 OpOS << " }\n }\n}\n\n"; 2108 2109 OS << "namespace {\n"; 2110 2111 // Output the operand conversion kind enum. 2112 OS << "enum OperatorConversionKind {\n"; 2113 for (const auto &Converter : OperandConversionKinds) 2114 OS << " " << Converter << ",\n"; 2115 OS << " CVT_NUM_CONVERTERS\n"; 2116 OS << "};\n\n"; 2117 2118 // Output the instruction conversion kind enum. 2119 OS << "enum InstructionConversionKind {\n"; 2120 for (const auto &Signature : InstructionConversionKinds) 2121 OS << " " << Signature << ",\n"; 2122 OS << " CVT_NUM_SIGNATURES\n"; 2123 OS << "};\n\n"; 2124 2125 OS << "} // end anonymous namespace\n\n"; 2126 2127 // Output the conversion table. 2128 OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES][" 2129 << MaxRowLength << "] = {\n"; 2130 2131 for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) { 2132 assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!"); 2133 OS << " // " << InstructionConversionKinds[Row] << "\n"; 2134 OS << " { "; 2135 for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2) 2136 OS << OperandConversionKinds[ConversionTable[Row][i]] << ", " 2137 << (unsigned)(ConversionTable[Row][i + 1]) << ", "; 2138 OS << "CVT_Done },\n"; 2139 } 2140 2141 OS << "};\n\n"; 2142 2143 // Spit out the conversion driver function. 2144 OS << CvtOS.str(); 2145 2146 // Spit out the operand number lookup function. 2147 OS << OpOS.str(); 2148 } 2149 2150 /// emitMatchClassEnumeration - Emit the enumeration for match class kinds. 2151 static void emitMatchClassEnumeration(CodeGenTarget &Target, 2152 std::forward_list<ClassInfo> &Infos, 2153 raw_ostream &OS) { 2154 OS << "namespace {\n\n"; 2155 2156 OS << "/// MatchClassKind - The kinds of classes which participate in\n" 2157 << "/// instruction matching.\n"; 2158 OS << "enum MatchClassKind {\n"; 2159 OS << " InvalidMatchClass = 0,\n"; 2160 OS << " OptionalMatchClass = 1,\n"; 2161 for (const auto &CI : Infos) { 2162 OS << " " << CI.Name << ", // "; 2163 if (CI.Kind == ClassInfo::Token) { 2164 OS << "'" << CI.ValueName << "'\n"; 2165 } else if (CI.isRegisterClass()) { 2166 if (!CI.ValueName.empty()) 2167 OS << "register class '" << CI.ValueName << "'\n"; 2168 else 2169 OS << "derived register class\n"; 2170 } else { 2171 OS << "user defined class '" << CI.ValueName << "'\n"; 2172 } 2173 } 2174 OS << " NumMatchClassKinds\n"; 2175 OS << "};\n\n"; 2176 2177 OS << "}\n\n"; 2178 } 2179 2180 /// emitValidateOperandClass - Emit the function to validate an operand class. 2181 static void emitValidateOperandClass(AsmMatcherInfo &Info, 2182 raw_ostream &OS) { 2183 OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, " 2184 << "MatchClassKind Kind) {\n"; 2185 OS << " " << Info.Target.getName() << "Operand &Operand = (" 2186 << Info.Target.getName() << "Operand&)GOp;\n"; 2187 2188 // The InvalidMatchClass is not to match any operand. 2189 OS << " if (Kind == InvalidMatchClass)\n"; 2190 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n\n"; 2191 2192 // Check for Token operands first. 2193 // FIXME: Use a more specific diagnostic type. 2194 OS << " if (Operand.isToken())\n"; 2195 OS << " return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n" 2196 << " MCTargetAsmParser::Match_Success :\n" 2197 << " MCTargetAsmParser::Match_InvalidOperand;\n\n"; 2198 2199 // Check the user classes. We don't care what order since we're only 2200 // actually matching against one of them. 2201 OS << " switch (Kind) {\n" 2202 " default: break;\n"; 2203 for (const auto &CI : Info.Classes) { 2204 if (!CI.isUserClass()) 2205 continue; 2206 2207 OS << " // '" << CI.ClassName << "' class\n"; 2208 OS << " case " << CI.Name << ":\n"; 2209 OS << " if (Operand." << CI.PredicateMethod << "())\n"; 2210 OS << " return MCTargetAsmParser::Match_Success;\n"; 2211 if (!CI.DiagnosticType.empty()) 2212 OS << " return " << Info.Target.getName() << "AsmParser::Match_" 2213 << CI.DiagnosticType << ";\n"; 2214 else 2215 OS << " break;\n"; 2216 } 2217 OS << " } // end switch (Kind)\n\n"; 2218 2219 // Check for register operands, including sub-classes. 2220 OS << " if (Operand.isReg()) {\n"; 2221 OS << " MatchClassKind OpKind;\n"; 2222 OS << " switch (Operand.getReg()) {\n"; 2223 OS << " default: OpKind = InvalidMatchClass; break;\n"; 2224 for (const auto &RC : Info.RegisterClasses) 2225 OS << " case " << Info.Target.getName() << "::" 2226 << RC.first->getName() << ": OpKind = " << RC.second->Name 2227 << "; break;\n"; 2228 OS << " }\n"; 2229 OS << " return isSubclass(OpKind, Kind) ? " 2230 << "MCTargetAsmParser::Match_Success :\n " 2231 << " MCTargetAsmParser::Match_InvalidOperand;\n }\n\n"; 2232 2233 // Generic fallthrough match failure case for operands that don't have 2234 // specialized diagnostic types. 2235 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n"; 2236 OS << "}\n\n"; 2237 } 2238 2239 /// emitIsSubclass - Emit the subclass predicate function. 2240 static void emitIsSubclass(CodeGenTarget &Target, 2241 std::forward_list<ClassInfo> &Infos, 2242 raw_ostream &OS) { 2243 OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n"; 2244 OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n"; 2245 OS << " if (A == B)\n"; 2246 OS << " return true;\n\n"; 2247 2248 bool EmittedSwitch = false; 2249 for (const auto &A : Infos) { 2250 std::vector<StringRef> SuperClasses; 2251 if (A.IsOptional) 2252 SuperClasses.push_back("OptionalMatchClass"); 2253 for (const auto &B : Infos) { 2254 if (&A != &B && A.isSubsetOf(B)) 2255 SuperClasses.push_back(B.Name); 2256 } 2257 2258 if (SuperClasses.empty()) 2259 continue; 2260 2261 // If this is the first SuperClass, emit the switch header. 2262 if (!EmittedSwitch) { 2263 OS << " switch (A) {\n"; 2264 OS << " default:\n"; 2265 OS << " return false;\n"; 2266 EmittedSwitch = true; 2267 } 2268 2269 OS << "\n case " << A.Name << ":\n"; 2270 2271 if (SuperClasses.size() == 1) { 2272 OS << " return B == " << SuperClasses.back() << ";\n"; 2273 continue; 2274 } 2275 2276 if (!SuperClasses.empty()) { 2277 OS << " switch (B) {\n"; 2278 OS << " default: return false;\n"; 2279 for (StringRef SC : SuperClasses) 2280 OS << " case " << SC << ": return true;\n"; 2281 OS << " }\n"; 2282 } else { 2283 // No case statement to emit 2284 OS << " return false;\n"; 2285 } 2286 } 2287 2288 // If there were case statements emitted into the string stream write the 2289 // default. 2290 if (EmittedSwitch) 2291 OS << " }\n"; 2292 else 2293 OS << " return false;\n"; 2294 2295 OS << "}\n\n"; 2296 } 2297 2298 /// emitMatchTokenString - Emit the function to match a token string to the 2299 /// appropriate match class value. 2300 static void emitMatchTokenString(CodeGenTarget &Target, 2301 std::forward_list<ClassInfo> &Infos, 2302 raw_ostream &OS) { 2303 // Construct the match list. 2304 std::vector<StringMatcher::StringPair> Matches; 2305 for (const auto &CI : Infos) { 2306 if (CI.Kind == ClassInfo::Token) 2307 Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";"); 2308 } 2309 2310 OS << "static MatchClassKind matchTokenString(StringRef Name) {\n"; 2311 2312 StringMatcher("Name", Matches, OS).Emit(); 2313 2314 OS << " return InvalidMatchClass;\n"; 2315 OS << "}\n\n"; 2316 } 2317 2318 /// emitMatchRegisterName - Emit the function to match a string to the target 2319 /// specific register enum. 2320 static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser, 2321 raw_ostream &OS) { 2322 // Construct the match list. 2323 std::vector<StringMatcher::StringPair> Matches; 2324 const auto &Regs = Target.getRegBank().getRegisters(); 2325 for (const CodeGenRegister &Reg : Regs) { 2326 if (Reg.TheDef->getValueAsString("AsmName").empty()) 2327 continue; 2328 2329 Matches.emplace_back(Reg.TheDef->getValueAsString("AsmName"), 2330 "return " + utostr(Reg.EnumValue) + ";"); 2331 } 2332 2333 OS << "static unsigned MatchRegisterName(StringRef Name) {\n"; 2334 2335 StringMatcher("Name", Matches, OS).Emit(); 2336 2337 OS << " return 0;\n"; 2338 OS << "}\n\n"; 2339 } 2340 2341 /// Emit the function to match a string to the target 2342 /// specific register enum. 2343 static void emitMatchRegisterAltName(CodeGenTarget &Target, Record *AsmParser, 2344 raw_ostream &OS) { 2345 // Construct the match list. 2346 std::vector<StringMatcher::StringPair> Matches; 2347 const auto &Regs = Target.getRegBank().getRegisters(); 2348 for (const CodeGenRegister &Reg : Regs) { 2349 2350 auto AltNames = Reg.TheDef->getValueAsListOfStrings("AltNames"); 2351 2352 for (auto AltName : AltNames) { 2353 AltName = StringRef(AltName).trim(); 2354 2355 // don't handle empty alternative names 2356 if (AltName.empty()) 2357 continue; 2358 2359 Matches.emplace_back(AltName, 2360 "return " + utostr(Reg.EnumValue) + ";"); 2361 } 2362 } 2363 2364 OS << "static unsigned MatchRegisterAltName(StringRef Name) {\n"; 2365 2366 StringMatcher("Name", Matches, OS).Emit(); 2367 2368 OS << " return 0;\n"; 2369 OS << "}\n\n"; 2370 } 2371 2372 /// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types. 2373 static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) { 2374 // Get the set of diagnostic types from all of the operand classes. 2375 std::set<StringRef> Types; 2376 for (const auto &OpClassEntry : Info.AsmOperandClasses) { 2377 if (!OpClassEntry.second->DiagnosticType.empty()) 2378 Types.insert(OpClassEntry.second->DiagnosticType); 2379 } 2380 2381 if (Types.empty()) return; 2382 2383 // Now emit the enum entries. 2384 for (StringRef Type : Types) 2385 OS << " Match_" << Type << ",\n"; 2386 OS << " END_OPERAND_DIAGNOSTIC_TYPES\n"; 2387 } 2388 2389 /// emitGetSubtargetFeatureName - Emit the helper function to get the 2390 /// user-level name for a subtarget feature. 2391 static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) { 2392 OS << "// User-level names for subtarget features that participate in\n" 2393 << "// instruction matching.\n" 2394 << "static const char *getSubtargetFeatureName(uint64_t Val) {\n"; 2395 if (!Info.SubtargetFeatures.empty()) { 2396 OS << " switch(Val) {\n"; 2397 for (const auto &SF : Info.SubtargetFeatures) { 2398 const SubtargetFeatureInfo &SFI = SF.second; 2399 // FIXME: Totally just a placeholder name to get the algorithm working. 2400 OS << " case " << SFI.getEnumName() << ": return \"" 2401 << SFI.TheDef->getValueAsString("PredicateName") << "\";\n"; 2402 } 2403 OS << " default: return \"(unknown)\";\n"; 2404 OS << " }\n"; 2405 } else { 2406 // Nothing to emit, so skip the switch 2407 OS << " return \"(unknown)\";\n"; 2408 } 2409 OS << "}\n\n"; 2410 } 2411 2412 static std::string GetAliasRequiredFeatures(Record *R, 2413 const AsmMatcherInfo &Info) { 2414 std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates"); 2415 std::string Result; 2416 unsigned NumFeatures = 0; 2417 for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) { 2418 const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]); 2419 2420 if (!F) 2421 PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() + 2422 "' is not marked as an AssemblerPredicate!"); 2423 2424 if (NumFeatures) 2425 Result += '|'; 2426 2427 Result += F->getEnumName(); 2428 ++NumFeatures; 2429 } 2430 2431 if (NumFeatures > 1) 2432 Result = '(' + Result + ')'; 2433 return Result; 2434 } 2435 2436 static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info, 2437 std::vector<Record*> &Aliases, 2438 unsigned Indent = 0, 2439 StringRef AsmParserVariantName = StringRef()){ 2440 // Keep track of all the aliases from a mnemonic. Use an std::map so that the 2441 // iteration order of the map is stable. 2442 std::map<std::string, std::vector<Record*> > AliasesFromMnemonic; 2443 2444 for (Record *R : Aliases) { 2445 // FIXME: Allow AssemblerVariantName to be a comma separated list. 2446 StringRef AsmVariantName = R->getValueAsString("AsmVariantName"); 2447 if (AsmVariantName != AsmParserVariantName) 2448 continue; 2449 AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R); 2450 } 2451 if (AliasesFromMnemonic.empty()) 2452 return; 2453 2454 // Process each alias a "from" mnemonic at a time, building the code executed 2455 // by the string remapper. 2456 std::vector<StringMatcher::StringPair> Cases; 2457 for (const auto &AliasEntry : AliasesFromMnemonic) { 2458 const std::vector<Record*> &ToVec = AliasEntry.second; 2459 2460 // Loop through each alias and emit code that handles each case. If there 2461 // are two instructions without predicates, emit an error. If there is one, 2462 // emit it last. 2463 std::string MatchCode; 2464 int AliasWithNoPredicate = -1; 2465 2466 for (unsigned i = 0, e = ToVec.size(); i != e; ++i) { 2467 Record *R = ToVec[i]; 2468 std::string FeatureMask = GetAliasRequiredFeatures(R, Info); 2469 2470 // If this unconditionally matches, remember it for later and diagnose 2471 // duplicates. 2472 if (FeatureMask.empty()) { 2473 if (AliasWithNoPredicate != -1) { 2474 // We can't have two aliases from the same mnemonic with no predicate. 2475 PrintError(ToVec[AliasWithNoPredicate]->getLoc(), 2476 "two MnemonicAliases with the same 'from' mnemonic!"); 2477 PrintFatalError(R->getLoc(), "this is the other MnemonicAlias."); 2478 } 2479 2480 AliasWithNoPredicate = i; 2481 continue; 2482 } 2483 if (R->getValueAsString("ToMnemonic") == AliasEntry.first) 2484 PrintFatalError(R->getLoc(), "MnemonicAlias to the same string"); 2485 2486 if (!MatchCode.empty()) 2487 MatchCode += "else "; 2488 MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n"; 2489 MatchCode += " Mnemonic = \""; 2490 MatchCode += R->getValueAsString("ToMnemonic"); 2491 MatchCode += "\";\n"; 2492 } 2493 2494 if (AliasWithNoPredicate != -1) { 2495 Record *R = ToVec[AliasWithNoPredicate]; 2496 if (!MatchCode.empty()) 2497 MatchCode += "else\n "; 2498 MatchCode += "Mnemonic = \""; 2499 MatchCode += R->getValueAsString("ToMnemonic"); 2500 MatchCode += "\";\n"; 2501 } 2502 2503 MatchCode += "return;"; 2504 2505 Cases.push_back(std::make_pair(AliasEntry.first, MatchCode)); 2506 } 2507 StringMatcher("Mnemonic", Cases, OS).Emit(Indent); 2508 } 2509 2510 /// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions, 2511 /// emit a function for them and return true, otherwise return false. 2512 static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info, 2513 CodeGenTarget &Target) { 2514 // Ignore aliases when match-prefix is set. 2515 if (!MatchPrefix.empty()) 2516 return false; 2517 2518 std::vector<Record*> Aliases = 2519 Info.getRecords().getAllDerivedDefinitions("MnemonicAlias"); 2520 if (Aliases.empty()) return false; 2521 2522 OS << "static void applyMnemonicAliases(StringRef &Mnemonic, " 2523 "uint64_t Features, unsigned VariantID) {\n"; 2524 OS << " switch (VariantID) {\n"; 2525 unsigned VariantCount = Target.getAsmParserVariantCount(); 2526 for (unsigned VC = 0; VC != VariantCount; ++VC) { 2527 Record *AsmVariant = Target.getAsmParserVariant(VC); 2528 int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant"); 2529 StringRef AsmParserVariantName = AsmVariant->getValueAsString("Name"); 2530 OS << " case " << AsmParserVariantNo << ":\n"; 2531 emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2, 2532 AsmParserVariantName); 2533 OS << " break;\n"; 2534 } 2535 OS << " }\n"; 2536 2537 // Emit aliases that apply to all variants. 2538 emitMnemonicAliasVariant(OS, Info, Aliases); 2539 2540 OS << "}\n\n"; 2541 2542 return true; 2543 } 2544 2545 static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target, 2546 const AsmMatcherInfo &Info, StringRef ClassName, 2547 StringToOffsetTable &StringTable, 2548 unsigned MaxMnemonicIndex, bool HasMnemonicFirst) { 2549 unsigned MaxMask = 0; 2550 for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) { 2551 MaxMask |= OMI.OperandMask; 2552 } 2553 2554 // Emit the static custom operand parsing table; 2555 OS << "namespace {\n"; 2556 OS << " struct OperandMatchEntry {\n"; 2557 OS << " " << getMinimalTypeForEnumBitfield(Info.SubtargetFeatures.size()) 2558 << " RequiredFeatures;\n"; 2559 OS << " " << getMinimalTypeForRange(MaxMnemonicIndex) 2560 << " Mnemonic;\n"; 2561 OS << " " << getMinimalTypeForRange(std::distance( 2562 Info.Classes.begin(), Info.Classes.end())) << " Class;\n"; 2563 OS << " " << getMinimalTypeForRange(MaxMask) 2564 << " OperandMask;\n\n"; 2565 OS << " StringRef getMnemonic() const {\n"; 2566 OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n"; 2567 OS << " MnemonicTable[Mnemonic]);\n"; 2568 OS << " }\n"; 2569 OS << " };\n\n"; 2570 2571 OS << " // Predicate for searching for an opcode.\n"; 2572 OS << " struct LessOpcodeOperand {\n"; 2573 OS << " bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n"; 2574 OS << " return LHS.getMnemonic() < RHS;\n"; 2575 OS << " }\n"; 2576 OS << " bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n"; 2577 OS << " return LHS < RHS.getMnemonic();\n"; 2578 OS << " }\n"; 2579 OS << " bool operator()(const OperandMatchEntry &LHS,"; 2580 OS << " const OperandMatchEntry &RHS) {\n"; 2581 OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n"; 2582 OS << " }\n"; 2583 OS << " };\n"; 2584 2585 OS << "} // end anonymous namespace.\n\n"; 2586 2587 OS << "static const OperandMatchEntry OperandMatchTable[" 2588 << Info.OperandMatchInfo.size() << "] = {\n"; 2589 2590 OS << " /* Operand List Mask, Mnemonic, Operand Class, Features */\n"; 2591 for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) { 2592 const MatchableInfo &II = *OMI.MI; 2593 2594 OS << " { "; 2595 2596 // Write the required features mask. 2597 if (!II.RequiredFeatures.empty()) { 2598 for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) { 2599 if (i) OS << "|"; 2600 OS << II.RequiredFeatures[i]->getEnumName(); 2601 } 2602 } else 2603 OS << "0"; 2604 2605 // Store a pascal-style length byte in the mnemonic. 2606 std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str(); 2607 OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false) 2608 << " /* " << II.Mnemonic << " */, "; 2609 2610 OS << OMI.CI->Name; 2611 2612 OS << ", " << OMI.OperandMask; 2613 OS << " /* "; 2614 bool printComma = false; 2615 for (int i = 0, e = 31; i !=e; ++i) 2616 if (OMI.OperandMask & (1 << i)) { 2617 if (printComma) 2618 OS << ", "; 2619 OS << i; 2620 printComma = true; 2621 } 2622 OS << " */"; 2623 2624 OS << " },\n"; 2625 } 2626 OS << "};\n\n"; 2627 2628 // Emit the operand class switch to call the correct custom parser for 2629 // the found operand class. 2630 OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n" 2631 << "tryCustomParseOperand(OperandVector" 2632 << " &Operands,\n unsigned MCK) {\n\n" 2633 << " switch(MCK) {\n"; 2634 2635 for (const auto &CI : Info.Classes) { 2636 if (CI.ParserMethod.empty()) 2637 continue; 2638 OS << " case " << CI.Name << ":\n" 2639 << " return " << CI.ParserMethod << "(Operands);\n"; 2640 } 2641 2642 OS << " default:\n"; 2643 OS << " return MatchOperand_NoMatch;\n"; 2644 OS << " }\n"; 2645 OS << " return MatchOperand_NoMatch;\n"; 2646 OS << "}\n\n"; 2647 2648 // Emit the static custom operand parser. This code is very similar with 2649 // the other matcher. Also use MatchResultTy here just in case we go for 2650 // a better error handling. 2651 OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n" 2652 << "MatchOperandParserImpl(OperandVector" 2653 << " &Operands,\n StringRef Mnemonic) {\n"; 2654 2655 // Emit code to get the available features. 2656 OS << " // Get the current feature set.\n"; 2657 OS << " uint64_t AvailableFeatures = getAvailableFeatures();\n\n"; 2658 2659 OS << " // Get the next operand index.\n"; 2660 OS << " unsigned NextOpNum = Operands.size()" 2661 << (HasMnemonicFirst ? " - 1" : "") << ";\n"; 2662 2663 // Emit code to search the table. 2664 OS << " // Search the table.\n"; 2665 if (HasMnemonicFirst) { 2666 OS << " auto MnemonicRange =\n"; 2667 OS << " std::equal_range(std::begin(OperandMatchTable), " 2668 "std::end(OperandMatchTable),\n"; 2669 OS << " Mnemonic, LessOpcodeOperand());\n\n"; 2670 } else { 2671 OS << " auto MnemonicRange = std::make_pair(std::begin(OperandMatchTable)," 2672 " std::end(OperandMatchTable));\n"; 2673 OS << " if (!Mnemonic.empty())\n"; 2674 OS << " MnemonicRange =\n"; 2675 OS << " std::equal_range(std::begin(OperandMatchTable), " 2676 "std::end(OperandMatchTable),\n"; 2677 OS << " Mnemonic, LessOpcodeOperand());\n\n"; 2678 } 2679 2680 OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; 2681 OS << " return MatchOperand_NoMatch;\n\n"; 2682 2683 OS << " for (const OperandMatchEntry *it = MnemonicRange.first,\n" 2684 << " *ie = MnemonicRange.second; it != ie; ++it) {\n"; 2685 2686 OS << " // equal_range guarantees that instruction mnemonic matches.\n"; 2687 OS << " assert(Mnemonic == it->getMnemonic());\n\n"; 2688 2689 // Emit check that the required features are available. 2690 OS << " // check if the available features match\n"; 2691 OS << " if ((AvailableFeatures & it->RequiredFeatures) " 2692 << "!= it->RequiredFeatures) {\n"; 2693 OS << " continue;\n"; 2694 OS << " }\n\n"; 2695 2696 // Emit check to ensure the operand number matches. 2697 OS << " // check if the operand in question has a custom parser.\n"; 2698 OS << " if (!(it->OperandMask & (1 << NextOpNum)))\n"; 2699 OS << " continue;\n\n"; 2700 2701 // Emit call to the custom parser method 2702 OS << " // call custom parse method to handle the operand\n"; 2703 OS << " OperandMatchResultTy Result = "; 2704 OS << "tryCustomParseOperand(Operands, it->Class);\n"; 2705 OS << " if (Result != MatchOperand_NoMatch)\n"; 2706 OS << " return Result;\n"; 2707 OS << " }\n\n"; 2708 2709 OS << " // Okay, we had no match.\n"; 2710 OS << " return MatchOperand_NoMatch;\n"; 2711 OS << "}\n\n"; 2712 } 2713 2714 void AsmMatcherEmitter::run(raw_ostream &OS) { 2715 CodeGenTarget Target(Records); 2716 Record *AsmParser = Target.getAsmParser(); 2717 StringRef ClassName = AsmParser->getValueAsString("AsmParserClassName"); 2718 2719 // Compute the information on the instructions to match. 2720 AsmMatcherInfo Info(AsmParser, Target, Records); 2721 Info.buildInfo(); 2722 2723 // Sort the instruction table using the partial order on classes. We use 2724 // stable_sort to ensure that ambiguous instructions are still 2725 // deterministically ordered. 2726 std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(), 2727 [](const std::unique_ptr<MatchableInfo> &a, 2728 const std::unique_ptr<MatchableInfo> &b){ 2729 return *a < *b;}); 2730 2731 #ifdef EXPENSIVE_CHECKS 2732 // Verify that the table is sorted and operator < works transitively. 2733 for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E; 2734 ++I) { 2735 for (auto J = I; J != E; ++J) { 2736 assert(!(**J < **I)); 2737 } 2738 } 2739 #endif 2740 2741 DEBUG_WITH_TYPE("instruction_info", { 2742 for (const auto &MI : Info.Matchables) 2743 MI->dump(); 2744 }); 2745 2746 // Check for ambiguous matchables. 2747 DEBUG_WITH_TYPE("ambiguous_instrs", { 2748 unsigned NumAmbiguous = 0; 2749 for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E; 2750 ++I) { 2751 for (auto J = std::next(I); J != E; ++J) { 2752 const MatchableInfo &A = **I; 2753 const MatchableInfo &B = **J; 2754 2755 if (A.couldMatchAmbiguouslyWith(B)) { 2756 errs() << "warning: ambiguous matchables:\n"; 2757 A.dump(); 2758 errs() << "\nis incomparable with:\n"; 2759 B.dump(); 2760 errs() << "\n\n"; 2761 ++NumAmbiguous; 2762 } 2763 } 2764 } 2765 if (NumAmbiguous) 2766 errs() << "warning: " << NumAmbiguous 2767 << " ambiguous matchables!\n"; 2768 }); 2769 2770 // Compute the information on the custom operand parsing. 2771 Info.buildOperandMatchInfo(); 2772 2773 bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst"); 2774 bool HasOptionalOperands = Info.hasOptionalOperands(); 2775 2776 // Write the output. 2777 2778 // Information for the class declaration. 2779 OS << "\n#ifdef GET_ASSEMBLER_HEADER\n"; 2780 OS << "#undef GET_ASSEMBLER_HEADER\n"; 2781 OS << " // This should be included into the middle of the declaration of\n"; 2782 OS << " // your subclasses implementation of MCTargetAsmParser.\n"; 2783 OS << " uint64_t ComputeAvailableFeatures(const FeatureBitset& FB) const;\n"; 2784 if (HasOptionalOperands) { 2785 OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, " 2786 << "unsigned Opcode,\n" 2787 << " const OperandVector &Operands,\n" 2788 << " const SmallBitVector &OptionalOperandsMask);\n"; 2789 } else { 2790 OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, " 2791 << "unsigned Opcode,\n" 2792 << " const OperandVector &Operands);\n"; 2793 } 2794 OS << " void convertToMapAndConstraints(unsigned Kind,\n "; 2795 OS << " const OperandVector &Operands) override;\n"; 2796 OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n" 2797 << " MCInst &Inst,\n" 2798 << " uint64_t &ErrorInfo," 2799 << " bool matchingInlineAsm,\n" 2800 << " unsigned VariantID = 0);\n"; 2801 2802 if (!Info.OperandMatchInfo.empty()) { 2803 OS << " OperandMatchResultTy MatchOperandParserImpl(\n"; 2804 OS << " OperandVector &Operands,\n"; 2805 OS << " StringRef Mnemonic);\n"; 2806 2807 OS << " OperandMatchResultTy tryCustomParseOperand(\n"; 2808 OS << " OperandVector &Operands,\n"; 2809 OS << " unsigned MCK);\n\n"; 2810 } 2811 2812 OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n"; 2813 2814 // Emit the operand match diagnostic enum names. 2815 OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n"; 2816 OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n"; 2817 emitOperandDiagnosticTypes(Info, OS); 2818 OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n"; 2819 2820 OS << "\n#ifdef GET_REGISTER_MATCHER\n"; 2821 OS << "#undef GET_REGISTER_MATCHER\n\n"; 2822 2823 // Emit the subtarget feature enumeration. 2824 SubtargetFeatureInfo::emitSubtargetFeatureFlagEnumeration( 2825 Info.SubtargetFeatures, OS); 2826 2827 // Emit the function to match a register name to number. 2828 // This should be omitted for Mips target 2829 if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName")) 2830 emitMatchRegisterName(Target, AsmParser, OS); 2831 2832 if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterAltName")) 2833 emitMatchRegisterAltName(Target, AsmParser, OS); 2834 2835 OS << "#endif // GET_REGISTER_MATCHER\n\n"; 2836 2837 OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n"; 2838 OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n"; 2839 2840 // Generate the helper function to get the names for subtarget features. 2841 emitGetSubtargetFeatureName(Info, OS); 2842 2843 OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n"; 2844 2845 OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n"; 2846 OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n"; 2847 2848 // Generate the function that remaps for mnemonic aliases. 2849 bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target); 2850 2851 // Generate the convertToMCInst function to convert operands into an MCInst. 2852 // Also, generate the convertToMapAndConstraints function for MS-style inline 2853 // assembly. The latter doesn't actually generate a MCInst. 2854 emitConvertFuncs(Target, ClassName, Info.Matchables, HasMnemonicFirst, 2855 HasOptionalOperands, OS); 2856 2857 // Emit the enumeration for classes which participate in matching. 2858 emitMatchClassEnumeration(Target, Info.Classes, OS); 2859 2860 // Emit the routine to match token strings to their match class. 2861 emitMatchTokenString(Target, Info.Classes, OS); 2862 2863 // Emit the subclass predicate routine. 2864 emitIsSubclass(Target, Info.Classes, OS); 2865 2866 // Emit the routine to validate an operand against a match class. 2867 emitValidateOperandClass(Info, OS); 2868 2869 // Emit the available features compute function. 2870 SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures( 2871 Info.Target.getName(), ClassName, "ComputeAvailableFeatures", 2872 Info.SubtargetFeatures, OS); 2873 2874 StringToOffsetTable StringTable; 2875 2876 size_t MaxNumOperands = 0; 2877 unsigned MaxMnemonicIndex = 0; 2878 bool HasDeprecation = false; 2879 for (const auto &MI : Info.Matchables) { 2880 MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size()); 2881 HasDeprecation |= MI->HasDeprecation; 2882 2883 // Store a pascal-style length byte in the mnemonic. 2884 std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str(); 2885 MaxMnemonicIndex = std::max(MaxMnemonicIndex, 2886 StringTable.GetOrAddStringOffset(LenMnemonic, false)); 2887 } 2888 2889 OS << "static const char *const MnemonicTable =\n"; 2890 StringTable.EmitString(OS); 2891 OS << ";\n\n"; 2892 2893 // Emit the static match table; unused classes get initialized to 0 which is 2894 // guaranteed to be InvalidMatchClass. 2895 // 2896 // FIXME: We can reduce the size of this table very easily. First, we change 2897 // it so that store the kinds in separate bit-fields for each index, which 2898 // only needs to be the max width used for classes at that index (we also need 2899 // to reject based on this during classification). If we then make sure to 2900 // order the match kinds appropriately (putting mnemonics last), then we 2901 // should only end up using a few bits for each class, especially the ones 2902 // following the mnemonic. 2903 OS << "namespace {\n"; 2904 OS << " struct MatchEntry {\n"; 2905 OS << " " << getMinimalTypeForRange(MaxMnemonicIndex) 2906 << " Mnemonic;\n"; 2907 OS << " uint16_t Opcode;\n"; 2908 OS << " " << getMinimalTypeForRange(Info.Matchables.size()) 2909 << " ConvertFn;\n"; 2910 OS << " " << getMinimalTypeForEnumBitfield(Info.SubtargetFeatures.size()) 2911 << " RequiredFeatures;\n"; 2912 OS << " " << getMinimalTypeForRange( 2913 std::distance(Info.Classes.begin(), Info.Classes.end())) 2914 << " Classes[" << MaxNumOperands << "];\n"; 2915 OS << " StringRef getMnemonic() const {\n"; 2916 OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n"; 2917 OS << " MnemonicTable[Mnemonic]);\n"; 2918 OS << " }\n"; 2919 OS << " };\n\n"; 2920 2921 OS << " // Predicate for searching for an opcode.\n"; 2922 OS << " struct LessOpcode {\n"; 2923 OS << " bool operator()(const MatchEntry &LHS, StringRef RHS) {\n"; 2924 OS << " return LHS.getMnemonic() < RHS;\n"; 2925 OS << " }\n"; 2926 OS << " bool operator()(StringRef LHS, const MatchEntry &RHS) {\n"; 2927 OS << " return LHS < RHS.getMnemonic();\n"; 2928 OS << " }\n"; 2929 OS << " bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n"; 2930 OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n"; 2931 OS << " }\n"; 2932 OS << " };\n"; 2933 2934 OS << "} // end anonymous namespace.\n\n"; 2935 2936 unsigned VariantCount = Target.getAsmParserVariantCount(); 2937 for (unsigned VC = 0; VC != VariantCount; ++VC) { 2938 Record *AsmVariant = Target.getAsmParserVariant(VC); 2939 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 2940 2941 OS << "static const MatchEntry MatchTable" << VC << "[] = {\n"; 2942 2943 for (const auto &MI : Info.Matchables) { 2944 if (MI->AsmVariantID != AsmVariantNo) 2945 continue; 2946 2947 // Store a pascal-style length byte in the mnemonic. 2948 std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str(); 2949 OS << " { " << StringTable.GetOrAddStringOffset(LenMnemonic, false) 2950 << " /* " << MI->Mnemonic << " */, " 2951 << Target.getName() << "::" 2952 << MI->getResultInst()->TheDef->getName() << ", " 2953 << MI->ConversionFnKind << ", "; 2954 2955 // Write the required features mask. 2956 if (!MI->RequiredFeatures.empty()) { 2957 for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i) { 2958 if (i) OS << "|"; 2959 OS << MI->RequiredFeatures[i]->getEnumName(); 2960 } 2961 } else 2962 OS << "0"; 2963 2964 OS << ", { "; 2965 for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) { 2966 const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i]; 2967 2968 if (i) OS << ", "; 2969 OS << Op.Class->Name; 2970 } 2971 OS << " }, },\n"; 2972 } 2973 2974 OS << "};\n\n"; 2975 } 2976 2977 // Finally, build the match function. 2978 OS << "unsigned " << Target.getName() << ClassName << "::\n" 2979 << "MatchInstructionImpl(const OperandVector &Operands,\n"; 2980 OS << " MCInst &Inst, uint64_t &ErrorInfo,\n" 2981 << " bool matchingInlineAsm, unsigned VariantID) {\n"; 2982 2983 OS << " // Eliminate obvious mismatches.\n"; 2984 OS << " if (Operands.size() > " 2985 << (MaxNumOperands + HasMnemonicFirst) << ") {\n"; 2986 OS << " ErrorInfo = " 2987 << (MaxNumOperands + HasMnemonicFirst) << ";\n"; 2988 OS << " return Match_InvalidOperand;\n"; 2989 OS << " }\n\n"; 2990 2991 // Emit code to get the available features. 2992 OS << " // Get the current feature set.\n"; 2993 OS << " uint64_t AvailableFeatures = getAvailableFeatures();\n\n"; 2994 2995 OS << " // Get the instruction mnemonic, which is the first token.\n"; 2996 if (HasMnemonicFirst) { 2997 OS << " StringRef Mnemonic = ((" << Target.getName() 2998 << "Operand&)*Operands[0]).getToken();\n\n"; 2999 } else { 3000 OS << " StringRef Mnemonic;\n"; 3001 OS << " if (Operands[0]->isToken())\n"; 3002 OS << " Mnemonic = ((" << Target.getName() 3003 << "Operand&)*Operands[0]).getToken();\n\n"; 3004 } 3005 3006 if (HasMnemonicAliases) { 3007 OS << " // Process all MnemonicAliases to remap the mnemonic.\n"; 3008 OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n"; 3009 } 3010 3011 // Emit code to compute the class list for this operand vector. 3012 OS << " // Some state to try to produce better error messages.\n"; 3013 OS << " bool HadMatchOtherThanFeatures = false;\n"; 3014 OS << " bool HadMatchOtherThanPredicate = false;\n"; 3015 OS << " unsigned RetCode = Match_InvalidOperand;\n"; 3016 OS << " uint64_t MissingFeatures = ~0ULL;\n"; 3017 if (HasOptionalOperands) { 3018 OS << " SmallBitVector OptionalOperandsMask(" << MaxNumOperands << ");\n"; 3019 } 3020 OS << " // Set ErrorInfo to the operand that mismatches if it is\n"; 3021 OS << " // wrong for all instances of the instruction.\n"; 3022 OS << " ErrorInfo = ~0ULL;\n"; 3023 3024 // Emit code to search the table. 3025 OS << " // Find the appropriate table for this asm variant.\n"; 3026 OS << " const MatchEntry *Start, *End;\n"; 3027 OS << " switch (VariantID) {\n"; 3028 OS << " default: llvm_unreachable(\"invalid variant!\");\n"; 3029 for (unsigned VC = 0; VC != VariantCount; ++VC) { 3030 Record *AsmVariant = Target.getAsmParserVariant(VC); 3031 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 3032 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC 3033 << "); End = std::end(MatchTable" << VC << "); break;\n"; 3034 } 3035 OS << " }\n"; 3036 3037 OS << " // Search the table.\n"; 3038 if (HasMnemonicFirst) { 3039 OS << " auto MnemonicRange = " 3040 "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n"; 3041 } else { 3042 OS << " auto MnemonicRange = std::make_pair(Start, End);\n"; 3043 OS << " unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n"; 3044 OS << " if (!Mnemonic.empty())\n"; 3045 OS << " MnemonicRange = " 3046 "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n"; 3047 } 3048 3049 OS << " // Return a more specific error code if no mnemonics match.\n"; 3050 OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; 3051 OS << " return Match_MnemonicFail;\n\n"; 3052 3053 OS << " for (const MatchEntry *it = MnemonicRange.first, " 3054 << "*ie = MnemonicRange.second;\n"; 3055 OS << " it != ie; ++it) {\n"; 3056 3057 if (HasMnemonicFirst) { 3058 OS << " // equal_range guarantees that instruction mnemonic matches.\n"; 3059 OS << " assert(Mnemonic == it->getMnemonic());\n"; 3060 } 3061 3062 // Emit check that the subclasses match. 3063 OS << " bool OperandsValid = true;\n"; 3064 if (HasOptionalOperands) { 3065 OS << " OptionalOperandsMask.reset(0, " << MaxNumOperands << ");\n"; 3066 } 3067 OS << " for (unsigned FormalIdx = " << (HasMnemonicFirst ? "0" : "SIndex") 3068 << ", ActualIdx = " << (HasMnemonicFirst ? "1" : "SIndex") 3069 << "; FormalIdx != " << MaxNumOperands << "; ++FormalIdx) {\n"; 3070 OS << " auto Formal = " 3071 << "static_cast<MatchClassKind>(it->Classes[FormalIdx]);\n"; 3072 OS << " if (ActualIdx >= Operands.size()) {\n"; 3073 OS << " OperandsValid = (Formal == " <<"InvalidMatchClass) || " 3074 "isSubclass(Formal, OptionalMatchClass);\n"; 3075 OS << " if (!OperandsValid) ErrorInfo = ActualIdx;\n"; 3076 if (HasOptionalOperands) { 3077 OS << " OptionalOperandsMask.set(FormalIdx, " << MaxNumOperands 3078 << ");\n"; 3079 } 3080 OS << " break;\n"; 3081 OS << " }\n"; 3082 OS << " MCParsedAsmOperand &Actual = *Operands[ActualIdx];\n"; 3083 OS << " unsigned Diag = validateOperandClass(Actual, Formal);\n"; 3084 OS << " if (Diag == Match_Success) {\n"; 3085 OS << " ++ActualIdx;\n"; 3086 OS << " continue;\n"; 3087 OS << " }\n"; 3088 OS << " // If the generic handler indicates an invalid operand\n"; 3089 OS << " // failure, check for a special case.\n"; 3090 OS << " if (Diag == Match_InvalidOperand) {\n"; 3091 OS << " Diag = validateTargetOperandClass(Actual, Formal);\n"; 3092 OS << " if (Diag == Match_Success) {\n"; 3093 OS << " ++ActualIdx;\n"; 3094 OS << " continue;\n"; 3095 OS << " }\n"; 3096 OS << " }\n"; 3097 OS << " // If current formal operand wasn't matched and it is optional\n" 3098 << " // then try to match next formal operand\n"; 3099 OS << " if (Diag == Match_InvalidOperand " 3100 << "&& isSubclass(Formal, OptionalMatchClass)) {\n"; 3101 if (HasOptionalOperands) { 3102 OS << " OptionalOperandsMask.set(FormalIdx);\n"; 3103 } 3104 OS << " continue;\n"; 3105 OS << " }\n"; 3106 OS << " // If this operand is broken for all of the instances of this\n"; 3107 OS << " // mnemonic, keep track of it so we can report loc info.\n"; 3108 OS << " // If we already had a match that only failed due to a\n"; 3109 OS << " // target predicate, that diagnostic is preferred.\n"; 3110 OS << " if (!HadMatchOtherThanPredicate &&\n"; 3111 OS << " (it == MnemonicRange.first || ErrorInfo <= ActualIdx)) {\n"; 3112 OS << " ErrorInfo = ActualIdx;\n"; 3113 OS << " // InvalidOperand is the default. Prefer specificity.\n"; 3114 OS << " if (Diag != Match_InvalidOperand)\n"; 3115 OS << " RetCode = Diag;\n"; 3116 OS << " }\n"; 3117 OS << " // Otherwise, just reject this instance of the mnemonic.\n"; 3118 OS << " OperandsValid = false;\n"; 3119 OS << " break;\n"; 3120 OS << " }\n\n"; 3121 3122 OS << " if (!OperandsValid) continue;\n"; 3123 3124 // Emit check that the required features are available. 3125 OS << " if ((AvailableFeatures & it->RequiredFeatures) " 3126 << "!= it->RequiredFeatures) {\n"; 3127 OS << " HadMatchOtherThanFeatures = true;\n"; 3128 OS << " uint64_t NewMissingFeatures = it->RequiredFeatures & " 3129 "~AvailableFeatures;\n"; 3130 OS << " if (countPopulation(NewMissingFeatures) <=\n" 3131 " countPopulation(MissingFeatures))\n"; 3132 OS << " MissingFeatures = NewMissingFeatures;\n"; 3133 OS << " continue;\n"; 3134 OS << " }\n"; 3135 OS << "\n"; 3136 OS << " Inst.clear();\n\n"; 3137 OS << " Inst.setOpcode(it->Opcode);\n"; 3138 // Verify the instruction with the target-specific match predicate function. 3139 OS << " // We have a potential match but have not rendered the operands.\n" 3140 << " // Check the target predicate to handle any context sensitive\n" 3141 " // constraints.\n" 3142 << " // For example, Ties that are referenced multiple times must be\n" 3143 " // checked here to ensure the input is the same for each match\n" 3144 " // constraints. If we leave it any later the ties will have been\n" 3145 " // canonicalized\n" 3146 << " unsigned MatchResult;\n" 3147 << " if ((MatchResult = checkEarlyTargetMatchPredicate(Inst, " 3148 "Operands)) != Match_Success) {\n" 3149 << " Inst.clear();\n" 3150 << " RetCode = MatchResult;\n" 3151 << " HadMatchOtherThanPredicate = true;\n" 3152 << " continue;\n" 3153 << " }\n\n"; 3154 OS << " if (matchingInlineAsm) {\n"; 3155 OS << " convertToMapAndConstraints(it->ConvertFn, Operands);\n"; 3156 OS << " return Match_Success;\n"; 3157 OS << " }\n\n"; 3158 OS << " // We have selected a definite instruction, convert the parsed\n" 3159 << " // operands into the appropriate MCInst.\n"; 3160 if (HasOptionalOperands) { 3161 OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands,\n" 3162 << " OptionalOperandsMask);\n"; 3163 } else { 3164 OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n"; 3165 } 3166 OS << "\n"; 3167 3168 // Verify the instruction with the target-specific match predicate function. 3169 OS << " // We have a potential match. Check the target predicate to\n" 3170 << " // handle any context sensitive constraints.\n" 3171 << " if ((MatchResult = checkTargetMatchPredicate(Inst)) !=" 3172 << " Match_Success) {\n" 3173 << " Inst.clear();\n" 3174 << " RetCode = MatchResult;\n" 3175 << " HadMatchOtherThanPredicate = true;\n" 3176 << " continue;\n" 3177 << " }\n\n"; 3178 3179 // Call the post-processing function, if used. 3180 StringRef InsnCleanupFn = AsmParser->getValueAsString("AsmParserInstCleanup"); 3181 if (!InsnCleanupFn.empty()) 3182 OS << " " << InsnCleanupFn << "(Inst);\n"; 3183 3184 if (HasDeprecation) { 3185 OS << " std::string Info;\n"; 3186 OS << " if (!getParser().getTargetParser().\n"; 3187 OS << " getTargetOptions().MCNoDeprecatedWarn &&\n"; 3188 OS << " MII.get(Inst.getOpcode()).getDeprecatedInfo(Inst, getSTI(), Info)) {\n"; 3189 OS << " SMLoc Loc = ((" << Target.getName() 3190 << "Operand&)*Operands[0]).getStartLoc();\n"; 3191 OS << " getParser().Warning(Loc, Info, None);\n"; 3192 OS << " }\n"; 3193 } 3194 3195 OS << " return Match_Success;\n"; 3196 OS << " }\n\n"; 3197 3198 OS << " // Okay, we had no match. Try to return a useful error code.\n"; 3199 OS << " if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n"; 3200 OS << " return RetCode;\n\n"; 3201 OS << " // Missing feature matches return which features were missing\n"; 3202 OS << " ErrorInfo = MissingFeatures;\n"; 3203 OS << " return Match_MissingFeature;\n"; 3204 OS << "}\n\n"; 3205 3206 if (!Info.OperandMatchInfo.empty()) 3207 emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable, 3208 MaxMnemonicIndex, HasMnemonicFirst); 3209 3210 OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n"; 3211 } 3212 3213 namespace llvm { 3214 3215 void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) { 3216 emitSourceFileHeader("Assembly Matcher Source Fragment", OS); 3217 AsmMatcherEmitter(RK).run(OS); 3218 } 3219 3220 } // end namespace llvm 3221