1 //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This tablegen backend emits a target specifier matcher for converting parsed
11 // assembly operands in the MCInst structures. It also emits a matcher for
12 // custom operand parsing.
13 //
14 // Converting assembly operands into MCInst structures
15 // ---------------------------------------------------
16 //
17 // The input to the target specific matcher is a list of literal tokens and
18 // operands. The target specific parser should generally eliminate any syntax
19 // which is not relevant for matching; for example, comma tokens should have
20 // already been consumed and eliminated by the parser. Most instructions will
21 // end up with a single literal token (the instruction name) and some number of
22 // operands.
23 //
24 // Some example inputs, for X86:
25 //   'addl' (immediate ...) (register ...)
26 //   'add' (immediate ...) (memory ...)
27 //   'call' '*' %epc
28 //
29 // The assembly matcher is responsible for converting this input into a precise
30 // machine instruction (i.e., an instruction with a well defined encoding). This
31 // mapping has several properties which complicate matching:
32 //
33 //  - It may be ambiguous; many architectures can legally encode particular
34 //    variants of an instruction in different ways (for example, using a smaller
35 //    encoding for small immediates). Such ambiguities should never be
36 //    arbitrarily resolved by the assembler, the assembler is always responsible
37 //    for choosing the "best" available instruction.
38 //
39 //  - It may depend on the subtarget or the assembler context. Instructions
40 //    which are invalid for the current mode, but otherwise unambiguous (e.g.,
41 //    an SSE instruction in a file being assembled for i486) should be accepted
42 //    and rejected by the assembler front end. However, if the proper encoding
43 //    for an instruction is dependent on the assembler context then the matcher
44 //    is responsible for selecting the correct machine instruction for the
45 //    current mode.
46 //
47 // The core matching algorithm attempts to exploit the regularity in most
48 // instruction sets to quickly determine the set of possibly matching
49 // instructions, and the simplify the generated code. Additionally, this helps
50 // to ensure that the ambiguities are intentionally resolved by the user.
51 //
52 // The matching is divided into two distinct phases:
53 //
54 //   1. Classification: Each operand is mapped to the unique set which (a)
55 //      contains it, and (b) is the largest such subset for which a single
56 //      instruction could match all members.
57 //
58 //      For register classes, we can generate these subgroups automatically. For
59 //      arbitrary operands, we expect the user to define the classes and their
60 //      relations to one another (for example, 8-bit signed immediates as a
61 //      subset of 32-bit immediates).
62 //
63 //      By partitioning the operands in this way, we guarantee that for any
64 //      tuple of classes, any single instruction must match either all or none
65 //      of the sets of operands which could classify to that tuple.
66 //
67 //      In addition, the subset relation amongst classes induces a partial order
68 //      on such tuples, which we use to resolve ambiguities.
69 //
70 //   2. The input can now be treated as a tuple of classes (static tokens are
71 //      simple singleton sets). Each such tuple should generally map to a single
72 //      instruction (we currently ignore cases where this isn't true, whee!!!),
73 //      which we can emit a simple matcher for.
74 //
75 // Custom Operand Parsing
76 // ----------------------
77 //
78 //  Some targets need a custom way to parse operands, some specific instructions
79 //  can contain arguments that can represent processor flags and other kinds of
80 //  identifiers that need to be mapped to specific values in the final encoded
81 //  instructions. The target specific custom operand parsing works in the
82 //  following way:
83 //
84 //   1. A operand match table is built, each entry contains a mnemonic, an
85 //      operand class, a mask for all operand positions for that same
86 //      class/mnemonic and target features to be checked while trying to match.
87 //
88 //   2. The operand matcher will try every possible entry with the same
89 //      mnemonic and will check if the target feature for this mnemonic also
90 //      matches. After that, if the operand to be matched has its index
91 //      present in the mask, a successful match occurs. Otherwise, fallback
92 //      to the regular operand parsing.
93 //
94 //   3. For a match success, each operand class that has a 'ParserMethod'
95 //      becomes part of a switch from where the custom method is called.
96 //
97 //===----------------------------------------------------------------------===//
98 
99 #include "CodeGenTarget.h"
100 #include "SubtargetFeatureInfo.h"
101 #include "Types.h"
102 #include "llvm/ADT/CachedHashString.h"
103 #include "llvm/ADT/PointerUnion.h"
104 #include "llvm/ADT/STLExtras.h"
105 #include "llvm/ADT/SmallPtrSet.h"
106 #include "llvm/ADT/SmallVector.h"
107 #include "llvm/ADT/StringExtras.h"
108 #include "llvm/Support/CommandLine.h"
109 #include "llvm/Support/Debug.h"
110 #include "llvm/Support/ErrorHandling.h"
111 #include "llvm/TableGen/Error.h"
112 #include "llvm/TableGen/Record.h"
113 #include "llvm/TableGen/StringMatcher.h"
114 #include "llvm/TableGen/StringToOffsetTable.h"
115 #include "llvm/TableGen/TableGenBackend.h"
116 #include <cassert>
117 #include <cctype>
118 #include <forward_list>
119 #include <map>
120 #include <set>
121 
122 using namespace llvm;
123 
124 #define DEBUG_TYPE "asm-matcher-emitter"
125 
126 cl::OptionCategory AsmMatcherEmitterCat("Options for -gen-asm-matcher");
127 
128 static cl::opt<std::string>
129     MatchPrefix("match-prefix", cl::init(""),
130                 cl::desc("Only match instructions with the given prefix"),
131                 cl::cat(AsmMatcherEmitterCat));
132 
133 namespace {
134 class AsmMatcherInfo;
135 
136 // Register sets are used as keys in some second-order sets TableGen creates
137 // when generating its data structures. This means that the order of two
138 // RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and
139 // can even affect compiler output (at least seen in diagnostics produced when
140 // all matches fail). So we use a type that sorts them consistently.
141 typedef std::set<Record*, LessRecordByID> RegisterSet;
142 
143 class AsmMatcherEmitter {
144   RecordKeeper &Records;
145 public:
146   AsmMatcherEmitter(RecordKeeper &R) : Records(R) {}
147 
148   void run(raw_ostream &o);
149 };
150 
151 /// ClassInfo - Helper class for storing the information about a particular
152 /// class of operands which can be matched.
153 struct ClassInfo {
154   enum ClassInfoKind {
155     /// Invalid kind, for use as a sentinel value.
156     Invalid = 0,
157 
158     /// The class for a particular token.
159     Token,
160 
161     /// The (first) register class, subsequent register classes are
162     /// RegisterClass0+1, and so on.
163     RegisterClass0,
164 
165     /// The (first) user defined class, subsequent user defined classes are
166     /// UserClass0+1, and so on.
167     UserClass0 = 1<<16
168   };
169 
170   /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
171   /// N) for the Nth user defined class.
172   unsigned Kind;
173 
174   /// SuperClasses - The super classes of this class. Note that for simplicities
175   /// sake user operands only record their immediate super class, while register
176   /// operands include all superclasses.
177   std::vector<ClassInfo*> SuperClasses;
178 
179   /// Name - The full class name, suitable for use in an enum.
180   std::string Name;
181 
182   /// ClassName - The unadorned generic name for this class (e.g., Token).
183   std::string ClassName;
184 
185   /// ValueName - The name of the value this class represents; for a token this
186   /// is the literal token string, for an operand it is the TableGen class (or
187   /// empty if this is a derived class).
188   std::string ValueName;
189 
190   /// PredicateMethod - The name of the operand method to test whether the
191   /// operand matches this class; this is not valid for Token or register kinds.
192   std::string PredicateMethod;
193 
194   /// RenderMethod - The name of the operand method to add this operand to an
195   /// MCInst; this is not valid for Token or register kinds.
196   std::string RenderMethod;
197 
198   /// ParserMethod - The name of the operand method to do a target specific
199   /// parsing on the operand.
200   std::string ParserMethod;
201 
202   /// For register classes: the records for all the registers in this class.
203   RegisterSet Registers;
204 
205   /// For custom match classes: the diagnostic kind for when the predicate fails.
206   std::string DiagnosticType;
207 
208   /// For custom match classes: the diagnostic string for when the predicate fails.
209   std::string DiagnosticString;
210 
211   /// Is this operand optional and not always required.
212   bool IsOptional;
213 
214   /// DefaultMethod - The name of the method that returns the default operand
215   /// for optional operand
216   std::string DefaultMethod;
217 
218 public:
219   /// isRegisterClass() - Check if this is a register class.
220   bool isRegisterClass() const {
221     return Kind >= RegisterClass0 && Kind < UserClass0;
222   }
223 
224   /// isUserClass() - Check if this is a user defined class.
225   bool isUserClass() const {
226     return Kind >= UserClass0;
227   }
228 
229   /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes
230   /// are related if they are in the same class hierarchy.
231   bool isRelatedTo(const ClassInfo &RHS) const {
232     // Tokens are only related to tokens.
233     if (Kind == Token || RHS.Kind == Token)
234       return Kind == Token && RHS.Kind == Token;
235 
236     // Registers classes are only related to registers classes, and only if
237     // their intersection is non-empty.
238     if (isRegisterClass() || RHS.isRegisterClass()) {
239       if (!isRegisterClass() || !RHS.isRegisterClass())
240         return false;
241 
242       RegisterSet Tmp;
243       std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin());
244       std::set_intersection(Registers.begin(), Registers.end(),
245                             RHS.Registers.begin(), RHS.Registers.end(),
246                             II, LessRecordByID());
247 
248       return !Tmp.empty();
249     }
250 
251     // Otherwise we have two users operands; they are related if they are in the
252     // same class hierarchy.
253     //
254     // FIXME: This is an oversimplification, they should only be related if they
255     // intersect, however we don't have that information.
256     assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
257     const ClassInfo *Root = this;
258     while (!Root->SuperClasses.empty())
259       Root = Root->SuperClasses.front();
260 
261     const ClassInfo *RHSRoot = &RHS;
262     while (!RHSRoot->SuperClasses.empty())
263       RHSRoot = RHSRoot->SuperClasses.front();
264 
265     return Root == RHSRoot;
266   }
267 
268   /// isSubsetOf - Test whether this class is a subset of \p RHS.
269   bool isSubsetOf(const ClassInfo &RHS) const {
270     // This is a subset of RHS if it is the same class...
271     if (this == &RHS)
272       return true;
273 
274     // ... or if any of its super classes are a subset of RHS.
275     for (const ClassInfo *CI : SuperClasses)
276       if (CI->isSubsetOf(RHS))
277         return true;
278 
279     return false;
280   }
281 
282   int getTreeDepth() const {
283     int Depth = 0;
284     const ClassInfo *Root = this;
285     while (!Root->SuperClasses.empty()) {
286       Depth++;
287       Root = Root->SuperClasses.front();
288     }
289     return Depth;
290   }
291 
292   const ClassInfo *findRoot() const {
293     const ClassInfo *Root = this;
294     while (!Root->SuperClasses.empty())
295       Root = Root->SuperClasses.front();
296     return Root;
297   }
298 
299   /// Compare two classes. This does not produce a total ordering, but does
300   /// guarantee that subclasses are sorted before their parents, and that the
301   /// ordering is transitive.
302   bool operator<(const ClassInfo &RHS) const {
303     if (this == &RHS)
304       return false;
305 
306     // First, enforce the ordering between the three different types of class.
307     // Tokens sort before registers, which sort before user classes.
308     if (Kind == Token) {
309       if (RHS.Kind != Token)
310         return true;
311       assert(RHS.Kind == Token);
312     } else if (isRegisterClass()) {
313       if (RHS.Kind == Token)
314         return false;
315       else if (RHS.isUserClass())
316         return true;
317       assert(RHS.isRegisterClass());
318     } else if (isUserClass()) {
319       if (!RHS.isUserClass())
320         return false;
321       assert(RHS.isUserClass());
322     } else {
323       llvm_unreachable("Unknown ClassInfoKind");
324     }
325 
326     if (Kind == Token || isUserClass()) {
327       // Related tokens and user classes get sorted by depth in the inheritence
328       // tree (so that subclasses are before their parents).
329       if (isRelatedTo(RHS)) {
330         if (getTreeDepth() > RHS.getTreeDepth())
331           return true;
332         if (getTreeDepth() < RHS.getTreeDepth())
333           return false;
334       } else {
335         // Unrelated tokens and user classes are ordered by the name of their
336         // root nodes, so that there is a consistent ordering between
337         // unconnected trees.
338         return findRoot()->ValueName < RHS.findRoot()->ValueName;
339       }
340     } else if (isRegisterClass()) {
341       // For register sets, sort by number of registers. This guarantees that
342       // a set will always sort before all of it's strict supersets.
343       if (Registers.size() != RHS.Registers.size())
344         return Registers.size() < RHS.Registers.size();
345     } else {
346       llvm_unreachable("Unknown ClassInfoKind");
347     }
348 
349     // FIXME: We should be able to just return false here, as we only need a
350     // partial order (we use stable sorts, so this is deterministic) and the
351     // name of a class shouldn't be significant. However, some of the backends
352     // accidentally rely on this behaviour, so it will have to stay like this
353     // until they are fixed.
354     return ValueName < RHS.ValueName;
355   }
356 };
357 
358 class AsmVariantInfo {
359 public:
360   StringRef RegisterPrefix;
361   StringRef TokenizingCharacters;
362   StringRef SeparatorCharacters;
363   StringRef BreakCharacters;
364   StringRef Name;
365   int AsmVariantNo;
366 };
367 
368 /// MatchableInfo - Helper class for storing the necessary information for an
369 /// instruction or alias which is capable of being matched.
370 struct MatchableInfo {
371   struct AsmOperand {
372     /// Token - This is the token that the operand came from.
373     StringRef Token;
374 
375     /// The unique class instance this operand should match.
376     ClassInfo *Class;
377 
378     /// The operand name this is, if anything.
379     StringRef SrcOpName;
380 
381     /// The suboperand index within SrcOpName, or -1 for the entire operand.
382     int SubOpIdx;
383 
384     /// Whether the token is "isolated", i.e., it is preceded and followed
385     /// by separators.
386     bool IsIsolatedToken;
387 
388     /// Register record if this token is singleton register.
389     Record *SingletonReg;
390 
391     explicit AsmOperand(bool IsIsolatedToken, StringRef T)
392         : Token(T), Class(nullptr), SubOpIdx(-1),
393           IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {}
394   };
395 
396   /// ResOperand - This represents a single operand in the result instruction
397   /// generated by the match.  In cases (like addressing modes) where a single
398   /// assembler operand expands to multiple MCOperands, this represents the
399   /// single assembler operand, not the MCOperand.
400   struct ResOperand {
401     enum {
402       /// RenderAsmOperand - This represents an operand result that is
403       /// generated by calling the render method on the assembly operand.  The
404       /// corresponding AsmOperand is specified by AsmOperandNum.
405       RenderAsmOperand,
406 
407       /// TiedOperand - This represents a result operand that is a duplicate of
408       /// a previous result operand.
409       TiedOperand,
410 
411       /// ImmOperand - This represents an immediate value that is dumped into
412       /// the operand.
413       ImmOperand,
414 
415       /// RegOperand - This represents a fixed register that is dumped in.
416       RegOperand
417     } Kind;
418 
419     union {
420       /// This is the operand # in the AsmOperands list that this should be
421       /// copied from.
422       unsigned AsmOperandNum;
423 
424       /// TiedOperandNum - This is the (earlier) result operand that should be
425       /// copied from.
426       unsigned TiedOperandNum;
427 
428       /// ImmVal - This is the immediate value added to the instruction.
429       int64_t ImmVal;
430 
431       /// Register - This is the register record.
432       Record *Register;
433     };
434 
435     /// MINumOperands - The number of MCInst operands populated by this
436     /// operand.
437     unsigned MINumOperands;
438 
439     static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
440       ResOperand X;
441       X.Kind = RenderAsmOperand;
442       X.AsmOperandNum = AsmOpNum;
443       X.MINumOperands = NumOperands;
444       return X;
445     }
446 
447     static ResOperand getTiedOp(unsigned TiedOperandNum) {
448       ResOperand X;
449       X.Kind = TiedOperand;
450       X.TiedOperandNum = TiedOperandNum;
451       X.MINumOperands = 1;
452       return X;
453     }
454 
455     static ResOperand getImmOp(int64_t Val) {
456       ResOperand X;
457       X.Kind = ImmOperand;
458       X.ImmVal = Val;
459       X.MINumOperands = 1;
460       return X;
461     }
462 
463     static ResOperand getRegOp(Record *Reg) {
464       ResOperand X;
465       X.Kind = RegOperand;
466       X.Register = Reg;
467       X.MINumOperands = 1;
468       return X;
469     }
470   };
471 
472   /// AsmVariantID - Target's assembly syntax variant no.
473   int AsmVariantID;
474 
475   /// AsmString - The assembly string for this instruction (with variants
476   /// removed), e.g. "movsx $src, $dst".
477   std::string AsmString;
478 
479   /// TheDef - This is the definition of the instruction or InstAlias that this
480   /// matchable came from.
481   Record *const TheDef;
482 
483   /// DefRec - This is the definition that it came from.
484   PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
485 
486   const CodeGenInstruction *getResultInst() const {
487     if (DefRec.is<const CodeGenInstruction*>())
488       return DefRec.get<const CodeGenInstruction*>();
489     return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
490   }
491 
492   /// ResOperands - This is the operand list that should be built for the result
493   /// MCInst.
494   SmallVector<ResOperand, 8> ResOperands;
495 
496   /// Mnemonic - This is the first token of the matched instruction, its
497   /// mnemonic.
498   StringRef Mnemonic;
499 
500   /// AsmOperands - The textual operands that this instruction matches,
501   /// annotated with a class and where in the OperandList they were defined.
502   /// This directly corresponds to the tokenized AsmString after the mnemonic is
503   /// removed.
504   SmallVector<AsmOperand, 8> AsmOperands;
505 
506   /// AsmOperandEqualityConstraints - an array of pairs holding operand
507   /// constraints.
508   /// Each constraint is represented as a pair holding position of the token of
509   /// the operand asm name.
510   /// For example, an "AsmString" "add $Vd.s, $Vn.s, $Xn" would be
511   /// split in the following list of tokens:
512   ///
513   ///    ['add', '$Vd', '.s', '$Vn', '.s', '$Xn']
514   ///
515   /// A constraint "$Vd = $Vn" (e.g. for a destructive operation) is rendered
516   /// as the pair {1,3} into this set (note that tokens are numbered starting
517   /// from 0).
518   SmallVector<std::pair<unsigned,unsigned>, 1> AsmOperandTiedConstraints;
519 
520   /// Predicates - The required subtarget features to match this instruction.
521   SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures;
522 
523   /// ConversionFnKind - The enum value which is passed to the generated
524   /// convertToMCInst to convert parsed operands into an MCInst for this
525   /// function.
526   std::string ConversionFnKind;
527 
528   /// If this instruction is deprecated in some form.
529   bool HasDeprecation;
530 
531   /// If this is an alias, this is use to determine whether or not to using
532   /// the conversion function defined by the instruction's AsmMatchConverter
533   /// or to use the function generated by the alias.
534   bool UseInstAsmMatchConverter;
535 
536   MatchableInfo(const CodeGenInstruction &CGI)
537     : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI),
538       UseInstAsmMatchConverter(true) {
539   }
540 
541   MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias)
542     : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef),
543       DefRec(Alias.release()),
544       UseInstAsmMatchConverter(
545         TheDef->getValueAsBit("UseInstAsmMatchConverter")) {
546   }
547 
548   // Could remove this and the dtor if PointerUnion supported unique_ptr
549   // elements with a dynamic failure/assertion (like the one below) in the case
550   // where it was copied while being in an owning state.
551   MatchableInfo(const MatchableInfo &RHS)
552       : AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString),
553         TheDef(RHS.TheDef), DefRec(RHS.DefRec), ResOperands(RHS.ResOperands),
554         Mnemonic(RHS.Mnemonic), AsmOperands(RHS.AsmOperands),
555         RequiredFeatures(RHS.RequiredFeatures),
556         ConversionFnKind(RHS.ConversionFnKind),
557         HasDeprecation(RHS.HasDeprecation),
558         UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) {
559     assert(!DefRec.is<const CodeGenInstAlias *>());
560   }
561 
562   ~MatchableInfo() {
563     delete DefRec.dyn_cast<const CodeGenInstAlias*>();
564   }
565 
566   // Two-operand aliases clone from the main matchable, but mark the second
567   // operand as a tied operand of the first for purposes of the assembler.
568   void formTwoOperandAlias(StringRef Constraint);
569 
570   void initialize(const AsmMatcherInfo &Info,
571                   SmallPtrSetImpl<Record*> &SingletonRegisters,
572                   AsmVariantInfo const &Variant,
573                   bool HasMnemonicFirst);
574 
575   /// validate - Return true if this matchable is a valid thing to match against
576   /// and perform a bunch of validity checking.
577   bool validate(StringRef CommentDelimiter, bool Hack) const;
578 
579   /// findAsmOperand - Find the AsmOperand with the specified name and
580   /// suboperand index.
581   int findAsmOperand(StringRef N, int SubOpIdx) const {
582     auto I = find_if(AsmOperands, [&](const AsmOperand &Op) {
583       return Op.SrcOpName == N && Op.SubOpIdx == SubOpIdx;
584     });
585     return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
586   }
587 
588   /// findAsmOperandNamed - Find the first AsmOperand with the specified name.
589   /// This does not check the suboperand index.
590   int findAsmOperandNamed(StringRef N) const {
591     auto I = find_if(AsmOperands,
592                      [&](const AsmOperand &Op) { return Op.SrcOpName == N; });
593     return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
594   }
595 
596   void buildInstructionResultOperands();
597   void buildAliasResultOperands();
598 
599   /// operator< - Compare two matchables.
600   bool operator<(const MatchableInfo &RHS) const {
601     // The primary comparator is the instruction mnemonic.
602     if (int Cmp = Mnemonic.compare(RHS.Mnemonic))
603       return Cmp == -1;
604 
605     if (AsmOperands.size() != RHS.AsmOperands.size())
606       return AsmOperands.size() < RHS.AsmOperands.size();
607 
608     // Compare lexicographically by operand. The matcher validates that other
609     // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith().
610     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
611       if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
612         return true;
613       if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
614         return false;
615     }
616 
617     // Give matches that require more features higher precedence. This is useful
618     // because we cannot define AssemblerPredicates with the negation of
619     // processor features. For example, ARM v6 "nop" may be either a HINT or
620     // MOV. With v6, we want to match HINT. The assembler has no way to
621     // predicate MOV under "NoV6", but HINT will always match first because it
622     // requires V6 while MOV does not.
623     if (RequiredFeatures.size() != RHS.RequiredFeatures.size())
624       return RequiredFeatures.size() > RHS.RequiredFeatures.size();
625 
626     return false;
627   }
628 
629   /// couldMatchAmbiguouslyWith - Check whether this matchable could
630   /// ambiguously match the same set of operands as \p RHS (without being a
631   /// strictly superior match).
632   bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const {
633     // The primary comparator is the instruction mnemonic.
634     if (Mnemonic != RHS.Mnemonic)
635       return false;
636 
637     // Different variants can't conflict.
638     if (AsmVariantID != RHS.AsmVariantID)
639       return false;
640 
641     // The number of operands is unambiguous.
642     if (AsmOperands.size() != RHS.AsmOperands.size())
643       return false;
644 
645     // Otherwise, make sure the ordering of the two instructions is unambiguous
646     // by checking that either (a) a token or operand kind discriminates them,
647     // or (b) the ordering among equivalent kinds is consistent.
648 
649     // Tokens and operand kinds are unambiguous (assuming a correct target
650     // specific parser).
651     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
652       if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
653           AsmOperands[i].Class->Kind == ClassInfo::Token)
654         if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
655             *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
656           return false;
657 
658     // Otherwise, this operand could commute if all operands are equivalent, or
659     // there is a pair of operands that compare less than and a pair that
660     // compare greater than.
661     bool HasLT = false, HasGT = false;
662     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
663       if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
664         HasLT = true;
665       if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
666         HasGT = true;
667     }
668 
669     return HasLT == HasGT;
670   }
671 
672   void dump() const;
673 
674 private:
675   void tokenizeAsmString(AsmMatcherInfo const &Info,
676                          AsmVariantInfo const &Variant);
677   void addAsmOperand(StringRef Token, bool IsIsolatedToken = false);
678 };
679 
680 struct OperandMatchEntry {
681   unsigned OperandMask;
682   const MatchableInfo* MI;
683   ClassInfo *CI;
684 
685   static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci,
686                                   unsigned opMask) {
687     OperandMatchEntry X;
688     X.OperandMask = opMask;
689     X.CI = ci;
690     X.MI = mi;
691     return X;
692   }
693 };
694 
695 class AsmMatcherInfo {
696 public:
697   /// Tracked Records
698   RecordKeeper &Records;
699 
700   /// The tablegen AsmParser record.
701   Record *AsmParser;
702 
703   /// Target - The target information.
704   CodeGenTarget &Target;
705 
706   /// The classes which are needed for matching.
707   std::forward_list<ClassInfo> Classes;
708 
709   /// The information on the matchables to match.
710   std::vector<std::unique_ptr<MatchableInfo>> Matchables;
711 
712   /// Info for custom matching operands by user defined methods.
713   std::vector<OperandMatchEntry> OperandMatchInfo;
714 
715   /// Map of Register records to their class information.
716   typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy;
717   RegisterClassesTy RegisterClasses;
718 
719   /// Map of Predicate records to their subtarget information.
720   std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures;
721 
722   /// Map of AsmOperandClass records to their class information.
723   std::map<Record*, ClassInfo*> AsmOperandClasses;
724 
725   /// Map of RegisterClass records to their class information.
726   std::map<Record*, ClassInfo*> RegisterClassClasses;
727 
728 private:
729   /// Map of token to class information which has already been constructed.
730   std::map<std::string, ClassInfo*> TokenClasses;
731 
732 private:
733   /// getTokenClass - Lookup or create the class for the given token.
734   ClassInfo *getTokenClass(StringRef Token);
735 
736   /// getOperandClass - Lookup or create the class for the given operand.
737   ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
738                              int SubOpIdx);
739   ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
740 
741   /// buildRegisterClasses - Build the ClassInfo* instances for register
742   /// classes.
743   void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters);
744 
745   /// buildOperandClasses - Build the ClassInfo* instances for user defined
746   /// operand classes.
747   void buildOperandClasses();
748 
749   void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
750                                         unsigned AsmOpIdx);
751   void buildAliasOperandReference(MatchableInfo *II, StringRef OpName,
752                                   MatchableInfo::AsmOperand &Op);
753 
754 public:
755   AsmMatcherInfo(Record *AsmParser,
756                  CodeGenTarget &Target,
757                  RecordKeeper &Records);
758 
759   /// Construct the various tables used during matching.
760   void buildInfo();
761 
762   /// buildOperandMatchInfo - Build the necessary information to handle user
763   /// defined operand parsing methods.
764   void buildOperandMatchInfo();
765 
766   /// getSubtargetFeature - Lookup or create the subtarget feature info for the
767   /// given operand.
768   const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
769     assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
770     const auto &I = SubtargetFeatures.find(Def);
771     return I == SubtargetFeatures.end() ? nullptr : &I->second;
772   }
773 
774   RecordKeeper &getRecords() const {
775     return Records;
776   }
777 
778   bool hasOptionalOperands() const {
779     return find_if(Classes, [](const ClassInfo &Class) {
780              return Class.IsOptional;
781            }) != Classes.end();
782   }
783 };
784 
785 } // end anonymous namespace
786 
787 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
788 LLVM_DUMP_METHOD void MatchableInfo::dump() const {
789   errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
790 
791   errs() << "  variant: " << AsmVariantID << "\n";
792 
793   for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
794     const AsmOperand &Op = AsmOperands[i];
795     errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
796     errs() << '\"' << Op.Token << "\"\n";
797   }
798 }
799 #endif
800 
801 static std::pair<StringRef, StringRef>
802 parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) {
803   // Split via the '='.
804   std::pair<StringRef, StringRef> Ops = S.split('=');
805   if (Ops.second == "")
806     PrintFatalError(Loc, "missing '=' in two-operand alias constraint");
807   // Trim whitespace and the leading '$' on the operand names.
808   size_t start = Ops.first.find_first_of('$');
809   if (start == std::string::npos)
810     PrintFatalError(Loc, "expected '$' prefix on asm operand name");
811   Ops.first = Ops.first.slice(start + 1, std::string::npos);
812   size_t end = Ops.first.find_last_of(" \t");
813   Ops.first = Ops.first.slice(0, end);
814   // Now the second operand.
815   start = Ops.second.find_first_of('$');
816   if (start == std::string::npos)
817     PrintFatalError(Loc, "expected '$' prefix on asm operand name");
818   Ops.second = Ops.second.slice(start + 1, std::string::npos);
819   end = Ops.second.find_last_of(" \t");
820   Ops.first = Ops.first.slice(0, end);
821   return Ops;
822 }
823 
824 void MatchableInfo::formTwoOperandAlias(StringRef Constraint) {
825   // Figure out which operands are aliased and mark them as tied.
826   std::pair<StringRef, StringRef> Ops =
827     parseTwoOperandConstraint(Constraint, TheDef->getLoc());
828 
829   // Find the AsmOperands that refer to the operands we're aliasing.
830   int SrcAsmOperand = findAsmOperandNamed(Ops.first);
831   int DstAsmOperand = findAsmOperandNamed(Ops.second);
832   if (SrcAsmOperand == -1)
833     PrintFatalError(TheDef->getLoc(),
834                     "unknown source two-operand alias operand '" + Ops.first +
835                     "'.");
836   if (DstAsmOperand == -1)
837     PrintFatalError(TheDef->getLoc(),
838                     "unknown destination two-operand alias operand '" +
839                     Ops.second + "'.");
840 
841   // Find the ResOperand that refers to the operand we're aliasing away
842   // and update it to refer to the combined operand instead.
843   for (ResOperand &Op : ResOperands) {
844     if (Op.Kind == ResOperand::RenderAsmOperand &&
845         Op.AsmOperandNum == (unsigned)SrcAsmOperand) {
846       Op.AsmOperandNum = DstAsmOperand;
847       break;
848     }
849   }
850   // Remove the AsmOperand for the alias operand.
851   AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand);
852   // Adjust the ResOperand references to any AsmOperands that followed
853   // the one we just deleted.
854   for (ResOperand &Op : ResOperands) {
855     switch(Op.Kind) {
856     default:
857       // Nothing to do for operands that don't reference AsmOperands.
858       break;
859     case ResOperand::RenderAsmOperand:
860       if (Op.AsmOperandNum > (unsigned)SrcAsmOperand)
861         --Op.AsmOperandNum;
862       break;
863     case ResOperand::TiedOperand:
864       if (Op.TiedOperandNum > (unsigned)SrcAsmOperand)
865         --Op.TiedOperandNum;
866       break;
867     }
868   }
869 }
870 
871 /// extractSingletonRegisterForAsmOperand - Extract singleton register,
872 /// if present, from specified token.
873 static void
874 extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op,
875                                       const AsmMatcherInfo &Info,
876                                       StringRef RegisterPrefix) {
877   StringRef Tok = Op.Token;
878 
879   // If this token is not an isolated token, i.e., it isn't separated from
880   // other tokens (e.g. with whitespace), don't interpret it as a register name.
881   if (!Op.IsIsolatedToken)
882     return;
883 
884   if (RegisterPrefix.empty()) {
885     std::string LoweredTok = Tok.lower();
886     if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
887       Op.SingletonReg = Reg->TheDef;
888     return;
889   }
890 
891   if (!Tok.startswith(RegisterPrefix))
892     return;
893 
894   StringRef RegName = Tok.substr(RegisterPrefix.size());
895   if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
896     Op.SingletonReg = Reg->TheDef;
897 
898   // If there is no register prefix (i.e. "%" in "%eax"), then this may
899   // be some random non-register token, just ignore it.
900 }
901 
902 static Optional<size_t>
903 getAsmOperandIdx(const SmallVectorImpl<MatchableInfo::AsmOperand> &AsmOperands,
904                  std::string Name) {
905   const auto SymbolicName = std::string("$") + Name;
906   const auto Pos =
907       std::find_if(AsmOperands.begin(), AsmOperands.end(),
908                    [&SymbolicName](const MatchableInfo::AsmOperand &A) {
909         return A.Token == SymbolicName;
910       });
911 
912   if (Pos == AsmOperands.end())
913     return Optional<size_t>();
914 
915   return Optional<size_t>(std::distance(AsmOperands.begin(), Pos));
916 }
917 
918 void MatchableInfo::initialize(const AsmMatcherInfo &Info,
919                                SmallPtrSetImpl<Record*> &SingletonRegisters,
920                                AsmVariantInfo const &Variant,
921                                bool HasMnemonicFirst) {
922   AsmVariantID = Variant.AsmVariantNo;
923   AsmString =
924     CodeGenInstruction::FlattenAsmStringVariants(AsmString,
925                                                  Variant.AsmVariantNo);
926 
927   tokenizeAsmString(Info, Variant);
928 
929   // The first token of the instruction is the mnemonic, which must be a
930   // simple string, not a $foo variable or a singleton register.
931   if (AsmOperands.empty())
932     PrintFatalError(TheDef->getLoc(),
933                   "Instruction '" + TheDef->getName() + "' has no tokens");
934 
935   assert(!AsmOperands[0].Token.empty());
936   if (HasMnemonicFirst) {
937     Mnemonic = AsmOperands[0].Token;
938     if (Mnemonic[0] == '$')
939       PrintFatalError(TheDef->getLoc(),
940                       "Invalid instruction mnemonic '" + Mnemonic + "'!");
941 
942     // Remove the first operand, it is tracked in the mnemonic field.
943     AsmOperands.erase(AsmOperands.begin());
944   } else if (AsmOperands[0].Token[0] != '$')
945     Mnemonic = AsmOperands[0].Token;
946 
947   // Compute the require features.
948   for (Record *Predicate : TheDef->getValueAsListOfDefs("Predicates"))
949     if (const SubtargetFeatureInfo *Feature =
950             Info.getSubtargetFeature(Predicate))
951       RequiredFeatures.push_back(Feature);
952 
953   // Collect singleton registers, if used.
954   for (MatchableInfo::AsmOperand &Op : AsmOperands) {
955     extractSingletonRegisterForAsmOperand(Op, Info, Variant.RegisterPrefix);
956     if (Record *Reg = Op.SingletonReg)
957       SingletonRegisters.insert(Reg);
958   }
959 
960   const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask");
961   if (!DepMask)
962     DepMask = TheDef->getValue("ComplexDeprecationPredicate");
963 
964   HasDeprecation =
965       DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false;
966 
967   // Do not generate tied operand info if the instruction does not
968   // use the default AsmMatchConverter.
969   if (TheDef->getValue("AsmMatchConverter") &&
970       !TheDef->getValueAsString("AsmMatchConverter").empty())
971     return;
972 
973   // Generate tied operand contraints info.
974   const auto &CGIOperands = getResultInst()->Operands;
975   for (const auto &CGIOp : CGIOperands) {
976     int TiedReg = CGIOp.getTiedRegister();
977     if (TiedReg == -1)
978       continue;
979 
980     Optional<size_t> LHSIdx = getAsmOperandIdx(AsmOperands, CGIOp.Name);
981     Optional<size_t> RHSIdx =
982         getAsmOperandIdx(AsmOperands, CGIOperands[TiedReg].Name);
983     // Skipping operands with constraint but no reference in the
984     // AsmString. No need to throw a warning, as it's normal to have
985     // a $dst operand in the outs dag that is constrained to a $src
986     // operand in the ins dag but that does not appear in the AsmString.
987     if (!LHSIdx || !RHSIdx)
988       continue;
989 
990     // Add the constraint. Using min/max as we consider constraint
991     // pair {A,B} and {B,A} the same
992     size_t AddMnemonicIdx = HasMnemonicFirst;
993     AsmOperandTiedConstraints.emplace_back(
994         std::min(*LHSIdx, *RHSIdx) + AddMnemonicIdx,
995         std::max(*LHSIdx, *RHSIdx) + AddMnemonicIdx);
996   }
997 }
998 
999 /// Append an AsmOperand for the given substring of AsmString.
1000 void MatchableInfo::addAsmOperand(StringRef Token, bool IsIsolatedToken) {
1001   AsmOperands.push_back(AsmOperand(IsIsolatedToken, Token));
1002 }
1003 
1004 /// tokenizeAsmString - Tokenize a simplified assembly string.
1005 void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info,
1006                                       AsmVariantInfo const &Variant) {
1007   StringRef String = AsmString;
1008   size_t Prev = 0;
1009   bool InTok = false;
1010   bool IsIsolatedToken = true;
1011   for (size_t i = 0, e = String.size(); i != e; ++i) {
1012     char Char = String[i];
1013     if (Variant.BreakCharacters.find(Char) != std::string::npos) {
1014       if (InTok) {
1015         addAsmOperand(String.slice(Prev, i), false);
1016         Prev = i;
1017         IsIsolatedToken = false;
1018       }
1019       InTok = true;
1020       continue;
1021     }
1022     if (Variant.TokenizingCharacters.find(Char) != std::string::npos) {
1023       if (InTok) {
1024         addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
1025         InTok = false;
1026         IsIsolatedToken = false;
1027       }
1028       addAsmOperand(String.slice(i, i + 1), IsIsolatedToken);
1029       Prev = i + 1;
1030       IsIsolatedToken = true;
1031       continue;
1032     }
1033     if (Variant.SeparatorCharacters.find(Char) != std::string::npos) {
1034       if (InTok) {
1035         addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
1036         InTok = false;
1037       }
1038       Prev = i + 1;
1039       IsIsolatedToken = true;
1040       continue;
1041     }
1042 
1043     switch (Char) {
1044     case '\\':
1045       if (InTok) {
1046         addAsmOperand(String.slice(Prev, i), false);
1047         InTok = false;
1048         IsIsolatedToken = false;
1049       }
1050       ++i;
1051       assert(i != String.size() && "Invalid quoted character");
1052       addAsmOperand(String.slice(i, i + 1), IsIsolatedToken);
1053       Prev = i + 1;
1054       IsIsolatedToken = false;
1055       break;
1056 
1057     case '$': {
1058       if (InTok) {
1059         addAsmOperand(String.slice(Prev, i), false);
1060         InTok = false;
1061         IsIsolatedToken = false;
1062       }
1063 
1064       // If this isn't "${", start new identifier looking like "$xxx"
1065       if (i + 1 == String.size() || String[i + 1] != '{') {
1066         Prev = i;
1067         break;
1068       }
1069 
1070       size_t EndPos = String.find('}', i);
1071       assert(EndPos != StringRef::npos &&
1072              "Missing brace in operand reference!");
1073       addAsmOperand(String.slice(i, EndPos+1), IsIsolatedToken);
1074       Prev = EndPos + 1;
1075       i = EndPos;
1076       IsIsolatedToken = false;
1077       break;
1078     }
1079 
1080     default:
1081       InTok = true;
1082       break;
1083     }
1084   }
1085   if (InTok && Prev != String.size())
1086     addAsmOperand(String.substr(Prev), IsIsolatedToken);
1087 }
1088 
1089 bool MatchableInfo::validate(StringRef CommentDelimiter, bool Hack) const {
1090   // Reject matchables with no .s string.
1091   if (AsmString.empty())
1092     PrintFatalError(TheDef->getLoc(), "instruction with empty asm string");
1093 
1094   // Reject any matchables with a newline in them, they should be marked
1095   // isCodeGenOnly if they are pseudo instructions.
1096   if (AsmString.find('\n') != std::string::npos)
1097     PrintFatalError(TheDef->getLoc(),
1098                   "multiline instruction is not valid for the asmparser, "
1099                   "mark it isCodeGenOnly");
1100 
1101   // Remove comments from the asm string.  We know that the asmstring only
1102   // has one line.
1103   if (!CommentDelimiter.empty() &&
1104       StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
1105     PrintFatalError(TheDef->getLoc(),
1106                   "asmstring for instruction has comment character in it, "
1107                   "mark it isCodeGenOnly");
1108 
1109   // Reject matchables with operand modifiers, these aren't something we can
1110   // handle, the target should be refactored to use operands instead of
1111   // modifiers.
1112   //
1113   // Also, check for instructions which reference the operand multiple times;
1114   // this implies a constraint we would not honor.
1115   std::set<std::string> OperandNames;
1116   for (const AsmOperand &Op : AsmOperands) {
1117     StringRef Tok = Op.Token;
1118     if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
1119       PrintFatalError(TheDef->getLoc(),
1120                       "matchable with operand modifier '" + Tok +
1121                       "' not supported by asm matcher.  Mark isCodeGenOnly!");
1122 
1123     // Verify that any operand is only mentioned once.
1124     // We reject aliases and ignore instructions for now.
1125     if (Tok[0] == '$' && !OperandNames.insert(Tok).second) {
1126       if (!Hack)
1127         PrintFatalError(TheDef->getLoc(),
1128                         "ERROR: matchable with tied operand '" + Tok +
1129                         "' can never be matched!");
1130       // FIXME: Should reject these.  The ARM backend hits this with $lane in a
1131       // bunch of instructions.  It is unclear what the right answer is.
1132       DEBUG({
1133         errs() << "warning: '" << TheDef->getName() << "': "
1134                << "ignoring instruction with tied operand '"
1135                << Tok << "'\n";
1136       });
1137       return false;
1138     }
1139   }
1140 
1141   return true;
1142 }
1143 
1144 static std::string getEnumNameForToken(StringRef Str) {
1145   std::string Res;
1146 
1147   for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
1148     switch (*it) {
1149     case '*': Res += "_STAR_"; break;
1150     case '%': Res += "_PCT_"; break;
1151     case ':': Res += "_COLON_"; break;
1152     case '!': Res += "_EXCLAIM_"; break;
1153     case '.': Res += "_DOT_"; break;
1154     case '<': Res += "_LT_"; break;
1155     case '>': Res += "_GT_"; break;
1156     case '-': Res += "_MINUS_"; break;
1157     default:
1158       if ((*it >= 'A' && *it <= 'Z') ||
1159           (*it >= 'a' && *it <= 'z') ||
1160           (*it >= '0' && *it <= '9'))
1161         Res += *it;
1162       else
1163         Res += "_" + utostr((unsigned) *it) + "_";
1164     }
1165   }
1166 
1167   return Res;
1168 }
1169 
1170 ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
1171   ClassInfo *&Entry = TokenClasses[Token];
1172 
1173   if (!Entry) {
1174     Classes.emplace_front();
1175     Entry = &Classes.front();
1176     Entry->Kind = ClassInfo::Token;
1177     Entry->ClassName = "Token";
1178     Entry->Name = "MCK_" + getEnumNameForToken(Token);
1179     Entry->ValueName = Token;
1180     Entry->PredicateMethod = "<invalid>";
1181     Entry->RenderMethod = "<invalid>";
1182     Entry->ParserMethod = "";
1183     Entry->DiagnosticType = "";
1184     Entry->IsOptional = false;
1185     Entry->DefaultMethod = "<invalid>";
1186   }
1187 
1188   return Entry;
1189 }
1190 
1191 ClassInfo *
1192 AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
1193                                 int SubOpIdx) {
1194   Record *Rec = OI.Rec;
1195   if (SubOpIdx != -1)
1196     Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
1197   return getOperandClass(Rec, SubOpIdx);
1198 }
1199 
1200 ClassInfo *
1201 AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
1202   if (Rec->isSubClassOf("RegisterOperand")) {
1203     // RegisterOperand may have an associated ParserMatchClass. If it does,
1204     // use it, else just fall back to the underlying register class.
1205     const RecordVal *R = Rec->getValue("ParserMatchClass");
1206     if (!R || !R->getValue())
1207       PrintFatalError("Record `" + Rec->getName() +
1208         "' does not have a ParserMatchClass!\n");
1209 
1210     if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) {
1211       Record *MatchClass = DI->getDef();
1212       if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1213         return CI;
1214     }
1215 
1216     // No custom match class. Just use the register class.
1217     Record *ClassRec = Rec->getValueAsDef("RegClass");
1218     if (!ClassRec)
1219       PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
1220                     "' has no associated register class!\n");
1221     if (ClassInfo *CI = RegisterClassClasses[ClassRec])
1222       return CI;
1223     PrintFatalError(Rec->getLoc(), "register class has no class info!");
1224   }
1225 
1226   if (Rec->isSubClassOf("RegisterClass")) {
1227     if (ClassInfo *CI = RegisterClassClasses[Rec])
1228       return CI;
1229     PrintFatalError(Rec->getLoc(), "register class has no class info!");
1230   }
1231 
1232   if (!Rec->isSubClassOf("Operand"))
1233     PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() +
1234                   "' does not derive from class Operand!\n");
1235   Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1236   if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1237     return CI;
1238 
1239   PrintFatalError(Rec->getLoc(), "operand has no match class!");
1240 }
1241 
1242 struct LessRegisterSet {
1243   bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const {
1244     // std::set<T> defines its own compariso "operator<", but it
1245     // performs a lexicographical comparison by T's innate comparison
1246     // for some reason. We don't want non-deterministic pointer
1247     // comparisons so use this instead.
1248     return std::lexicographical_compare(LHS.begin(), LHS.end(),
1249                                         RHS.begin(), RHS.end(),
1250                                         LessRecordByID());
1251   }
1252 };
1253 
1254 void AsmMatcherInfo::
1255 buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) {
1256   const auto &Registers = Target.getRegBank().getRegisters();
1257   auto &RegClassList = Target.getRegBank().getRegClasses();
1258 
1259   typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet;
1260 
1261   // The register sets used for matching.
1262   RegisterSetSet RegisterSets;
1263 
1264   // Gather the defined sets.
1265   for (const CodeGenRegisterClass &RC : RegClassList)
1266     RegisterSets.insert(
1267         RegisterSet(RC.getOrder().begin(), RC.getOrder().end()));
1268 
1269   // Add any required singleton sets.
1270   for (Record *Rec : SingletonRegisters) {
1271     RegisterSets.insert(RegisterSet(&Rec, &Rec + 1));
1272   }
1273 
1274   // Introduce derived sets where necessary (when a register does not determine
1275   // a unique register set class), and build the mapping of registers to the set
1276   // they should classify to.
1277   std::map<Record*, RegisterSet> RegisterMap;
1278   for (const CodeGenRegister &CGR : Registers) {
1279     // Compute the intersection of all sets containing this register.
1280     RegisterSet ContainingSet;
1281 
1282     for (const RegisterSet &RS : RegisterSets) {
1283       if (!RS.count(CGR.TheDef))
1284         continue;
1285 
1286       if (ContainingSet.empty()) {
1287         ContainingSet = RS;
1288         continue;
1289       }
1290 
1291       RegisterSet Tmp;
1292       std::swap(Tmp, ContainingSet);
1293       std::insert_iterator<RegisterSet> II(ContainingSet,
1294                                            ContainingSet.begin());
1295       std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II,
1296                             LessRecordByID());
1297     }
1298 
1299     if (!ContainingSet.empty()) {
1300       RegisterSets.insert(ContainingSet);
1301       RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
1302     }
1303   }
1304 
1305   // Construct the register classes.
1306   std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses;
1307   unsigned Index = 0;
1308   for (const RegisterSet &RS : RegisterSets) {
1309     Classes.emplace_front();
1310     ClassInfo *CI = &Classes.front();
1311     CI->Kind = ClassInfo::RegisterClass0 + Index;
1312     CI->ClassName = "Reg" + utostr(Index);
1313     CI->Name = "MCK_Reg" + utostr(Index);
1314     CI->ValueName = "";
1315     CI->PredicateMethod = ""; // unused
1316     CI->RenderMethod = "addRegOperands";
1317     CI->Registers = RS;
1318     // FIXME: diagnostic type.
1319     CI->DiagnosticType = "";
1320     CI->IsOptional = false;
1321     CI->DefaultMethod = ""; // unused
1322     RegisterSetClasses.insert(std::make_pair(RS, CI));
1323     ++Index;
1324   }
1325 
1326   // Find the superclasses; we could compute only the subgroup lattice edges,
1327   // but there isn't really a point.
1328   for (const RegisterSet &RS : RegisterSets) {
1329     ClassInfo *CI = RegisterSetClasses[RS];
1330     for (const RegisterSet &RS2 : RegisterSets)
1331       if (RS != RS2 &&
1332           std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(),
1333                         LessRecordByID()))
1334         CI->SuperClasses.push_back(RegisterSetClasses[RS2]);
1335   }
1336 
1337   // Name the register classes which correspond to a user defined RegisterClass.
1338   for (const CodeGenRegisterClass &RC : RegClassList) {
1339     // Def will be NULL for non-user defined register classes.
1340     Record *Def = RC.getDef();
1341     if (!Def)
1342       continue;
1343     ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(),
1344                                                    RC.getOrder().end())];
1345     if (CI->ValueName.empty()) {
1346       CI->ClassName = RC.getName();
1347       CI->Name = "MCK_" + RC.getName();
1348       CI->ValueName = RC.getName();
1349     } else
1350       CI->ValueName = CI->ValueName + "," + RC.getName();
1351 
1352     Init *DiagnosticType = Def->getValueInit("DiagnosticType");
1353     if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
1354       CI->DiagnosticType = SI->getValue();
1355 
1356     Init *DiagnosticString = Def->getValueInit("DiagnosticString");
1357     if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString))
1358       CI->DiagnosticString = SI->getValue();
1359 
1360     // If we have a diagnostic string but the diagnostic type is not specified
1361     // explicitly, create an anonymous diagnostic type.
1362     if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty())
1363       CI->DiagnosticType = RC.getName();
1364 
1365     RegisterClassClasses.insert(std::make_pair(Def, CI));
1366   }
1367 
1368   // Populate the map for individual registers.
1369   for (std::map<Record*, RegisterSet>::iterator it = RegisterMap.begin(),
1370          ie = RegisterMap.end(); it != ie; ++it)
1371     RegisterClasses[it->first] = RegisterSetClasses[it->second];
1372 
1373   // Name the register classes which correspond to singleton registers.
1374   for (Record *Rec : SingletonRegisters) {
1375     ClassInfo *CI = RegisterClasses[Rec];
1376     assert(CI && "Missing singleton register class info!");
1377 
1378     if (CI->ValueName.empty()) {
1379       CI->ClassName = Rec->getName();
1380       CI->Name = "MCK_" + Rec->getName().str();
1381       CI->ValueName = Rec->getName();
1382     } else
1383       CI->ValueName = CI->ValueName + "," + Rec->getName().str();
1384   }
1385 }
1386 
1387 void AsmMatcherInfo::buildOperandClasses() {
1388   std::vector<Record*> AsmOperands =
1389     Records.getAllDerivedDefinitions("AsmOperandClass");
1390 
1391   // Pre-populate AsmOperandClasses map.
1392   for (Record *Rec : AsmOperands) {
1393     Classes.emplace_front();
1394     AsmOperandClasses[Rec] = &Classes.front();
1395   }
1396 
1397   unsigned Index = 0;
1398   for (Record *Rec : AsmOperands) {
1399     ClassInfo *CI = AsmOperandClasses[Rec];
1400     CI->Kind = ClassInfo::UserClass0 + Index;
1401 
1402     ListInit *Supers = Rec->getValueAsListInit("SuperClasses");
1403     for (Init *I : Supers->getValues()) {
1404       DefInit *DI = dyn_cast<DefInit>(I);
1405       if (!DI) {
1406         PrintError(Rec->getLoc(), "Invalid super class reference!");
1407         continue;
1408       }
1409 
1410       ClassInfo *SC = AsmOperandClasses[DI->getDef()];
1411       if (!SC)
1412         PrintError(Rec->getLoc(), "Invalid super class reference!");
1413       else
1414         CI->SuperClasses.push_back(SC);
1415     }
1416     CI->ClassName = Rec->getValueAsString("Name");
1417     CI->Name = "MCK_" + CI->ClassName;
1418     CI->ValueName = Rec->getName();
1419 
1420     // Get or construct the predicate method name.
1421     Init *PMName = Rec->getValueInit("PredicateMethod");
1422     if (StringInit *SI = dyn_cast<StringInit>(PMName)) {
1423       CI->PredicateMethod = SI->getValue();
1424     } else {
1425       assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!");
1426       CI->PredicateMethod = "is" + CI->ClassName;
1427     }
1428 
1429     // Get or construct the render method name.
1430     Init *RMName = Rec->getValueInit("RenderMethod");
1431     if (StringInit *SI = dyn_cast<StringInit>(RMName)) {
1432       CI->RenderMethod = SI->getValue();
1433     } else {
1434       assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!");
1435       CI->RenderMethod = "add" + CI->ClassName + "Operands";
1436     }
1437 
1438     // Get the parse method name or leave it as empty.
1439     Init *PRMName = Rec->getValueInit("ParserMethod");
1440     if (StringInit *SI = dyn_cast<StringInit>(PRMName))
1441       CI->ParserMethod = SI->getValue();
1442 
1443     // Get the diagnostic type and string or leave them as empty.
1444     Init *DiagnosticType = Rec->getValueInit("DiagnosticType");
1445     if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
1446       CI->DiagnosticType = SI->getValue();
1447     Init *DiagnosticString = Rec->getValueInit("DiagnosticString");
1448     if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString))
1449       CI->DiagnosticString = SI->getValue();
1450     // If we have a DiagnosticString, we need a DiagnosticType for use within
1451     // the matcher.
1452     if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty())
1453       CI->DiagnosticType = CI->ClassName;
1454 
1455     Init *IsOptional = Rec->getValueInit("IsOptional");
1456     if (BitInit *BI = dyn_cast<BitInit>(IsOptional))
1457       CI->IsOptional = BI->getValue();
1458 
1459     // Get or construct the default method name.
1460     Init *DMName = Rec->getValueInit("DefaultMethod");
1461     if (StringInit *SI = dyn_cast<StringInit>(DMName)) {
1462       CI->DefaultMethod = SI->getValue();
1463     } else {
1464       assert(isa<UnsetInit>(DMName) && "Unexpected DefaultMethod field!");
1465       CI->DefaultMethod = "default" + CI->ClassName + "Operands";
1466     }
1467 
1468     ++Index;
1469   }
1470 }
1471 
1472 AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
1473                                CodeGenTarget &target,
1474                                RecordKeeper &records)
1475   : Records(records), AsmParser(asmParser), Target(target) {
1476 }
1477 
1478 /// buildOperandMatchInfo - Build the necessary information to handle user
1479 /// defined operand parsing methods.
1480 void AsmMatcherInfo::buildOperandMatchInfo() {
1481 
1482   /// Map containing a mask with all operands indices that can be found for
1483   /// that class inside a instruction.
1484   typedef std::map<ClassInfo *, unsigned, less_ptr<ClassInfo>> OpClassMaskTy;
1485   OpClassMaskTy OpClassMask;
1486 
1487   for (const auto &MI : Matchables) {
1488     OpClassMask.clear();
1489 
1490     // Keep track of all operands of this instructions which belong to the
1491     // same class.
1492     for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
1493       const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
1494       if (Op.Class->ParserMethod.empty())
1495         continue;
1496       unsigned &OperandMask = OpClassMask[Op.Class];
1497       OperandMask |= (1 << i);
1498     }
1499 
1500     // Generate operand match info for each mnemonic/operand class pair.
1501     for (const auto &OCM : OpClassMask) {
1502       unsigned OpMask = OCM.second;
1503       ClassInfo *CI = OCM.first;
1504       OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI,
1505                                                            OpMask));
1506     }
1507   }
1508 }
1509 
1510 void AsmMatcherInfo::buildInfo() {
1511   // Build information about all of the AssemblerPredicates.
1512   const std::vector<std::pair<Record *, SubtargetFeatureInfo>>
1513       &SubtargetFeaturePairs = SubtargetFeatureInfo::getAll(Records);
1514   SubtargetFeatures.insert(SubtargetFeaturePairs.begin(),
1515                            SubtargetFeaturePairs.end());
1516 #ifndef NDEBUG
1517   for (const auto &Pair : SubtargetFeatures)
1518     DEBUG(Pair.second.dump());
1519 #endif // NDEBUG
1520   assert(SubtargetFeatures.size() <= 64 && "Too many subtarget features!");
1521 
1522   bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
1523 
1524   // Parse the instructions; we need to do this first so that we can gather the
1525   // singleton register classes.
1526   SmallPtrSet<Record*, 16> SingletonRegisters;
1527   unsigned VariantCount = Target.getAsmParserVariantCount();
1528   for (unsigned VC = 0; VC != VariantCount; ++VC) {
1529     Record *AsmVariant = Target.getAsmParserVariant(VC);
1530     StringRef CommentDelimiter =
1531         AsmVariant->getValueAsString("CommentDelimiter");
1532     AsmVariantInfo Variant;
1533     Variant.RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
1534     Variant.TokenizingCharacters =
1535         AsmVariant->getValueAsString("TokenizingCharacters");
1536     Variant.SeparatorCharacters =
1537         AsmVariant->getValueAsString("SeparatorCharacters");
1538     Variant.BreakCharacters =
1539         AsmVariant->getValueAsString("BreakCharacters");
1540     Variant.Name = AsmVariant->getValueAsString("Name");
1541     Variant.AsmVariantNo = AsmVariant->getValueAsInt("Variant");
1542 
1543     for (const CodeGenInstruction *CGI : Target.getInstructionsByEnumValue()) {
1544 
1545       // If the tblgen -match-prefix option is specified (for tblgen hackers),
1546       // filter the set of instructions we consider.
1547       if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix))
1548         continue;
1549 
1550       // Ignore "codegen only" instructions.
1551       if (CGI->TheDef->getValueAsBit("isCodeGenOnly"))
1552         continue;
1553 
1554       // Ignore instructions for different instructions
1555       StringRef V = CGI->TheDef->getValueAsString("AsmVariantName");
1556       if (!V.empty() && V != Variant.Name)
1557         continue;
1558 
1559       auto II = llvm::make_unique<MatchableInfo>(*CGI);
1560 
1561       II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);
1562 
1563       // Ignore instructions which shouldn't be matched and diagnose invalid
1564       // instruction definitions with an error.
1565       if (!II->validate(CommentDelimiter, true))
1566         continue;
1567 
1568       Matchables.push_back(std::move(II));
1569     }
1570 
1571     // Parse all of the InstAlias definitions and stick them in the list of
1572     // matchables.
1573     std::vector<Record*> AllInstAliases =
1574       Records.getAllDerivedDefinitions("InstAlias");
1575     for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
1576       auto Alias = llvm::make_unique<CodeGenInstAlias>(AllInstAliases[i],
1577                                                        Variant.AsmVariantNo,
1578                                                        Target);
1579 
1580       // If the tblgen -match-prefix option is specified (for tblgen hackers),
1581       // filter the set of instruction aliases we consider, based on the target
1582       // instruction.
1583       if (!StringRef(Alias->ResultInst->TheDef->getName())
1584             .startswith( MatchPrefix))
1585         continue;
1586 
1587       StringRef V = Alias->TheDef->getValueAsString("AsmVariantName");
1588       if (!V.empty() && V != Variant.Name)
1589         continue;
1590 
1591       auto II = llvm::make_unique<MatchableInfo>(std::move(Alias));
1592 
1593       II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);
1594 
1595       // Validate the alias definitions.
1596       II->validate(CommentDelimiter, false);
1597 
1598       Matchables.push_back(std::move(II));
1599     }
1600   }
1601 
1602   // Build info for the register classes.
1603   buildRegisterClasses(SingletonRegisters);
1604 
1605   // Build info for the user defined assembly operand classes.
1606   buildOperandClasses();
1607 
1608   // Build the information about matchables, now that we have fully formed
1609   // classes.
1610   std::vector<std::unique_ptr<MatchableInfo>> NewMatchables;
1611   for (auto &II : Matchables) {
1612     // Parse the tokens after the mnemonic.
1613     // Note: buildInstructionOperandReference may insert new AsmOperands, so
1614     // don't precompute the loop bound.
1615     for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
1616       MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
1617       StringRef Token = Op.Token;
1618 
1619       // Check for singleton registers.
1620       if (Record *RegRecord = Op.SingletonReg) {
1621         Op.Class = RegisterClasses[RegRecord];
1622         assert(Op.Class && Op.Class->Registers.size() == 1 &&
1623                "Unexpected class for singleton register");
1624         continue;
1625       }
1626 
1627       // Check for simple tokens.
1628       if (Token[0] != '$') {
1629         Op.Class = getTokenClass(Token);
1630         continue;
1631       }
1632 
1633       if (Token.size() > 1 && isdigit(Token[1])) {
1634         Op.Class = getTokenClass(Token);
1635         continue;
1636       }
1637 
1638       // Otherwise this is an operand reference.
1639       StringRef OperandName;
1640       if (Token[1] == '{')
1641         OperandName = Token.substr(2, Token.size() - 3);
1642       else
1643         OperandName = Token.substr(1);
1644 
1645       if (II->DefRec.is<const CodeGenInstruction*>())
1646         buildInstructionOperandReference(II.get(), OperandName, i);
1647       else
1648         buildAliasOperandReference(II.get(), OperandName, Op);
1649     }
1650 
1651     if (II->DefRec.is<const CodeGenInstruction*>()) {
1652       II->buildInstructionResultOperands();
1653       // If the instruction has a two-operand alias, build up the
1654       // matchable here. We'll add them in bulk at the end to avoid
1655       // confusing this loop.
1656       StringRef Constraint =
1657           II->TheDef->getValueAsString("TwoOperandAliasConstraint");
1658       if (Constraint != "") {
1659         // Start by making a copy of the original matchable.
1660         auto AliasII = llvm::make_unique<MatchableInfo>(*II);
1661 
1662         // Adjust it to be a two-operand alias.
1663         AliasII->formTwoOperandAlias(Constraint);
1664 
1665         // Add the alias to the matchables list.
1666         NewMatchables.push_back(std::move(AliasII));
1667       }
1668     } else
1669       II->buildAliasResultOperands();
1670   }
1671   if (!NewMatchables.empty())
1672     Matchables.insert(Matchables.end(),
1673                       std::make_move_iterator(NewMatchables.begin()),
1674                       std::make_move_iterator(NewMatchables.end()));
1675 
1676   // Process token alias definitions and set up the associated superclass
1677   // information.
1678   std::vector<Record*> AllTokenAliases =
1679     Records.getAllDerivedDefinitions("TokenAlias");
1680   for (Record *Rec : AllTokenAliases) {
1681     ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
1682     ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
1683     if (FromClass == ToClass)
1684       PrintFatalError(Rec->getLoc(),
1685                     "error: Destination value identical to source value.");
1686     FromClass->SuperClasses.push_back(ToClass);
1687   }
1688 
1689   // Reorder classes so that classes precede super classes.
1690   Classes.sort();
1691 
1692 #ifdef EXPENSIVE_CHECKS
1693   // Verify that the table is sorted and operator < works transitively.
1694   for (auto I = Classes.begin(), E = Classes.end(); I != E; ++I) {
1695     for (auto J = I; J != E; ++J) {
1696       assert(!(*J < *I));
1697       assert(I == J || !J->isSubsetOf(*I));
1698     }
1699   }
1700 #endif
1701 }
1702 
1703 /// buildInstructionOperandReference - The specified operand is a reference to a
1704 /// named operand such as $src.  Resolve the Class and OperandInfo pointers.
1705 void AsmMatcherInfo::
1706 buildInstructionOperandReference(MatchableInfo *II,
1707                                  StringRef OperandName,
1708                                  unsigned AsmOpIdx) {
1709   const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
1710   const CGIOperandList &Operands = CGI.Operands;
1711   MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
1712 
1713   // Map this token to an operand.
1714   unsigned Idx;
1715   if (!Operands.hasOperandNamed(OperandName, Idx))
1716     PrintFatalError(II->TheDef->getLoc(),
1717                     "error: unable to find operand: '" + OperandName + "'");
1718 
1719   // If the instruction operand has multiple suboperands, but the parser
1720   // match class for the asm operand is still the default "ImmAsmOperand",
1721   // then handle each suboperand separately.
1722   if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
1723     Record *Rec = Operands[Idx].Rec;
1724     assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
1725     Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1726     if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
1727       // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
1728       StringRef Token = Op->Token; // save this in case Op gets moved
1729       for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
1730         MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token);
1731         NewAsmOp.SubOpIdx = SI;
1732         II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
1733       }
1734       // Replace Op with first suboperand.
1735       Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
1736       Op->SubOpIdx = 0;
1737     }
1738   }
1739 
1740   // Set up the operand class.
1741   Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
1742 
1743   // If the named operand is tied, canonicalize it to the untied operand.
1744   // For example, something like:
1745   //   (outs GPR:$dst), (ins GPR:$src)
1746   // with an asmstring of
1747   //   "inc $src"
1748   // we want to canonicalize to:
1749   //   "inc $dst"
1750   // so that we know how to provide the $dst operand when filling in the result.
1751   int OITied = -1;
1752   if (Operands[Idx].MINumOperands == 1)
1753     OITied = Operands[Idx].getTiedRegister();
1754   if (OITied != -1) {
1755     // The tied operand index is an MIOperand index, find the operand that
1756     // contains it.
1757     std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
1758     OperandName = Operands[Idx.first].Name;
1759     Op->SubOpIdx = Idx.second;
1760   }
1761 
1762   Op->SrcOpName = OperandName;
1763 }
1764 
1765 /// buildAliasOperandReference - When parsing an operand reference out of the
1766 /// matching string (e.g. "movsx $src, $dst"), determine what the class of the
1767 /// operand reference is by looking it up in the result pattern definition.
1768 void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II,
1769                                                 StringRef OperandName,
1770                                                 MatchableInfo::AsmOperand &Op) {
1771   const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
1772 
1773   // Set up the operand class.
1774   for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
1775     if (CGA.ResultOperands[i].isRecord() &&
1776         CGA.ResultOperands[i].getName() == OperandName) {
1777       // It's safe to go with the first one we find, because CodeGenInstAlias
1778       // validates that all operands with the same name have the same record.
1779       Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
1780       // Use the match class from the Alias definition, not the
1781       // destination instruction, as we may have an immediate that's
1782       // being munged by the match class.
1783       Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
1784                                  Op.SubOpIdx);
1785       Op.SrcOpName = OperandName;
1786       return;
1787     }
1788 
1789   PrintFatalError(II->TheDef->getLoc(),
1790                   "error: unable to find operand: '" + OperandName + "'");
1791 }
1792 
1793 void MatchableInfo::buildInstructionResultOperands() {
1794   const CodeGenInstruction *ResultInst = getResultInst();
1795 
1796   // Loop over all operands of the result instruction, determining how to
1797   // populate them.
1798   for (const CGIOperandList::OperandInfo &OpInfo : ResultInst->Operands) {
1799     // If this is a tied operand, just copy from the previously handled operand.
1800     int TiedOp = -1;
1801     if (OpInfo.MINumOperands == 1)
1802       TiedOp = OpInfo.getTiedRegister();
1803     if (TiedOp != -1) {
1804       ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
1805       continue;
1806     }
1807 
1808     // Find out what operand from the asmparser this MCInst operand comes from.
1809     int SrcOperand = findAsmOperandNamed(OpInfo.Name);
1810     if (OpInfo.Name.empty() || SrcOperand == -1) {
1811       // This may happen for operands that are tied to a suboperand of a
1812       // complex operand.  Simply use a dummy value here; nobody should
1813       // use this operand slot.
1814       // FIXME: The long term goal is for the MCOperand list to not contain
1815       // tied operands at all.
1816       ResOperands.push_back(ResOperand::getImmOp(0));
1817       continue;
1818     }
1819 
1820     // Check if the one AsmOperand populates the entire operand.
1821     unsigned NumOperands = OpInfo.MINumOperands;
1822     if (AsmOperands[SrcOperand].SubOpIdx == -1) {
1823       ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
1824       continue;
1825     }
1826 
1827     // Add a separate ResOperand for each suboperand.
1828     for (unsigned AI = 0; AI < NumOperands; ++AI) {
1829       assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
1830              AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
1831              "unexpected AsmOperands for suboperands");
1832       ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
1833     }
1834   }
1835 }
1836 
1837 void MatchableInfo::buildAliasResultOperands() {
1838   const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
1839   const CodeGenInstruction *ResultInst = getResultInst();
1840 
1841   // Loop over all operands of the result instruction, determining how to
1842   // populate them.
1843   unsigned AliasOpNo = 0;
1844   unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
1845   for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1846     const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
1847 
1848     // If this is a tied operand, just copy from the previously handled operand.
1849     int TiedOp = -1;
1850     if (OpInfo->MINumOperands == 1)
1851       TiedOp = OpInfo->getTiedRegister();
1852     if (TiedOp != -1) {
1853       ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
1854       continue;
1855     }
1856 
1857     // Handle all the suboperands for this operand.
1858     const std::string &OpName = OpInfo->Name;
1859     for ( ; AliasOpNo <  LastOpNo &&
1860             CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
1861       int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1862 
1863       // Find out what operand from the asmparser that this MCInst operand
1864       // comes from.
1865       switch (CGA.ResultOperands[AliasOpNo].Kind) {
1866       case CodeGenInstAlias::ResultOperand::K_Record: {
1867         StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1868         int SrcOperand = findAsmOperand(Name, SubIdx);
1869         if (SrcOperand == -1)
1870           PrintFatalError(TheDef->getLoc(), "Instruction '" +
1871                         TheDef->getName() + "' has operand '" + OpName +
1872                         "' that doesn't appear in asm string!");
1873         unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
1874         ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
1875                                                         NumOperands));
1876         break;
1877       }
1878       case CodeGenInstAlias::ResultOperand::K_Imm: {
1879         int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
1880         ResOperands.push_back(ResOperand::getImmOp(ImmVal));
1881         break;
1882       }
1883       case CodeGenInstAlias::ResultOperand::K_Reg: {
1884         Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
1885         ResOperands.push_back(ResOperand::getRegOp(Reg));
1886         break;
1887       }
1888       }
1889     }
1890   }
1891 }
1892 
1893 static unsigned
1894 getConverterOperandID(const std::string &Name,
1895                       SmallSetVector<CachedHashString, 16> &Table,
1896                       bool &IsNew) {
1897   IsNew = Table.insert(CachedHashString(Name));
1898 
1899   unsigned ID = IsNew ? Table.size() - 1 : find(Table, Name) - Table.begin();
1900 
1901   assert(ID < Table.size());
1902 
1903   return ID;
1904 }
1905 
1906 static void emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName,
1907                              std::vector<std::unique_ptr<MatchableInfo>> &Infos,
1908                              bool HasMnemonicFirst, bool HasOptionalOperands,
1909                              raw_ostream &OS) {
1910   SmallSetVector<CachedHashString, 16> OperandConversionKinds;
1911   SmallSetVector<CachedHashString, 16> InstructionConversionKinds;
1912   std::vector<std::vector<uint8_t> > ConversionTable;
1913   size_t MaxRowLength = 2; // minimum is custom converter plus terminator.
1914 
1915   // TargetOperandClass - This is the target's operand class, like X86Operand.
1916   std::string TargetOperandClass = Target.getName().str() + "Operand";
1917 
1918   // Write the convert function to a separate stream, so we can drop it after
1919   // the enum. We'll build up the conversion handlers for the individual
1920   // operand types opportunistically as we encounter them.
1921   std::string ConvertFnBody;
1922   raw_string_ostream CvtOS(ConvertFnBody);
1923   // Start the unified conversion function.
1924   if (HasOptionalOperands) {
1925     CvtOS << "void " << Target.getName() << ClassName << "::\n"
1926           << "convertToMCInst(unsigned Kind, MCInst &Inst, "
1927           << "unsigned Opcode,\n"
1928           << "                const OperandVector &Operands,\n"
1929           << "                const SmallBitVector &OptionalOperandsMask) {\n";
1930   } else {
1931     CvtOS << "void " << Target.getName() << ClassName << "::\n"
1932           << "convertToMCInst(unsigned Kind, MCInst &Inst, "
1933           << "unsigned Opcode,\n"
1934           << "                const OperandVector &Operands) {\n";
1935   }
1936   CvtOS << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n";
1937   CvtOS << "  const uint8_t *Converter = ConversionTable[Kind];\n";
1938   if (HasOptionalOperands) {
1939     size_t MaxNumOperands = 0;
1940     for (const auto &MI : Infos) {
1941       MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
1942     }
1943     CvtOS << "  unsigned DefaultsOffset[" << (MaxNumOperands + 1)
1944           << "] = { 0 };\n";
1945     CvtOS << "  assert(OptionalOperandsMask.size() == " << (MaxNumOperands)
1946           << ");\n";
1947     CvtOS << "  for (unsigned i = 0, NumDefaults = 0; i < " << (MaxNumOperands)
1948           << "; ++i) {\n";
1949     CvtOS << "    DefaultsOffset[i + 1] = NumDefaults;\n";
1950     CvtOS << "    NumDefaults += (OptionalOperandsMask[i] ? 1 : 0);\n";
1951     CvtOS << "  }\n";
1952   }
1953   CvtOS << "  unsigned OpIdx;\n";
1954   CvtOS << "  Inst.setOpcode(Opcode);\n";
1955   CvtOS << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n";
1956   if (HasOptionalOperands) {
1957     CvtOS << "    OpIdx = *(p + 1) - DefaultsOffset[*(p + 1)];\n";
1958   } else {
1959     CvtOS << "    OpIdx = *(p + 1);\n";
1960   }
1961   CvtOS << "    switch (*p) {\n";
1962   CvtOS << "    default: llvm_unreachable(\"invalid conversion entry!\");\n";
1963   CvtOS << "    case CVT_Reg:\n";
1964   CvtOS << "      static_cast<" << TargetOperandClass
1965         << "&>(*Operands[OpIdx]).addRegOperands(Inst, 1);\n";
1966   CvtOS << "      break;\n";
1967   CvtOS << "    case CVT_Tied:\n";
1968   CvtOS << "      Inst.addOperand(Inst.getOperand(OpIdx));\n";
1969   CvtOS << "      break;\n";
1970 
1971   std::string OperandFnBody;
1972   raw_string_ostream OpOS(OperandFnBody);
1973   // Start the operand number lookup function.
1974   OpOS << "void " << Target.getName() << ClassName << "::\n"
1975        << "convertToMapAndConstraints(unsigned Kind,\n";
1976   OpOS.indent(27);
1977   OpOS << "const OperandVector &Operands) {\n"
1978        << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
1979        << "  unsigned NumMCOperands = 0;\n"
1980        << "  const uint8_t *Converter = ConversionTable[Kind];\n"
1981        << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n"
1982        << "    switch (*p) {\n"
1983        << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
1984        << "    case CVT_Reg:\n"
1985        << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
1986        << "      Operands[*(p + 1)]->setConstraint(\"r\");\n"
1987        << "      ++NumMCOperands;\n"
1988        << "      break;\n"
1989        << "    case CVT_Tied:\n"
1990        << "      ++NumMCOperands;\n"
1991        << "      break;\n";
1992 
1993   // Pre-populate the operand conversion kinds with the standard always
1994   // available entries.
1995   OperandConversionKinds.insert(CachedHashString("CVT_Done"));
1996   OperandConversionKinds.insert(CachedHashString("CVT_Reg"));
1997   OperandConversionKinds.insert(CachedHashString("CVT_Tied"));
1998   enum { CVT_Done, CVT_Reg, CVT_Tied };
1999 
2000   for (auto &II : Infos) {
2001     // Check if we have a custom match function.
2002     StringRef AsmMatchConverter =
2003         II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
2004     if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) {
2005       std::string Signature = ("ConvertCustom_" + AsmMatchConverter).str();
2006       II->ConversionFnKind = Signature;
2007 
2008       // Check if we have already generated this signature.
2009       if (!InstructionConversionKinds.insert(CachedHashString(Signature)))
2010         continue;
2011 
2012       // Remember this converter for the kind enum.
2013       unsigned KindID = OperandConversionKinds.size();
2014       OperandConversionKinds.insert(
2015           CachedHashString("CVT_" + getEnumNameForToken(AsmMatchConverter)));
2016 
2017       // Add the converter row for this instruction.
2018       ConversionTable.emplace_back();
2019       ConversionTable.back().push_back(KindID);
2020       ConversionTable.back().push_back(CVT_Done);
2021 
2022       // Add the handler to the conversion driver function.
2023       CvtOS << "    case CVT_"
2024             << getEnumNameForToken(AsmMatchConverter) << ":\n"
2025             << "      " << AsmMatchConverter << "(Inst, Operands);\n"
2026             << "      break;\n";
2027 
2028       // FIXME: Handle the operand number lookup for custom match functions.
2029       continue;
2030     }
2031 
2032     // Build the conversion function signature.
2033     std::string Signature = "Convert";
2034 
2035     std::vector<uint8_t> ConversionRow;
2036 
2037     // Compute the convert enum and the case body.
2038     MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 );
2039 
2040     for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) {
2041       const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i];
2042 
2043       // Generate code to populate each result operand.
2044       switch (OpInfo.Kind) {
2045       case MatchableInfo::ResOperand::RenderAsmOperand: {
2046         // This comes from something we parsed.
2047         const MatchableInfo::AsmOperand &Op =
2048           II->AsmOperands[OpInfo.AsmOperandNum];
2049 
2050         // Registers are always converted the same, don't duplicate the
2051         // conversion function based on them.
2052         Signature += "__";
2053         std::string Class;
2054         Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName;
2055         Signature += Class;
2056         Signature += utostr(OpInfo.MINumOperands);
2057         Signature += "_" + itostr(OpInfo.AsmOperandNum);
2058 
2059         // Add the conversion kind, if necessary, and get the associated ID
2060         // the index of its entry in the vector).
2061         std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" :
2062                                      Op.Class->RenderMethod);
2063         if (Op.Class->IsOptional) {
2064           // For optional operands we must also care about DefaultMethod
2065           assert(HasOptionalOperands);
2066           Name += "_" + Op.Class->DefaultMethod;
2067         }
2068         Name = getEnumNameForToken(Name);
2069 
2070         bool IsNewConverter = false;
2071         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
2072                                             IsNewConverter);
2073 
2074         // Add the operand entry to the instruction kind conversion row.
2075         ConversionRow.push_back(ID);
2076         ConversionRow.push_back(OpInfo.AsmOperandNum + HasMnemonicFirst);
2077 
2078         if (!IsNewConverter)
2079           break;
2080 
2081         // This is a new operand kind. Add a handler for it to the
2082         // converter driver.
2083         CvtOS << "    case " << Name << ":\n";
2084         if (Op.Class->IsOptional) {
2085           // If optional operand is not present in actual instruction then we
2086           // should call its DefaultMethod before RenderMethod
2087           assert(HasOptionalOperands);
2088           CvtOS << "      if (OptionalOperandsMask[*(p + 1) - 1]) {\n"
2089                 << "        " << Op.Class->DefaultMethod << "()"
2090                 << "->" << Op.Class->RenderMethod << "(Inst, "
2091                 << OpInfo.MINumOperands << ");\n"
2092                 << "      } else {\n"
2093                 << "        static_cast<" << TargetOperandClass
2094                 << "&>(*Operands[OpIdx])." << Op.Class->RenderMethod
2095                 << "(Inst, " << OpInfo.MINumOperands << ");\n"
2096                 << "      }\n";
2097         } else {
2098           CvtOS << "      static_cast<" << TargetOperandClass
2099                 << "&>(*Operands[OpIdx])." << Op.Class->RenderMethod
2100                 << "(Inst, " << OpInfo.MINumOperands << ");\n";
2101         }
2102         CvtOS << "      break;\n";
2103 
2104         // Add a handler for the operand number lookup.
2105         OpOS << "    case " << Name << ":\n"
2106              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n";
2107 
2108         if (Op.Class->isRegisterClass())
2109           OpOS << "      Operands[*(p + 1)]->setConstraint(\"r\");\n";
2110         else
2111           OpOS << "      Operands[*(p + 1)]->setConstraint(\"m\");\n";
2112         OpOS << "      NumMCOperands += " << OpInfo.MINumOperands << ";\n"
2113              << "      break;\n";
2114         break;
2115       }
2116       case MatchableInfo::ResOperand::TiedOperand: {
2117         // If this operand is tied to a previous one, just copy the MCInst
2118         // operand from the earlier one.We can only tie single MCOperand values.
2119         assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
2120         unsigned TiedOp = OpInfo.TiedOperandNum;
2121         assert(i > TiedOp && "Tied operand precedes its target!");
2122         Signature += "__Tie" + utostr(TiedOp);
2123         ConversionRow.push_back(CVT_Tied);
2124         ConversionRow.push_back(TiedOp);
2125         break;
2126       }
2127       case MatchableInfo::ResOperand::ImmOperand: {
2128         int64_t Val = OpInfo.ImmVal;
2129         std::string Ty = "imm_" + itostr(Val);
2130         Ty = getEnumNameForToken(Ty);
2131         Signature += "__" + Ty;
2132 
2133         std::string Name = "CVT_" + Ty;
2134         bool IsNewConverter = false;
2135         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
2136                                             IsNewConverter);
2137         // Add the operand entry to the instruction kind conversion row.
2138         ConversionRow.push_back(ID);
2139         ConversionRow.push_back(0);
2140 
2141         if (!IsNewConverter)
2142           break;
2143 
2144         CvtOS << "    case " << Name << ":\n"
2145               << "      Inst.addOperand(MCOperand::createImm(" << Val << "));\n"
2146               << "      break;\n";
2147 
2148         OpOS << "    case " << Name << ":\n"
2149              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2150              << "      Operands[*(p + 1)]->setConstraint(\"\");\n"
2151              << "      ++NumMCOperands;\n"
2152              << "      break;\n";
2153         break;
2154       }
2155       case MatchableInfo::ResOperand::RegOperand: {
2156         std::string Reg, Name;
2157         if (!OpInfo.Register) {
2158           Name = "reg0";
2159           Reg = "0";
2160         } else {
2161           Reg = getQualifiedName(OpInfo.Register);
2162           Name = "reg" + OpInfo.Register->getName().str();
2163         }
2164         Signature += "__" + Name;
2165         Name = "CVT_" + Name;
2166         bool IsNewConverter = false;
2167         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
2168                                             IsNewConverter);
2169         // Add the operand entry to the instruction kind conversion row.
2170         ConversionRow.push_back(ID);
2171         ConversionRow.push_back(0);
2172 
2173         if (!IsNewConverter)
2174           break;
2175         CvtOS << "    case " << Name << ":\n"
2176               << "      Inst.addOperand(MCOperand::createReg(" << Reg << "));\n"
2177               << "      break;\n";
2178 
2179         OpOS << "    case " << Name << ":\n"
2180              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2181              << "      Operands[*(p + 1)]->setConstraint(\"m\");\n"
2182              << "      ++NumMCOperands;\n"
2183              << "      break;\n";
2184       }
2185       }
2186     }
2187 
2188     // If there were no operands, add to the signature to that effect
2189     if (Signature == "Convert")
2190       Signature += "_NoOperands";
2191 
2192     II->ConversionFnKind = Signature;
2193 
2194     // Save the signature. If we already have it, don't add a new row
2195     // to the table.
2196     if (!InstructionConversionKinds.insert(CachedHashString(Signature)))
2197       continue;
2198 
2199     // Add the row to the table.
2200     ConversionTable.push_back(std::move(ConversionRow));
2201   }
2202 
2203   // Finish up the converter driver function.
2204   CvtOS << "    }\n  }\n}\n\n";
2205 
2206   // Finish up the operand number lookup function.
2207   OpOS << "    }\n  }\n}\n\n";
2208 
2209   OS << "namespace {\n";
2210 
2211   // Output the operand conversion kind enum.
2212   OS << "enum OperatorConversionKind {\n";
2213   for (const auto &Converter : OperandConversionKinds)
2214     OS << "  " << Converter << ",\n";
2215   OS << "  CVT_NUM_CONVERTERS\n";
2216   OS << "};\n\n";
2217 
2218   // Output the instruction conversion kind enum.
2219   OS << "enum InstructionConversionKind {\n";
2220   for (const auto &Signature : InstructionConversionKinds)
2221     OS << "  " << Signature << ",\n";
2222   OS << "  CVT_NUM_SIGNATURES\n";
2223   OS << "};\n\n";
2224 
2225   OS << "} // end anonymous namespace\n\n";
2226 
2227   // Output the conversion table.
2228   OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES]["
2229      << MaxRowLength << "] = {\n";
2230 
2231   for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) {
2232     assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!");
2233     OS << "  // " << InstructionConversionKinds[Row] << "\n";
2234     OS << "  { ";
2235     for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2)
2236       OS << OperandConversionKinds[ConversionTable[Row][i]] << ", "
2237          << (unsigned)(ConversionTable[Row][i + 1]) << ", ";
2238     OS << "CVT_Done },\n";
2239   }
2240 
2241   OS << "};\n\n";
2242 
2243   // Spit out the conversion driver function.
2244   OS << CvtOS.str();
2245 
2246   // Spit out the operand number lookup function.
2247   OS << OpOS.str();
2248 }
2249 
2250 /// emitMatchClassEnumeration - Emit the enumeration for match class kinds.
2251 static void emitMatchClassEnumeration(CodeGenTarget &Target,
2252                                       std::forward_list<ClassInfo> &Infos,
2253                                       raw_ostream &OS) {
2254   OS << "namespace {\n\n";
2255 
2256   OS << "/// MatchClassKind - The kinds of classes which participate in\n"
2257      << "/// instruction matching.\n";
2258   OS << "enum MatchClassKind {\n";
2259   OS << "  InvalidMatchClass = 0,\n";
2260   OS << "  OptionalMatchClass = 1,\n";
2261   ClassInfo::ClassInfoKind LastKind = ClassInfo::Token;
2262   StringRef LastName = "OptionalMatchClass";
2263   for (const auto &CI : Infos) {
2264     if (LastKind == ClassInfo::Token && CI.Kind != ClassInfo::Token) {
2265       OS << "  MCK_LAST_TOKEN = " << LastName << ",\n";
2266     } else if (LastKind < ClassInfo::UserClass0 &&
2267                CI.Kind >= ClassInfo::UserClass0) {
2268       OS << "  MCK_LAST_REGISTER = " << LastName << ",\n";
2269     }
2270     LastKind = (ClassInfo::ClassInfoKind)CI.Kind;
2271     LastName = CI.Name;
2272 
2273     OS << "  " << CI.Name << ", // ";
2274     if (CI.Kind == ClassInfo::Token) {
2275       OS << "'" << CI.ValueName << "'\n";
2276     } else if (CI.isRegisterClass()) {
2277       if (!CI.ValueName.empty())
2278         OS << "register class '" << CI.ValueName << "'\n";
2279       else
2280         OS << "derived register class\n";
2281     } else {
2282       OS << "user defined class '" << CI.ValueName << "'\n";
2283     }
2284   }
2285   OS << "  NumMatchClassKinds\n";
2286   OS << "};\n\n";
2287 
2288   OS << "}\n\n";
2289 }
2290 
2291 /// emitMatchClassDiagStrings - Emit a function to get the diagnostic text to be
2292 /// used when an assembly operand does not match the expected operand class.
2293 static void emitOperandMatchErrorDiagStrings(AsmMatcherInfo &Info, raw_ostream &OS) {
2294   // If the target does not use DiagnosticString for any operands, don't emit
2295   // an unused function.
2296   if (std::all_of(
2297           Info.Classes.begin(), Info.Classes.end(),
2298           [](const ClassInfo &CI) { return CI.DiagnosticString.empty(); }))
2299     return;
2300 
2301   OS << "static const char *getMatchKindDiag(" << Info.Target.getName()
2302      << "AsmParser::" << Info.Target.getName()
2303      << "MatchResultTy MatchResult) {\n";
2304   OS << "  switch (MatchResult) {\n";
2305 
2306   for (const auto &CI: Info.Classes) {
2307     if (!CI.DiagnosticString.empty()) {
2308       assert(!CI.DiagnosticType.empty() &&
2309              "DiagnosticString set without DiagnosticType");
2310       OS << "  case " << Info.Target.getName()
2311          << "AsmParser::Match_" << CI.DiagnosticType << ":\n";
2312       OS << "    return \"" << CI.DiagnosticString << "\";\n";
2313     }
2314   }
2315 
2316   OS << "  default:\n";
2317   OS << "    return nullptr;\n";
2318 
2319   OS << "  }\n";
2320   OS << "}\n\n";
2321 }
2322 
2323 static void emitRegisterMatchErrorFunc(AsmMatcherInfo &Info, raw_ostream &OS) {
2324   OS << "static unsigned getDiagKindFromRegisterClass(MatchClassKind "
2325         "RegisterClass) {\n";
2326   if (std::none_of(Info.Classes.begin(), Info.Classes.end(),
2327                    [](const ClassInfo &CI) {
2328                      return CI.isRegisterClass() && !CI.DiagnosticType.empty();
2329                    })) {
2330     OS << "  return MCTargetAsmParser::Match_InvalidOperand;\n";
2331   } else {
2332     OS << "  switch (RegisterClass) {\n";
2333     for (const auto &CI: Info.Classes) {
2334       if (CI.isRegisterClass() && !CI.DiagnosticType.empty()) {
2335         OS << "  case " << CI.Name << ":\n";
2336         OS << "    return " << Info.Target.getName() << "AsmParser::Match_"
2337            << CI.DiagnosticType << ";\n";
2338       }
2339     }
2340 
2341     OS << "  default:\n";
2342     OS << "    return MCTargetAsmParser::Match_InvalidOperand;\n";
2343 
2344     OS << "  }\n";
2345   }
2346   OS << "}\n\n";
2347 }
2348 
2349 /// emitValidateOperandClass - Emit the function to validate an operand class.
2350 static void emitValidateOperandClass(AsmMatcherInfo &Info,
2351                                      raw_ostream &OS) {
2352   OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, "
2353      << "MatchClassKind Kind) {\n";
2354   OS << "  " << Info.Target.getName() << "Operand &Operand = ("
2355      << Info.Target.getName() << "Operand&)GOp;\n";
2356 
2357   // The InvalidMatchClass is not to match any operand.
2358   OS << "  if (Kind == InvalidMatchClass)\n";
2359   OS << "    return MCTargetAsmParser::Match_InvalidOperand;\n\n";
2360 
2361   // Check for Token operands first.
2362   // FIXME: Use a more specific diagnostic type.
2363   OS << "  if (Operand.isToken() && Kind <= MCK_LAST_TOKEN)\n";
2364   OS << "    return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n"
2365      << "             MCTargetAsmParser::Match_Success :\n"
2366      << "             MCTargetAsmParser::Match_InvalidOperand;\n\n";
2367 
2368   // Check the user classes. We don't care what order since we're only
2369   // actually matching against one of them.
2370   OS << "  switch (Kind) {\n"
2371         "  default: break;\n";
2372   for (const auto &CI : Info.Classes) {
2373     if (!CI.isUserClass())
2374       continue;
2375 
2376     OS << "  // '" << CI.ClassName << "' class\n";
2377     OS << "  case " << CI.Name << ":\n";
2378     OS << "    if (Operand." << CI.PredicateMethod << "())\n";
2379     OS << "      return MCTargetAsmParser::Match_Success;\n";
2380     if (!CI.DiagnosticType.empty())
2381       OS << "    return " << Info.Target.getName() << "AsmParser::Match_"
2382          << CI.DiagnosticType << ";\n";
2383     else
2384       OS << "    break;\n";
2385   }
2386   OS << "  } // end switch (Kind)\n\n";
2387 
2388   // Check for register operands, including sub-classes.
2389   OS << "  if (Operand.isReg()) {\n";
2390   OS << "    MatchClassKind OpKind;\n";
2391   OS << "    switch (Operand.getReg()) {\n";
2392   OS << "    default: OpKind = InvalidMatchClass; break;\n";
2393   for (const auto &RC : Info.RegisterClasses)
2394     OS << "    case " << RC.first->getValueAsString("Namespace") << "::"
2395        << RC.first->getName() << ": OpKind = " << RC.second->Name
2396        << "; break;\n";
2397   OS << "    }\n";
2398   OS << "    return isSubclass(OpKind, Kind) ? "
2399      << "(unsigned)MCTargetAsmParser::Match_Success :\n                     "
2400      << "                 getDiagKindFromRegisterClass(Kind);\n  }\n\n";
2401 
2402   // Expected operand is a register, but actual is not.
2403   OS << "  if (Kind > MCK_LAST_TOKEN && Kind <= MCK_LAST_REGISTER)\n";
2404   OS << "    return getDiagKindFromRegisterClass(Kind);\n\n";
2405 
2406   // Generic fallthrough match failure case for operands that don't have
2407   // specialized diagnostic types.
2408   OS << "  return MCTargetAsmParser::Match_InvalidOperand;\n";
2409   OS << "}\n\n";
2410 }
2411 
2412 /// emitIsSubclass - Emit the subclass predicate function.
2413 static void emitIsSubclass(CodeGenTarget &Target,
2414                            std::forward_list<ClassInfo> &Infos,
2415                            raw_ostream &OS) {
2416   OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n";
2417   OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
2418   OS << "  if (A == B)\n";
2419   OS << "    return true;\n\n";
2420 
2421   bool EmittedSwitch = false;
2422   for (const auto &A : Infos) {
2423     std::vector<StringRef> SuperClasses;
2424     if (A.IsOptional)
2425       SuperClasses.push_back("OptionalMatchClass");
2426     for (const auto &B : Infos) {
2427       if (&A != &B && A.isSubsetOf(B))
2428         SuperClasses.push_back(B.Name);
2429     }
2430 
2431     if (SuperClasses.empty())
2432       continue;
2433 
2434     // If this is the first SuperClass, emit the switch header.
2435     if (!EmittedSwitch) {
2436       OS << "  switch (A) {\n";
2437       OS << "  default:\n";
2438       OS << "    return false;\n";
2439       EmittedSwitch = true;
2440     }
2441 
2442     OS << "\n  case " << A.Name << ":\n";
2443 
2444     if (SuperClasses.size() == 1) {
2445       OS << "    return B == " << SuperClasses.back() << ";\n";
2446       continue;
2447     }
2448 
2449     if (!SuperClasses.empty()) {
2450       OS << "    switch (B) {\n";
2451       OS << "    default: return false;\n";
2452       for (StringRef SC : SuperClasses)
2453         OS << "    case " << SC << ": return true;\n";
2454       OS << "    }\n";
2455     } else {
2456       // No case statement to emit
2457       OS << "    return false;\n";
2458     }
2459   }
2460 
2461   // If there were case statements emitted into the string stream write the
2462   // default.
2463   if (EmittedSwitch)
2464     OS << "  }\n";
2465   else
2466     OS << "  return false;\n";
2467 
2468   OS << "}\n\n";
2469 }
2470 
2471 /// emitMatchTokenString - Emit the function to match a token string to the
2472 /// appropriate match class value.
2473 static void emitMatchTokenString(CodeGenTarget &Target,
2474                                  std::forward_list<ClassInfo> &Infos,
2475                                  raw_ostream &OS) {
2476   // Construct the match list.
2477   std::vector<StringMatcher::StringPair> Matches;
2478   for (const auto &CI : Infos) {
2479     if (CI.Kind == ClassInfo::Token)
2480       Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";");
2481   }
2482 
2483   OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
2484 
2485   StringMatcher("Name", Matches, OS).Emit();
2486 
2487   OS << "  return InvalidMatchClass;\n";
2488   OS << "}\n\n";
2489 }
2490 
2491 /// emitMatchRegisterName - Emit the function to match a string to the target
2492 /// specific register enum.
2493 static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
2494                                   raw_ostream &OS) {
2495   // Construct the match list.
2496   std::vector<StringMatcher::StringPair> Matches;
2497   const auto &Regs = Target.getRegBank().getRegisters();
2498   for (const CodeGenRegister &Reg : Regs) {
2499     if (Reg.TheDef->getValueAsString("AsmName").empty())
2500       continue;
2501 
2502     Matches.emplace_back(Reg.TheDef->getValueAsString("AsmName"),
2503                          "return " + utostr(Reg.EnumValue) + ";");
2504   }
2505 
2506   OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
2507 
2508   bool IgnoreDuplicates =
2509       AsmParser->getValueAsBit("AllowDuplicateRegisterNames");
2510   StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates);
2511 
2512   OS << "  return 0;\n";
2513   OS << "}\n\n";
2514 }
2515 
2516 /// Emit the function to match a string to the target
2517 /// specific register enum.
2518 static void emitMatchRegisterAltName(CodeGenTarget &Target, Record *AsmParser,
2519                                      raw_ostream &OS) {
2520   // Construct the match list.
2521   std::vector<StringMatcher::StringPair> Matches;
2522   const auto &Regs = Target.getRegBank().getRegisters();
2523   for (const CodeGenRegister &Reg : Regs) {
2524 
2525     auto AltNames = Reg.TheDef->getValueAsListOfStrings("AltNames");
2526 
2527     for (auto AltName : AltNames) {
2528       AltName = StringRef(AltName).trim();
2529 
2530       // don't handle empty alternative names
2531       if (AltName.empty())
2532         continue;
2533 
2534       Matches.emplace_back(AltName,
2535                            "return " + utostr(Reg.EnumValue) + ";");
2536     }
2537   }
2538 
2539   OS << "static unsigned MatchRegisterAltName(StringRef Name) {\n";
2540 
2541   bool IgnoreDuplicates =
2542       AsmParser->getValueAsBit("AllowDuplicateRegisterNames");
2543   StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates);
2544 
2545   OS << "  return 0;\n";
2546   OS << "}\n\n";
2547 }
2548 
2549 /// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types.
2550 static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) {
2551   // Get the set of diagnostic types from all of the operand classes.
2552   std::set<StringRef> Types;
2553   for (const auto &OpClassEntry : Info.AsmOperandClasses) {
2554     if (!OpClassEntry.second->DiagnosticType.empty())
2555       Types.insert(OpClassEntry.second->DiagnosticType);
2556   }
2557   for (const auto &OpClassEntry : Info.RegisterClassClasses) {
2558     if (!OpClassEntry.second->DiagnosticType.empty())
2559       Types.insert(OpClassEntry.second->DiagnosticType);
2560   }
2561 
2562   if (Types.empty()) return;
2563 
2564   // Now emit the enum entries.
2565   for (StringRef Type : Types)
2566     OS << "  Match_" << Type << ",\n";
2567   OS << "  END_OPERAND_DIAGNOSTIC_TYPES\n";
2568 }
2569 
2570 /// emitGetSubtargetFeatureName - Emit the helper function to get the
2571 /// user-level name for a subtarget feature.
2572 static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) {
2573   OS << "// User-level names for subtarget features that participate in\n"
2574      << "// instruction matching.\n"
2575      << "static const char *getSubtargetFeatureName(uint64_t Val) {\n";
2576   if (!Info.SubtargetFeatures.empty()) {
2577     OS << "  switch(Val) {\n";
2578     for (const auto &SF : Info.SubtargetFeatures) {
2579       const SubtargetFeatureInfo &SFI = SF.second;
2580       // FIXME: Totally just a placeholder name to get the algorithm working.
2581       OS << "  case " << SFI.getEnumName() << ": return \""
2582          << SFI.TheDef->getValueAsString("PredicateName") << "\";\n";
2583     }
2584     OS << "  default: return \"(unknown)\";\n";
2585     OS << "  }\n";
2586   } else {
2587     // Nothing to emit, so skip the switch
2588     OS << "  return \"(unknown)\";\n";
2589   }
2590   OS << "}\n\n";
2591 }
2592 
2593 static std::string GetAliasRequiredFeatures(Record *R,
2594                                             const AsmMatcherInfo &Info) {
2595   std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
2596   std::string Result;
2597   unsigned NumFeatures = 0;
2598   for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
2599     const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
2600 
2601     if (!F)
2602       PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
2603                     "' is not marked as an AssemblerPredicate!");
2604 
2605     if (NumFeatures)
2606       Result += '|';
2607 
2608     Result += F->getEnumName();
2609     ++NumFeatures;
2610   }
2611 
2612   if (NumFeatures > 1)
2613     Result = '(' + Result + ')';
2614   return Result;
2615 }
2616 
2617 static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info,
2618                                      std::vector<Record*> &Aliases,
2619                                      unsigned Indent = 0,
2620                                   StringRef AsmParserVariantName = StringRef()){
2621   // Keep track of all the aliases from a mnemonic.  Use an std::map so that the
2622   // iteration order of the map is stable.
2623   std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
2624 
2625   for (Record *R : Aliases) {
2626     // FIXME: Allow AssemblerVariantName to be a comma separated list.
2627     StringRef AsmVariantName = R->getValueAsString("AsmVariantName");
2628     if (AsmVariantName != AsmParserVariantName)
2629       continue;
2630     AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
2631   }
2632   if (AliasesFromMnemonic.empty())
2633     return;
2634 
2635   // Process each alias a "from" mnemonic at a time, building the code executed
2636   // by the string remapper.
2637   std::vector<StringMatcher::StringPair> Cases;
2638   for (const auto &AliasEntry : AliasesFromMnemonic) {
2639     const std::vector<Record*> &ToVec = AliasEntry.second;
2640 
2641     // Loop through each alias and emit code that handles each case.  If there
2642     // are two instructions without predicates, emit an error.  If there is one,
2643     // emit it last.
2644     std::string MatchCode;
2645     int AliasWithNoPredicate = -1;
2646 
2647     for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
2648       Record *R = ToVec[i];
2649       std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
2650 
2651       // If this unconditionally matches, remember it for later and diagnose
2652       // duplicates.
2653       if (FeatureMask.empty()) {
2654         if (AliasWithNoPredicate != -1) {
2655           // We can't have two aliases from the same mnemonic with no predicate.
2656           PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
2657                      "two MnemonicAliases with the same 'from' mnemonic!");
2658           PrintFatalError(R->getLoc(), "this is the other MnemonicAlias.");
2659         }
2660 
2661         AliasWithNoPredicate = i;
2662         continue;
2663       }
2664       if (R->getValueAsString("ToMnemonic") == AliasEntry.first)
2665         PrintFatalError(R->getLoc(), "MnemonicAlias to the same string");
2666 
2667       if (!MatchCode.empty())
2668         MatchCode += "else ";
2669       MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
2670       MatchCode += "  Mnemonic = \"";
2671       MatchCode += R->getValueAsString("ToMnemonic");
2672       MatchCode += "\";\n";
2673     }
2674 
2675     if (AliasWithNoPredicate != -1) {
2676       Record *R = ToVec[AliasWithNoPredicate];
2677       if (!MatchCode.empty())
2678         MatchCode += "else\n  ";
2679       MatchCode += "Mnemonic = \"";
2680       MatchCode += R->getValueAsString("ToMnemonic");
2681       MatchCode += "\";\n";
2682     }
2683 
2684     MatchCode += "return;";
2685 
2686     Cases.push_back(std::make_pair(AliasEntry.first, MatchCode));
2687   }
2688   StringMatcher("Mnemonic", Cases, OS).Emit(Indent);
2689 }
2690 
2691 /// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
2692 /// emit a function for them and return true, otherwise return false.
2693 static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info,
2694                                 CodeGenTarget &Target) {
2695   // Ignore aliases when match-prefix is set.
2696   if (!MatchPrefix.empty())
2697     return false;
2698 
2699   std::vector<Record*> Aliases =
2700     Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
2701   if (Aliases.empty()) return false;
2702 
2703   OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
2704     "uint64_t Features, unsigned VariantID) {\n";
2705   OS << "  switch (VariantID) {\n";
2706   unsigned VariantCount = Target.getAsmParserVariantCount();
2707   for (unsigned VC = 0; VC != VariantCount; ++VC) {
2708     Record *AsmVariant = Target.getAsmParserVariant(VC);
2709     int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant");
2710     StringRef AsmParserVariantName = AsmVariant->getValueAsString("Name");
2711     OS << "    case " << AsmParserVariantNo << ":\n";
2712     emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2,
2713                              AsmParserVariantName);
2714     OS << "    break;\n";
2715   }
2716   OS << "  }\n";
2717 
2718   // Emit aliases that apply to all variants.
2719   emitMnemonicAliasVariant(OS, Info, Aliases);
2720 
2721   OS << "}\n\n";
2722 
2723   return true;
2724 }
2725 
2726 static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
2727                               const AsmMatcherInfo &Info, StringRef ClassName,
2728                               StringToOffsetTable &StringTable,
2729                               unsigned MaxMnemonicIndex, bool HasMnemonicFirst) {
2730   unsigned MaxMask = 0;
2731   for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
2732     MaxMask |= OMI.OperandMask;
2733   }
2734 
2735   // Emit the static custom operand parsing table;
2736   OS << "namespace {\n";
2737   OS << "  struct OperandMatchEntry {\n";
2738   OS << "    " << getMinimalTypeForEnumBitfield(Info.SubtargetFeatures.size())
2739                << " RequiredFeatures;\n";
2740   OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
2741                << " Mnemonic;\n";
2742   OS << "    " << getMinimalTypeForRange(std::distance(
2743                       Info.Classes.begin(), Info.Classes.end())) << " Class;\n";
2744   OS << "    " << getMinimalTypeForRange(MaxMask)
2745                << " OperandMask;\n\n";
2746   OS << "    StringRef getMnemonic() const {\n";
2747   OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
2748   OS << "                       MnemonicTable[Mnemonic]);\n";
2749   OS << "    }\n";
2750   OS << "  };\n\n";
2751 
2752   OS << "  // Predicate for searching for an opcode.\n";
2753   OS << "  struct LessOpcodeOperand {\n";
2754   OS << "    bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
2755   OS << "      return LHS.getMnemonic()  < RHS;\n";
2756   OS << "    }\n";
2757   OS << "    bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
2758   OS << "      return LHS < RHS.getMnemonic();\n";
2759   OS << "    }\n";
2760   OS << "    bool operator()(const OperandMatchEntry &LHS,";
2761   OS << " const OperandMatchEntry &RHS) {\n";
2762   OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
2763   OS << "    }\n";
2764   OS << "  };\n";
2765 
2766   OS << "} // end anonymous namespace.\n\n";
2767 
2768   OS << "static const OperandMatchEntry OperandMatchTable["
2769      << Info.OperandMatchInfo.size() << "] = {\n";
2770 
2771   OS << "  /* Operand List Mask, Mnemonic, Operand Class, Features */\n";
2772   for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
2773     const MatchableInfo &II = *OMI.MI;
2774 
2775     OS << "  { ";
2776 
2777     // Write the required features mask.
2778     if (!II.RequiredFeatures.empty()) {
2779       for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
2780         if (i) OS << "|";
2781         OS << II.RequiredFeatures[i]->getEnumName();
2782       }
2783     } else
2784       OS << "0";
2785 
2786     // Store a pascal-style length byte in the mnemonic.
2787     std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
2788     OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
2789        << " /* " << II.Mnemonic << " */, ";
2790 
2791     OS << OMI.CI->Name;
2792 
2793     OS << ", " << OMI.OperandMask;
2794     OS << " /* ";
2795     bool printComma = false;
2796     for (int i = 0, e = 31; i !=e; ++i)
2797       if (OMI.OperandMask & (1 << i)) {
2798         if (printComma)
2799           OS << ", ";
2800         OS << i;
2801         printComma = true;
2802       }
2803     OS << " */";
2804 
2805     OS << " },\n";
2806   }
2807   OS << "};\n\n";
2808 
2809   // Emit the operand class switch to call the correct custom parser for
2810   // the found operand class.
2811   OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n"
2812      << "tryCustomParseOperand(OperandVector"
2813      << " &Operands,\n                      unsigned MCK) {\n\n"
2814      << "  switch(MCK) {\n";
2815 
2816   for (const auto &CI : Info.Classes) {
2817     if (CI.ParserMethod.empty())
2818       continue;
2819     OS << "  case " << CI.Name << ":\n"
2820        << "    return " << CI.ParserMethod << "(Operands);\n";
2821   }
2822 
2823   OS << "  default:\n";
2824   OS << "    return MatchOperand_NoMatch;\n";
2825   OS << "  }\n";
2826   OS << "  return MatchOperand_NoMatch;\n";
2827   OS << "}\n\n";
2828 
2829   // Emit the static custom operand parser. This code is very similar with
2830   // the other matcher. Also use MatchResultTy here just in case we go for
2831   // a better error handling.
2832   OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n"
2833      << "MatchOperandParserImpl(OperandVector"
2834      << " &Operands,\n                       StringRef Mnemonic,\n"
2835      << "                       bool ParseForAllFeatures) {\n";
2836 
2837   // Emit code to get the available features.
2838   OS << "  // Get the current feature set.\n";
2839   OS << "  uint64_t AvailableFeatures = getAvailableFeatures();\n\n";
2840 
2841   OS << "  // Get the next operand index.\n";
2842   OS << "  unsigned NextOpNum = Operands.size()"
2843      << (HasMnemonicFirst ? " - 1" : "") << ";\n";
2844 
2845   // Emit code to search the table.
2846   OS << "  // Search the table.\n";
2847   if (HasMnemonicFirst) {
2848     OS << "  auto MnemonicRange =\n";
2849     OS << "    std::equal_range(std::begin(OperandMatchTable), "
2850           "std::end(OperandMatchTable),\n";
2851     OS << "                     Mnemonic, LessOpcodeOperand());\n\n";
2852   } else {
2853     OS << "  auto MnemonicRange = std::make_pair(std::begin(OperandMatchTable),"
2854           " std::end(OperandMatchTable));\n";
2855     OS << "  if (!Mnemonic.empty())\n";
2856     OS << "    MnemonicRange =\n";
2857     OS << "      std::equal_range(std::begin(OperandMatchTable), "
2858           "std::end(OperandMatchTable),\n";
2859     OS << "                       Mnemonic, LessOpcodeOperand());\n\n";
2860   }
2861 
2862   OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
2863   OS << "    return MatchOperand_NoMatch;\n\n";
2864 
2865   OS << "  for (const OperandMatchEntry *it = MnemonicRange.first,\n"
2866      << "       *ie = MnemonicRange.second; it != ie; ++it) {\n";
2867 
2868   OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
2869   OS << "    assert(Mnemonic == it->getMnemonic());\n\n";
2870 
2871   // Emit check that the required features are available.
2872   OS << "    // check if the available features match\n";
2873   OS << "    if (!ParseForAllFeatures && (AvailableFeatures & "
2874         "it->RequiredFeatures) != it->RequiredFeatures)\n";
2875   OS << "        continue;\n\n";
2876 
2877   // Emit check to ensure the operand number matches.
2878   OS << "    // check if the operand in question has a custom parser.\n";
2879   OS << "    if (!(it->OperandMask & (1 << NextOpNum)))\n";
2880   OS << "      continue;\n\n";
2881 
2882   // Emit call to the custom parser method
2883   OS << "    // call custom parse method to handle the operand\n";
2884   OS << "    OperandMatchResultTy Result = ";
2885   OS << "tryCustomParseOperand(Operands, it->Class);\n";
2886   OS << "    if (Result != MatchOperand_NoMatch)\n";
2887   OS << "      return Result;\n";
2888   OS << "  }\n\n";
2889 
2890   OS << "  // Okay, we had no match.\n";
2891   OS << "  return MatchOperand_NoMatch;\n";
2892   OS << "}\n\n";
2893 }
2894 
2895 static void emitAsmTiedOperandConstraints(CodeGenTarget &Target,
2896                                           AsmMatcherInfo &Info,
2897                                           raw_ostream &OS) {
2898   std::string Buf;
2899   raw_string_ostream TmpOS(Buf);
2900   TmpOS << "namespace {\n";
2901   TmpOS << "  struct TiedAsmOpndPair {\n";
2902   TmpOS << "    unsigned Opcode;\n";
2903   TmpOS << "    unsigned Opnd1;\n";
2904   TmpOS << "    unsigned Opnd2;\n";
2905   TmpOS << "    TiedAsmOpndPair(unsigned Opcode, unsigned Opnd1, unsigned "
2906            "Opnd2)\n";
2907   TmpOS << "      : Opcode(Opcode), Opnd1(Opnd1), Opnd2(Opnd2) {}\n";
2908   TmpOS << "  };\n";
2909   TmpOS << "} // end anonymous namespace\n\n";
2910   TmpOS << "static const TiedAsmOpndPair TiedAsmOperandsTable[] = {\n";
2911   bool TableEmpty = true;
2912   for (const auto &Inst : Target.getInstructionsByEnumValue()) {
2913     auto It = std::find_if(Info.Matchables.begin(), Info.Matchables.end(),
2914                            [&Inst](const std::unique_ptr<MatchableInfo> &MI) {
2915       return (MI->TheDef->getID() == Inst->TheDef->getID());
2916     });
2917 
2918     if (It == Info.Matchables.end())
2919       continue;
2920 
2921     auto &Constraints = (**It).AsmOperandTiedConstraints;
2922     if (Constraints.empty())
2923       continue;
2924 
2925     std::string Namespace = Inst->TheDef->getValueAsString("Namespace");
2926 
2927     for (const auto &C : Constraints) {
2928       TableEmpty = false;
2929       TmpOS << "  {";
2930       TmpOS << Namespace << "::"<< (**It).TheDef->getName() << ", ";
2931       TmpOS << C.first << ", " << C.second;
2932       TmpOS << "},\n";
2933     }
2934   }
2935   TmpOS << "};\n\n";
2936   if (!TableEmpty)
2937     OS << TmpOS.str();
2938 
2939   OS << "static bool ";
2940   OS << "checkAsmTiedOperandConstraints(const MCInst &Inst,\n";
2941   OS << "                               const OperandVector &Operands,\n";
2942   OS << "                               SMLoc &Loc) {\n";
2943 
2944   if (TableEmpty) {
2945     OS << "return true;\n}\n\n";
2946     return;
2947   }
2948 
2949   OS << "  const TiedAsmOpndPair SearchValue(Inst.getOpcode(), 0, 0);\n";
2950   OS << "  const auto Range = std::equal_range(\n";
2951   OS << "      std::begin(TiedAsmOperandsTable), std::end(TiedAsmOperandsTable),\n";
2952   OS << "      SearchValue, [](const TiedAsmOpndPair &a,\n";
2953   OS << "                      const TiedAsmOpndPair &b) {\n";
2954   OS << "        return (a.Opcode < b.Opcode);\n";
2955   OS << "      });\n\n";
2956   OS << "  for (auto Item = Range.first;  Item != Range.second; ++Item) {\n";
2957   OS << "    MCParsedAsmOperand &Op1 = *Operands[Item->Opnd1];\n";
2958   OS << "    MCParsedAsmOperand &Op2 = *Operands[Item->Opnd2];\n";
2959   OS << "    if ((Op1.isReg() && Op2.isReg()) &&\n";
2960   OS << "        (Op1.getReg() != Op2.getReg())) {\n";
2961   OS << "      Loc = Op2.getStartLoc();\n";
2962   OS << "      return false;\n";
2963   OS << "    }\n";
2964   OS << "  }\n";
2965   OS << "  return true;\n";
2966   OS << "}\n\n";
2967 }
2968 
2969 static void emitMnemonicSpellChecker(raw_ostream &OS, CodeGenTarget &Target,
2970                                      unsigned VariantCount) {
2971   OS << "static std::string " << Target.getName()
2972      << "MnemonicSpellCheck(StringRef S, uint64_t FBS, unsigned VariantID) {\n";
2973   if (!VariantCount)
2974     OS <<  "  return \"\";";
2975   else {
2976     OS << "  const unsigned MaxEditDist = 2;\n";
2977     OS << "  std::vector<StringRef> Candidates;\n";
2978     OS << "  StringRef Prev = \"\";\n\n";
2979 
2980     OS << "  // Find the appropriate table for this asm variant.\n";
2981     OS << "  const MatchEntry *Start, *End;\n";
2982     OS << "  switch (VariantID) {\n";
2983     OS << "  default: llvm_unreachable(\"invalid variant!\");\n";
2984     for (unsigned VC = 0; VC != VariantCount; ++VC) {
2985       Record *AsmVariant = Target.getAsmParserVariant(VC);
2986       int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
2987       OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
2988          << "); End = std::end(MatchTable" << VC << "); break;\n";
2989     }
2990     OS << "  }\n\n";
2991     OS << "  for (auto I = Start; I < End; I++) {\n";
2992     OS << "    // Ignore unsupported instructions.\n";
2993     OS << "    if ((FBS & I->RequiredFeatures) != I->RequiredFeatures)\n";
2994     OS << "      continue;\n";
2995     OS << "\n";
2996     OS << "    StringRef T = I->getMnemonic();\n";
2997     OS << "    // Avoid recomputing the edit distance for the same string.\n";
2998     OS << "    if (T.equals(Prev))\n";
2999     OS << "      continue;\n";
3000     OS << "\n";
3001     OS << "    Prev = T;\n";
3002     OS << "    unsigned Dist = S.edit_distance(T, false, MaxEditDist);\n";
3003     OS << "    if (Dist <= MaxEditDist)\n";
3004     OS << "      Candidates.push_back(T);\n";
3005     OS << "  }\n";
3006     OS << "\n";
3007     OS << "  if (Candidates.empty())\n";
3008     OS << "    return \"\";\n";
3009     OS << "\n";
3010     OS << "  std::string Res = \", did you mean: \";\n";
3011     OS << "  unsigned i = 0;\n";
3012     OS << "  for( ; i < Candidates.size() - 1; i++)\n";
3013     OS << "    Res += Candidates[i].str() + \", \";\n";
3014     OS << "  return Res + Candidates[i].str() + \"?\";\n";
3015   }
3016   OS << "}\n";
3017   OS << "\n";
3018 }
3019 
3020 
3021 // Emit a function mapping match classes to strings, for debugging.
3022 static void emitMatchClassKindNames(std::forward_list<ClassInfo> &Infos,
3023                                     raw_ostream &OS) {
3024   OS << "#ifndef NDEBUG\n";
3025   OS << "const char *getMatchClassName(MatchClassKind Kind) {\n";
3026   OS << "  switch (Kind) {\n";
3027 
3028   OS << "  case InvalidMatchClass: return \"InvalidMatchClass\";\n";
3029   OS << "  case OptionalMatchClass: return \"OptionalMatchClass\";\n";
3030   for (const auto &CI : Infos) {
3031     OS << "  case " << CI.Name << ": return \"" << CI.Name << "\";\n";
3032   }
3033   OS << "  case NumMatchClassKinds: return \"NumMatchClassKinds\";\n";
3034 
3035   OS << "  }\n";
3036   OS << "  llvm_unreachable(\"unhandled MatchClassKind!\");\n";
3037   OS << "}\n\n";
3038   OS << "#endif // NDEBUG\n";
3039 }
3040 
3041 void AsmMatcherEmitter::run(raw_ostream &OS) {
3042   CodeGenTarget Target(Records);
3043   Record *AsmParser = Target.getAsmParser();
3044   StringRef ClassName = AsmParser->getValueAsString("AsmParserClassName");
3045 
3046   // Compute the information on the instructions to match.
3047   AsmMatcherInfo Info(AsmParser, Target, Records);
3048   Info.buildInfo();
3049 
3050   // Sort the instruction table using the partial order on classes. We use
3051   // stable_sort to ensure that ambiguous instructions are still
3052   // deterministically ordered.
3053   std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(),
3054                    [](const std::unique_ptr<MatchableInfo> &a,
3055                       const std::unique_ptr<MatchableInfo> &b){
3056                      return *a < *b;});
3057 
3058 #ifdef EXPENSIVE_CHECKS
3059   // Verify that the table is sorted and operator < works transitively.
3060   for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
3061        ++I) {
3062     for (auto J = I; J != E; ++J) {
3063       assert(!(**J < **I));
3064     }
3065   }
3066 #endif
3067 
3068   DEBUG_WITH_TYPE("instruction_info", {
3069       for (const auto &MI : Info.Matchables)
3070         MI->dump();
3071     });
3072 
3073   // Check for ambiguous matchables.
3074   DEBUG_WITH_TYPE("ambiguous_instrs", {
3075     unsigned NumAmbiguous = 0;
3076     for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
3077          ++I) {
3078       for (auto J = std::next(I); J != E; ++J) {
3079         const MatchableInfo &A = **I;
3080         const MatchableInfo &B = **J;
3081 
3082         if (A.couldMatchAmbiguouslyWith(B)) {
3083           errs() << "warning: ambiguous matchables:\n";
3084           A.dump();
3085           errs() << "\nis incomparable with:\n";
3086           B.dump();
3087           errs() << "\n\n";
3088           ++NumAmbiguous;
3089         }
3090       }
3091     }
3092     if (NumAmbiguous)
3093       errs() << "warning: " << NumAmbiguous
3094              << " ambiguous matchables!\n";
3095   });
3096 
3097   // Compute the information on the custom operand parsing.
3098   Info.buildOperandMatchInfo();
3099 
3100   bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
3101   bool HasOptionalOperands = Info.hasOptionalOperands();
3102   bool ReportMultipleNearMisses =
3103       AsmParser->getValueAsBit("ReportMultipleNearMisses");
3104 
3105   // Write the output.
3106 
3107   // Information for the class declaration.
3108   OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
3109   OS << "#undef GET_ASSEMBLER_HEADER\n";
3110   OS << "  // This should be included into the middle of the declaration of\n";
3111   OS << "  // your subclasses implementation of MCTargetAsmParser.\n";
3112   OS << "  uint64_t ComputeAvailableFeatures(const FeatureBitset& FB) const;\n";
3113   if (HasOptionalOperands) {
3114     OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, "
3115        << "unsigned Opcode,\n"
3116        << "                       const OperandVector &Operands,\n"
3117        << "                       const SmallBitVector &OptionalOperandsMask);\n";
3118   } else {
3119     OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, "
3120        << "unsigned Opcode,\n"
3121        << "                       const OperandVector &Operands);\n";
3122   }
3123   OS << "  void convertToMapAndConstraints(unsigned Kind,\n                ";
3124   OS << "           const OperandVector &Operands) override;\n";
3125   OS << "  unsigned MatchInstructionImpl(const OperandVector &Operands,\n"
3126      << "                                MCInst &Inst,\n";
3127   if (ReportMultipleNearMisses)
3128     OS << "                                SmallVectorImpl<NearMissInfo> *NearMisses,\n";
3129   else
3130     OS << "                                uint64_t &ErrorInfo,\n";
3131   OS << "                                bool matchingInlineAsm,\n"
3132      << "                                unsigned VariantID = 0);\n";
3133 
3134   if (!Info.OperandMatchInfo.empty()) {
3135     OS << "  OperandMatchResultTy MatchOperandParserImpl(\n";
3136     OS << "    OperandVector &Operands,\n";
3137     OS << "    StringRef Mnemonic,\n";
3138     OS << "    bool ParseForAllFeatures = false);\n";
3139 
3140     OS << "  OperandMatchResultTy tryCustomParseOperand(\n";
3141     OS << "    OperandVector &Operands,\n";
3142     OS << "    unsigned MCK);\n\n";
3143   }
3144 
3145   OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
3146 
3147   // Emit the operand match diagnostic enum names.
3148   OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n";
3149   OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
3150   emitOperandDiagnosticTypes(Info, OS);
3151   OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
3152 
3153   OS << "\n#ifdef GET_REGISTER_MATCHER\n";
3154   OS << "#undef GET_REGISTER_MATCHER\n\n";
3155 
3156   // Emit the subtarget feature enumeration.
3157   SubtargetFeatureInfo::emitSubtargetFeatureFlagEnumeration(
3158       Info.SubtargetFeatures, OS);
3159 
3160   // Emit the function to match a register name to number.
3161   // This should be omitted for Mips target
3162   if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName"))
3163     emitMatchRegisterName(Target, AsmParser, OS);
3164 
3165   if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterAltName"))
3166     emitMatchRegisterAltName(Target, AsmParser, OS);
3167 
3168   OS << "#endif // GET_REGISTER_MATCHER\n\n";
3169 
3170   OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n";
3171   OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n";
3172 
3173   // Generate the helper function to get the names for subtarget features.
3174   emitGetSubtargetFeatureName(Info, OS);
3175 
3176   OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n";
3177 
3178   OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
3179   OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
3180 
3181   // Generate the function that remaps for mnemonic aliases.
3182   bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target);
3183 
3184   // Generate the convertToMCInst function to convert operands into an MCInst.
3185   // Also, generate the convertToMapAndConstraints function for MS-style inline
3186   // assembly.  The latter doesn't actually generate a MCInst.
3187   emitConvertFuncs(Target, ClassName, Info.Matchables, HasMnemonicFirst,
3188                    HasOptionalOperands, OS);
3189 
3190   // Emit the enumeration for classes which participate in matching.
3191   emitMatchClassEnumeration(Target, Info.Classes, OS);
3192 
3193   // Emit a function to get the user-visible string to describe an operand
3194   // match failure in diagnostics.
3195   emitOperandMatchErrorDiagStrings(Info, OS);
3196 
3197   // Emit a function to map register classes to operand match failure codes.
3198   emitRegisterMatchErrorFunc(Info, OS);
3199 
3200   // Emit the routine to match token strings to their match class.
3201   emitMatchTokenString(Target, Info.Classes, OS);
3202 
3203   // Emit the subclass predicate routine.
3204   emitIsSubclass(Target, Info.Classes, OS);
3205 
3206   // Emit the routine to validate an operand against a match class.
3207   emitValidateOperandClass(Info, OS);
3208 
3209   emitMatchClassKindNames(Info.Classes, OS);
3210 
3211   // Emit the available features compute function.
3212   SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures(
3213       Info.Target.getName(), ClassName, "ComputeAvailableFeatures",
3214       Info.SubtargetFeatures, OS);
3215 
3216   if (!ReportMultipleNearMisses)
3217     emitAsmTiedOperandConstraints(Target, Info, OS);
3218 
3219   StringToOffsetTable StringTable;
3220 
3221   size_t MaxNumOperands = 0;
3222   unsigned MaxMnemonicIndex = 0;
3223   bool HasDeprecation = false;
3224   for (const auto &MI : Info.Matchables) {
3225     MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
3226     HasDeprecation |= MI->HasDeprecation;
3227 
3228     // Store a pascal-style length byte in the mnemonic.
3229     std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str();
3230     MaxMnemonicIndex = std::max(MaxMnemonicIndex,
3231                         StringTable.GetOrAddStringOffset(LenMnemonic, false));
3232   }
3233 
3234   OS << "static const char *const MnemonicTable =\n";
3235   StringTable.EmitString(OS);
3236   OS << ";\n\n";
3237 
3238   // Emit the static match table; unused classes get initialized to 0 which is
3239   // guaranteed to be InvalidMatchClass.
3240   //
3241   // FIXME: We can reduce the size of this table very easily. First, we change
3242   // it so that store the kinds in separate bit-fields for each index, which
3243   // only needs to be the max width used for classes at that index (we also need
3244   // to reject based on this during classification). If we then make sure to
3245   // order the match kinds appropriately (putting mnemonics last), then we
3246   // should only end up using a few bits for each class, especially the ones
3247   // following the mnemonic.
3248   OS << "namespace {\n";
3249   OS << "  struct MatchEntry {\n";
3250   OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
3251                << " Mnemonic;\n";
3252   OS << "    uint16_t Opcode;\n";
3253   OS << "    " << getMinimalTypeForRange(Info.Matchables.size())
3254                << " ConvertFn;\n";
3255   OS << "    " << getMinimalTypeForEnumBitfield(Info.SubtargetFeatures.size())
3256                << " RequiredFeatures;\n";
3257   OS << "    " << getMinimalTypeForRange(
3258                       std::distance(Info.Classes.begin(), Info.Classes.end()))
3259      << " Classes[" << MaxNumOperands << "];\n";
3260   OS << "    StringRef getMnemonic() const {\n";
3261   OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
3262   OS << "                       MnemonicTable[Mnemonic]);\n";
3263   OS << "    }\n";
3264   OS << "  };\n\n";
3265 
3266   OS << "  // Predicate for searching for an opcode.\n";
3267   OS << "  struct LessOpcode {\n";
3268   OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
3269   OS << "      return LHS.getMnemonic() < RHS;\n";
3270   OS << "    }\n";
3271   OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
3272   OS << "      return LHS < RHS.getMnemonic();\n";
3273   OS << "    }\n";
3274   OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
3275   OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
3276   OS << "    }\n";
3277   OS << "  };\n";
3278 
3279   OS << "} // end anonymous namespace.\n\n";
3280 
3281   unsigned VariantCount = Target.getAsmParserVariantCount();
3282   for (unsigned VC = 0; VC != VariantCount; ++VC) {
3283     Record *AsmVariant = Target.getAsmParserVariant(VC);
3284     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3285 
3286     OS << "static const MatchEntry MatchTable" << VC << "[] = {\n";
3287 
3288     for (const auto &MI : Info.Matchables) {
3289       if (MI->AsmVariantID != AsmVariantNo)
3290         continue;
3291 
3292       // Store a pascal-style length byte in the mnemonic.
3293       std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str();
3294       OS << "  { " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
3295          << " /* " << MI->Mnemonic << " */, "
3296          << Target.getInstNamespace() << "::"
3297          << MI->getResultInst()->TheDef->getName() << ", "
3298          << MI->ConversionFnKind << ", ";
3299 
3300       // Write the required features mask.
3301       if (!MI->RequiredFeatures.empty()) {
3302         for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i) {
3303           if (i) OS << "|";
3304           OS << MI->RequiredFeatures[i]->getEnumName();
3305         }
3306       } else
3307         OS << "0";
3308 
3309       OS << ", { ";
3310       for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
3311         const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
3312 
3313         if (i) OS << ", ";
3314         OS << Op.Class->Name;
3315       }
3316       OS << " }, },\n";
3317     }
3318 
3319     OS << "};\n\n";
3320   }
3321 
3322   OS << "#include \"llvm/Support/Debug.h\"\n";
3323   OS << "#include \"llvm/Support/Format.h\"\n\n";
3324 
3325   // Finally, build the match function.
3326   OS << "unsigned " << Target.getName() << ClassName << "::\n"
3327      << "MatchInstructionImpl(const OperandVector &Operands,\n";
3328   OS << "                     MCInst &Inst,\n";
3329   if (ReportMultipleNearMisses)
3330     OS << "                     SmallVectorImpl<NearMissInfo> *NearMisses,\n";
3331   else
3332     OS << "                     uint64_t &ErrorInfo,\n";
3333   OS << "                     bool matchingInlineAsm, unsigned VariantID) {\n";
3334 
3335   if (!ReportMultipleNearMisses) {
3336     OS << "  // Eliminate obvious mismatches.\n";
3337     OS << "  if (Operands.size() > "
3338        << (MaxNumOperands + HasMnemonicFirst) << ") {\n";
3339     OS << "    ErrorInfo = "
3340        << (MaxNumOperands + HasMnemonicFirst) << ";\n";
3341     OS << "    return Match_InvalidOperand;\n";
3342     OS << "  }\n\n";
3343   }
3344 
3345   // Emit code to get the available features.
3346   OS << "  // Get the current feature set.\n";
3347   OS << "  uint64_t AvailableFeatures = getAvailableFeatures();\n\n";
3348 
3349   OS << "  // Get the instruction mnemonic, which is the first token.\n";
3350   if (HasMnemonicFirst) {
3351     OS << "  StringRef Mnemonic = ((" << Target.getName()
3352        << "Operand&)*Operands[0]).getToken();\n\n";
3353   } else {
3354     OS << "  StringRef Mnemonic;\n";
3355     OS << "  if (Operands[0]->isToken())\n";
3356     OS << "    Mnemonic = ((" << Target.getName()
3357        << "Operand&)*Operands[0]).getToken();\n\n";
3358   }
3359 
3360   if (HasMnemonicAliases) {
3361     OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
3362     OS << "  applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n";
3363   }
3364 
3365   // Emit code to compute the class list for this operand vector.
3366   if (!ReportMultipleNearMisses) {
3367     OS << "  // Some state to try to produce better error messages.\n";
3368     OS << "  bool HadMatchOtherThanFeatures = false;\n";
3369     OS << "  bool HadMatchOtherThanPredicate = false;\n";
3370     OS << "  unsigned RetCode = Match_InvalidOperand;\n";
3371     OS << "  uint64_t MissingFeatures = ~0ULL;\n";
3372     OS << "  // Set ErrorInfo to the operand that mismatches if it is\n";
3373     OS << "  // wrong for all instances of the instruction.\n";
3374     OS << "  ErrorInfo = ~0ULL;\n";
3375   }
3376 
3377   if (HasOptionalOperands) {
3378     OS << "  SmallBitVector OptionalOperandsMask(" << MaxNumOperands << ");\n";
3379   }
3380 
3381   // Emit code to search the table.
3382   OS << "  // Find the appropriate table for this asm variant.\n";
3383   OS << "  const MatchEntry *Start, *End;\n";
3384   OS << "  switch (VariantID) {\n";
3385   OS << "  default: llvm_unreachable(\"invalid variant!\");\n";
3386   for (unsigned VC = 0; VC != VariantCount; ++VC) {
3387     Record *AsmVariant = Target.getAsmParserVariant(VC);
3388     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3389     OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3390        << "); End = std::end(MatchTable" << VC << "); break;\n";
3391   }
3392   OS << "  }\n";
3393 
3394   OS << "  // Search the table.\n";
3395   if (HasMnemonicFirst) {
3396     OS << "  auto MnemonicRange = "
3397           "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
3398   } else {
3399     OS << "  auto MnemonicRange = std::make_pair(Start, End);\n";
3400     OS << "  unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n";
3401     OS << "  if (!Mnemonic.empty())\n";
3402     OS << "    MnemonicRange = "
3403           "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n";
3404   }
3405 
3406   OS << "  DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"AsmMatcher: found \" <<\n"
3407      << "  std::distance(MnemonicRange.first, MnemonicRange.second) << \n"
3408      << "  \" encodings with mnemonic '\" << Mnemonic << \"'\\n\");\n\n";
3409 
3410   OS << "  // Return a more specific error code if no mnemonics match.\n";
3411   OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
3412   OS << "    return Match_MnemonicFail;\n\n";
3413 
3414   OS << "  for (const MatchEntry *it = MnemonicRange.first, "
3415      << "*ie = MnemonicRange.second;\n";
3416   OS << "       it != ie; ++it) {\n";
3417   OS << "    bool HasRequiredFeatures =\n";
3418   OS << "      (AvailableFeatures & it->RequiredFeatures) == "
3419         "it->RequiredFeatures;\n";
3420   OS << "    DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Trying to match opcode \"\n";
3421   OS << "                                          << MII.getName(it->Opcode) << \"\\n\");\n";
3422 
3423   if (ReportMultipleNearMisses) {
3424     OS << "    // Some state to record ways in which this instruction did not match.\n";
3425     OS << "    NearMissInfo OperandNearMiss = NearMissInfo::getSuccess();\n";
3426     OS << "    NearMissInfo FeaturesNearMiss = NearMissInfo::getSuccess();\n";
3427     OS << "    NearMissInfo EarlyPredicateNearMiss = NearMissInfo::getSuccess();\n";
3428     OS << "    NearMissInfo LatePredicateNearMiss = NearMissInfo::getSuccess();\n";
3429     OS << "    bool MultipleInvalidOperands = false;\n";
3430   }
3431 
3432   if (HasMnemonicFirst) {
3433     OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
3434     OS << "    assert(Mnemonic == it->getMnemonic());\n";
3435   }
3436 
3437   // Emit check that the subclasses match.
3438   if (!ReportMultipleNearMisses)
3439     OS << "    bool OperandsValid = true;\n";
3440   if (HasOptionalOperands) {
3441     OS << "    OptionalOperandsMask.reset(0, " << MaxNumOperands << ");\n";
3442   }
3443   OS << "    for (unsigned FormalIdx = " << (HasMnemonicFirst ? "0" : "SIndex")
3444      << ", ActualIdx = " << (HasMnemonicFirst ? "1" : "SIndex")
3445      << "; FormalIdx != " << MaxNumOperands << "; ++FormalIdx) {\n";
3446   OS << "      auto Formal = "
3447      << "static_cast<MatchClassKind>(it->Classes[FormalIdx]);\n";
3448   OS << "      DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3449   OS << "                      dbgs() << \"  Matching formal operand class \" << getMatchClassName(Formal)\n";
3450   OS << "                             << \" against actual operand at index \" << ActualIdx);\n";
3451   OS << "      if (ActualIdx < Operands.size())\n";
3452   OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \" (\";\n";
3453   OS << "                        Operands[ActualIdx]->print(dbgs()); dbgs() << \"): \");\n";
3454   OS << "      else\n";
3455   OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \": \");\n";
3456   OS << "      if (ActualIdx >= Operands.size()) {\n";
3457   OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"actual operand index out of range \");\n";
3458   if (ReportMultipleNearMisses) {
3459     OS << "        bool ThisOperandValid = (Formal == " <<"InvalidMatchClass) || "
3460                                    "isSubclass(Formal, OptionalMatchClass);\n";
3461     OS << "        if (!ThisOperandValid) {\n";
3462     OS << "          if (!OperandNearMiss) {\n";
3463     OS << "            // Record info about match failure for later use.\n";
3464     OS << "            DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"recording too-few-operands near miss\\n\");\n";
3465     OS << "            OperandNearMiss =\n";
3466     OS << "                NearMissInfo::getTooFewOperands(Formal, it->Opcode);\n";
3467     OS << "          } else if (OperandNearMiss.getKind() != NearMissInfo::NearMissTooFewOperands) {\n";
3468     OS << "            // If more than one operand is invalid, give up on this match entry.\n";
3469     OS << "            DEBUG_WITH_TYPE(\n";
3470     OS << "                \"asm-matcher\",\n";
3471     OS << "                dbgs() << \"second invalid operand, giving up on this opcode\\n\");\n";
3472     OS << "            MultipleInvalidOperands = true;\n";
3473     OS << "            break;\n";
3474     OS << "          }\n";
3475     OS << "        } else {\n";
3476     OS << "          DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"but formal operand not required\\n\");\n";
3477     OS << "          break;\n";
3478     OS << "        }\n";
3479     OS << "        continue;\n";
3480   } else {
3481     OS << "        OperandsValid = (Formal == InvalidMatchClass) || isSubclass(Formal, OptionalMatchClass);\n";
3482     OS << "        if (!OperandsValid) ErrorInfo = ActualIdx;\n";
3483     if (HasOptionalOperands) {
3484       OS << "        OptionalOperandsMask.set(FormalIdx, " << MaxNumOperands
3485          << ");\n";
3486     }
3487     OS << "        break;\n";
3488   }
3489   OS << "      }\n";
3490   OS << "      MCParsedAsmOperand &Actual = *Operands[ActualIdx];\n";
3491   OS << "      unsigned Diag = validateOperandClass(Actual, Formal);\n";
3492   OS << "      if (Diag == Match_Success) {\n";
3493   OS << "        DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3494   OS << "                        dbgs() << \"match success using generic matcher\\n\");\n";
3495   OS << "        ++ActualIdx;\n";
3496   OS << "        continue;\n";
3497   OS << "      }\n";
3498   OS << "      // If the generic handler indicates an invalid operand\n";
3499   OS << "      // failure, check for a special case.\n";
3500   OS << "      if (Diag != Match_Success) {\n";
3501   OS << "        unsigned TargetDiag = validateTargetOperandClass(Actual, Formal);\n";
3502   OS << "        if (TargetDiag == Match_Success) {\n";
3503   OS << "          DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3504   OS << "                          dbgs() << \"match success using target matcher\\n\");\n";
3505   OS << "          ++ActualIdx;\n";
3506   OS << "          continue;\n";
3507   OS << "        }\n";
3508   OS << "        // If the target matcher returned a specific error code use\n";
3509   OS << "        // that, else use the one from the generic matcher.\n";
3510   OS << "        if (TargetDiag != Match_InvalidOperand && "
3511         "HasRequiredFeatures)\n";
3512   OS << "          Diag = TargetDiag;\n";
3513   OS << "      }\n";
3514   OS << "      // If current formal operand wasn't matched and it is optional\n"
3515      << "      // then try to match next formal operand\n";
3516   OS << "      if (Diag == Match_InvalidOperand "
3517      << "&& isSubclass(Formal, OptionalMatchClass)) {\n";
3518   if (HasOptionalOperands) {
3519     OS << "        OptionalOperandsMask.set(FormalIdx);\n";
3520   }
3521     OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"ignoring optional operand\\n\");\n";
3522   OS << "        continue;\n";
3523   OS << "      }\n";
3524 
3525   if (ReportMultipleNearMisses) {
3526     OS << "      if (!OperandNearMiss) {\n";
3527     OS << "        // If this is the first invalid operand we have seen, record some\n";
3528     OS << "        // information about it.\n";
3529     OS << "        DEBUG_WITH_TYPE(\n";
3530     OS << "            \"asm-matcher\",\n";
3531     OS << "            dbgs()\n";
3532     OS << "                << \"operand match failed, recording near-miss with diag code \"\n";
3533     OS << "                << Diag << \"\\n\");\n";
3534     OS << "        OperandNearMiss =\n";
3535     OS << "            NearMissInfo::getMissedOperand(Diag, Formal, it->Opcode, ActualIdx);\n";
3536     OS << "        ++ActualIdx;\n";
3537     OS << "      } else {\n";
3538     OS << "        // If more than one operand is invalid, give up on this match entry.\n";
3539     OS << "        DEBUG_WITH_TYPE(\n";
3540     OS << "            \"asm-matcher\",\n";
3541     OS << "            dbgs() << \"second operand mismatch, skipping this opcode\\n\");\n";
3542     OS << "        MultipleInvalidOperands = true;\n";
3543     OS << "        break;\n";
3544     OS << "      }\n";
3545     OS << "    }\n\n";
3546   } else {
3547     OS << "      // If this operand is broken for all of the instances of this\n";
3548     OS << "      // mnemonic, keep track of it so we can report loc info.\n";
3549     OS << "      // If we already had a match that only failed due to a\n";
3550     OS << "      // target predicate, that diagnostic is preferred.\n";
3551     OS << "      if (!HadMatchOtherThanPredicate &&\n";
3552     OS << "          (it == MnemonicRange.first || ErrorInfo <= ActualIdx)) {\n";
3553     OS << "        if (HasRequiredFeatures && (ErrorInfo != ActualIdx || Diag "
3554           "!= Match_InvalidOperand))\n";
3555     OS << "          RetCode = Diag;\n";
3556     OS << "        ErrorInfo = ActualIdx;\n";
3557     OS << "      }\n";
3558     OS << "      // Otherwise, just reject this instance of the mnemonic.\n";
3559     OS << "      OperandsValid = false;\n";
3560     OS << "      break;\n";
3561     OS << "    }\n\n";
3562   }
3563 
3564   if (ReportMultipleNearMisses)
3565     OS << "    if (MultipleInvalidOperands) {\n";
3566   else
3567     OS << "    if (!OperandsValid) {\n";
3568   OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n";
3569   OS << "                                               \"operand mismatches, ignoring \"\n";
3570   OS << "                                               \"this opcode\\n\");\n";
3571   OS << "      continue;\n";
3572   OS << "    }\n";
3573 
3574   // Emit check that the required features are available.
3575   OS << "    if (!HasRequiredFeatures) {\n";
3576   if (!ReportMultipleNearMisses)
3577     OS << "      HadMatchOtherThanFeatures = true;\n";
3578   OS << "      uint64_t NewMissingFeatures = it->RequiredFeatures & "
3579         "~AvailableFeatures;\n";
3580   OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Missing target features: \"\n";
3581   OS << "                                            << format_hex(NewMissingFeatures, 18)\n";
3582   OS << "                                            << \"\\n\");\n";
3583   if (ReportMultipleNearMisses) {
3584     OS << "      FeaturesNearMiss = NearMissInfo::getMissedFeature(NewMissingFeatures);\n";
3585   } else {
3586     OS << "      if (countPopulation(NewMissingFeatures) <=\n"
3587           "          countPopulation(MissingFeatures))\n";
3588     OS << "        MissingFeatures = NewMissingFeatures;\n";
3589     OS << "      continue;\n";
3590   }
3591   OS << "    }\n";
3592   OS << "\n";
3593   OS << "    Inst.clear();\n\n";
3594   OS << "    Inst.setOpcode(it->Opcode);\n";
3595   // Verify the instruction with the target-specific match predicate function.
3596   OS << "    // We have a potential match but have not rendered the operands.\n"
3597      << "    // Check the target predicate to handle any context sensitive\n"
3598         "    // constraints.\n"
3599      << "    // For example, Ties that are referenced multiple times must be\n"
3600         "    // checked here to ensure the input is the same for each match\n"
3601         "    // constraints. If we leave it any later the ties will have been\n"
3602         "    // canonicalized\n"
3603      << "    unsigned MatchResult;\n"
3604      << "    if ((MatchResult = checkEarlyTargetMatchPredicate(Inst, "
3605         "Operands)) != Match_Success) {\n"
3606      << "      Inst.clear();\n";
3607   OS << "      DEBUG_WITH_TYPE(\n";
3608   OS << "          \"asm-matcher\",\n";
3609   OS << "          dbgs() << \"Early target match predicate failed with diag code \"\n";
3610   OS << "                 << MatchResult << \"\\n\");\n";
3611   if (ReportMultipleNearMisses) {
3612     OS << "      EarlyPredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n";
3613   } else {
3614     OS << "      RetCode = MatchResult;\n"
3615        << "      HadMatchOtherThanPredicate = true;\n"
3616        << "      continue;\n";
3617   }
3618   OS << "    }\n\n";
3619 
3620   if (ReportMultipleNearMisses) {
3621     OS << "    // If we did not successfully match the operands, then we can't convert to\n";
3622     OS << "    // an MCInst, so bail out on this instruction variant now.\n";
3623     OS << "    if (OperandNearMiss) {\n";
3624     OS << "      // If the operand mismatch was the only problem, reprrt it as a near-miss.\n";
3625     OS << "      if (NearMisses && !FeaturesNearMiss && !EarlyPredicateNearMiss) {\n";
3626     OS << "        DEBUG_WITH_TYPE(\n";
3627     OS << "            \"asm-matcher\",\n";
3628     OS << "            dbgs()\n";
3629     OS << "                << \"Opcode result: one mismatched operand, adding near-miss\\n\");\n";
3630     OS << "        NearMisses->push_back(OperandNearMiss);\n";
3631     OS << "      } else {\n";
3632     OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n";
3633     OS << "                                                 \"types of mismatch, so not \"\n";
3634     OS << "                                                 \"reporting near-miss\\n\");\n";
3635     OS << "      }\n";
3636     OS << "      continue;\n";
3637     OS << "    }\n\n";
3638   }
3639 
3640   OS << "    if (matchingInlineAsm) {\n";
3641   OS << "      convertToMapAndConstraints(it->ConvertFn, Operands);\n";
3642   if (!ReportMultipleNearMisses) {
3643     OS << "      SMLoc Loc;\n";
3644     OS << "      if (!checkAsmTiedOperandConstraints(Inst, Operands, Loc)) {\n";
3645     OS << "        ErrorInfo = " << (HasMnemonicFirst ? "1" : "SIndex") << ";\n";
3646     OS << "        return Match_InvalidTiedOperand;\n";
3647     OS << "      }\n";
3648     OS << "\n";
3649   }
3650   OS << "      return Match_Success;\n";
3651   OS << "    }\n\n";
3652   OS << "    // We have selected a definite instruction, convert the parsed\n"
3653      << "    // operands into the appropriate MCInst.\n";
3654   if (HasOptionalOperands) {
3655     OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands,\n"
3656        << "                    OptionalOperandsMask);\n";
3657   } else {
3658     OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
3659   }
3660   OS << "\n";
3661 
3662   // Verify the instruction with the target-specific match predicate function.
3663   OS << "    // We have a potential match. Check the target predicate to\n"
3664      << "    // handle any context sensitive constraints.\n"
3665      << "    if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
3666      << " Match_Success) {\n"
3667      << "      DEBUG_WITH_TYPE(\"asm-matcher\",\n"
3668      << "                      dbgs() << \"Target match predicate failed with diag code \"\n"
3669      << "                             << MatchResult << \"\\n\");\n"
3670      << "      Inst.clear();\n";
3671   if (ReportMultipleNearMisses) {
3672     OS << "      LatePredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n";
3673   } else {
3674     OS << "      RetCode = MatchResult;\n"
3675        << "      HadMatchOtherThanPredicate = true;\n"
3676        << "      continue;\n";
3677   }
3678   OS << "    }\n\n";
3679 
3680   if (ReportMultipleNearMisses) {
3681     OS << "    int NumNearMisses = ((int)(bool)OperandNearMiss +\n";
3682     OS << "                         (int)(bool)FeaturesNearMiss +\n";
3683     OS << "                         (int)(bool)EarlyPredicateNearMiss +\n";
3684     OS << "                         (int)(bool)LatePredicateNearMiss);\n";
3685     OS << "    if (NumNearMisses == 1) {\n";
3686     OS << "      // We had exactly one type of near-miss, so add that to the list.\n";
3687     OS << "      assert(!OperandNearMiss && \"OperandNearMiss was handled earlier\");\n";
3688     OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: found one type of \"\n";
3689     OS << "                                            \"mismatch, so reporting a \"\n";
3690     OS << "                                            \"near-miss\\n\");\n";
3691     OS << "      if (NearMisses && FeaturesNearMiss)\n";
3692     OS << "        NearMisses->push_back(FeaturesNearMiss);\n";
3693     OS << "      else if (NearMisses && EarlyPredicateNearMiss)\n";
3694     OS << "        NearMisses->push_back(EarlyPredicateNearMiss);\n";
3695     OS << "      else if (NearMisses && LatePredicateNearMiss)\n";
3696     OS << "        NearMisses->push_back(LatePredicateNearMiss);\n";
3697     OS << "\n";
3698     OS << "      continue;\n";
3699     OS << "    } else if (NumNearMisses > 1) {\n";
3700     OS << "      // This instruction missed in more than one way, so ignore it.\n";
3701     OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n";
3702     OS << "                                               \"types of mismatch, so not \"\n";
3703     OS << "                                               \"reporting near-miss\\n\");\n";
3704     OS << "      continue;\n";
3705     OS << "    }\n";
3706   }
3707 
3708   // Call the post-processing function, if used.
3709   StringRef InsnCleanupFn = AsmParser->getValueAsString("AsmParserInstCleanup");
3710   if (!InsnCleanupFn.empty())
3711     OS << "    " << InsnCleanupFn << "(Inst);\n";
3712 
3713   if (HasDeprecation) {
3714     OS << "    std::string Info;\n";
3715     OS << "    if (!getParser().getTargetParser().\n";
3716     OS << "        getTargetOptions().MCNoDeprecatedWarn &&\n";
3717     OS << "        MII.get(Inst.getOpcode()).getDeprecatedInfo(Inst, getSTI(), Info)) {\n";
3718     OS << "      SMLoc Loc = ((" << Target.getName()
3719        << "Operand&)*Operands[0]).getStartLoc();\n";
3720     OS << "      getParser().Warning(Loc, Info, None);\n";
3721     OS << "    }\n";
3722   }
3723 
3724   if (!ReportMultipleNearMisses) {
3725     OS << "      SMLoc Loc;\n";
3726     OS << "      if (!checkAsmTiedOperandConstraints(Inst, Operands, Loc)) {\n";
3727     OS << "        ErrorInfo = " << (HasMnemonicFirst ? "1" : "SIndex") << ";\n";
3728     OS << "        return Match_InvalidTiedOperand;\n";
3729     OS << "      }\n";
3730     OS << "\n";
3731   }
3732 
3733   OS << "    DEBUG_WITH_TYPE(\n";
3734   OS << "        \"asm-matcher\",\n";
3735   OS << "        dbgs() << \"Opcode result: complete match, selecting this opcode\\n\");\n";
3736   OS << "    return Match_Success;\n";
3737   OS << "  }\n\n";
3738 
3739   if (ReportMultipleNearMisses) {
3740     OS << "  // No instruction variants matched exactly.\n";
3741     OS << "  return Match_NearMisses;\n";
3742   } else {
3743     OS << "  // Okay, we had no match.  Try to return a useful error code.\n";
3744     OS << "  if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n";
3745     OS << "    return RetCode;\n\n";
3746     OS << "  // Missing feature matches return which features were missing\n";
3747     OS << "  ErrorInfo = MissingFeatures;\n";
3748     OS << "  return Match_MissingFeature;\n";
3749   }
3750   OS << "}\n\n";
3751 
3752   if (!Info.OperandMatchInfo.empty())
3753     emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable,
3754                              MaxMnemonicIndex, HasMnemonicFirst);
3755 
3756   OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
3757 
3758   OS << "\n#ifdef GET_MNEMONIC_SPELL_CHECKER\n";
3759   OS << "#undef GET_MNEMONIC_SPELL_CHECKER\n\n";
3760 
3761   emitMnemonicSpellChecker(OS, Target, VariantCount);
3762 
3763   OS << "#endif // GET_MNEMONIC_SPELL_CHECKER\n\n";
3764 }
3765 
3766 namespace llvm {
3767 
3768 void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) {
3769   emitSourceFileHeader("Assembly Matcher Source Fragment", OS);
3770   AsmMatcherEmitter(RK).run(OS);
3771 }
3772 
3773 } // end namespace llvm
3774