1 //===- llvm/unittest/Analysis/LoopPassManagerTest.cpp - LPM tests ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/Scalar/LoopPassManager.h" 10 #include "llvm/Analysis/AliasAnalysis.h" 11 #include "llvm/Analysis/AssumptionCache.h" 12 #include "llvm/Analysis/BlockFrequencyInfo.h" 13 #include "llvm/Analysis/BranchProbabilityInfo.h" 14 #include "llvm/Analysis/MemorySSA.h" 15 #include "llvm/Analysis/PostDominators.h" 16 #include "llvm/Analysis/ScalarEvolution.h" 17 #include "llvm/Analysis/TargetLibraryInfo.h" 18 #include "llvm/Analysis/TargetTransformInfo.h" 19 #include "llvm/AsmParser/Parser.h" 20 #include "llvm/IR/Dominators.h" 21 #include "llvm/IR/Function.h" 22 #include "llvm/IR/LLVMContext.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/PassManager.h" 25 #include "llvm/Support/SourceMgr.h" 26 27 #include "gmock/gmock.h" 28 #include "gtest/gtest.h" 29 30 using namespace llvm; 31 32 namespace { 33 34 using testing::DoDefault; 35 using testing::Return; 36 using testing::Expectation; 37 using testing::Invoke; 38 using testing::InvokeWithoutArgs; 39 using testing::_; 40 41 template <typename DerivedT, typename IRUnitT, 42 typename AnalysisManagerT = AnalysisManager<IRUnitT>, 43 typename... ExtraArgTs> 44 class MockAnalysisHandleBase { 45 public: 46 class Analysis : public AnalysisInfoMixin<Analysis> { 47 friend AnalysisInfoMixin<Analysis>; 48 friend MockAnalysisHandleBase; 49 static AnalysisKey Key; 50 51 DerivedT *Handle; 52 53 Analysis(DerivedT &Handle) : Handle(&Handle) { 54 static_assert(std::is_base_of<MockAnalysisHandleBase, DerivedT>::value, 55 "Must pass the derived type to this template!"); 56 } 57 58 public: 59 class Result { 60 friend MockAnalysisHandleBase; 61 62 DerivedT *Handle; 63 64 Result(DerivedT &Handle) : Handle(&Handle) {} 65 66 public: 67 // Forward invalidation events to the mock handle. 68 bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA, 69 typename AnalysisManagerT::Invalidator &Inv) { 70 return Handle->invalidate(IR, PA, Inv); 71 } 72 }; 73 74 Result run(IRUnitT &IR, AnalysisManagerT &AM, ExtraArgTs... ExtraArgs) { 75 return Handle->run(IR, AM, ExtraArgs...); 76 } 77 }; 78 79 Analysis getAnalysis() { return Analysis(static_cast<DerivedT &>(*this)); } 80 typename Analysis::Result getResult() { 81 return typename Analysis::Result(static_cast<DerivedT &>(*this)); 82 } 83 84 protected: 85 // FIXME: MSVC seems unable to handle a lambda argument to Invoke from within 86 // the template, so we use a boring static function. 87 static bool invalidateCallback(IRUnitT &IR, const PreservedAnalyses &PA, 88 typename AnalysisManagerT::Invalidator &Inv) { 89 auto PAC = PA.template getChecker<Analysis>(); 90 return !PAC.preserved() && 91 !PAC.template preservedSet<AllAnalysesOn<IRUnitT>>(); 92 } 93 94 /// Derived classes should call this in their constructor to set up default 95 /// mock actions. (We can't do this in our constructor because this has to 96 /// run after the DerivedT is constructed.) 97 void setDefaults() { 98 ON_CALL(static_cast<DerivedT &>(*this), 99 run(_, _, testing::Matcher<ExtraArgTs>(_)...)) 100 .WillByDefault(Return(this->getResult())); 101 ON_CALL(static_cast<DerivedT &>(*this), invalidate(_, _, _)) 102 .WillByDefault(Invoke(&invalidateCallback)); 103 } 104 }; 105 106 template <typename DerivedT, typename IRUnitT, typename AnalysisManagerT, 107 typename... ExtraArgTs> 108 AnalysisKey MockAnalysisHandleBase<DerivedT, IRUnitT, AnalysisManagerT, 109 ExtraArgTs...>::Analysis::Key; 110 111 /// Mock handle for loop analyses. 112 /// 113 /// This is provided as a template accepting an (optional) integer. Because 114 /// analyses are identified and queried by type, this allows constructing 115 /// multiple handles with distinctly typed nested 'Analysis' types that can be 116 /// registered and queried. If you want to register multiple loop analysis 117 /// passes, you'll need to instantiate this type with different values for I. 118 /// For example: 119 /// 120 /// MockLoopAnalysisHandleTemplate<0> h0; 121 /// MockLoopAnalysisHandleTemplate<1> h1; 122 /// typedef decltype(h0)::Analysis Analysis0; 123 /// typedef decltype(h1)::Analysis Analysis1; 124 template <size_t I = static_cast<size_t>(-1)> 125 struct MockLoopAnalysisHandleTemplate 126 : MockAnalysisHandleBase<MockLoopAnalysisHandleTemplate<I>, Loop, 127 LoopAnalysisManager, 128 LoopStandardAnalysisResults &> { 129 typedef typename MockLoopAnalysisHandleTemplate::Analysis Analysis; 130 131 MOCK_METHOD3_T(run, typename Analysis::Result(Loop &, LoopAnalysisManager &, 132 LoopStandardAnalysisResults &)); 133 134 MOCK_METHOD3_T(invalidate, bool(Loop &, const PreservedAnalyses &, 135 LoopAnalysisManager::Invalidator &)); 136 137 MockLoopAnalysisHandleTemplate() { this->setDefaults(); } 138 }; 139 140 typedef MockLoopAnalysisHandleTemplate<> MockLoopAnalysisHandle; 141 142 struct MockFunctionAnalysisHandle 143 : MockAnalysisHandleBase<MockFunctionAnalysisHandle, Function> { 144 MOCK_METHOD2(run, Analysis::Result(Function &, FunctionAnalysisManager &)); 145 146 MOCK_METHOD3(invalidate, bool(Function &, const PreservedAnalyses &, 147 FunctionAnalysisManager::Invalidator &)); 148 149 MockFunctionAnalysisHandle() { setDefaults(); } 150 }; 151 152 template <typename DerivedT, typename IRUnitT, 153 typename AnalysisManagerT = AnalysisManager<IRUnitT>, 154 typename... ExtraArgTs> 155 class MockPassHandleBase { 156 public: 157 class Pass : public PassInfoMixin<Pass> { 158 friend MockPassHandleBase; 159 160 DerivedT *Handle; 161 162 Pass(DerivedT &Handle) : Handle(&Handle) { 163 static_assert(std::is_base_of<MockPassHandleBase, DerivedT>::value, 164 "Must pass the derived type to this template!"); 165 } 166 167 public: 168 PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM, 169 ExtraArgTs... ExtraArgs) { 170 return Handle->run(IR, AM, ExtraArgs...); 171 } 172 }; 173 174 Pass getPass() { return Pass(static_cast<DerivedT &>(*this)); } 175 176 protected: 177 /// Derived classes should call this in their constructor to set up default 178 /// mock actions. (We can't do this in our constructor because this has to 179 /// run after the DerivedT is constructed.) 180 void setDefaults() { 181 ON_CALL(static_cast<DerivedT &>(*this), 182 run(_, _, testing::Matcher<ExtraArgTs>(_)...)) 183 .WillByDefault(Return(PreservedAnalyses::all())); 184 } 185 }; 186 187 struct MockLoopPassHandle 188 : MockPassHandleBase<MockLoopPassHandle, Loop, LoopAnalysisManager, 189 LoopStandardAnalysisResults &, LPMUpdater &> { 190 MOCK_METHOD4(run, 191 PreservedAnalyses(Loop &, LoopAnalysisManager &, 192 LoopStandardAnalysisResults &, LPMUpdater &)); 193 MockLoopPassHandle() { setDefaults(); } 194 }; 195 196 struct MockLoopNestPassHandle 197 : MockPassHandleBase<MockLoopNestPassHandle, LoopNest, LoopAnalysisManager, 198 LoopStandardAnalysisResults &, LPMUpdater &> { 199 MOCK_METHOD4(run, 200 PreservedAnalyses(LoopNest &, LoopAnalysisManager &, 201 LoopStandardAnalysisResults &, LPMUpdater &)); 202 203 MockLoopNestPassHandle() { setDefaults(); } 204 }; 205 206 struct MockFunctionPassHandle 207 : MockPassHandleBase<MockFunctionPassHandle, Function> { 208 MOCK_METHOD2(run, PreservedAnalyses(Function &, FunctionAnalysisManager &)); 209 210 MockFunctionPassHandle() { setDefaults(); } 211 }; 212 213 struct MockModulePassHandle : MockPassHandleBase<MockModulePassHandle, Module> { 214 MOCK_METHOD2(run, PreservedAnalyses(Module &, ModuleAnalysisManager &)); 215 216 MockModulePassHandle() { setDefaults(); } 217 }; 218 219 /// Define a custom matcher for objects which support a 'getName' method 220 /// returning a StringRef. 221 /// 222 /// LLVM often has IR objects or analysis objects which expose a StringRef name 223 /// and in tests it is convenient to match these by name for readability. This 224 /// matcher supports any type exposing a getName() method of this form. 225 /// 226 /// It should be used as: 227 /// 228 /// HasName("my_function") 229 /// 230 /// No namespace or other qualification is required. 231 MATCHER_P(HasName, Name, "") { 232 // The matcher's name and argument are printed in the case of failure, but we 233 // also want to print out the name of the argument. This uses an implicitly 234 // avaiable std::ostream, so we have to construct a std::string. 235 *result_listener << "has name '" << arg.getName().str() << "'"; 236 return Name == arg.getName(); 237 } 238 239 std::unique_ptr<Module> parseIR(LLVMContext &C, const char *IR) { 240 SMDiagnostic Err; 241 return parseAssemblyString(IR, Err, C); 242 } 243 244 class LoopPassManagerTest : public ::testing::Test { 245 protected: 246 LLVMContext Context; 247 std::unique_ptr<Module> M; 248 249 LoopAnalysisManager LAM; 250 FunctionAnalysisManager FAM; 251 ModuleAnalysisManager MAM; 252 253 MockLoopAnalysisHandle MLAHandle; 254 MockLoopPassHandle MLPHandle; 255 MockLoopNestPassHandle MLNPHandle; 256 MockFunctionPassHandle MFPHandle; 257 MockModulePassHandle MMPHandle; 258 259 static PreservedAnalyses 260 getLoopAnalysisResult(Loop &L, LoopAnalysisManager &AM, 261 LoopStandardAnalysisResults &AR, LPMUpdater &) { 262 (void)AM.getResult<MockLoopAnalysisHandle::Analysis>(L, AR); 263 return PreservedAnalyses::all(); 264 }; 265 266 public: 267 LoopPassManagerTest() 268 : M(parseIR(Context, 269 "define void @f(i1* %ptr) {\n" 270 "entry:\n" 271 " br label %loop.0\n" 272 "loop.0:\n" 273 " %cond.0 = load volatile i1, i1* %ptr\n" 274 " br i1 %cond.0, label %loop.0.0.ph, label %end\n" 275 "loop.0.0.ph:\n" 276 " br label %loop.0.0\n" 277 "loop.0.0:\n" 278 " %cond.0.0 = load volatile i1, i1* %ptr\n" 279 " br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n" 280 "loop.0.1.ph:\n" 281 " br label %loop.0.1\n" 282 "loop.0.1:\n" 283 " %cond.0.1 = load volatile i1, i1* %ptr\n" 284 " br i1 %cond.0.1, label %loop.0.1, label %loop.0.latch\n" 285 "loop.0.latch:\n" 286 " br label %loop.0\n" 287 "end:\n" 288 " ret void\n" 289 "}\n" 290 "\n" 291 "define void @g(i1* %ptr) {\n" 292 "entry:\n" 293 " br label %loop.g.0\n" 294 "loop.g.0:\n" 295 " %cond.0 = load volatile i1, i1* %ptr\n" 296 " br i1 %cond.0, label %loop.g.0, label %end\n" 297 "end:\n" 298 " ret void\n" 299 "}\n")), 300 LAM(), FAM(), MAM() { 301 // Register our mock analysis. 302 LAM.registerPass([&] { return MLAHandle.getAnalysis(); }); 303 304 // We need DominatorTreeAnalysis for LoopAnalysis. 305 FAM.registerPass([&] { return DominatorTreeAnalysis(); }); 306 FAM.registerPass([&] { return LoopAnalysis(); }); 307 // We also allow loop passes to assume a set of other analyses and so need 308 // those. 309 FAM.registerPass([&] { return AAManager(); }); 310 FAM.registerPass([&] { return AssumptionAnalysis(); }); 311 FAM.registerPass([&] { return BlockFrequencyAnalysis(); }); 312 FAM.registerPass([&] { return BranchProbabilityAnalysis(); }); 313 FAM.registerPass([&] { return PostDominatorTreeAnalysis(); }); 314 FAM.registerPass([&] { return MemorySSAAnalysis(); }); 315 FAM.registerPass([&] { return ScalarEvolutionAnalysis(); }); 316 FAM.registerPass([&] { return TargetLibraryAnalysis(); }); 317 FAM.registerPass([&] { return TargetIRAnalysis(); }); 318 319 // Register required pass instrumentation analysis. 320 LAM.registerPass([&] { return PassInstrumentationAnalysis(); }); 321 FAM.registerPass([&] { return PassInstrumentationAnalysis(); }); 322 MAM.registerPass([&] { return PassInstrumentationAnalysis(); }); 323 324 // Cross-register proxies. 325 LAM.registerPass([&] { return FunctionAnalysisManagerLoopProxy(FAM); }); 326 FAM.registerPass([&] { return LoopAnalysisManagerFunctionProxy(LAM); }); 327 FAM.registerPass([&] { return ModuleAnalysisManagerFunctionProxy(MAM); }); 328 MAM.registerPass([&] { return FunctionAnalysisManagerModuleProxy(FAM); }); 329 } 330 }; 331 332 TEST_F(LoopPassManagerTest, Basic) { 333 ModulePassManager MPM; 334 ::testing::InSequence MakeExpectationsSequenced; 335 336 // First we just visit all the loops in all the functions and get their 337 // analysis results. This will run the analysis a total of four times, 338 // once for each loop. 339 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) 340 .WillOnce(Invoke(getLoopAnalysisResult)); 341 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); 342 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) 343 .WillOnce(Invoke(getLoopAnalysisResult)); 344 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); 345 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) 346 .WillOnce(Invoke(getLoopAnalysisResult)); 347 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); 348 EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _)) 349 .WillOnce(Invoke(getLoopAnalysisResult)); 350 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _)); 351 // Wire the loop pass through pass managers into the module pipeline. 352 { 353 LoopPassManager LPM; 354 LPM.addPass(MLPHandle.getPass()); 355 FunctionPassManager FPM; 356 FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM))); 357 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 358 } 359 360 // Next we run two passes over the loops. The first one invalidates the 361 // analyses for one loop, the second ones try to get the analysis results. 362 // This should force only one analysis to re-run within the loop PM, but will 363 // also invalidate everything after the loop pass manager finishes. 364 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) 365 .WillOnce(DoDefault()) 366 .WillOnce(Invoke(getLoopAnalysisResult)); 367 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) 368 .WillOnce(InvokeWithoutArgs([] { return PreservedAnalyses::none(); })) 369 .WillOnce(Invoke(getLoopAnalysisResult)); 370 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); 371 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) 372 .WillOnce(DoDefault()) 373 .WillOnce(Invoke(getLoopAnalysisResult)); 374 EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _)) 375 .WillOnce(DoDefault()) 376 .WillOnce(Invoke(getLoopAnalysisResult)); 377 // Wire two loop pass runs into the module pipeline. 378 { 379 LoopPassManager LPM; 380 LPM.addPass(MLPHandle.getPass()); 381 LPM.addPass(MLPHandle.getPass()); 382 FunctionPassManager FPM; 383 FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM))); 384 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 385 } 386 387 // And now run the pipeline across the module. 388 MPM.run(*M, MAM); 389 } 390 391 TEST_F(LoopPassManagerTest, FunctionPassInvalidationOfLoopAnalyses) { 392 ModulePassManager MPM; 393 FunctionPassManager FPM; 394 // We process each function completely in sequence. 395 ::testing::Sequence FSequence, GSequence; 396 397 // First, force the analysis result to be computed for each loop. 398 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)) 399 .InSequence(FSequence) 400 .WillOnce(DoDefault()); 401 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)) 402 .InSequence(FSequence) 403 .WillOnce(DoDefault()); 404 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)) 405 .InSequence(FSequence) 406 .WillOnce(DoDefault()); 407 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _)) 408 .InSequence(GSequence) 409 .WillOnce(DoDefault()); 410 FPM.addPass(createFunctionToLoopPassAdaptor( 411 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())); 412 413 // No need to re-run if we require again from a fresh loop pass manager. 414 FPM.addPass(createFunctionToLoopPassAdaptor( 415 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())); 416 // For 'f', preserve most things but not the specific loop analyses. 417 auto PA = getLoopPassPreservedAnalyses(); 418 if (EnableMSSALoopDependency) 419 PA.preserve<MemorySSAAnalysis>(); 420 EXPECT_CALL(MFPHandle, run(HasName("f"), _)) 421 .InSequence(FSequence) 422 .WillOnce(Return(PA)); 423 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _)) 424 .InSequence(FSequence) 425 .WillOnce(DoDefault()); 426 // On one loop, skip the invalidation (as though we did an internal update). 427 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _)) 428 .InSequence(FSequence) 429 .WillOnce(Return(false)); 430 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _)) 431 .InSequence(FSequence) 432 .WillOnce(DoDefault()); 433 // Now two loops still have to be recomputed. 434 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)) 435 .InSequence(FSequence) 436 .WillOnce(DoDefault()); 437 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)) 438 .InSequence(FSequence) 439 .WillOnce(DoDefault()); 440 // Preserve things in the second function to ensure invalidation remains 441 // isolated to one function. 442 EXPECT_CALL(MFPHandle, run(HasName("g"), _)) 443 .InSequence(GSequence) 444 .WillOnce(DoDefault()); 445 FPM.addPass(MFPHandle.getPass()); 446 FPM.addPass(createFunctionToLoopPassAdaptor( 447 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())); 448 449 EXPECT_CALL(MFPHandle, run(HasName("f"), _)) 450 .InSequence(FSequence) 451 .WillOnce(DoDefault()); 452 // For 'g', fail to preserve anything, causing the loops themselves to be 453 // cleared. We don't get an invalidation event here as the loop is gone, but 454 // we should still have to recompute the analysis. 455 EXPECT_CALL(MFPHandle, run(HasName("g"), _)) 456 .InSequence(GSequence) 457 .WillOnce(Return(PreservedAnalyses::none())); 458 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _)) 459 .InSequence(GSequence) 460 .WillOnce(DoDefault()); 461 FPM.addPass(MFPHandle.getPass()); 462 FPM.addPass(createFunctionToLoopPassAdaptor( 463 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())); 464 465 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 466 467 // Verify with a separate function pass run that we didn't mess up 'f's 468 // cache. No analysis runs should be necessary here. 469 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor( 470 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()))); 471 472 MPM.run(*M, MAM); 473 } 474 475 TEST_F(LoopPassManagerTest, ModulePassInvalidationOfLoopAnalyses) { 476 ModulePassManager MPM; 477 ::testing::InSequence MakeExpectationsSequenced; 478 479 // First, force the analysis result to be computed for each loop. 480 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); 481 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); 482 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); 483 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _)); 484 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor( 485 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()))); 486 487 // Walking all the way out and all the way back in doesn't re-run the 488 // analysis. 489 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor( 490 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()))); 491 492 // But a module pass that doesn't preserve the actual mock loop analysis 493 // invalidates all the way down and forces recomputing. 494 EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] { 495 auto PA = getLoopPassPreservedAnalyses(); 496 PA.preserve<FunctionAnalysisManagerModuleProxy>(); 497 if (EnableMSSALoopDependency) 498 PA.preserve<MemorySSAAnalysis>(); 499 return PA; 500 })); 501 // All the loop analyses from both functions get invalidated before we 502 // recompute anything. 503 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _)); 504 // On one loop, again skip the invalidation (as though we did an internal 505 // update). 506 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _)) 507 .WillOnce(Return(false)); 508 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _)); 509 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.g.0"), _, _)); 510 // Now all but one of the loops gets re-analyzed. 511 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); 512 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); 513 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _)); 514 MPM.addPass(MMPHandle.getPass()); 515 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor( 516 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()))); 517 518 // Verify that the cached values persist. 519 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor( 520 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()))); 521 522 // Now we fail to preserve the loop analysis and observe that the loop 523 // analyses are cleared (so no invalidation event) as the loops themselves 524 // are no longer valid. 525 EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] { 526 auto PA = PreservedAnalyses::none(); 527 PA.preserve<FunctionAnalysisManagerModuleProxy>(); 528 return PA; 529 })); 530 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); 531 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); 532 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); 533 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _)); 534 MPM.addPass(MMPHandle.getPass()); 535 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor( 536 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()))); 537 538 // Verify that the cached values persist. 539 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor( 540 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()))); 541 542 // Next, check that even if we preserve everything within the function itelf, 543 // if the function's module pass proxy isn't preserved and the potential set 544 // of functions changes, the clear reaches the loop analyses as well. This 545 // will again trigger re-runs but not invalidation events. 546 EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] { 547 auto PA = PreservedAnalyses::none(); 548 PA.preserveSet<AllAnalysesOn<Function>>(); 549 PA.preserveSet<AllAnalysesOn<Loop>>(); 550 return PA; 551 })); 552 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); 553 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); 554 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); 555 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _)); 556 MPM.addPass(MMPHandle.getPass()); 557 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor( 558 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()))); 559 560 MPM.run(*M, MAM); 561 } 562 563 // Test that if any of the bundled analyses provided in the LPM's signature 564 // become invalid, the analysis proxy itself becomes invalid and we clear all 565 // loop analysis results. 566 TEST_F(LoopPassManagerTest, InvalidationOfBundledAnalyses) { 567 ModulePassManager MPM; 568 FunctionPassManager FPM; 569 ::testing::InSequence MakeExpectationsSequenced; 570 571 // First, force the analysis result to be computed for each loop. 572 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); 573 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); 574 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); 575 FPM.addPass(createFunctionToLoopPassAdaptor( 576 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())); 577 578 // No need to re-run if we require again from a fresh loop pass manager. 579 FPM.addPass(createFunctionToLoopPassAdaptor( 580 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())); 581 582 // Preserving everything but the loop analyses themselves results in 583 // invalidation and running. 584 EXPECT_CALL(MFPHandle, run(HasName("f"), _)) 585 .WillOnce(Return(getLoopPassPreservedAnalyses())); 586 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); 587 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); 588 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); 589 FPM.addPass(MFPHandle.getPass()); 590 FPM.addPass(createFunctionToLoopPassAdaptor( 591 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())); 592 593 // The rest don't invalidate analyses, they only trigger re-runs because we 594 // clear the cache completely. 595 EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] { 596 auto PA = PreservedAnalyses::none(); 597 // Not preserving `AAManager`. 598 PA.preserve<DominatorTreeAnalysis>(); 599 PA.preserve<LoopAnalysis>(); 600 PA.preserve<LoopAnalysisManagerFunctionProxy>(); 601 PA.preserve<ScalarEvolutionAnalysis>(); 602 return PA; 603 })); 604 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); 605 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); 606 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); 607 FPM.addPass(MFPHandle.getPass()); 608 FPM.addPass(createFunctionToLoopPassAdaptor( 609 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())); 610 611 EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] { 612 auto PA = PreservedAnalyses::none(); 613 // Not preserving `DominatorTreeAnalysis`. 614 PA.preserve<LoopAnalysis>(); 615 PA.preserve<LoopAnalysisManagerFunctionProxy>(); 616 PA.preserve<ScalarEvolutionAnalysis>(); 617 return PA; 618 })); 619 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); 620 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); 621 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); 622 FPM.addPass(MFPHandle.getPass()); 623 FPM.addPass(createFunctionToLoopPassAdaptor( 624 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())); 625 626 EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] { 627 auto PA = PreservedAnalyses::none(); 628 PA.preserve<DominatorTreeAnalysis>(); 629 // Not preserving the `LoopAnalysis`. 630 PA.preserve<LoopAnalysisManagerFunctionProxy>(); 631 PA.preserve<ScalarEvolutionAnalysis>(); 632 return PA; 633 })); 634 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); 635 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); 636 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); 637 FPM.addPass(MFPHandle.getPass()); 638 FPM.addPass(createFunctionToLoopPassAdaptor( 639 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())); 640 641 EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] { 642 auto PA = PreservedAnalyses::none(); 643 PA.preserve<DominatorTreeAnalysis>(); 644 PA.preserve<LoopAnalysis>(); 645 // Not preserving the `LoopAnalysisManagerFunctionProxy`. 646 PA.preserve<ScalarEvolutionAnalysis>(); 647 return PA; 648 })); 649 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); 650 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); 651 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); 652 FPM.addPass(MFPHandle.getPass()); 653 FPM.addPass(createFunctionToLoopPassAdaptor( 654 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())); 655 656 EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] { 657 auto PA = PreservedAnalyses::none(); 658 PA.preserve<DominatorTreeAnalysis>(); 659 PA.preserve<LoopAnalysis>(); 660 PA.preserve<LoopAnalysisManagerFunctionProxy>(); 661 // Not preserving `ScalarEvolutionAnalysis`. 662 return PA; 663 })); 664 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); 665 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); 666 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); 667 FPM.addPass(MFPHandle.getPass()); 668 FPM.addPass(createFunctionToLoopPassAdaptor( 669 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())); 670 671 // After all the churn on 'f', we'll compute the loop analysis results for 672 // 'g' once with a requires pass and then run our mock pass over g a bunch 673 // but just get cached results each time. 674 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _)); 675 EXPECT_CALL(MFPHandle, run(HasName("g"), _)).Times(6); 676 677 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 678 MPM.run(*M, MAM); 679 } 680 681 TEST_F(LoopPassManagerTest, IndirectInvalidation) { 682 // We need two distinct analysis types and handles. 683 enum { A, B }; 684 MockLoopAnalysisHandleTemplate<A> MLAHandleA; 685 MockLoopAnalysisHandleTemplate<B> MLAHandleB; 686 LAM.registerPass([&] { return MLAHandleA.getAnalysis(); }); 687 LAM.registerPass([&] { return MLAHandleB.getAnalysis(); }); 688 typedef decltype(MLAHandleA)::Analysis AnalysisA; 689 typedef decltype(MLAHandleB)::Analysis AnalysisB; 690 691 // Set up AnalysisA to depend on our AnalysisB. For testing purposes we just 692 // need to get the AnalysisB results in AnalysisA's run method and check if 693 // AnalysisB gets invalidated in AnalysisA's invalidate method. 694 ON_CALL(MLAHandleA, run(_, _, _)) 695 .WillByDefault(Invoke([&](Loop &L, LoopAnalysisManager &AM, 696 LoopStandardAnalysisResults &AR) { 697 (void)AM.getResult<AnalysisB>(L, AR); 698 return MLAHandleA.getResult(); 699 })); 700 ON_CALL(MLAHandleA, invalidate(_, _, _)) 701 .WillByDefault(Invoke([](Loop &L, const PreservedAnalyses &PA, 702 LoopAnalysisManager::Invalidator &Inv) { 703 auto PAC = PA.getChecker<AnalysisA>(); 704 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Loop>>()) || 705 Inv.invalidate<AnalysisB>(L, PA); 706 })); 707 708 ::testing::InSequence MakeExpectationsSequenced; 709 710 // Compute the analyses across all of 'f' first. 711 EXPECT_CALL(MLAHandleA, run(HasName("loop.0.0"), _, _)); 712 EXPECT_CALL(MLAHandleB, run(HasName("loop.0.0"), _, _)); 713 EXPECT_CALL(MLAHandleA, run(HasName("loop.0.1"), _, _)); 714 EXPECT_CALL(MLAHandleB, run(HasName("loop.0.1"), _, _)); 715 EXPECT_CALL(MLAHandleA, run(HasName("loop.0"), _, _)); 716 EXPECT_CALL(MLAHandleB, run(HasName("loop.0"), _, _)); 717 718 // Now we invalidate AnalysisB (but not AnalysisA) for one of the loops and 719 // preserve everything for the rest. This in turn triggers that one loop to 720 // recompute both AnalysisB *and* AnalysisA if indirect invalidation is 721 // working. 722 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) 723 .WillOnce(InvokeWithoutArgs([] { 724 auto PA = getLoopPassPreservedAnalyses(); 725 // Specifically preserve AnalysisA so that it would survive if it 726 // didn't depend on AnalysisB. 727 PA.preserve<AnalysisA>(); 728 return PA; 729 })); 730 // It happens that AnalysisB is invalidated first. That shouldn't matter 731 // though, and we should still call AnalysisA's invalidation. 732 EXPECT_CALL(MLAHandleB, invalidate(HasName("loop.0.0"), _, _)); 733 EXPECT_CALL(MLAHandleA, invalidate(HasName("loop.0.0"), _, _)); 734 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) 735 .WillOnce(Invoke([](Loop &L, LoopAnalysisManager &AM, 736 LoopStandardAnalysisResults &AR, LPMUpdater &) { 737 (void)AM.getResult<AnalysisA>(L, AR); 738 return PreservedAnalyses::all(); 739 })); 740 EXPECT_CALL(MLAHandleA, run(HasName("loop.0.0"), _, _)); 741 EXPECT_CALL(MLAHandleB, run(HasName("loop.0.0"), _, _)); 742 // The rest of the loops should run and get cached results. 743 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) 744 .Times(2) 745 .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM, 746 LoopStandardAnalysisResults &AR, LPMUpdater &) { 747 (void)AM.getResult<AnalysisA>(L, AR); 748 return PreservedAnalyses::all(); 749 })); 750 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) 751 .Times(2) 752 .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM, 753 LoopStandardAnalysisResults &AR, LPMUpdater &) { 754 (void)AM.getResult<AnalysisA>(L, AR); 755 return PreservedAnalyses::all(); 756 })); 757 758 // The run over 'g' should be boring, with us just computing the analyses once 759 // up front and then running loop passes and getting cached results. 760 EXPECT_CALL(MLAHandleA, run(HasName("loop.g.0"), _, _)); 761 EXPECT_CALL(MLAHandleB, run(HasName("loop.g.0"), _, _)); 762 EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _)) 763 .Times(2) 764 .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM, 765 LoopStandardAnalysisResults &AR, LPMUpdater &) { 766 (void)AM.getResult<AnalysisA>(L, AR); 767 return PreservedAnalyses::all(); 768 })); 769 770 // Build the pipeline and run it. 771 ModulePassManager MPM; 772 FunctionPassManager FPM; 773 FPM.addPass( 774 createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<AnalysisA>())); 775 LoopPassManager LPM; 776 LPM.addPass(MLPHandle.getPass()); 777 LPM.addPass(MLPHandle.getPass()); 778 FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM))); 779 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 780 MPM.run(*M, MAM); 781 } 782 783 TEST_F(LoopPassManagerTest, IndirectOuterPassInvalidation) { 784 typedef decltype(MLAHandle)::Analysis LoopAnalysis; 785 786 MockFunctionAnalysisHandle MFAHandle; 787 FAM.registerPass([&] { return MFAHandle.getAnalysis(); }); 788 typedef decltype(MFAHandle)::Analysis FunctionAnalysis; 789 790 // Set up the loop analysis to depend on both the function and module 791 // analysis. 792 ON_CALL(MLAHandle, run(_, _, _)) 793 .WillByDefault(Invoke([&](Loop &L, LoopAnalysisManager &AM, 794 LoopStandardAnalysisResults &AR) { 795 auto &FAMP = AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR); 796 Function &F = *L.getHeader()->getParent(); 797 // This call will assert when trying to get the actual analysis if the 798 // FunctionAnalysis can be invalidated. Only check its existence. 799 // Alternatively, use FAM above, for the purposes of this unittest. 800 if (FAMP.cachedResultExists<FunctionAnalysis>(F)) 801 FAMP.registerOuterAnalysisInvalidation<FunctionAnalysis, 802 LoopAnalysis>(); 803 return MLAHandle.getResult(); 804 })); 805 806 ::testing::InSequence MakeExpectationsSequenced; 807 808 // Compute the analyses across all of 'f' first. 809 EXPECT_CALL(MFPHandle, run(HasName("f"), _)) 810 .WillOnce(Invoke([](Function &F, FunctionAnalysisManager &AM) { 811 // Force the computing of the function analysis so it is available in 812 // this function. 813 (void)AM.getResult<FunctionAnalysis>(F); 814 return PreservedAnalyses::all(); 815 })); 816 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); 817 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); 818 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); 819 820 // Now invalidate the function analysis but preserve the loop analyses. 821 // This should trigger immediate invalidation of the loop analyses, despite 822 // the fact that they were preserved. 823 EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] { 824 auto PA = getLoopPassPreservedAnalyses(); 825 if (EnableMSSALoopDependency) 826 PA.preserve<MemorySSAAnalysis>(); 827 PA.preserveSet<AllAnalysesOn<Loop>>(); 828 return PA; 829 })); 830 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _)); 831 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _)); 832 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _)); 833 834 // And re-running a requires pass recomputes them. 835 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); 836 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); 837 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); 838 839 // When we run over 'g' we don't populate the cache with the function 840 // analysis. 841 EXPECT_CALL(MFPHandle, run(HasName("g"), _)) 842 .WillOnce(Return(PreservedAnalyses::all())); 843 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _)); 844 845 // Which means that no extra invalidation occurs and cached values are used. 846 EXPECT_CALL(MFPHandle, run(HasName("g"), _)).WillOnce(InvokeWithoutArgs([] { 847 auto PA = getLoopPassPreservedAnalyses(); 848 if (EnableMSSALoopDependency) 849 PA.preserve<MemorySSAAnalysis>(); 850 PA.preserveSet<AllAnalysesOn<Loop>>(); 851 return PA; 852 })); 853 854 // Build the pipeline and run it. 855 ModulePassManager MPM; 856 FunctionPassManager FPM; 857 FPM.addPass(MFPHandle.getPass()); 858 FPM.addPass( 859 createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<LoopAnalysis>())); 860 FPM.addPass(MFPHandle.getPass()); 861 FPM.addPass( 862 createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<LoopAnalysis>())); 863 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 864 MPM.run(*M, MAM); 865 } 866 867 TEST_F(LoopPassManagerTest, LoopChildInsertion) { 868 // Super boring module with three loops in a single loop nest. 869 M = parseIR(Context, "define void @f(i1* %ptr) {\n" 870 "entry:\n" 871 " br label %loop.0\n" 872 "loop.0:\n" 873 " %cond.0 = load volatile i1, i1* %ptr\n" 874 " br i1 %cond.0, label %loop.0.0.ph, label %end\n" 875 "loop.0.0.ph:\n" 876 " br label %loop.0.0\n" 877 "loop.0.0:\n" 878 " %cond.0.0 = load volatile i1, i1* %ptr\n" 879 " br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n" 880 "loop.0.1.ph:\n" 881 " br label %loop.0.1\n" 882 "loop.0.1:\n" 883 " %cond.0.1 = load volatile i1, i1* %ptr\n" 884 " br i1 %cond.0.1, label %loop.0.1, label %loop.0.2.ph\n" 885 "loop.0.2.ph:\n" 886 " br label %loop.0.2\n" 887 "loop.0.2:\n" 888 " %cond.0.2 = load volatile i1, i1* %ptr\n" 889 " br i1 %cond.0.2, label %loop.0.2, label %loop.0.latch\n" 890 "loop.0.latch:\n" 891 " br label %loop.0\n" 892 "end:\n" 893 " ret void\n" 894 "}\n"); 895 896 // Build up variables referring into the IR so we can rewrite it below 897 // easily. 898 Function &F = *M->begin(); 899 ASSERT_THAT(F, HasName("f")); 900 Argument &Ptr = *F.arg_begin(); 901 auto BBI = F.begin(); 902 BasicBlock &EntryBB = *BBI++; 903 ASSERT_THAT(EntryBB, HasName("entry")); 904 BasicBlock &Loop0BB = *BBI++; 905 ASSERT_THAT(Loop0BB, HasName("loop.0")); 906 BasicBlock &Loop00PHBB = *BBI++; 907 ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph")); 908 BasicBlock &Loop00BB = *BBI++; 909 ASSERT_THAT(Loop00BB, HasName("loop.0.0")); 910 BasicBlock &Loop01PHBB = *BBI++; 911 ASSERT_THAT(Loop01PHBB, HasName("loop.0.1.ph")); 912 BasicBlock &Loop01BB = *BBI++; 913 ASSERT_THAT(Loop01BB, HasName("loop.0.1")); 914 BasicBlock &Loop02PHBB = *BBI++; 915 ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph")); 916 BasicBlock &Loop02BB = *BBI++; 917 ASSERT_THAT(Loop02BB, HasName("loop.0.2")); 918 BasicBlock &Loop0LatchBB = *BBI++; 919 ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch")); 920 BasicBlock &EndBB = *BBI++; 921 ASSERT_THAT(EndBB, HasName("end")); 922 ASSERT_THAT(BBI, F.end()); 923 auto CreateCondBr = [&](BasicBlock *TrueBB, BasicBlock *FalseBB, 924 const char *Name, BasicBlock *BB) { 925 auto *Cond = new LoadInst(Type::getInt1Ty(Context), &Ptr, Name, 926 /*isVolatile*/ true, BB); 927 BranchInst::Create(TrueBB, FalseBB, Cond, BB); 928 }; 929 930 // Build the pass managers and register our pipeline. We build a single loop 931 // pass pipeline consisting of three mock pass runs over each loop. After 932 // this we run both domtree and loop verification passes to make sure that 933 // the IR remained valid during our mutations. 934 ModulePassManager MPM; 935 FunctionPassManager FPM; 936 LoopPassManager LPM; 937 LPM.addPass(MLPHandle.getPass()); 938 LPM.addPass(MLPHandle.getPass()); 939 LPM.addPass(MLPHandle.getPass()); 940 FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM))); 941 FPM.addPass(DominatorTreeVerifierPass()); 942 FPM.addPass(LoopVerifierPass()); 943 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 944 945 // All the visit orders are deterministic, so we use simple fully order 946 // expectations. 947 ::testing::InSequence MakeExpectationsSequenced; 948 949 // We run loop passes three times over each of the loops. 950 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) 951 .WillOnce(Invoke(getLoopAnalysisResult)); 952 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); 953 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) 954 .Times(2) 955 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 956 957 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) 958 .WillOnce(Invoke(getLoopAnalysisResult)); 959 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); 960 961 // When running over the middle loop, the second run inserts two new child 962 // loops, inserting them and itself into the worklist. 963 BasicBlock *NewLoop010BB, *NewLoop01LatchBB; 964 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) 965 .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM, 966 LoopStandardAnalysisResults &AR, 967 LPMUpdater &Updater) { 968 auto *NewLoop = AR.LI.AllocateLoop(); 969 L.addChildLoop(NewLoop); 970 auto *NewLoop010PHBB = 971 BasicBlock::Create(Context, "loop.0.1.0.ph", &F, &Loop02PHBB); 972 NewLoop010BB = 973 BasicBlock::Create(Context, "loop.0.1.0", &F, &Loop02PHBB); 974 NewLoop01LatchBB = 975 BasicBlock::Create(Context, "loop.0.1.latch", &F, &Loop02PHBB); 976 Loop01BB.getTerminator()->replaceUsesOfWith(&Loop01BB, NewLoop010PHBB); 977 BranchInst::Create(NewLoop010BB, NewLoop010PHBB); 978 CreateCondBr(NewLoop01LatchBB, NewLoop010BB, "cond.0.1.0", 979 NewLoop010BB); 980 BranchInst::Create(&Loop01BB, NewLoop01LatchBB); 981 AR.DT.addNewBlock(NewLoop010PHBB, &Loop01BB); 982 AR.DT.addNewBlock(NewLoop010BB, NewLoop010PHBB); 983 AR.DT.addNewBlock(NewLoop01LatchBB, NewLoop010BB); 984 EXPECT_TRUE(AR.DT.verify()); 985 L.addBasicBlockToLoop(NewLoop010PHBB, AR.LI); 986 NewLoop->addBasicBlockToLoop(NewLoop010BB, AR.LI); 987 L.addBasicBlockToLoop(NewLoop01LatchBB, AR.LI); 988 NewLoop->verifyLoop(); 989 L.verifyLoop(); 990 Updater.addChildLoops({NewLoop}); 991 return PreservedAnalyses::all(); 992 })); 993 994 // We should immediately drop down to fully visit the new inner loop. 995 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.0"), _, _, _)) 996 .WillOnce(Invoke(getLoopAnalysisResult)); 997 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1.0"), _, _)); 998 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.0"), _, _, _)) 999 .Times(2) 1000 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1001 1002 // After visiting the inner loop, we should re-visit the second loop 1003 // reflecting its new loop nest structure. 1004 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) 1005 .WillOnce(Invoke(getLoopAnalysisResult)); 1006 1007 // In the second run over the middle loop after we've visited the new child, 1008 // we add another child to check that we can repeatedly add children, and add 1009 // children to a loop that already has children. 1010 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) 1011 .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM, 1012 LoopStandardAnalysisResults &AR, 1013 LPMUpdater &Updater) { 1014 auto *NewLoop = AR.LI.AllocateLoop(); 1015 L.addChildLoop(NewLoop); 1016 auto *NewLoop011PHBB = BasicBlock::Create(Context, "loop.0.1.1.ph", &F, NewLoop01LatchBB); 1017 auto *NewLoop011BB = BasicBlock::Create(Context, "loop.0.1.1", &F, NewLoop01LatchBB); 1018 NewLoop010BB->getTerminator()->replaceUsesOfWith(NewLoop01LatchBB, 1019 NewLoop011PHBB); 1020 BranchInst::Create(NewLoop011BB, NewLoop011PHBB); 1021 CreateCondBr(NewLoop01LatchBB, NewLoop011BB, "cond.0.1.1", 1022 NewLoop011BB); 1023 AR.DT.addNewBlock(NewLoop011PHBB, NewLoop010BB); 1024 auto *NewDTNode = AR.DT.addNewBlock(NewLoop011BB, NewLoop011PHBB); 1025 AR.DT.changeImmediateDominator(AR.DT[NewLoop01LatchBB], NewDTNode); 1026 EXPECT_TRUE(AR.DT.verify()); 1027 L.addBasicBlockToLoop(NewLoop011PHBB, AR.LI); 1028 NewLoop->addBasicBlockToLoop(NewLoop011BB, AR.LI); 1029 NewLoop->verifyLoop(); 1030 L.verifyLoop(); 1031 Updater.addChildLoops({NewLoop}); 1032 return PreservedAnalyses::all(); 1033 })); 1034 1035 // Again, we should immediately drop down to visit the new, unvisited child 1036 // loop. We don't need to revisit the other child though. 1037 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.1"), _, _, _)) 1038 .WillOnce(Invoke(getLoopAnalysisResult)); 1039 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1.1"), _, _)); 1040 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.1"), _, _, _)) 1041 .Times(2) 1042 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1043 1044 // And now we should pop back up to the second loop and do a full pipeline of 1045 // three passes on its current form. 1046 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) 1047 .Times(3) 1048 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1049 1050 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _)) 1051 .WillOnce(Invoke(getLoopAnalysisResult)); 1052 EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _)); 1053 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _)) 1054 .Times(2) 1055 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1056 1057 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) 1058 .WillOnce(Invoke(getLoopAnalysisResult)); 1059 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); 1060 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) 1061 .Times(2) 1062 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1063 1064 // Now that all the expected actions are registered, run the pipeline over 1065 // our module. All of our expectations are verified when the test finishes. 1066 MPM.run(*M, MAM); 1067 } 1068 1069 TEST_F(LoopPassManagerTest, LoopPeerInsertion) { 1070 // Super boring module with two loop nests and loop nest with two child 1071 // loops. 1072 M = parseIR(Context, "define void @f(i1* %ptr) {\n" 1073 "entry:\n" 1074 " br label %loop.0\n" 1075 "loop.0:\n" 1076 " %cond.0 = load volatile i1, i1* %ptr\n" 1077 " br i1 %cond.0, label %loop.0.0.ph, label %loop.2.ph\n" 1078 "loop.0.0.ph:\n" 1079 " br label %loop.0.0\n" 1080 "loop.0.0:\n" 1081 " %cond.0.0 = load volatile i1, i1* %ptr\n" 1082 " br i1 %cond.0.0, label %loop.0.0, label %loop.0.2.ph\n" 1083 "loop.0.2.ph:\n" 1084 " br label %loop.0.2\n" 1085 "loop.0.2:\n" 1086 " %cond.0.2 = load volatile i1, i1* %ptr\n" 1087 " br i1 %cond.0.2, label %loop.0.2, label %loop.0.latch\n" 1088 "loop.0.latch:\n" 1089 " br label %loop.0\n" 1090 "loop.2.ph:\n" 1091 " br label %loop.2\n" 1092 "loop.2:\n" 1093 " %cond.2 = load volatile i1, i1* %ptr\n" 1094 " br i1 %cond.2, label %loop.2, label %end\n" 1095 "end:\n" 1096 " ret void\n" 1097 "}\n"); 1098 1099 // Build up variables referring into the IR so we can rewrite it below 1100 // easily. 1101 Function &F = *M->begin(); 1102 ASSERT_THAT(F, HasName("f")); 1103 Argument &Ptr = *F.arg_begin(); 1104 auto BBI = F.begin(); 1105 BasicBlock &EntryBB = *BBI++; 1106 ASSERT_THAT(EntryBB, HasName("entry")); 1107 BasicBlock &Loop0BB = *BBI++; 1108 ASSERT_THAT(Loop0BB, HasName("loop.0")); 1109 BasicBlock &Loop00PHBB = *BBI++; 1110 ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph")); 1111 BasicBlock &Loop00BB = *BBI++; 1112 ASSERT_THAT(Loop00BB, HasName("loop.0.0")); 1113 BasicBlock &Loop02PHBB = *BBI++; 1114 ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph")); 1115 BasicBlock &Loop02BB = *BBI++; 1116 ASSERT_THAT(Loop02BB, HasName("loop.0.2")); 1117 BasicBlock &Loop0LatchBB = *BBI++; 1118 ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch")); 1119 BasicBlock &Loop2PHBB = *BBI++; 1120 ASSERT_THAT(Loop2PHBB, HasName("loop.2.ph")); 1121 BasicBlock &Loop2BB = *BBI++; 1122 ASSERT_THAT(Loop2BB, HasName("loop.2")); 1123 BasicBlock &EndBB = *BBI++; 1124 ASSERT_THAT(EndBB, HasName("end")); 1125 ASSERT_THAT(BBI, F.end()); 1126 auto CreateCondBr = [&](BasicBlock *TrueBB, BasicBlock *FalseBB, 1127 const char *Name, BasicBlock *BB) { 1128 auto *Cond = new LoadInst(Type::getInt1Ty(Context), &Ptr, Name, 1129 /*isVolatile*/ true, BB); 1130 BranchInst::Create(TrueBB, FalseBB, Cond, BB); 1131 }; 1132 1133 // Build the pass managers and register our pipeline. We build a single loop 1134 // pass pipeline consisting of three mock pass runs over each loop. After 1135 // this we run both domtree and loop verification passes to make sure that 1136 // the IR remained valid during our mutations. 1137 ModulePassManager MPM; 1138 FunctionPassManager FPM; 1139 LoopPassManager LPM; 1140 LPM.addPass(MLPHandle.getPass()); 1141 LPM.addPass(MLPHandle.getPass()); 1142 LPM.addPass(MLPHandle.getPass()); 1143 FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM))); 1144 FPM.addPass(DominatorTreeVerifierPass()); 1145 FPM.addPass(LoopVerifierPass()); 1146 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 1147 1148 // All the visit orders are deterministic, so we use simple fully order 1149 // expectations. 1150 ::testing::InSequence MakeExpectationsSequenced; 1151 1152 // We run loop passes three times over each of the loops. 1153 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) 1154 .WillOnce(Invoke(getLoopAnalysisResult)); 1155 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); 1156 1157 // On the second run, we insert a sibling loop. 1158 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) 1159 .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM, 1160 LoopStandardAnalysisResults &AR, 1161 LPMUpdater &Updater) { 1162 auto *NewLoop = AR.LI.AllocateLoop(); 1163 L.getParentLoop()->addChildLoop(NewLoop); 1164 auto *NewLoop01PHBB = BasicBlock::Create(Context, "loop.0.1.ph", &F, &Loop02PHBB); 1165 auto *NewLoop01BB = BasicBlock::Create(Context, "loop.0.1", &F, &Loop02PHBB); 1166 BranchInst::Create(NewLoop01BB, NewLoop01PHBB); 1167 CreateCondBr(&Loop02PHBB, NewLoop01BB, "cond.0.1", NewLoop01BB); 1168 Loop00BB.getTerminator()->replaceUsesOfWith(&Loop02PHBB, NewLoop01PHBB); 1169 AR.DT.addNewBlock(NewLoop01PHBB, &Loop00BB); 1170 auto *NewDTNode = AR.DT.addNewBlock(NewLoop01BB, NewLoop01PHBB); 1171 AR.DT.changeImmediateDominator(AR.DT[&Loop02PHBB], NewDTNode); 1172 EXPECT_TRUE(AR.DT.verify()); 1173 L.getParentLoop()->addBasicBlockToLoop(NewLoop01PHBB, AR.LI); 1174 NewLoop->addBasicBlockToLoop(NewLoop01BB, AR.LI); 1175 L.getParentLoop()->verifyLoop(); 1176 Updater.addSiblingLoops({NewLoop}); 1177 return PreservedAnalyses::all(); 1178 })); 1179 // We finish processing this loop as sibling loops don't perturb the 1180 // postorder walk. 1181 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) 1182 .WillOnce(Invoke(getLoopAnalysisResult)); 1183 1184 // We visit the inserted sibling next. 1185 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) 1186 .WillOnce(Invoke(getLoopAnalysisResult)); 1187 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); 1188 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) 1189 .Times(2) 1190 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1191 1192 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _)) 1193 .WillOnce(Invoke(getLoopAnalysisResult)); 1194 EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _)); 1195 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _)) 1196 .WillOnce(Invoke(getLoopAnalysisResult)); 1197 // Next, on the third pass run on the last inner loop we add more new 1198 // siblings, more than one, and one with nested child loops. By doing this at 1199 // the end we make sure that edge case works well. 1200 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _)) 1201 .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM, 1202 LoopStandardAnalysisResults &AR, 1203 LPMUpdater &Updater) { 1204 Loop *NewLoops[] = {AR.LI.AllocateLoop(), AR.LI.AllocateLoop(), 1205 AR.LI.AllocateLoop()}; 1206 L.getParentLoop()->addChildLoop(NewLoops[0]); 1207 L.getParentLoop()->addChildLoop(NewLoops[1]); 1208 NewLoops[1]->addChildLoop(NewLoops[2]); 1209 auto *NewLoop03PHBB = 1210 BasicBlock::Create(Context, "loop.0.3.ph", &F, &Loop0LatchBB); 1211 auto *NewLoop03BB = 1212 BasicBlock::Create(Context, "loop.0.3", &F, &Loop0LatchBB); 1213 auto *NewLoop04PHBB = 1214 BasicBlock::Create(Context, "loop.0.4.ph", &F, &Loop0LatchBB); 1215 auto *NewLoop04BB = 1216 BasicBlock::Create(Context, "loop.0.4", &F, &Loop0LatchBB); 1217 auto *NewLoop040PHBB = 1218 BasicBlock::Create(Context, "loop.0.4.0.ph", &F, &Loop0LatchBB); 1219 auto *NewLoop040BB = 1220 BasicBlock::Create(Context, "loop.0.4.0", &F, &Loop0LatchBB); 1221 auto *NewLoop04LatchBB = 1222 BasicBlock::Create(Context, "loop.0.4.latch", &F, &Loop0LatchBB); 1223 Loop02BB.getTerminator()->replaceUsesOfWith(&Loop0LatchBB, NewLoop03PHBB); 1224 BranchInst::Create(NewLoop03BB, NewLoop03PHBB); 1225 CreateCondBr(NewLoop04PHBB, NewLoop03BB, "cond.0.3", NewLoop03BB); 1226 BranchInst::Create(NewLoop04BB, NewLoop04PHBB); 1227 CreateCondBr(&Loop0LatchBB, NewLoop040PHBB, "cond.0.4", NewLoop04BB); 1228 BranchInst::Create(NewLoop040BB, NewLoop040PHBB); 1229 CreateCondBr(NewLoop04LatchBB, NewLoop040BB, "cond.0.4.0", NewLoop040BB); 1230 BranchInst::Create(NewLoop04BB, NewLoop04LatchBB); 1231 AR.DT.addNewBlock(NewLoop03PHBB, &Loop02BB); 1232 AR.DT.addNewBlock(NewLoop03BB, NewLoop03PHBB); 1233 AR.DT.addNewBlock(NewLoop04PHBB, NewLoop03BB); 1234 auto *NewDTNode = AR.DT.addNewBlock(NewLoop04BB, NewLoop04PHBB); 1235 AR.DT.changeImmediateDominator(AR.DT[&Loop0LatchBB], NewDTNode); 1236 AR.DT.addNewBlock(NewLoop040PHBB, NewLoop04BB); 1237 AR.DT.addNewBlock(NewLoop040BB, NewLoop040PHBB); 1238 AR.DT.addNewBlock(NewLoop04LatchBB, NewLoop040BB); 1239 EXPECT_TRUE(AR.DT.verify()); 1240 L.getParentLoop()->addBasicBlockToLoop(NewLoop03PHBB, AR.LI); 1241 NewLoops[0]->addBasicBlockToLoop(NewLoop03BB, AR.LI); 1242 L.getParentLoop()->addBasicBlockToLoop(NewLoop04PHBB, AR.LI); 1243 NewLoops[1]->addBasicBlockToLoop(NewLoop04BB, AR.LI); 1244 NewLoops[1]->addBasicBlockToLoop(NewLoop040PHBB, AR.LI); 1245 NewLoops[2]->addBasicBlockToLoop(NewLoop040BB, AR.LI); 1246 NewLoops[1]->addBasicBlockToLoop(NewLoop04LatchBB, AR.LI); 1247 L.getParentLoop()->verifyLoop(); 1248 Updater.addSiblingLoops({NewLoops[0], NewLoops[1]}); 1249 return PreservedAnalyses::all(); 1250 })); 1251 1252 EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _)) 1253 .WillOnce(Invoke(getLoopAnalysisResult)); 1254 EXPECT_CALL(MLAHandle, run(HasName("loop.0.3"), _, _)); 1255 EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _)) 1256 .Times(2) 1257 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1258 1259 // Note that we need to visit the inner loop of this added sibling before the 1260 // sibling itself! 1261 EXPECT_CALL(MLPHandle, run(HasName("loop.0.4.0"), _, _, _)) 1262 .WillOnce(Invoke(getLoopAnalysisResult)); 1263 EXPECT_CALL(MLAHandle, run(HasName("loop.0.4.0"), _, _)); 1264 EXPECT_CALL(MLPHandle, run(HasName("loop.0.4.0"), _, _, _)) 1265 .Times(2) 1266 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1267 1268 EXPECT_CALL(MLPHandle, run(HasName("loop.0.4"), _, _, _)) 1269 .WillOnce(Invoke(getLoopAnalysisResult)); 1270 EXPECT_CALL(MLAHandle, run(HasName("loop.0.4"), _, _)); 1271 EXPECT_CALL(MLPHandle, run(HasName("loop.0.4"), _, _, _)) 1272 .Times(2) 1273 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1274 1275 // And only now do we visit the outermost loop of the nest. 1276 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) 1277 .WillOnce(Invoke(getLoopAnalysisResult)); 1278 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); 1279 // On the second pass, we add sibling loops which become new top-level loops. 1280 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) 1281 .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM, 1282 LoopStandardAnalysisResults &AR, 1283 LPMUpdater &Updater) { 1284 auto *NewLoop = AR.LI.AllocateLoop(); 1285 AR.LI.addTopLevelLoop(NewLoop); 1286 auto *NewLoop1PHBB = BasicBlock::Create(Context, "loop.1.ph", &F, &Loop2BB); 1287 auto *NewLoop1BB = BasicBlock::Create(Context, "loop.1", &F, &Loop2BB); 1288 BranchInst::Create(NewLoop1BB, NewLoop1PHBB); 1289 CreateCondBr(&Loop2PHBB, NewLoop1BB, "cond.1", NewLoop1BB); 1290 Loop0BB.getTerminator()->replaceUsesOfWith(&Loop2PHBB, NewLoop1PHBB); 1291 AR.DT.addNewBlock(NewLoop1PHBB, &Loop0BB); 1292 auto *NewDTNode = AR.DT.addNewBlock(NewLoop1BB, NewLoop1PHBB); 1293 AR.DT.changeImmediateDominator(AR.DT[&Loop2PHBB], NewDTNode); 1294 EXPECT_TRUE(AR.DT.verify()); 1295 NewLoop->addBasicBlockToLoop(NewLoop1BB, AR.LI); 1296 NewLoop->verifyLoop(); 1297 Updater.addSiblingLoops({NewLoop}); 1298 return PreservedAnalyses::all(); 1299 })); 1300 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) 1301 .WillOnce(Invoke(getLoopAnalysisResult)); 1302 1303 EXPECT_CALL(MLPHandle, run(HasName("loop.1"), _, _, _)) 1304 .WillOnce(Invoke(getLoopAnalysisResult)); 1305 EXPECT_CALL(MLAHandle, run(HasName("loop.1"), _, _)); 1306 EXPECT_CALL(MLPHandle, run(HasName("loop.1"), _, _, _)) 1307 .Times(2) 1308 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1309 1310 EXPECT_CALL(MLPHandle, run(HasName("loop.2"), _, _, _)) 1311 .WillOnce(Invoke(getLoopAnalysisResult)); 1312 EXPECT_CALL(MLAHandle, run(HasName("loop.2"), _, _)); 1313 EXPECT_CALL(MLPHandle, run(HasName("loop.2"), _, _, _)) 1314 .Times(2) 1315 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1316 1317 // Now that all the expected actions are registered, run the pipeline over 1318 // our module. All of our expectations are verified when the test finishes. 1319 MPM.run(*M, MAM); 1320 } 1321 1322 TEST_F(LoopPassManagerTest, LoopDeletion) { 1323 // Build a module with a single loop nest that contains one outer loop with 1324 // three subloops, and one of those with its own subloop. We will 1325 // incrementally delete all of these to test different deletion scenarios. 1326 M = parseIR(Context, "define void @f(i1* %ptr) {\n" 1327 "entry:\n" 1328 " br label %loop.0\n" 1329 "loop.0:\n" 1330 " %cond.0 = load volatile i1, i1* %ptr\n" 1331 " br i1 %cond.0, label %loop.0.0.ph, label %end\n" 1332 "loop.0.0.ph:\n" 1333 " br label %loop.0.0\n" 1334 "loop.0.0:\n" 1335 " %cond.0.0 = load volatile i1, i1* %ptr\n" 1336 " br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n" 1337 "loop.0.1.ph:\n" 1338 " br label %loop.0.1\n" 1339 "loop.0.1:\n" 1340 " %cond.0.1 = load volatile i1, i1* %ptr\n" 1341 " br i1 %cond.0.1, label %loop.0.1, label %loop.0.2.ph\n" 1342 "loop.0.2.ph:\n" 1343 " br label %loop.0.2\n" 1344 "loop.0.2:\n" 1345 " %cond.0.2 = load volatile i1, i1* %ptr\n" 1346 " br i1 %cond.0.2, label %loop.0.2.0.ph, label %loop.0.latch\n" 1347 "loop.0.2.0.ph:\n" 1348 " br label %loop.0.2.0\n" 1349 "loop.0.2.0:\n" 1350 " %cond.0.2.0 = load volatile i1, i1* %ptr\n" 1351 " br i1 %cond.0.2.0, label %loop.0.2.0, label %loop.0.2.latch\n" 1352 "loop.0.2.latch:\n" 1353 " br label %loop.0.2\n" 1354 "loop.0.latch:\n" 1355 " br label %loop.0\n" 1356 "end:\n" 1357 " ret void\n" 1358 "}\n"); 1359 1360 // Build up variables referring into the IR so we can rewrite it below 1361 // easily. 1362 Function &F = *M->begin(); 1363 ASSERT_THAT(F, HasName("f")); 1364 Argument &Ptr = *F.arg_begin(); 1365 auto BBI = F.begin(); 1366 BasicBlock &EntryBB = *BBI++; 1367 ASSERT_THAT(EntryBB, HasName("entry")); 1368 BasicBlock &Loop0BB = *BBI++; 1369 ASSERT_THAT(Loop0BB, HasName("loop.0")); 1370 BasicBlock &Loop00PHBB = *BBI++; 1371 ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph")); 1372 BasicBlock &Loop00BB = *BBI++; 1373 ASSERT_THAT(Loop00BB, HasName("loop.0.0")); 1374 BasicBlock &Loop01PHBB = *BBI++; 1375 ASSERT_THAT(Loop01PHBB, HasName("loop.0.1.ph")); 1376 BasicBlock &Loop01BB = *BBI++; 1377 ASSERT_THAT(Loop01BB, HasName("loop.0.1")); 1378 BasicBlock &Loop02PHBB = *BBI++; 1379 ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph")); 1380 BasicBlock &Loop02BB = *BBI++; 1381 ASSERT_THAT(Loop02BB, HasName("loop.0.2")); 1382 BasicBlock &Loop020PHBB = *BBI++; 1383 ASSERT_THAT(Loop020PHBB, HasName("loop.0.2.0.ph")); 1384 BasicBlock &Loop020BB = *BBI++; 1385 ASSERT_THAT(Loop020BB, HasName("loop.0.2.0")); 1386 BasicBlock &Loop02LatchBB = *BBI++; 1387 ASSERT_THAT(Loop02LatchBB, HasName("loop.0.2.latch")); 1388 BasicBlock &Loop0LatchBB = *BBI++; 1389 ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch")); 1390 BasicBlock &EndBB = *BBI++; 1391 ASSERT_THAT(EndBB, HasName("end")); 1392 ASSERT_THAT(BBI, F.end()); 1393 1394 // Helper to do the actual deletion of a loop. We directly encode this here 1395 // to isolate ourselves from the rest of LLVM and for simplicity. Here we can 1396 // egregiously cheat based on knowledge of the test case. For example, we 1397 // have no PHI nodes and there is always a single i-dom. 1398 auto EraseLoop = [](Loop &L, BasicBlock &IDomBB, 1399 LoopStandardAnalysisResults &AR, LPMUpdater &Updater) { 1400 assert(L.isInnermost() && "Can only delete leaf loops with this routine!"); 1401 SmallVector<BasicBlock *, 4> LoopBBs(L.block_begin(), L.block_end()); 1402 Updater.markLoopAsDeleted(L, L.getName()); 1403 IDomBB.getTerminator()->replaceUsesOfWith(L.getHeader(), 1404 L.getUniqueExitBlock()); 1405 for (BasicBlock *LoopBB : LoopBBs) { 1406 SmallVector<DomTreeNode *, 4> ChildNodes(AR.DT[LoopBB]->begin(), 1407 AR.DT[LoopBB]->end()); 1408 for (DomTreeNode *ChildNode : ChildNodes) 1409 AR.DT.changeImmediateDominator(ChildNode, AR.DT[&IDomBB]); 1410 AR.DT.eraseNode(LoopBB); 1411 AR.LI.removeBlock(LoopBB); 1412 LoopBB->dropAllReferences(); 1413 } 1414 for (BasicBlock *LoopBB : LoopBBs) 1415 LoopBB->eraseFromParent(); 1416 1417 AR.LI.erase(&L); 1418 }; 1419 1420 // Build up the pass managers. 1421 ModulePassManager MPM; 1422 FunctionPassManager FPM; 1423 // We run several loop pass pipelines across the loop nest, but they all take 1424 // the same form of three mock pass runs in a loop pipeline followed by 1425 // domtree and loop verification. We use a lambda to stamp this out each 1426 // time. 1427 auto AddLoopPipelineAndVerificationPasses = [&] { 1428 LoopPassManager LPM; 1429 LPM.addPass(MLPHandle.getPass()); 1430 LPM.addPass(MLPHandle.getPass()); 1431 LPM.addPass(MLPHandle.getPass()); 1432 FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM))); 1433 FPM.addPass(DominatorTreeVerifierPass()); 1434 FPM.addPass(LoopVerifierPass()); 1435 }; 1436 1437 // All the visit orders are deterministic so we use simple fully order 1438 // expectations. 1439 ::testing::InSequence MakeExpectationsSequenced; 1440 1441 // We run the loop pipeline with three passes over each of the loops. When 1442 // running over the middle loop, the second pass in the pipeline deletes it. 1443 // This should prevent the third pass from visiting it but otherwise leave 1444 // the process unimpacted. 1445 AddLoopPipelineAndVerificationPasses(); 1446 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) 1447 .WillOnce(Invoke(getLoopAnalysisResult)); 1448 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); 1449 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) 1450 .Times(2) 1451 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1452 1453 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) 1454 .WillOnce(Invoke(getLoopAnalysisResult)); 1455 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); 1456 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) 1457 .WillOnce( 1458 Invoke([&](Loop &L, LoopAnalysisManager &AM, 1459 LoopStandardAnalysisResults &AR, LPMUpdater &Updater) { 1460 Loop *ParentL = L.getParentLoop(); 1461 AR.SE.forgetLoop(&L); 1462 EraseLoop(L, Loop01PHBB, AR, Updater); 1463 ParentL->verifyLoop(); 1464 return PreservedAnalyses::all(); 1465 })); 1466 1467 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _)) 1468 .WillOnce(Invoke(getLoopAnalysisResult)); 1469 EXPECT_CALL(MLAHandle, run(HasName("loop.0.2.0"), _, _)); 1470 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _)) 1471 .Times(2) 1472 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1473 1474 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _)) 1475 .WillOnce(Invoke(getLoopAnalysisResult)); 1476 EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _)); 1477 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _)) 1478 .Times(2) 1479 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1480 1481 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) 1482 .WillOnce(Invoke(getLoopAnalysisResult)); 1483 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); 1484 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) 1485 .Times(2) 1486 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1487 1488 // Run the loop pipeline again. This time we delete the last loop, which 1489 // contains a nested loop within it and insert a new loop into the nest. This 1490 // makes sure we can handle nested loop deletion. 1491 AddLoopPipelineAndVerificationPasses(); 1492 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) 1493 .Times(3) 1494 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1495 1496 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _)) 1497 .Times(3) 1498 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1499 1500 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _)) 1501 .WillOnce(Invoke(getLoopAnalysisResult)); 1502 BasicBlock *NewLoop03PHBB; 1503 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _)) 1504 .WillOnce( 1505 Invoke([&](Loop &L, LoopAnalysisManager &AM, 1506 LoopStandardAnalysisResults &AR, LPMUpdater &Updater) { 1507 AR.SE.forgetLoop(*L.begin()); 1508 EraseLoop(**L.begin(), Loop020PHBB, AR, Updater); 1509 1510 auto *ParentL = L.getParentLoop(); 1511 AR.SE.forgetLoop(&L); 1512 EraseLoop(L, Loop02PHBB, AR, Updater); 1513 1514 // Now insert a new sibling loop. 1515 auto *NewSibling = AR.LI.AllocateLoop(); 1516 ParentL->addChildLoop(NewSibling); 1517 NewLoop03PHBB = 1518 BasicBlock::Create(Context, "loop.0.3.ph", &F, &Loop0LatchBB); 1519 auto *NewLoop03BB = 1520 BasicBlock::Create(Context, "loop.0.3", &F, &Loop0LatchBB); 1521 BranchInst::Create(NewLoop03BB, NewLoop03PHBB); 1522 auto *Cond = 1523 new LoadInst(Type::getInt1Ty(Context), &Ptr, "cond.0.3", 1524 /*isVolatile*/ true, NewLoop03BB); 1525 BranchInst::Create(&Loop0LatchBB, NewLoop03BB, Cond, NewLoop03BB); 1526 Loop02PHBB.getTerminator()->replaceUsesOfWith(&Loop0LatchBB, 1527 NewLoop03PHBB); 1528 AR.DT.addNewBlock(NewLoop03PHBB, &Loop02PHBB); 1529 AR.DT.addNewBlock(NewLoop03BB, NewLoop03PHBB); 1530 AR.DT.changeImmediateDominator(AR.DT[&Loop0LatchBB], 1531 AR.DT[NewLoop03BB]); 1532 EXPECT_TRUE(AR.DT.verify()); 1533 ParentL->addBasicBlockToLoop(NewLoop03PHBB, AR.LI); 1534 NewSibling->addBasicBlockToLoop(NewLoop03BB, AR.LI); 1535 NewSibling->verifyLoop(); 1536 ParentL->verifyLoop(); 1537 Updater.addSiblingLoops({NewSibling}); 1538 return PreservedAnalyses::all(); 1539 })); 1540 1541 // To respect our inner-to-outer traversal order, we must visit the 1542 // newly-inserted sibling of the loop we just deleted before we visit the 1543 // outer loop. When we do so, this must compute a fresh analysis result, even 1544 // though our new loop has the same pointer value as the loop we deleted. 1545 EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _)) 1546 .WillOnce(Invoke(getLoopAnalysisResult)); 1547 EXPECT_CALL(MLAHandle, run(HasName("loop.0.3"), _, _)); 1548 EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _)) 1549 .Times(2) 1550 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1551 1552 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) 1553 .Times(3) 1554 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1555 1556 // In the final loop pipeline run we delete every loop, including the last 1557 // loop of the nest. We do this again in the second pass in the pipeline, and 1558 // as a consequence we never make it to three runs on any loop. We also cover 1559 // deleting multiple loops in a single pipeline, deleting the first loop and 1560 // deleting the (last) top level loop. 1561 AddLoopPipelineAndVerificationPasses(); 1562 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) 1563 .WillOnce(Invoke(getLoopAnalysisResult)); 1564 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) 1565 .WillOnce( 1566 Invoke([&](Loop &L, LoopAnalysisManager &AM, 1567 LoopStandardAnalysisResults &AR, LPMUpdater &Updater) { 1568 AR.SE.forgetLoop(&L); 1569 EraseLoop(L, Loop00PHBB, AR, Updater); 1570 return PreservedAnalyses::all(); 1571 })); 1572 1573 EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _)) 1574 .WillOnce(Invoke(getLoopAnalysisResult)); 1575 EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _)) 1576 .WillOnce( 1577 Invoke([&](Loop &L, LoopAnalysisManager &AM, 1578 LoopStandardAnalysisResults &AR, LPMUpdater &Updater) { 1579 AR.SE.forgetLoop(&L); 1580 EraseLoop(L, *NewLoop03PHBB, AR, Updater); 1581 return PreservedAnalyses::all(); 1582 })); 1583 1584 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) 1585 .WillOnce(Invoke(getLoopAnalysisResult)); 1586 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) 1587 .WillOnce( 1588 Invoke([&](Loop &L, LoopAnalysisManager &AM, 1589 LoopStandardAnalysisResults &AR, LPMUpdater &Updater) { 1590 AR.SE.forgetLoop(&L); 1591 EraseLoop(L, EntryBB, AR, Updater); 1592 return PreservedAnalyses::all(); 1593 })); 1594 1595 // Add the function pass pipeline now that it is fully built up and run it 1596 // over the module's one function. 1597 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 1598 MPM.run(*M, MAM); 1599 } 1600 1601 TEST_F(LoopPassManagerTest, HandleLoopNestPass) { 1602 ::testing::Sequence FSequence, GSequence; 1603 1604 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) 1605 .Times(2) 1606 .InSequence(FSequence); 1607 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) 1608 .Times(2) 1609 .InSequence(FSequence); 1610 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)).InSequence(FSequence); 1611 EXPECT_CALL(MLNPHandle, run(HasName("loop.0"), _, _, _)) 1612 .InSequence(FSequence); 1613 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)).InSequence(FSequence); 1614 EXPECT_CALL(MLNPHandle, run(HasName("loop.0"), _, _, _)) 1615 .InSequence(FSequence); 1616 EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _)) 1617 .InSequence(GSequence); 1618 EXPECT_CALL(MLNPHandle, run(HasName("loop.g.0"), _, _, _)) 1619 .InSequence(GSequence); 1620 EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _)) 1621 .InSequence(GSequence); 1622 EXPECT_CALL(MLNPHandle, run(HasName("loop.g.0"), _, _, _)) 1623 .InSequence(GSequence); 1624 1625 EXPECT_CALL(MLNPHandle, run(HasName("loop.0"), _, _, _)) 1626 .InSequence(FSequence); 1627 EXPECT_CALL(MLNPHandle, run(HasName("loop.g.0"), _, _, _)) 1628 .InSequence(GSequence); 1629 1630 EXPECT_CALL(MLNPHandle, run(HasName("loop.0"), _, _, _)) 1631 .InSequence(FSequence); 1632 EXPECT_CALL(MLNPHandle, run(HasName("loop.g.0"), _, _, _)) 1633 .InSequence(GSequence); 1634 1635 ModulePassManager MPM; 1636 FunctionPassManager FPM; 1637 1638 { 1639 LoopPassManager LPM; 1640 LPM.addPass(MLPHandle.getPass()); 1641 LPM.addPass(MLNPHandle.getPass()); 1642 LPM.addPass(MLPHandle.getPass()); 1643 LPM.addPass(MLNPHandle.getPass()); 1644 1645 auto Adaptor = createFunctionToLoopPassAdaptor(std::move(LPM)); 1646 ASSERT_FALSE(Adaptor.isLoopNestMode()); 1647 FPM.addPass(std::move(Adaptor)); 1648 } 1649 1650 { 1651 auto Adaptor = createFunctionToLoopPassAdaptor(MLNPHandle.getPass()); 1652 ASSERT_TRUE(Adaptor.isLoopNestMode()); 1653 FPM.addPass(std::move(Adaptor)); 1654 } 1655 1656 { 1657 LoopPassManager LPM; 1658 LPM.addPass(MLNPHandle.getPass()); 1659 auto Adaptor = createFunctionToLoopPassAdaptor(MLNPHandle.getPass()); 1660 ASSERT_TRUE(Adaptor.isLoopNestMode()); 1661 FPM.addPass(std::move(Adaptor)); 1662 } 1663 1664 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 1665 MPM.run(*M, MAM); 1666 } 1667 1668 } // namespace 1669