1 //===- llvm/unittest/Analysis/LoopPassManagerTest.cpp - LPM tests ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/Scalar/LoopPassManager.h"
10 #include "llvm/Analysis/AliasAnalysis.h"
11 #include "llvm/Analysis/AssumptionCache.h"
12 #include "llvm/Analysis/BlockFrequencyInfo.h"
13 #include "llvm/Analysis/BranchProbabilityInfo.h"
14 #include "llvm/Analysis/MemorySSA.h"
15 #include "llvm/Analysis/PostDominators.h"
16 #include "llvm/Analysis/ScalarEvolution.h"
17 #include "llvm/Analysis/TargetLibraryInfo.h"
18 #include "llvm/Analysis/TargetTransformInfo.h"
19 #include "llvm/AsmParser/Parser.h"
20 #include "llvm/IR/Dominators.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/PassManager.h"
25 #include "llvm/Support/SourceMgr.h"
26 
27 #include "gmock/gmock.h"
28 #include "gtest/gtest.h"
29 
30 using namespace llvm;
31 
32 namespace {
33 
34 using testing::DoDefault;
35 using testing::Return;
36 using testing::Expectation;
37 using testing::Invoke;
38 using testing::InvokeWithoutArgs;
39 using testing::_;
40 
41 template <typename DerivedT, typename IRUnitT,
42           typename AnalysisManagerT = AnalysisManager<IRUnitT>,
43           typename... ExtraArgTs>
44 class MockAnalysisHandleBase {
45 public:
46   class Analysis : public AnalysisInfoMixin<Analysis> {
47     friend AnalysisInfoMixin<Analysis>;
48     friend MockAnalysisHandleBase;
49     static AnalysisKey Key;
50 
51     DerivedT *Handle;
52 
Analysis(DerivedT & Handle)53     Analysis(DerivedT &Handle) : Handle(&Handle) {
54       static_assert(std::is_base_of<MockAnalysisHandleBase, DerivedT>::value,
55                     "Must pass the derived type to this template!");
56     }
57 
58   public:
59     class Result {
60       friend MockAnalysisHandleBase;
61 
62       DerivedT *Handle;
63 
Result(DerivedT & Handle)64       Result(DerivedT &Handle) : Handle(&Handle) {}
65 
66     public:
67       // Forward invalidation events to the mock handle.
invalidate(IRUnitT & IR,const PreservedAnalyses & PA,typename AnalysisManagerT::Invalidator & Inv)68       bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA,
69                       typename AnalysisManagerT::Invalidator &Inv) {
70         return Handle->invalidate(IR, PA, Inv);
71       }
72     };
73 
run(IRUnitT & IR,AnalysisManagerT & AM,ExtraArgTs...ExtraArgs)74     Result run(IRUnitT &IR, AnalysisManagerT &AM, ExtraArgTs... ExtraArgs) {
75       return Handle->run(IR, AM, ExtraArgs...);
76     }
77   };
78 
getAnalysis()79   Analysis getAnalysis() { return Analysis(static_cast<DerivedT &>(*this)); }
getResult()80   typename Analysis::Result getResult() {
81     return typename Analysis::Result(static_cast<DerivedT &>(*this));
82   }
83 
84 protected:
85   // FIXME: MSVC seems unable to handle a lambda argument to Invoke from within
86   // the template, so we use a boring static function.
invalidateCallback(IRUnitT & IR,const PreservedAnalyses & PA,typename AnalysisManagerT::Invalidator & Inv)87   static bool invalidateCallback(IRUnitT &IR, const PreservedAnalyses &PA,
88                                  typename AnalysisManagerT::Invalidator &Inv) {
89     auto PAC = PA.template getChecker<Analysis>();
90     return !PAC.preserved() &&
91            !PAC.template preservedSet<AllAnalysesOn<IRUnitT>>();
92   }
93 
94   /// Derived classes should call this in their constructor to set up default
95   /// mock actions. (We can't do this in our constructor because this has to
96   /// run after the DerivedT is constructed.)
setDefaults()97   void setDefaults() {
98     ON_CALL(static_cast<DerivedT &>(*this),
99             run(_, _, testing::Matcher<ExtraArgTs>(_)...))
100         .WillByDefault(Return(this->getResult()));
101     ON_CALL(static_cast<DerivedT &>(*this), invalidate(_, _, _))
102         .WillByDefault(Invoke(&invalidateCallback));
103   }
104 };
105 
106 template <typename DerivedT, typename IRUnitT, typename AnalysisManagerT,
107           typename... ExtraArgTs>
108 AnalysisKey MockAnalysisHandleBase<DerivedT, IRUnitT, AnalysisManagerT,
109                                    ExtraArgTs...>::Analysis::Key;
110 
111 /// Mock handle for loop analyses.
112 ///
113 /// This is provided as a template accepting an (optional) integer. Because
114 /// analyses are identified and queried by type, this allows constructing
115 /// multiple handles with distinctly typed nested 'Analysis' types that can be
116 /// registered and queried. If you want to register multiple loop analysis
117 /// passes, you'll need to instantiate this type with different values for I.
118 /// For example:
119 ///
120 ///   MockLoopAnalysisHandleTemplate<0> h0;
121 ///   MockLoopAnalysisHandleTemplate<1> h1;
122 ///   typedef decltype(h0)::Analysis Analysis0;
123 ///   typedef decltype(h1)::Analysis Analysis1;
124 template <size_t I = static_cast<size_t>(-1)>
125 struct MockLoopAnalysisHandleTemplate
126     : MockAnalysisHandleBase<MockLoopAnalysisHandleTemplate<I>, Loop,
127                              LoopAnalysisManager,
128                              LoopStandardAnalysisResults &> {
129   typedef typename MockLoopAnalysisHandleTemplate::Analysis Analysis;
130 
131   MOCK_METHOD3_T(run, typename Analysis::Result(Loop &, LoopAnalysisManager &,
132                                                 LoopStandardAnalysisResults &));
133 
134   MOCK_METHOD3_T(invalidate, bool(Loop &, const PreservedAnalyses &,
135                                   LoopAnalysisManager::Invalidator &));
136 
MockLoopAnalysisHandleTemplate__anoncc2bdfab0111::MockLoopAnalysisHandleTemplate137   MockLoopAnalysisHandleTemplate() { this->setDefaults(); }
138 };
139 
140 typedef MockLoopAnalysisHandleTemplate<> MockLoopAnalysisHandle;
141 
142 struct MockFunctionAnalysisHandle
143     : MockAnalysisHandleBase<MockFunctionAnalysisHandle, Function> {
144   MOCK_METHOD2(run, Analysis::Result(Function &, FunctionAnalysisManager &));
145 
146   MOCK_METHOD3(invalidate, bool(Function &, const PreservedAnalyses &,
147                                 FunctionAnalysisManager::Invalidator &));
148 
MockFunctionAnalysisHandle__anoncc2bdfab0111::MockFunctionAnalysisHandle149   MockFunctionAnalysisHandle() { setDefaults(); }
150 };
151 
152 template <typename DerivedT, typename IRUnitT,
153           typename AnalysisManagerT = AnalysisManager<IRUnitT>,
154           typename... ExtraArgTs>
155 class MockPassHandleBase {
156 public:
157   class Pass : public PassInfoMixin<Pass> {
158     friend MockPassHandleBase;
159 
160     DerivedT *Handle;
161 
Pass(DerivedT & Handle)162     Pass(DerivedT &Handle) : Handle(&Handle) {
163       static_assert(std::is_base_of<MockPassHandleBase, DerivedT>::value,
164                     "Must pass the derived type to this template!");
165     }
166 
167   public:
run(IRUnitT & IR,AnalysisManagerT & AM,ExtraArgTs...ExtraArgs)168     PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM,
169                           ExtraArgTs... ExtraArgs) {
170       return Handle->run(IR, AM, ExtraArgs...);
171     }
172   };
173 
getPass()174   Pass getPass() { return Pass(static_cast<DerivedT &>(*this)); }
175 
176 protected:
177   /// Derived classes should call this in their constructor to set up default
178   /// mock actions. (We can't do this in our constructor because this has to
179   /// run after the DerivedT is constructed.)
setDefaults()180   void setDefaults() {
181     ON_CALL(static_cast<DerivedT &>(*this),
182             run(_, _, testing::Matcher<ExtraArgTs>(_)...))
183         .WillByDefault(Return(PreservedAnalyses::all()));
184   }
185 };
186 
187 struct MockLoopPassHandle
188     : MockPassHandleBase<MockLoopPassHandle, Loop, LoopAnalysisManager,
189                          LoopStandardAnalysisResults &, LPMUpdater &> {
190   MOCK_METHOD4(run,
191                PreservedAnalyses(Loop &, LoopAnalysisManager &,
192                                  LoopStandardAnalysisResults &, LPMUpdater &));
MockLoopPassHandle__anoncc2bdfab0111::MockLoopPassHandle193   MockLoopPassHandle() { setDefaults(); }
194 };
195 
196 struct MockLoopNestPassHandle
197     : MockPassHandleBase<MockLoopNestPassHandle, LoopNest, LoopAnalysisManager,
198                          LoopStandardAnalysisResults &, LPMUpdater &> {
199   MOCK_METHOD4(run,
200                PreservedAnalyses(LoopNest &, LoopAnalysisManager &,
201                                  LoopStandardAnalysisResults &, LPMUpdater &));
202 
MockLoopNestPassHandle__anoncc2bdfab0111::MockLoopNestPassHandle203   MockLoopNestPassHandle() { setDefaults(); }
204 };
205 
206 struct MockFunctionPassHandle
207     : MockPassHandleBase<MockFunctionPassHandle, Function> {
208   MOCK_METHOD2(run, PreservedAnalyses(Function &, FunctionAnalysisManager &));
209 
MockFunctionPassHandle__anoncc2bdfab0111::MockFunctionPassHandle210   MockFunctionPassHandle() { setDefaults(); }
211 };
212 
213 struct MockModulePassHandle : MockPassHandleBase<MockModulePassHandle, Module> {
214   MOCK_METHOD2(run, PreservedAnalyses(Module &, ModuleAnalysisManager &));
215 
MockModulePassHandle__anoncc2bdfab0111::MockModulePassHandle216   MockModulePassHandle() { setDefaults(); }
217 };
218 
219 /// Define a custom matcher for objects which support a 'getName' method
220 /// returning a StringRef.
221 ///
222 /// LLVM often has IR objects or analysis objects which expose a StringRef name
223 /// and in tests it is convenient to match these by name for readability. This
224 /// matcher supports any type exposing a getName() method of this form.
225 ///
226 /// It should be used as:
227 ///
228 ///   HasName("my_function")
229 ///
230 /// No namespace or other qualification is required.
231 MATCHER_P(HasName, Name, "") {
232   // The matcher's name and argument are printed in the case of failure, but we
233   // also want to print out the name of the argument. This uses an implicitly
234   // avaiable std::ostream, so we have to construct a std::string.
235   *result_listener << "has name '" << arg.getName().str() << "'";
236   return Name == arg.getName();
237 }
238 
parseIR(LLVMContext & C,const char * IR)239 std::unique_ptr<Module> parseIR(LLVMContext &C, const char *IR) {
240   SMDiagnostic Err;
241   return parseAssemblyString(IR, Err, C);
242 }
243 
244 class LoopPassManagerTest : public ::testing::Test {
245 protected:
246   LLVMContext Context;
247   std::unique_ptr<Module> M;
248 
249   LoopAnalysisManager LAM;
250   FunctionAnalysisManager FAM;
251   ModuleAnalysisManager MAM;
252 
253   MockLoopAnalysisHandle MLAHandle;
254   MockLoopPassHandle MLPHandle;
255   MockLoopNestPassHandle MLNPHandle;
256   MockFunctionPassHandle MFPHandle;
257   MockModulePassHandle MMPHandle;
258 
259   static PreservedAnalyses
getLoopAnalysisResult(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater &)260   getLoopAnalysisResult(Loop &L, LoopAnalysisManager &AM,
261                         LoopStandardAnalysisResults &AR, LPMUpdater &) {
262     (void)AM.getResult<MockLoopAnalysisHandle::Analysis>(L, AR);
263     return PreservedAnalyses::all();
264   };
265 
266 public:
LoopPassManagerTest()267   LoopPassManagerTest()
268       : M(parseIR(Context,
269                   "define void @f(i1* %ptr) {\n"
270                   "entry:\n"
271                   "  br label %loop.0\n"
272                   "loop.0:\n"
273                   "  %cond.0 = load volatile i1, i1* %ptr\n"
274                   "  br i1 %cond.0, label %loop.0.0.ph, label %end\n"
275                   "loop.0.0.ph:\n"
276                   "  br label %loop.0.0\n"
277                   "loop.0.0:\n"
278                   "  %cond.0.0 = load volatile i1, i1* %ptr\n"
279                   "  br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n"
280                   "loop.0.1.ph:\n"
281                   "  br label %loop.0.1\n"
282                   "loop.0.1:\n"
283                   "  %cond.0.1 = load volatile i1, i1* %ptr\n"
284                   "  br i1 %cond.0.1, label %loop.0.1, label %loop.0.latch\n"
285                   "loop.0.latch:\n"
286                   "  br label %loop.0\n"
287                   "end:\n"
288                   "  ret void\n"
289                   "}\n"
290                   "\n"
291                   "define void @g(i1* %ptr) {\n"
292                   "entry:\n"
293                   "  br label %loop.g.0\n"
294                   "loop.g.0:\n"
295                   "  %cond.0 = load volatile i1, i1* %ptr\n"
296                   "  br i1 %cond.0, label %loop.g.0, label %end\n"
297                   "end:\n"
298                   "  ret void\n"
299                   "}\n")),
300         LAM(), FAM(), MAM() {
301     // Register our mock analysis.
302     LAM.registerPass([&] { return MLAHandle.getAnalysis(); });
303 
304     // We need DominatorTreeAnalysis for LoopAnalysis.
305     FAM.registerPass([&] { return DominatorTreeAnalysis(); });
306     FAM.registerPass([&] { return LoopAnalysis(); });
307     // We also allow loop passes to assume a set of other analyses and so need
308     // those.
309     FAM.registerPass([&] { return AAManager(); });
310     FAM.registerPass([&] { return AssumptionAnalysis(); });
311     FAM.registerPass([&] { return BlockFrequencyAnalysis(); });
312     FAM.registerPass([&] { return BranchProbabilityAnalysis(); });
313     FAM.registerPass([&] { return PostDominatorTreeAnalysis(); });
314     FAM.registerPass([&] { return MemorySSAAnalysis(); });
315     FAM.registerPass([&] { return ScalarEvolutionAnalysis(); });
316     FAM.registerPass([&] { return TargetLibraryAnalysis(); });
317     FAM.registerPass([&] { return TargetIRAnalysis(); });
318 
319     // Register required pass instrumentation analysis.
320     LAM.registerPass([&] { return PassInstrumentationAnalysis(); });
321     FAM.registerPass([&] { return PassInstrumentationAnalysis(); });
322     MAM.registerPass([&] { return PassInstrumentationAnalysis(); });
323 
324     // Cross-register proxies.
325     LAM.registerPass([&] { return FunctionAnalysisManagerLoopProxy(FAM); });
326     FAM.registerPass([&] { return LoopAnalysisManagerFunctionProxy(LAM); });
327     FAM.registerPass([&] { return ModuleAnalysisManagerFunctionProxy(MAM); });
328     MAM.registerPass([&] { return FunctionAnalysisManagerModuleProxy(FAM); });
329   }
330 };
331 
TEST_F(LoopPassManagerTest,Basic)332 TEST_F(LoopPassManagerTest, Basic) {
333   ModulePassManager MPM;
334   ::testing::InSequence MakeExpectationsSequenced;
335 
336   // First we just visit all the loops in all the functions and get their
337   // analysis results. This will run the analysis a total of four times,
338   // once for each loop.
339   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
340       .WillOnce(Invoke(getLoopAnalysisResult));
341   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
342   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
343       .WillOnce(Invoke(getLoopAnalysisResult));
344   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
345   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
346       .WillOnce(Invoke(getLoopAnalysisResult));
347   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
348   EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
349       .WillOnce(Invoke(getLoopAnalysisResult));
350   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
351   // Wire the loop pass through pass managers into the module pipeline.
352   {
353     LoopPassManager LPM;
354     LPM.addPass(MLPHandle.getPass());
355     FunctionPassManager FPM;
356     FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
357     MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
358   }
359 
360   // Next we run two passes over the loops. The first one invalidates the
361   // analyses for one loop, the second ones try to get the analysis results.
362   // This should force only one analysis to re-run within the loop PM, but will
363   // also invalidate everything after the loop pass manager finishes.
364   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
365       .WillOnce(DoDefault())
366       .WillOnce(Invoke(getLoopAnalysisResult));
367   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
368       .WillOnce(InvokeWithoutArgs([] { return PreservedAnalyses::none(); }))
369       .WillOnce(Invoke(getLoopAnalysisResult));
370   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
371   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
372       .WillOnce(DoDefault())
373       .WillOnce(Invoke(getLoopAnalysisResult));
374   EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
375       .WillOnce(DoDefault())
376       .WillOnce(Invoke(getLoopAnalysisResult));
377   // Wire two loop pass runs into the module pipeline.
378   {
379     LoopPassManager LPM;
380     LPM.addPass(MLPHandle.getPass());
381     LPM.addPass(MLPHandle.getPass());
382     FunctionPassManager FPM;
383     FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
384     MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
385   }
386 
387   // And now run the pipeline across the module.
388   MPM.run(*M, MAM);
389 }
390 
TEST_F(LoopPassManagerTest,FunctionPassInvalidationOfLoopAnalyses)391 TEST_F(LoopPassManagerTest, FunctionPassInvalidationOfLoopAnalyses) {
392   ModulePassManager MPM;
393   FunctionPassManager FPM;
394   // We process each function completely in sequence.
395   ::testing::Sequence FSequence, GSequence;
396 
397   // First, force the analysis result to be computed for each loop.
398   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _))
399       .InSequence(FSequence)
400       .WillOnce(DoDefault());
401   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _))
402       .InSequence(FSequence)
403       .WillOnce(DoDefault());
404   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _))
405       .InSequence(FSequence)
406       .WillOnce(DoDefault());
407   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _))
408       .InSequence(GSequence)
409       .WillOnce(DoDefault());
410   FPM.addPass(createFunctionToLoopPassAdaptor(
411       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
412 
413   // No need to re-run if we require again from a fresh loop pass manager.
414   FPM.addPass(createFunctionToLoopPassAdaptor(
415       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
416   // For 'f', preserve most things but not the specific loop analyses.
417   auto PA = getLoopPassPreservedAnalyses();
418   PA.preserve<MemorySSAAnalysis>();
419   EXPECT_CALL(MFPHandle, run(HasName("f"), _))
420       .InSequence(FSequence)
421       .WillOnce(Return(PA));
422   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _))
423       .InSequence(FSequence)
424       .WillOnce(DoDefault());
425   // On one loop, skip the invalidation (as though we did an internal update).
426   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _))
427       .InSequence(FSequence)
428       .WillOnce(Return(false));
429   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _))
430       .InSequence(FSequence)
431       .WillOnce(DoDefault());
432   // Now two loops still have to be recomputed.
433   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _))
434       .InSequence(FSequence)
435       .WillOnce(DoDefault());
436   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _))
437       .InSequence(FSequence)
438       .WillOnce(DoDefault());
439   // Preserve things in the second function to ensure invalidation remains
440   // isolated to one function.
441   EXPECT_CALL(MFPHandle, run(HasName("g"), _))
442       .InSequence(GSequence)
443       .WillOnce(DoDefault());
444   FPM.addPass(MFPHandle.getPass());
445   FPM.addPass(createFunctionToLoopPassAdaptor(
446       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
447 
448   EXPECT_CALL(MFPHandle, run(HasName("f"), _))
449       .InSequence(FSequence)
450       .WillOnce(DoDefault());
451   // For 'g', fail to preserve anything, causing the loops themselves to be
452   // cleared. We don't get an invalidation event here as the loop is gone, but
453   // we should still have to recompute the analysis.
454   EXPECT_CALL(MFPHandle, run(HasName("g"), _))
455       .InSequence(GSequence)
456       .WillOnce(Return(PreservedAnalyses::none()));
457   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _))
458       .InSequence(GSequence)
459       .WillOnce(DoDefault());
460   FPM.addPass(MFPHandle.getPass());
461   FPM.addPass(createFunctionToLoopPassAdaptor(
462       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
463 
464   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
465 
466   // Verify with a separate function pass run that we didn't mess up 'f's
467   // cache. No analysis runs should be necessary here.
468   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
469       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
470 
471   MPM.run(*M, MAM);
472 }
473 
TEST_F(LoopPassManagerTest,ModulePassInvalidationOfLoopAnalyses)474 TEST_F(LoopPassManagerTest, ModulePassInvalidationOfLoopAnalyses) {
475   ModulePassManager MPM;
476   ::testing::InSequence MakeExpectationsSequenced;
477 
478   // First, force the analysis result to be computed for each loop.
479   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
480   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
481   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
482   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
483   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
484       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
485 
486   // Walking all the way out and all the way back in doesn't re-run the
487   // analysis.
488   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
489       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
490 
491   // But a module pass that doesn't preserve the actual mock loop analysis
492   // invalidates all the way down and forces recomputing.
493   EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] {
494     auto PA = getLoopPassPreservedAnalyses();
495     PA.preserve<FunctionAnalysisManagerModuleProxy>();
496     PA.preserve<MemorySSAAnalysis>();
497     return PA;
498   }));
499   // All the loop analyses from both functions get invalidated before we
500   // recompute anything.
501   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _));
502   // On one loop, again skip the invalidation (as though we did an internal
503   // update).
504   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _))
505       .WillOnce(Return(false));
506   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _));
507   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.g.0"), _, _));
508   // Now all but one of the loops gets re-analyzed.
509   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
510   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
511   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
512   MPM.addPass(MMPHandle.getPass());
513   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
514       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
515 
516   // Verify that the cached values persist.
517   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
518       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
519 
520   // Now we fail to preserve the loop analysis and observe that the loop
521   // analyses are cleared (so no invalidation event) as the loops themselves
522   // are no longer valid.
523   EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] {
524     auto PA = PreservedAnalyses::none();
525     PA.preserve<FunctionAnalysisManagerModuleProxy>();
526     return PA;
527   }));
528   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
529   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
530   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
531   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
532   MPM.addPass(MMPHandle.getPass());
533   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
534       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
535 
536   // Verify that the cached values persist.
537   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
538       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
539 
540   // Next, check that even if we preserve everything within the function itelf,
541   // if the function's module pass proxy isn't preserved and the potential set
542   // of functions changes, the clear reaches the loop analyses as well. This
543   // will again trigger re-runs but not invalidation events.
544   EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] {
545     auto PA = PreservedAnalyses::none();
546     PA.preserveSet<AllAnalysesOn<Function>>();
547     PA.preserveSet<AllAnalysesOn<Loop>>();
548     return PA;
549   }));
550   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
551   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
552   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
553   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
554   MPM.addPass(MMPHandle.getPass());
555   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
556       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
557 
558   MPM.run(*M, MAM);
559 }
560 
561 // Test that if any of the bundled analyses provided in the LPM's signature
562 // become invalid, the analysis proxy itself becomes invalid and we clear all
563 // loop analysis results.
TEST_F(LoopPassManagerTest,InvalidationOfBundledAnalyses)564 TEST_F(LoopPassManagerTest, InvalidationOfBundledAnalyses) {
565   ModulePassManager MPM;
566   FunctionPassManager FPM;
567   ::testing::InSequence MakeExpectationsSequenced;
568 
569   // First, force the analysis result to be computed for each loop.
570   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
571   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
572   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
573   FPM.addPass(createFunctionToLoopPassAdaptor(
574       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
575 
576   // No need to re-run if we require again from a fresh loop pass manager.
577   FPM.addPass(createFunctionToLoopPassAdaptor(
578       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
579 
580   // Preserving everything but the loop analyses themselves results in
581   // invalidation and running.
582   EXPECT_CALL(MFPHandle, run(HasName("f"), _))
583       .WillOnce(Return(getLoopPassPreservedAnalyses()));
584   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
585   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
586   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
587   FPM.addPass(MFPHandle.getPass());
588   FPM.addPass(createFunctionToLoopPassAdaptor(
589       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
590 
591   // The rest don't invalidate analyses, they only trigger re-runs because we
592   // clear the cache completely.
593   EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
594     auto PA = PreservedAnalyses::none();
595     // Not preserving `AAManager`.
596     PA.preserve<DominatorTreeAnalysis>();
597     PA.preserve<LoopAnalysis>();
598     PA.preserve<LoopAnalysisManagerFunctionProxy>();
599     PA.preserve<ScalarEvolutionAnalysis>();
600     return PA;
601   }));
602   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
603   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
604   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
605   FPM.addPass(MFPHandle.getPass());
606   FPM.addPass(createFunctionToLoopPassAdaptor(
607       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
608 
609   EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
610     auto PA = PreservedAnalyses::none();
611     // Not preserving `DominatorTreeAnalysis`.
612     PA.preserve<LoopAnalysis>();
613     PA.preserve<LoopAnalysisManagerFunctionProxy>();
614     PA.preserve<ScalarEvolutionAnalysis>();
615     return PA;
616   }));
617   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
618   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
619   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
620   FPM.addPass(MFPHandle.getPass());
621   FPM.addPass(createFunctionToLoopPassAdaptor(
622       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
623 
624   EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
625     auto PA = PreservedAnalyses::none();
626     PA.preserve<DominatorTreeAnalysis>();
627     // Not preserving the `LoopAnalysis`.
628     PA.preserve<LoopAnalysisManagerFunctionProxy>();
629     PA.preserve<ScalarEvolutionAnalysis>();
630     return PA;
631   }));
632   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
633   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
634   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
635   FPM.addPass(MFPHandle.getPass());
636   FPM.addPass(createFunctionToLoopPassAdaptor(
637       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
638 
639   EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
640     auto PA = PreservedAnalyses::none();
641     PA.preserve<DominatorTreeAnalysis>();
642     PA.preserve<LoopAnalysis>();
643     // Not preserving the `LoopAnalysisManagerFunctionProxy`.
644     PA.preserve<ScalarEvolutionAnalysis>();
645     return PA;
646   }));
647   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
648   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
649   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
650   FPM.addPass(MFPHandle.getPass());
651   FPM.addPass(createFunctionToLoopPassAdaptor(
652       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
653 
654   EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
655     auto PA = PreservedAnalyses::none();
656     PA.preserve<DominatorTreeAnalysis>();
657     PA.preserve<LoopAnalysis>();
658     PA.preserve<LoopAnalysisManagerFunctionProxy>();
659     // Not preserving `ScalarEvolutionAnalysis`.
660     return PA;
661   }));
662   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
663   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
664   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
665   FPM.addPass(MFPHandle.getPass());
666   FPM.addPass(createFunctionToLoopPassAdaptor(
667       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
668 
669   // After all the churn on 'f', we'll compute the loop analysis results for
670   // 'g' once with a requires pass and then run our mock pass over g a bunch
671   // but just get cached results each time.
672   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
673   EXPECT_CALL(MFPHandle, run(HasName("g"), _)).Times(6);
674 
675   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
676   MPM.run(*M, MAM);
677 }
678 
TEST_F(LoopPassManagerTest,IndirectInvalidation)679 TEST_F(LoopPassManagerTest, IndirectInvalidation) {
680   // We need two distinct analysis types and handles.
681   enum { A, B };
682   MockLoopAnalysisHandleTemplate<A> MLAHandleA;
683   MockLoopAnalysisHandleTemplate<B> MLAHandleB;
684   LAM.registerPass([&] { return MLAHandleA.getAnalysis(); });
685   LAM.registerPass([&] { return MLAHandleB.getAnalysis(); });
686   typedef decltype(MLAHandleA)::Analysis AnalysisA;
687   typedef decltype(MLAHandleB)::Analysis AnalysisB;
688 
689   // Set up AnalysisA to depend on our AnalysisB. For testing purposes we just
690   // need to get the AnalysisB results in AnalysisA's run method and check if
691   // AnalysisB gets invalidated in AnalysisA's invalidate method.
692   ON_CALL(MLAHandleA, run(_, _, _))
693       .WillByDefault(Invoke([&](Loop &L, LoopAnalysisManager &AM,
694                                 LoopStandardAnalysisResults &AR) {
695         (void)AM.getResult<AnalysisB>(L, AR);
696         return MLAHandleA.getResult();
697       }));
698   ON_CALL(MLAHandleA, invalidate(_, _, _))
699       .WillByDefault(Invoke([](Loop &L, const PreservedAnalyses &PA,
700                                LoopAnalysisManager::Invalidator &Inv) {
701         auto PAC = PA.getChecker<AnalysisA>();
702         return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Loop>>()) ||
703                Inv.invalidate<AnalysisB>(L, PA);
704       }));
705 
706   ::testing::InSequence MakeExpectationsSequenced;
707 
708   // Compute the analyses across all of 'f' first.
709   EXPECT_CALL(MLAHandleA, run(HasName("loop.0.0"), _, _));
710   EXPECT_CALL(MLAHandleB, run(HasName("loop.0.0"), _, _));
711   EXPECT_CALL(MLAHandleA, run(HasName("loop.0.1"), _, _));
712   EXPECT_CALL(MLAHandleB, run(HasName("loop.0.1"), _, _));
713   EXPECT_CALL(MLAHandleA, run(HasName("loop.0"), _, _));
714   EXPECT_CALL(MLAHandleB, run(HasName("loop.0"), _, _));
715 
716   // Now we invalidate AnalysisB (but not AnalysisA) for one of the loops and
717   // preserve everything for the rest. This in turn triggers that one loop to
718   // recompute both AnalysisB *and* AnalysisA if indirect invalidation is
719   // working.
720   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
721       .WillOnce(InvokeWithoutArgs([] {
722         auto PA = getLoopPassPreservedAnalyses();
723         // Specifically preserve AnalysisA so that it would survive if it
724         // didn't depend on AnalysisB.
725         PA.preserve<AnalysisA>();
726         return PA;
727       }));
728   // It happens that AnalysisB is invalidated first. That shouldn't matter
729   // though, and we should still call AnalysisA's invalidation.
730   EXPECT_CALL(MLAHandleB, invalidate(HasName("loop.0.0"), _, _));
731   EXPECT_CALL(MLAHandleA, invalidate(HasName("loop.0.0"), _, _));
732   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
733       .WillOnce(Invoke([](Loop &L, LoopAnalysisManager &AM,
734                           LoopStandardAnalysisResults &AR, LPMUpdater &) {
735         (void)AM.getResult<AnalysisA>(L, AR);
736         return PreservedAnalyses::all();
737       }));
738   EXPECT_CALL(MLAHandleA, run(HasName("loop.0.0"), _, _));
739   EXPECT_CALL(MLAHandleB, run(HasName("loop.0.0"), _, _));
740   // The rest of the loops should run and get cached results.
741   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
742       .Times(2)
743       .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM,
744                                 LoopStandardAnalysisResults &AR, LPMUpdater &) {
745         (void)AM.getResult<AnalysisA>(L, AR);
746         return PreservedAnalyses::all();
747       }));
748   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
749       .Times(2)
750       .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM,
751                                 LoopStandardAnalysisResults &AR, LPMUpdater &) {
752         (void)AM.getResult<AnalysisA>(L, AR);
753         return PreservedAnalyses::all();
754       }));
755 
756   // The run over 'g' should be boring, with us just computing the analyses once
757   // up front and then running loop passes and getting cached results.
758   EXPECT_CALL(MLAHandleA, run(HasName("loop.g.0"), _, _));
759   EXPECT_CALL(MLAHandleB, run(HasName("loop.g.0"), _, _));
760   EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
761       .Times(2)
762       .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM,
763                                 LoopStandardAnalysisResults &AR, LPMUpdater &) {
764         (void)AM.getResult<AnalysisA>(L, AR);
765         return PreservedAnalyses::all();
766       }));
767 
768   // Build the pipeline and run it.
769   ModulePassManager MPM;
770   FunctionPassManager FPM;
771   FPM.addPass(
772       createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<AnalysisA>()));
773   LoopPassManager LPM;
774   LPM.addPass(MLPHandle.getPass());
775   LPM.addPass(MLPHandle.getPass());
776   FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
777   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
778   MPM.run(*M, MAM);
779 }
780 
TEST_F(LoopPassManagerTest,IndirectOuterPassInvalidation)781 TEST_F(LoopPassManagerTest, IndirectOuterPassInvalidation) {
782   typedef decltype(MLAHandle)::Analysis LoopAnalysis;
783 
784   MockFunctionAnalysisHandle MFAHandle;
785   FAM.registerPass([&] { return MFAHandle.getAnalysis(); });
786   typedef decltype(MFAHandle)::Analysis FunctionAnalysis;
787 
788   // Set up the loop analysis to depend on both the function and module
789   // analysis.
790   ON_CALL(MLAHandle, run(_, _, _))
791       .WillByDefault(Invoke([&](Loop &L, LoopAnalysisManager &AM,
792                                 LoopStandardAnalysisResults &AR) {
793         auto &FAMP = AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR);
794         Function &F = *L.getHeader()->getParent();
795         // This call will assert when trying to get the actual analysis if the
796         // FunctionAnalysis can be invalidated. Only check its existence.
797         // Alternatively, use FAM above, for the purposes of this unittest.
798         if (FAMP.cachedResultExists<FunctionAnalysis>(F))
799           FAMP.registerOuterAnalysisInvalidation<FunctionAnalysis,
800                                                  LoopAnalysis>();
801         return MLAHandle.getResult();
802       }));
803 
804   ::testing::InSequence MakeExpectationsSequenced;
805 
806   // Compute the analyses across all of 'f' first.
807   EXPECT_CALL(MFPHandle, run(HasName("f"), _))
808       .WillOnce(Invoke([](Function &F, FunctionAnalysisManager &AM) {
809         // Force the computing of the function analysis so it is available in
810         // this function.
811         (void)AM.getResult<FunctionAnalysis>(F);
812         return PreservedAnalyses::all();
813       }));
814   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
815   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
816   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
817 
818   // Now invalidate the function analysis but preserve the loop analyses.
819   // This should trigger immediate invalidation of the loop analyses, despite
820   // the fact that they were preserved.
821   EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
822     auto PA = getLoopPassPreservedAnalyses();
823     PA.preserve<MemorySSAAnalysis>();
824     PA.preserveSet<AllAnalysesOn<Loop>>();
825     return PA;
826   }));
827   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _));
828   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _));
829   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _));
830 
831   // And re-running a requires pass recomputes them.
832   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
833   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
834   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
835 
836   // When we run over 'g' we don't populate the cache with the function
837   // analysis.
838   EXPECT_CALL(MFPHandle, run(HasName("g"), _))
839       .WillOnce(Return(PreservedAnalyses::all()));
840   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
841 
842   // Which means that no extra invalidation occurs and cached values are used.
843   EXPECT_CALL(MFPHandle, run(HasName("g"), _)).WillOnce(InvokeWithoutArgs([] {
844     auto PA = getLoopPassPreservedAnalyses();
845     PA.preserve<MemorySSAAnalysis>();
846     PA.preserveSet<AllAnalysesOn<Loop>>();
847     return PA;
848   }));
849 
850   // Build the pipeline and run it.
851   ModulePassManager MPM;
852   FunctionPassManager FPM;
853   FPM.addPass(MFPHandle.getPass());
854   FPM.addPass(
855       createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<LoopAnalysis>()));
856   FPM.addPass(MFPHandle.getPass());
857   FPM.addPass(
858       createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<LoopAnalysis>()));
859   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
860   MPM.run(*M, MAM);
861 }
862 
TEST_F(LoopPassManagerTest,LoopChildInsertion)863 TEST_F(LoopPassManagerTest, LoopChildInsertion) {
864   // Super boring module with three loops in a single loop nest.
865   M = parseIR(Context, "define void @f(i1* %ptr) {\n"
866                        "entry:\n"
867                        "  br label %loop.0\n"
868                        "loop.0:\n"
869                        "  %cond.0 = load volatile i1, i1* %ptr\n"
870                        "  br i1 %cond.0, label %loop.0.0.ph, label %end\n"
871                        "loop.0.0.ph:\n"
872                        "  br label %loop.0.0\n"
873                        "loop.0.0:\n"
874                        "  %cond.0.0 = load volatile i1, i1* %ptr\n"
875                        "  br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n"
876                        "loop.0.1.ph:\n"
877                        "  br label %loop.0.1\n"
878                        "loop.0.1:\n"
879                        "  %cond.0.1 = load volatile i1, i1* %ptr\n"
880                        "  br i1 %cond.0.1, label %loop.0.1, label %loop.0.2.ph\n"
881                        "loop.0.2.ph:\n"
882                        "  br label %loop.0.2\n"
883                        "loop.0.2:\n"
884                        "  %cond.0.2 = load volatile i1, i1* %ptr\n"
885                        "  br i1 %cond.0.2, label %loop.0.2, label %loop.0.latch\n"
886                        "loop.0.latch:\n"
887                        "  br label %loop.0\n"
888                        "end:\n"
889                        "  ret void\n"
890                        "}\n");
891 
892   // Build up variables referring into the IR so we can rewrite it below
893   // easily.
894   Function &F = *M->begin();
895   ASSERT_THAT(F, HasName("f"));
896   Argument &Ptr = *F.arg_begin();
897   auto BBI = F.begin();
898   BasicBlock &EntryBB = *BBI++;
899   ASSERT_THAT(EntryBB, HasName("entry"));
900   BasicBlock &Loop0BB = *BBI++;
901   ASSERT_THAT(Loop0BB, HasName("loop.0"));
902   BasicBlock &Loop00PHBB = *BBI++;
903   ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph"));
904   BasicBlock &Loop00BB = *BBI++;
905   ASSERT_THAT(Loop00BB, HasName("loop.0.0"));
906   BasicBlock &Loop01PHBB = *BBI++;
907   ASSERT_THAT(Loop01PHBB, HasName("loop.0.1.ph"));
908   BasicBlock &Loop01BB = *BBI++;
909   ASSERT_THAT(Loop01BB, HasName("loop.0.1"));
910   BasicBlock &Loop02PHBB = *BBI++;
911   ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph"));
912   BasicBlock &Loop02BB = *BBI++;
913   ASSERT_THAT(Loop02BB, HasName("loop.0.2"));
914   BasicBlock &Loop0LatchBB = *BBI++;
915   ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch"));
916   BasicBlock &EndBB = *BBI++;
917   ASSERT_THAT(EndBB, HasName("end"));
918   ASSERT_THAT(BBI, F.end());
919   auto CreateCondBr = [&](BasicBlock *TrueBB, BasicBlock *FalseBB,
920                           const char *Name, BasicBlock *BB) {
921     auto *Cond = new LoadInst(Type::getInt1Ty(Context), &Ptr, Name,
922                               /*isVolatile*/ true, BB);
923     BranchInst::Create(TrueBB, FalseBB, Cond, BB);
924   };
925 
926   // Build the pass managers and register our pipeline. We build a single loop
927   // pass pipeline consisting of three mock pass runs over each loop. After
928   // this we run both domtree and loop verification passes to make sure that
929   // the IR remained valid during our mutations.
930   ModulePassManager MPM;
931   FunctionPassManager FPM;
932   LoopPassManager LPM;
933   LPM.addPass(MLPHandle.getPass());
934   LPM.addPass(MLPHandle.getPass());
935   LPM.addPass(MLPHandle.getPass());
936   FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
937   FPM.addPass(DominatorTreeVerifierPass());
938   FPM.addPass(LoopVerifierPass());
939   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
940 
941   // All the visit orders are deterministic, so we use simple fully order
942   // expectations.
943   ::testing::InSequence MakeExpectationsSequenced;
944 
945   // We run loop passes three times over each of the loops.
946   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
947       .WillOnce(Invoke(getLoopAnalysisResult));
948   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
949   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
950       .Times(2)
951       .WillRepeatedly(Invoke(getLoopAnalysisResult));
952 
953   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
954       .WillOnce(Invoke(getLoopAnalysisResult));
955   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
956 
957   // When running over the middle loop, the second run inserts two new child
958   // loops, inserting them and itself into the worklist.
959   BasicBlock *NewLoop010BB, *NewLoop01LatchBB;
960   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
961       .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
962                            LoopStandardAnalysisResults &AR,
963                            LPMUpdater &Updater) {
964         auto *NewLoop = AR.LI.AllocateLoop();
965         L.addChildLoop(NewLoop);
966         auto *NewLoop010PHBB =
967             BasicBlock::Create(Context, "loop.0.1.0.ph", &F, &Loop02PHBB);
968         NewLoop010BB =
969             BasicBlock::Create(Context, "loop.0.1.0", &F, &Loop02PHBB);
970         NewLoop01LatchBB =
971             BasicBlock::Create(Context, "loop.0.1.latch", &F, &Loop02PHBB);
972         Loop01BB.getTerminator()->replaceUsesOfWith(&Loop01BB, NewLoop010PHBB);
973         BranchInst::Create(NewLoop010BB, NewLoop010PHBB);
974         CreateCondBr(NewLoop01LatchBB, NewLoop010BB, "cond.0.1.0",
975                      NewLoop010BB);
976         BranchInst::Create(&Loop01BB, NewLoop01LatchBB);
977         AR.DT.addNewBlock(NewLoop010PHBB, &Loop01BB);
978         AR.DT.addNewBlock(NewLoop010BB, NewLoop010PHBB);
979         AR.DT.addNewBlock(NewLoop01LatchBB, NewLoop010BB);
980         EXPECT_TRUE(AR.DT.verify());
981         L.addBasicBlockToLoop(NewLoop010PHBB, AR.LI);
982         NewLoop->addBasicBlockToLoop(NewLoop010BB, AR.LI);
983         L.addBasicBlockToLoop(NewLoop01LatchBB, AR.LI);
984         NewLoop->verifyLoop();
985         L.verifyLoop();
986         Updater.addChildLoops({NewLoop});
987         return PreservedAnalyses::all();
988       }));
989 
990   // We should immediately drop down to fully visit the new inner loop.
991   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.0"), _, _, _))
992       .WillOnce(Invoke(getLoopAnalysisResult));
993   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1.0"), _, _));
994   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.0"), _, _, _))
995       .Times(2)
996       .WillRepeatedly(Invoke(getLoopAnalysisResult));
997 
998   // After visiting the inner loop, we should re-visit the second loop
999   // reflecting its new loop nest structure.
1000   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1001       .WillOnce(Invoke(getLoopAnalysisResult));
1002 
1003   // In the second run over the middle loop after we've visited the new child,
1004   // we add another child to check that we can repeatedly add children, and add
1005   // children to a loop that already has children.
1006   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1007       .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
1008                            LoopStandardAnalysisResults &AR,
1009                            LPMUpdater &Updater) {
1010         auto *NewLoop = AR.LI.AllocateLoop();
1011         L.addChildLoop(NewLoop);
1012         auto *NewLoop011PHBB = BasicBlock::Create(Context, "loop.0.1.1.ph", &F, NewLoop01LatchBB);
1013         auto *NewLoop011BB = BasicBlock::Create(Context, "loop.0.1.1", &F, NewLoop01LatchBB);
1014         NewLoop010BB->getTerminator()->replaceUsesOfWith(NewLoop01LatchBB,
1015                                                          NewLoop011PHBB);
1016         BranchInst::Create(NewLoop011BB, NewLoop011PHBB);
1017         CreateCondBr(NewLoop01LatchBB, NewLoop011BB, "cond.0.1.1",
1018                      NewLoop011BB);
1019         AR.DT.addNewBlock(NewLoop011PHBB, NewLoop010BB);
1020         auto *NewDTNode = AR.DT.addNewBlock(NewLoop011BB, NewLoop011PHBB);
1021         AR.DT.changeImmediateDominator(AR.DT[NewLoop01LatchBB], NewDTNode);
1022         EXPECT_TRUE(AR.DT.verify());
1023         L.addBasicBlockToLoop(NewLoop011PHBB, AR.LI);
1024         NewLoop->addBasicBlockToLoop(NewLoop011BB, AR.LI);
1025         NewLoop->verifyLoop();
1026         L.verifyLoop();
1027         Updater.addChildLoops({NewLoop});
1028         return PreservedAnalyses::all();
1029       }));
1030 
1031   // Again, we should immediately drop down to visit the new, unvisited child
1032   // loop. We don't need to revisit the other child though.
1033   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.1"), _, _, _))
1034       .WillOnce(Invoke(getLoopAnalysisResult));
1035   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1.1"), _, _));
1036   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.1"), _, _, _))
1037       .Times(2)
1038       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1039 
1040   // And now we should pop back up to the second loop and do a full pipeline of
1041   // three passes on its current form.
1042   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1043       .Times(3)
1044       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1045 
1046   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1047       .WillOnce(Invoke(getLoopAnalysisResult));
1048   EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _));
1049   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1050       .Times(2)
1051       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1052 
1053   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1054       .WillOnce(Invoke(getLoopAnalysisResult));
1055   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
1056   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1057       .Times(2)
1058       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1059 
1060   // Now that all the expected actions are registered, run the pipeline over
1061   // our module. All of our expectations are verified when the test finishes.
1062   MPM.run(*M, MAM);
1063 }
1064 
TEST_F(LoopPassManagerTest,LoopPeerInsertion)1065 TEST_F(LoopPassManagerTest, LoopPeerInsertion) {
1066   // Super boring module with two loop nests and loop nest with two child
1067   // loops.
1068   M = parseIR(Context, "define void @f(i1* %ptr) {\n"
1069                        "entry:\n"
1070                        "  br label %loop.0\n"
1071                        "loop.0:\n"
1072                        "  %cond.0 = load volatile i1, i1* %ptr\n"
1073                        "  br i1 %cond.0, label %loop.0.0.ph, label %loop.2.ph\n"
1074                        "loop.0.0.ph:\n"
1075                        "  br label %loop.0.0\n"
1076                        "loop.0.0:\n"
1077                        "  %cond.0.0 = load volatile i1, i1* %ptr\n"
1078                        "  br i1 %cond.0.0, label %loop.0.0, label %loop.0.2.ph\n"
1079                        "loop.0.2.ph:\n"
1080                        "  br label %loop.0.2\n"
1081                        "loop.0.2:\n"
1082                        "  %cond.0.2 = load volatile i1, i1* %ptr\n"
1083                        "  br i1 %cond.0.2, label %loop.0.2, label %loop.0.latch\n"
1084                        "loop.0.latch:\n"
1085                        "  br label %loop.0\n"
1086                        "loop.2.ph:\n"
1087                        "  br label %loop.2\n"
1088                        "loop.2:\n"
1089                        "  %cond.2 = load volatile i1, i1* %ptr\n"
1090                        "  br i1 %cond.2, label %loop.2, label %end\n"
1091                        "end:\n"
1092                        "  ret void\n"
1093                        "}\n");
1094 
1095   // Build up variables referring into the IR so we can rewrite it below
1096   // easily.
1097   Function &F = *M->begin();
1098   ASSERT_THAT(F, HasName("f"));
1099   Argument &Ptr = *F.arg_begin();
1100   auto BBI = F.begin();
1101   BasicBlock &EntryBB = *BBI++;
1102   ASSERT_THAT(EntryBB, HasName("entry"));
1103   BasicBlock &Loop0BB = *BBI++;
1104   ASSERT_THAT(Loop0BB, HasName("loop.0"));
1105   BasicBlock &Loop00PHBB = *BBI++;
1106   ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph"));
1107   BasicBlock &Loop00BB = *BBI++;
1108   ASSERT_THAT(Loop00BB, HasName("loop.0.0"));
1109   BasicBlock &Loop02PHBB = *BBI++;
1110   ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph"));
1111   BasicBlock &Loop02BB = *BBI++;
1112   ASSERT_THAT(Loop02BB, HasName("loop.0.2"));
1113   BasicBlock &Loop0LatchBB = *BBI++;
1114   ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch"));
1115   BasicBlock &Loop2PHBB = *BBI++;
1116   ASSERT_THAT(Loop2PHBB, HasName("loop.2.ph"));
1117   BasicBlock &Loop2BB = *BBI++;
1118   ASSERT_THAT(Loop2BB, HasName("loop.2"));
1119   BasicBlock &EndBB = *BBI++;
1120   ASSERT_THAT(EndBB, HasName("end"));
1121   ASSERT_THAT(BBI, F.end());
1122   auto CreateCondBr = [&](BasicBlock *TrueBB, BasicBlock *FalseBB,
1123                           const char *Name, BasicBlock *BB) {
1124     auto *Cond = new LoadInst(Type::getInt1Ty(Context), &Ptr, Name,
1125                               /*isVolatile*/ true, BB);
1126     BranchInst::Create(TrueBB, FalseBB, Cond, BB);
1127   };
1128 
1129   // Build the pass managers and register our pipeline. We build a single loop
1130   // pass pipeline consisting of three mock pass runs over each loop. After
1131   // this we run both domtree and loop verification passes to make sure that
1132   // the IR remained valid during our mutations.
1133   ModulePassManager MPM;
1134   FunctionPassManager FPM;
1135   LoopPassManager LPM;
1136   LPM.addPass(MLPHandle.getPass());
1137   LPM.addPass(MLPHandle.getPass());
1138   LPM.addPass(MLPHandle.getPass());
1139   FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
1140   FPM.addPass(DominatorTreeVerifierPass());
1141   FPM.addPass(LoopVerifierPass());
1142   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
1143 
1144   // All the visit orders are deterministic, so we use simple fully order
1145   // expectations.
1146   ::testing::InSequence MakeExpectationsSequenced;
1147 
1148   // We run loop passes three times over each of the loops.
1149   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1150       .WillOnce(Invoke(getLoopAnalysisResult));
1151   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
1152 
1153   // On the second run, we insert a sibling loop.
1154   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1155       .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
1156                            LoopStandardAnalysisResults &AR,
1157                            LPMUpdater &Updater) {
1158         auto *NewLoop = AR.LI.AllocateLoop();
1159         L.getParentLoop()->addChildLoop(NewLoop);
1160         auto *NewLoop01PHBB = BasicBlock::Create(Context, "loop.0.1.ph", &F, &Loop02PHBB);
1161         auto *NewLoop01BB = BasicBlock::Create(Context, "loop.0.1", &F, &Loop02PHBB);
1162         BranchInst::Create(NewLoop01BB, NewLoop01PHBB);
1163         CreateCondBr(&Loop02PHBB, NewLoop01BB, "cond.0.1", NewLoop01BB);
1164         Loop00BB.getTerminator()->replaceUsesOfWith(&Loop02PHBB, NewLoop01PHBB);
1165         AR.DT.addNewBlock(NewLoop01PHBB, &Loop00BB);
1166         auto *NewDTNode = AR.DT.addNewBlock(NewLoop01BB, NewLoop01PHBB);
1167         AR.DT.changeImmediateDominator(AR.DT[&Loop02PHBB], NewDTNode);
1168         EXPECT_TRUE(AR.DT.verify());
1169         L.getParentLoop()->addBasicBlockToLoop(NewLoop01PHBB, AR.LI);
1170         NewLoop->addBasicBlockToLoop(NewLoop01BB, AR.LI);
1171         L.getParentLoop()->verifyLoop();
1172         Updater.addSiblingLoops({NewLoop});
1173         return PreservedAnalyses::all();
1174       }));
1175   // We finish processing this loop as sibling loops don't perturb the
1176   // postorder walk.
1177   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1178       .WillOnce(Invoke(getLoopAnalysisResult));
1179 
1180   // We visit the inserted sibling next.
1181   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1182       .WillOnce(Invoke(getLoopAnalysisResult));
1183   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
1184   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1185       .Times(2)
1186       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1187 
1188   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1189       .WillOnce(Invoke(getLoopAnalysisResult));
1190   EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _));
1191   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1192       .WillOnce(Invoke(getLoopAnalysisResult));
1193   // Next, on the third pass run on the last inner loop we add more new
1194   // siblings, more than one, and one with nested child loops. By doing this at
1195   // the end we make sure that edge case works well.
1196   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1197       .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
1198                            LoopStandardAnalysisResults &AR,
1199                            LPMUpdater &Updater) {
1200         Loop *NewLoops[] = {AR.LI.AllocateLoop(), AR.LI.AllocateLoop(),
1201                             AR.LI.AllocateLoop()};
1202         L.getParentLoop()->addChildLoop(NewLoops[0]);
1203         L.getParentLoop()->addChildLoop(NewLoops[1]);
1204         NewLoops[1]->addChildLoop(NewLoops[2]);
1205         auto *NewLoop03PHBB =
1206             BasicBlock::Create(Context, "loop.0.3.ph", &F, &Loop0LatchBB);
1207         auto *NewLoop03BB =
1208             BasicBlock::Create(Context, "loop.0.3", &F, &Loop0LatchBB);
1209         auto *NewLoop04PHBB =
1210             BasicBlock::Create(Context, "loop.0.4.ph", &F, &Loop0LatchBB);
1211         auto *NewLoop04BB =
1212             BasicBlock::Create(Context, "loop.0.4", &F, &Loop0LatchBB);
1213         auto *NewLoop040PHBB =
1214             BasicBlock::Create(Context, "loop.0.4.0.ph", &F, &Loop0LatchBB);
1215         auto *NewLoop040BB =
1216             BasicBlock::Create(Context, "loop.0.4.0", &F, &Loop0LatchBB);
1217         auto *NewLoop04LatchBB =
1218             BasicBlock::Create(Context, "loop.0.4.latch", &F, &Loop0LatchBB);
1219         Loop02BB.getTerminator()->replaceUsesOfWith(&Loop0LatchBB, NewLoop03PHBB);
1220         BranchInst::Create(NewLoop03BB, NewLoop03PHBB);
1221         CreateCondBr(NewLoop04PHBB, NewLoop03BB, "cond.0.3", NewLoop03BB);
1222         BranchInst::Create(NewLoop04BB, NewLoop04PHBB);
1223         CreateCondBr(&Loop0LatchBB, NewLoop040PHBB, "cond.0.4", NewLoop04BB);
1224         BranchInst::Create(NewLoop040BB, NewLoop040PHBB);
1225         CreateCondBr(NewLoop04LatchBB, NewLoop040BB, "cond.0.4.0", NewLoop040BB);
1226         BranchInst::Create(NewLoop04BB, NewLoop04LatchBB);
1227         AR.DT.addNewBlock(NewLoop03PHBB, &Loop02BB);
1228         AR.DT.addNewBlock(NewLoop03BB, NewLoop03PHBB);
1229         AR.DT.addNewBlock(NewLoop04PHBB, NewLoop03BB);
1230         auto *NewDTNode = AR.DT.addNewBlock(NewLoop04BB, NewLoop04PHBB);
1231         AR.DT.changeImmediateDominator(AR.DT[&Loop0LatchBB], NewDTNode);
1232         AR.DT.addNewBlock(NewLoop040PHBB, NewLoop04BB);
1233         AR.DT.addNewBlock(NewLoop040BB, NewLoop040PHBB);
1234         AR.DT.addNewBlock(NewLoop04LatchBB, NewLoop040BB);
1235         EXPECT_TRUE(AR.DT.verify());
1236         L.getParentLoop()->addBasicBlockToLoop(NewLoop03PHBB, AR.LI);
1237         NewLoops[0]->addBasicBlockToLoop(NewLoop03BB, AR.LI);
1238         L.getParentLoop()->addBasicBlockToLoop(NewLoop04PHBB, AR.LI);
1239         NewLoops[1]->addBasicBlockToLoop(NewLoop04BB, AR.LI);
1240         NewLoops[1]->addBasicBlockToLoop(NewLoop040PHBB, AR.LI);
1241         NewLoops[2]->addBasicBlockToLoop(NewLoop040BB, AR.LI);
1242         NewLoops[1]->addBasicBlockToLoop(NewLoop04LatchBB, AR.LI);
1243         L.getParentLoop()->verifyLoop();
1244         Updater.addSiblingLoops({NewLoops[0], NewLoops[1]});
1245         return PreservedAnalyses::all();
1246       }));
1247 
1248   EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1249       .WillOnce(Invoke(getLoopAnalysisResult));
1250   EXPECT_CALL(MLAHandle, run(HasName("loop.0.3"), _, _));
1251   EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1252       .Times(2)
1253       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1254 
1255   // Note that we need to visit the inner loop of this added sibling before the
1256   // sibling itself!
1257   EXPECT_CALL(MLPHandle, run(HasName("loop.0.4.0"), _, _, _))
1258       .WillOnce(Invoke(getLoopAnalysisResult));
1259   EXPECT_CALL(MLAHandle, run(HasName("loop.0.4.0"), _, _));
1260   EXPECT_CALL(MLPHandle, run(HasName("loop.0.4.0"), _, _, _))
1261       .Times(2)
1262       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1263 
1264   EXPECT_CALL(MLPHandle, run(HasName("loop.0.4"), _, _, _))
1265       .WillOnce(Invoke(getLoopAnalysisResult));
1266   EXPECT_CALL(MLAHandle, run(HasName("loop.0.4"), _, _));
1267   EXPECT_CALL(MLPHandle, run(HasName("loop.0.4"), _, _, _))
1268       .Times(2)
1269       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1270 
1271   // And only now do we visit the outermost loop of the nest.
1272   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1273       .WillOnce(Invoke(getLoopAnalysisResult));
1274   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
1275   // On the second pass, we add sibling loops which become new top-level loops.
1276   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1277       .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
1278                            LoopStandardAnalysisResults &AR,
1279                            LPMUpdater &Updater) {
1280         auto *NewLoop = AR.LI.AllocateLoop();
1281         AR.LI.addTopLevelLoop(NewLoop);
1282         auto *NewLoop1PHBB = BasicBlock::Create(Context, "loop.1.ph", &F, &Loop2BB);
1283         auto *NewLoop1BB = BasicBlock::Create(Context, "loop.1", &F, &Loop2BB);
1284         BranchInst::Create(NewLoop1BB, NewLoop1PHBB);
1285         CreateCondBr(&Loop2PHBB, NewLoop1BB, "cond.1", NewLoop1BB);
1286         Loop0BB.getTerminator()->replaceUsesOfWith(&Loop2PHBB, NewLoop1PHBB);
1287         AR.DT.addNewBlock(NewLoop1PHBB, &Loop0BB);
1288         auto *NewDTNode = AR.DT.addNewBlock(NewLoop1BB, NewLoop1PHBB);
1289         AR.DT.changeImmediateDominator(AR.DT[&Loop2PHBB], NewDTNode);
1290         EXPECT_TRUE(AR.DT.verify());
1291         NewLoop->addBasicBlockToLoop(NewLoop1BB, AR.LI);
1292         NewLoop->verifyLoop();
1293         Updater.addSiblingLoops({NewLoop});
1294         return PreservedAnalyses::all();
1295       }));
1296   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1297       .WillOnce(Invoke(getLoopAnalysisResult));
1298 
1299   EXPECT_CALL(MLPHandle, run(HasName("loop.1"), _, _, _))
1300       .WillOnce(Invoke(getLoopAnalysisResult));
1301   EXPECT_CALL(MLAHandle, run(HasName("loop.1"), _, _));
1302   EXPECT_CALL(MLPHandle, run(HasName("loop.1"), _, _, _))
1303       .Times(2)
1304       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1305 
1306   EXPECT_CALL(MLPHandle, run(HasName("loop.2"), _, _, _))
1307       .WillOnce(Invoke(getLoopAnalysisResult));
1308   EXPECT_CALL(MLAHandle, run(HasName("loop.2"), _, _));
1309   EXPECT_CALL(MLPHandle, run(HasName("loop.2"), _, _, _))
1310       .Times(2)
1311       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1312 
1313   // Now that all the expected actions are registered, run the pipeline over
1314   // our module. All of our expectations are verified when the test finishes.
1315   MPM.run(*M, MAM);
1316 }
1317 
TEST_F(LoopPassManagerTest,LoopDeletion)1318 TEST_F(LoopPassManagerTest, LoopDeletion) {
1319   // Build a module with a single loop nest that contains one outer loop with
1320   // three subloops, and one of those with its own subloop. We will
1321   // incrementally delete all of these to test different deletion scenarios.
1322   M = parseIR(Context, "define void @f(i1* %ptr) {\n"
1323                        "entry:\n"
1324                        "  br label %loop.0\n"
1325                        "loop.0:\n"
1326                        "  %cond.0 = load volatile i1, i1* %ptr\n"
1327                        "  br i1 %cond.0, label %loop.0.0.ph, label %end\n"
1328                        "loop.0.0.ph:\n"
1329                        "  br label %loop.0.0\n"
1330                        "loop.0.0:\n"
1331                        "  %cond.0.0 = load volatile i1, i1* %ptr\n"
1332                        "  br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n"
1333                        "loop.0.1.ph:\n"
1334                        "  br label %loop.0.1\n"
1335                        "loop.0.1:\n"
1336                        "  %cond.0.1 = load volatile i1, i1* %ptr\n"
1337                        "  br i1 %cond.0.1, label %loop.0.1, label %loop.0.2.ph\n"
1338                        "loop.0.2.ph:\n"
1339                        "  br label %loop.0.2\n"
1340                        "loop.0.2:\n"
1341                        "  %cond.0.2 = load volatile i1, i1* %ptr\n"
1342                        "  br i1 %cond.0.2, label %loop.0.2.0.ph, label %loop.0.latch\n"
1343                        "loop.0.2.0.ph:\n"
1344                        "  br label %loop.0.2.0\n"
1345                        "loop.0.2.0:\n"
1346                        "  %cond.0.2.0 = load volatile i1, i1* %ptr\n"
1347                        "  br i1 %cond.0.2.0, label %loop.0.2.0, label %loop.0.2.latch\n"
1348                        "loop.0.2.latch:\n"
1349                        "  br label %loop.0.2\n"
1350                        "loop.0.latch:\n"
1351                        "  br label %loop.0\n"
1352                        "end:\n"
1353                        "  ret void\n"
1354                        "}\n");
1355 
1356   // Build up variables referring into the IR so we can rewrite it below
1357   // easily.
1358   Function &F = *M->begin();
1359   ASSERT_THAT(F, HasName("f"));
1360   Argument &Ptr = *F.arg_begin();
1361   auto BBI = F.begin();
1362   BasicBlock &EntryBB = *BBI++;
1363   ASSERT_THAT(EntryBB, HasName("entry"));
1364   BasicBlock &Loop0BB = *BBI++;
1365   ASSERT_THAT(Loop0BB, HasName("loop.0"));
1366   BasicBlock &Loop00PHBB = *BBI++;
1367   ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph"));
1368   BasicBlock &Loop00BB = *BBI++;
1369   ASSERT_THAT(Loop00BB, HasName("loop.0.0"));
1370   BasicBlock &Loop01PHBB = *BBI++;
1371   ASSERT_THAT(Loop01PHBB, HasName("loop.0.1.ph"));
1372   BasicBlock &Loop01BB = *BBI++;
1373   ASSERT_THAT(Loop01BB, HasName("loop.0.1"));
1374   BasicBlock &Loop02PHBB = *BBI++;
1375   ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph"));
1376   BasicBlock &Loop02BB = *BBI++;
1377   ASSERT_THAT(Loop02BB, HasName("loop.0.2"));
1378   BasicBlock &Loop020PHBB = *BBI++;
1379   ASSERT_THAT(Loop020PHBB, HasName("loop.0.2.0.ph"));
1380   BasicBlock &Loop020BB = *BBI++;
1381   ASSERT_THAT(Loop020BB, HasName("loop.0.2.0"));
1382   BasicBlock &Loop02LatchBB = *BBI++;
1383   ASSERT_THAT(Loop02LatchBB, HasName("loop.0.2.latch"));
1384   BasicBlock &Loop0LatchBB = *BBI++;
1385   ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch"));
1386   BasicBlock &EndBB = *BBI++;
1387   ASSERT_THAT(EndBB, HasName("end"));
1388   ASSERT_THAT(BBI, F.end());
1389 
1390   // Helper to do the actual deletion of a loop. We directly encode this here
1391   // to isolate ourselves from the rest of LLVM and for simplicity. Here we can
1392   // egregiously cheat based on knowledge of the test case. For example, we
1393   // have no PHI nodes and there is always a single i-dom.
1394   auto EraseLoop = [](Loop &L, BasicBlock &IDomBB,
1395                       LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1396     assert(L.isInnermost() && "Can only delete leaf loops with this routine!");
1397     SmallVector<BasicBlock *, 4> LoopBBs(L.block_begin(), L.block_end());
1398     Updater.markLoopAsDeleted(L, L.getName());
1399     IDomBB.getTerminator()->replaceUsesOfWith(L.getHeader(),
1400                                               L.getUniqueExitBlock());
1401     for (BasicBlock *LoopBB : LoopBBs) {
1402       SmallVector<DomTreeNode *, 4> ChildNodes(AR.DT[LoopBB]->begin(),
1403                                                AR.DT[LoopBB]->end());
1404       for (DomTreeNode *ChildNode : ChildNodes)
1405         AR.DT.changeImmediateDominator(ChildNode, AR.DT[&IDomBB]);
1406       AR.DT.eraseNode(LoopBB);
1407       AR.LI.removeBlock(LoopBB);
1408       LoopBB->dropAllReferences();
1409     }
1410     for (BasicBlock *LoopBB : LoopBBs)
1411       LoopBB->eraseFromParent();
1412 
1413     AR.LI.erase(&L);
1414   };
1415 
1416   // Build up the pass managers.
1417   ModulePassManager MPM;
1418   FunctionPassManager FPM;
1419   // We run several loop pass pipelines across the loop nest, but they all take
1420   // the same form of three mock pass runs in a loop pipeline followed by
1421   // domtree and loop verification. We use a lambda to stamp this out each
1422   // time.
1423   auto AddLoopPipelineAndVerificationPasses = [&] {
1424     LoopPassManager LPM;
1425     LPM.addPass(MLPHandle.getPass());
1426     LPM.addPass(MLPHandle.getPass());
1427     LPM.addPass(MLPHandle.getPass());
1428     FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
1429     FPM.addPass(DominatorTreeVerifierPass());
1430     FPM.addPass(LoopVerifierPass());
1431   };
1432 
1433   // All the visit orders are deterministic so we use simple fully order
1434   // expectations.
1435   ::testing::InSequence MakeExpectationsSequenced;
1436 
1437   // We run the loop pipeline with three passes over each of the loops. When
1438   // running over the middle loop, the second pass in the pipeline deletes it.
1439   // This should prevent the third pass from visiting it but otherwise leave
1440   // the process unimpacted.
1441   AddLoopPipelineAndVerificationPasses();
1442   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1443       .WillOnce(Invoke(getLoopAnalysisResult));
1444   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
1445   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1446       .Times(2)
1447       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1448 
1449   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1450       .WillOnce(Invoke(getLoopAnalysisResult));
1451   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
1452   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1453       .WillOnce(
1454           Invoke([&](Loop &L, LoopAnalysisManager &AM,
1455                      LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1456             Loop *ParentL = L.getParentLoop();
1457             AR.SE.forgetLoop(&L);
1458             EraseLoop(L, Loop01PHBB, AR, Updater);
1459             ParentL->verifyLoop();
1460             return PreservedAnalyses::all();
1461           }));
1462 
1463   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _))
1464       .WillOnce(Invoke(getLoopAnalysisResult));
1465   EXPECT_CALL(MLAHandle, run(HasName("loop.0.2.0"), _, _));
1466   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _))
1467       .Times(2)
1468       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1469 
1470   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1471       .WillOnce(Invoke(getLoopAnalysisResult));
1472   EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _));
1473   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1474       .Times(2)
1475       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1476 
1477   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1478       .WillOnce(Invoke(getLoopAnalysisResult));
1479   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
1480   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1481       .Times(2)
1482       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1483 
1484   // Run the loop pipeline again. This time we delete the last loop, which
1485   // contains a nested loop within it and insert a new loop into the nest. This
1486   // makes sure we can handle nested loop deletion.
1487   AddLoopPipelineAndVerificationPasses();
1488   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1489       .Times(3)
1490       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1491 
1492   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _))
1493       .Times(3)
1494       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1495 
1496   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1497       .WillOnce(Invoke(getLoopAnalysisResult));
1498   BasicBlock *NewLoop03PHBB;
1499   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1500       .WillOnce(
1501           Invoke([&](Loop &L, LoopAnalysisManager &AM,
1502                      LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1503             AR.SE.forgetLoop(*L.begin());
1504             EraseLoop(**L.begin(), Loop020PHBB, AR, Updater);
1505 
1506             auto *ParentL = L.getParentLoop();
1507             AR.SE.forgetLoop(&L);
1508             EraseLoop(L, Loop02PHBB, AR, Updater);
1509 
1510             // Now insert a new sibling loop.
1511             auto *NewSibling = AR.LI.AllocateLoop();
1512             ParentL->addChildLoop(NewSibling);
1513             NewLoop03PHBB =
1514                 BasicBlock::Create(Context, "loop.0.3.ph", &F, &Loop0LatchBB);
1515             auto *NewLoop03BB =
1516                 BasicBlock::Create(Context, "loop.0.3", &F, &Loop0LatchBB);
1517             BranchInst::Create(NewLoop03BB, NewLoop03PHBB);
1518             auto *Cond =
1519                 new LoadInst(Type::getInt1Ty(Context), &Ptr, "cond.0.3",
1520                              /*isVolatile*/ true, NewLoop03BB);
1521             BranchInst::Create(&Loop0LatchBB, NewLoop03BB, Cond, NewLoop03BB);
1522             Loop02PHBB.getTerminator()->replaceUsesOfWith(&Loop0LatchBB,
1523                                                           NewLoop03PHBB);
1524             AR.DT.addNewBlock(NewLoop03PHBB, &Loop02PHBB);
1525             AR.DT.addNewBlock(NewLoop03BB, NewLoop03PHBB);
1526             AR.DT.changeImmediateDominator(AR.DT[&Loop0LatchBB],
1527                                            AR.DT[NewLoop03BB]);
1528             EXPECT_TRUE(AR.DT.verify());
1529             ParentL->addBasicBlockToLoop(NewLoop03PHBB, AR.LI);
1530             NewSibling->addBasicBlockToLoop(NewLoop03BB, AR.LI);
1531             NewSibling->verifyLoop();
1532             ParentL->verifyLoop();
1533             Updater.addSiblingLoops({NewSibling});
1534             return PreservedAnalyses::all();
1535           }));
1536 
1537   // To respect our inner-to-outer traversal order, we must visit the
1538   // newly-inserted sibling of the loop we just deleted before we visit the
1539   // outer loop. When we do so, this must compute a fresh analysis result, even
1540   // though our new loop has the same pointer value as the loop we deleted.
1541   EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1542       .WillOnce(Invoke(getLoopAnalysisResult));
1543   EXPECT_CALL(MLAHandle, run(HasName("loop.0.3"), _, _));
1544   EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1545       .Times(2)
1546       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1547 
1548   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1549       .Times(3)
1550       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1551 
1552   // In the final loop pipeline run we delete every loop, including the last
1553   // loop of the nest. We do this again in the second pass in the pipeline, and
1554   // as a consequence we never make it to three runs on any loop. We also cover
1555   // deleting multiple loops in a single pipeline, deleting the first loop and
1556   // deleting the (last) top level loop.
1557   AddLoopPipelineAndVerificationPasses();
1558   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1559       .WillOnce(Invoke(getLoopAnalysisResult));
1560   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1561       .WillOnce(
1562           Invoke([&](Loop &L, LoopAnalysisManager &AM,
1563                      LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1564             AR.SE.forgetLoop(&L);
1565             EraseLoop(L, Loop00PHBB, AR, Updater);
1566             return PreservedAnalyses::all();
1567           }));
1568 
1569   EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1570       .WillOnce(Invoke(getLoopAnalysisResult));
1571   EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1572       .WillOnce(
1573           Invoke([&](Loop &L, LoopAnalysisManager &AM,
1574                      LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1575             AR.SE.forgetLoop(&L);
1576             EraseLoop(L, *NewLoop03PHBB, AR, Updater);
1577             return PreservedAnalyses::all();
1578           }));
1579 
1580   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1581       .WillOnce(Invoke(getLoopAnalysisResult));
1582   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1583       .WillOnce(
1584           Invoke([&](Loop &L, LoopAnalysisManager &AM,
1585                      LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1586             AR.SE.forgetLoop(&L);
1587             EraseLoop(L, EntryBB, AR, Updater);
1588             return PreservedAnalyses::all();
1589           }));
1590 
1591   // Add the function pass pipeline now that it is fully built up and run it
1592   // over the module's one function.
1593   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
1594   MPM.run(*M, MAM);
1595 }
1596 
TEST_F(LoopPassManagerTest,HandleLoopNestPass)1597 TEST_F(LoopPassManagerTest, HandleLoopNestPass) {
1598   ::testing::Sequence FSequence, GSequence;
1599 
1600   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1601       .Times(2)
1602       .InSequence(FSequence);
1603   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1604       .Times(2)
1605       .InSequence(FSequence);
1606   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)).InSequence(FSequence);
1607   EXPECT_CALL(MLNPHandle, run(HasName("loop.0"), _, _, _))
1608       .InSequence(FSequence);
1609   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)).InSequence(FSequence);
1610   EXPECT_CALL(MLNPHandle, run(HasName("loop.0"), _, _, _))
1611       .InSequence(FSequence);
1612   EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
1613       .InSequence(GSequence);
1614   EXPECT_CALL(MLNPHandle, run(HasName("loop.g.0"), _, _, _))
1615       .InSequence(GSequence);
1616   EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
1617       .InSequence(GSequence);
1618   EXPECT_CALL(MLNPHandle, run(HasName("loop.g.0"), _, _, _))
1619       .InSequence(GSequence);
1620 
1621   EXPECT_CALL(MLNPHandle, run(HasName("loop.0"), _, _, _))
1622       .InSequence(FSequence);
1623   EXPECT_CALL(MLNPHandle, run(HasName("loop.g.0"), _, _, _))
1624       .InSequence(GSequence);
1625 
1626   EXPECT_CALL(MLNPHandle, run(HasName("loop.0"), _, _, _))
1627       .InSequence(FSequence);
1628   EXPECT_CALL(MLNPHandle, run(HasName("loop.g.0"), _, _, _))
1629       .InSequence(GSequence);
1630 
1631   ModulePassManager MPM;
1632   FunctionPassManager FPM;
1633 
1634   {
1635     LoopPassManager LPM;
1636     LPM.addPass(MLPHandle.getPass());
1637     LPM.addPass(MLNPHandle.getPass());
1638     LPM.addPass(MLPHandle.getPass());
1639     LPM.addPass(MLNPHandle.getPass());
1640 
1641     auto Adaptor = createFunctionToLoopPassAdaptor(std::move(LPM));
1642     ASSERT_FALSE(Adaptor.isLoopNestMode());
1643     FPM.addPass(std::move(Adaptor));
1644   }
1645 
1646   {
1647     auto Adaptor = createFunctionToLoopPassAdaptor(MLNPHandle.getPass());
1648     ASSERT_TRUE(Adaptor.isLoopNestMode());
1649     FPM.addPass(std::move(Adaptor));
1650   }
1651 
1652   {
1653     LoopPassManager LPM;
1654     LPM.addPass(MLNPHandle.getPass());
1655     auto Adaptor = createFunctionToLoopPassAdaptor(MLNPHandle.getPass());
1656     ASSERT_TRUE(Adaptor.isLoopNestMode());
1657     FPM.addPass(std::move(Adaptor));
1658   }
1659 
1660   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
1661   MPM.run(*M, MAM);
1662 }
1663 
1664 } // namespace
1665