1 //===- llvm/unittest/Analysis/LoopPassManagerTest.cpp - LPM tests ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/Scalar/LoopPassManager.h" 10 #include "llvm/Analysis/AliasAnalysis.h" 11 #include "llvm/Analysis/AssumptionCache.h" 12 #include "llvm/Analysis/ScalarEvolution.h" 13 #include "llvm/Analysis/TargetLibraryInfo.h" 14 #include "llvm/Analysis/TargetTransformInfo.h" 15 #include "llvm/AsmParser/Parser.h" 16 #include "llvm/IR/Dominators.h" 17 #include "llvm/IR/Function.h" 18 #include "llvm/IR/LLVMContext.h" 19 #include "llvm/IR/Module.h" 20 #include "llvm/IR/PassManager.h" 21 #include "llvm/Support/SourceMgr.h" 22 23 #include "gmock/gmock.h" 24 #include "gtest/gtest.h" 25 26 using namespace llvm; 27 28 namespace { 29 30 using testing::DoDefault; 31 using testing::Return; 32 using testing::Expectation; 33 using testing::Invoke; 34 using testing::InvokeWithoutArgs; 35 using testing::_; 36 37 template <typename DerivedT, typename IRUnitT, 38 typename AnalysisManagerT = AnalysisManager<IRUnitT>, 39 typename... ExtraArgTs> 40 class MockAnalysisHandleBase { 41 public: 42 class Analysis : public AnalysisInfoMixin<Analysis> { 43 friend AnalysisInfoMixin<Analysis>; 44 friend MockAnalysisHandleBase; 45 static AnalysisKey Key; 46 47 DerivedT *Handle; 48 49 Analysis(DerivedT &Handle) : Handle(&Handle) { 50 static_assert(std::is_base_of<MockAnalysisHandleBase, DerivedT>::value, 51 "Must pass the derived type to this template!"); 52 } 53 54 public: 55 class Result { 56 friend MockAnalysisHandleBase; 57 58 DerivedT *Handle; 59 60 Result(DerivedT &Handle) : Handle(&Handle) {} 61 62 public: 63 // Forward invalidation events to the mock handle. 64 bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA, 65 typename AnalysisManagerT::Invalidator &Inv) { 66 return Handle->invalidate(IR, PA, Inv); 67 } 68 }; 69 70 Result run(IRUnitT &IR, AnalysisManagerT &AM, ExtraArgTs... ExtraArgs) { 71 return Handle->run(IR, AM, ExtraArgs...); 72 } 73 }; 74 75 Analysis getAnalysis() { return Analysis(static_cast<DerivedT &>(*this)); } 76 typename Analysis::Result getResult() { 77 return typename Analysis::Result(static_cast<DerivedT &>(*this)); 78 } 79 80 protected: 81 // FIXME: MSVC seems unable to handle a lambda argument to Invoke from within 82 // the template, so we use a boring static function. 83 static bool invalidateCallback(IRUnitT &IR, const PreservedAnalyses &PA, 84 typename AnalysisManagerT::Invalidator &Inv) { 85 auto PAC = PA.template getChecker<Analysis>(); 86 return !PAC.preserved() && 87 !PAC.template preservedSet<AllAnalysesOn<IRUnitT>>(); 88 } 89 90 /// Derived classes should call this in their constructor to set up default 91 /// mock actions. (We can't do this in our constructor because this has to 92 /// run after the DerivedT is constructed.) 93 void setDefaults() { 94 ON_CALL(static_cast<DerivedT &>(*this), 95 run(_, _, testing::Matcher<ExtraArgTs>(_)...)) 96 .WillByDefault(Return(this->getResult())); 97 ON_CALL(static_cast<DerivedT &>(*this), invalidate(_, _, _)) 98 .WillByDefault(Invoke(&invalidateCallback)); 99 } 100 }; 101 102 template <typename DerivedT, typename IRUnitT, typename AnalysisManagerT, 103 typename... ExtraArgTs> 104 AnalysisKey MockAnalysisHandleBase<DerivedT, IRUnitT, AnalysisManagerT, 105 ExtraArgTs...>::Analysis::Key; 106 107 /// Mock handle for loop analyses. 108 /// 109 /// This is provided as a template accepting an (optional) integer. Because 110 /// analyses are identified and queried by type, this allows constructing 111 /// multiple handles with distinctly typed nested 'Analysis' types that can be 112 /// registered and queried. If you want to register multiple loop analysis 113 /// passes, you'll need to instantiate this type with different values for I. 114 /// For example: 115 /// 116 /// MockLoopAnalysisHandleTemplate<0> h0; 117 /// MockLoopAnalysisHandleTemplate<1> h1; 118 /// typedef decltype(h0)::Analysis Analysis0; 119 /// typedef decltype(h1)::Analysis Analysis1; 120 template <size_t I = static_cast<size_t>(-1)> 121 struct MockLoopAnalysisHandleTemplate 122 : MockAnalysisHandleBase<MockLoopAnalysisHandleTemplate<I>, Loop, 123 LoopAnalysisManager, 124 LoopStandardAnalysisResults &> { 125 typedef typename MockLoopAnalysisHandleTemplate::Analysis Analysis; 126 127 MOCK_METHOD3_T(run, typename Analysis::Result(Loop &, LoopAnalysisManager &, 128 LoopStandardAnalysisResults &)); 129 130 MOCK_METHOD3_T(invalidate, bool(Loop &, const PreservedAnalyses &, 131 LoopAnalysisManager::Invalidator &)); 132 133 MockLoopAnalysisHandleTemplate() { this->setDefaults(); } 134 }; 135 136 typedef MockLoopAnalysisHandleTemplate<> MockLoopAnalysisHandle; 137 138 struct MockFunctionAnalysisHandle 139 : MockAnalysisHandleBase<MockFunctionAnalysisHandle, Function> { 140 MOCK_METHOD2(run, Analysis::Result(Function &, FunctionAnalysisManager &)); 141 142 MOCK_METHOD3(invalidate, bool(Function &, const PreservedAnalyses &, 143 FunctionAnalysisManager::Invalidator &)); 144 145 MockFunctionAnalysisHandle() { setDefaults(); } 146 }; 147 148 template <typename DerivedT, typename IRUnitT, 149 typename AnalysisManagerT = AnalysisManager<IRUnitT>, 150 typename... ExtraArgTs> 151 class MockPassHandleBase { 152 public: 153 class Pass : public PassInfoMixin<Pass> { 154 friend MockPassHandleBase; 155 156 DerivedT *Handle; 157 158 Pass(DerivedT &Handle) : Handle(&Handle) { 159 static_assert(std::is_base_of<MockPassHandleBase, DerivedT>::value, 160 "Must pass the derived type to this template!"); 161 } 162 163 public: 164 PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM, 165 ExtraArgTs... ExtraArgs) { 166 return Handle->run(IR, AM, ExtraArgs...); 167 } 168 }; 169 170 Pass getPass() { return Pass(static_cast<DerivedT &>(*this)); } 171 172 protected: 173 /// Derived classes should call this in their constructor to set up default 174 /// mock actions. (We can't do this in our constructor because this has to 175 /// run after the DerivedT is constructed.) 176 void setDefaults() { 177 ON_CALL(static_cast<DerivedT &>(*this), 178 run(_, _, testing::Matcher<ExtraArgTs>(_)...)) 179 .WillByDefault(Return(PreservedAnalyses::all())); 180 } 181 }; 182 183 struct MockLoopPassHandle 184 : MockPassHandleBase<MockLoopPassHandle, Loop, LoopAnalysisManager, 185 LoopStandardAnalysisResults &, LPMUpdater &> { 186 MOCK_METHOD4(run, 187 PreservedAnalyses(Loop &, LoopAnalysisManager &, 188 LoopStandardAnalysisResults &, LPMUpdater &)); 189 MockLoopPassHandle() { setDefaults(); } 190 }; 191 192 struct MockFunctionPassHandle 193 : MockPassHandleBase<MockFunctionPassHandle, Function> { 194 MOCK_METHOD2(run, PreservedAnalyses(Function &, FunctionAnalysisManager &)); 195 196 MockFunctionPassHandle() { setDefaults(); } 197 }; 198 199 struct MockModulePassHandle : MockPassHandleBase<MockModulePassHandle, Module> { 200 MOCK_METHOD2(run, PreservedAnalyses(Module &, ModuleAnalysisManager &)); 201 202 MockModulePassHandle() { setDefaults(); } 203 }; 204 205 /// Define a custom matcher for objects which support a 'getName' method 206 /// returning a StringRef. 207 /// 208 /// LLVM often has IR objects or analysis objects which expose a StringRef name 209 /// and in tests it is convenient to match these by name for readability. This 210 /// matcher supports any type exposing a getName() method of this form. 211 /// 212 /// It should be used as: 213 /// 214 /// HasName("my_function") 215 /// 216 /// No namespace or other qualification is required. 217 MATCHER_P(HasName, Name, "") { 218 // The matcher's name and argument are printed in the case of failure, but we 219 // also want to print out the name of the argument. This uses an implicitly 220 // avaiable std::ostream, so we have to construct a std::string. 221 *result_listener << "has name '" << arg.getName().str() << "'"; 222 return Name == arg.getName(); 223 } 224 225 std::unique_ptr<Module> parseIR(LLVMContext &C, const char *IR) { 226 SMDiagnostic Err; 227 return parseAssemblyString(IR, Err, C); 228 } 229 230 class LoopPassManagerTest : public ::testing::Test { 231 protected: 232 LLVMContext Context; 233 std::unique_ptr<Module> M; 234 235 LoopAnalysisManager LAM; 236 FunctionAnalysisManager FAM; 237 ModuleAnalysisManager MAM; 238 239 MockLoopAnalysisHandle MLAHandle; 240 MockLoopPassHandle MLPHandle; 241 MockFunctionPassHandle MFPHandle; 242 MockModulePassHandle MMPHandle; 243 244 static PreservedAnalyses 245 getLoopAnalysisResult(Loop &L, LoopAnalysisManager &AM, 246 LoopStandardAnalysisResults &AR, LPMUpdater &) { 247 (void)AM.getResult<MockLoopAnalysisHandle::Analysis>(L, AR); 248 return PreservedAnalyses::all(); 249 }; 250 251 public: 252 LoopPassManagerTest() 253 : M(parseIR(Context, 254 "define void @f(i1* %ptr) {\n" 255 "entry:\n" 256 " br label %loop.0\n" 257 "loop.0:\n" 258 " %cond.0 = load volatile i1, i1* %ptr\n" 259 " br i1 %cond.0, label %loop.0.0.ph, label %end\n" 260 "loop.0.0.ph:\n" 261 " br label %loop.0.0\n" 262 "loop.0.0:\n" 263 " %cond.0.0 = load volatile i1, i1* %ptr\n" 264 " br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n" 265 "loop.0.1.ph:\n" 266 " br label %loop.0.1\n" 267 "loop.0.1:\n" 268 " %cond.0.1 = load volatile i1, i1* %ptr\n" 269 " br i1 %cond.0.1, label %loop.0.1, label %loop.0.latch\n" 270 "loop.0.latch:\n" 271 " br label %loop.0\n" 272 "end:\n" 273 " ret void\n" 274 "}\n" 275 "\n" 276 "define void @g(i1* %ptr) {\n" 277 "entry:\n" 278 " br label %loop.g.0\n" 279 "loop.g.0:\n" 280 " %cond.0 = load volatile i1, i1* %ptr\n" 281 " br i1 %cond.0, label %loop.g.0, label %end\n" 282 "end:\n" 283 " ret void\n" 284 "}\n")), 285 LAM(true), FAM(true), MAM(true) { 286 // Register our mock analysis. 287 LAM.registerPass([&] { return MLAHandle.getAnalysis(); }); 288 289 // We need DominatorTreeAnalysis for LoopAnalysis. 290 FAM.registerPass([&] { return DominatorTreeAnalysis(); }); 291 FAM.registerPass([&] { return LoopAnalysis(); }); 292 // We also allow loop passes to assume a set of other analyses and so need 293 // those. 294 FAM.registerPass([&] { return AAManager(); }); 295 FAM.registerPass([&] { return AssumptionAnalysis(); }); 296 if (EnableMSSALoopDependency) 297 FAM.registerPass([&] { return MemorySSAAnalysis(); }); 298 FAM.registerPass([&] { return ScalarEvolutionAnalysis(); }); 299 FAM.registerPass([&] { return TargetLibraryAnalysis(); }); 300 FAM.registerPass([&] { return TargetIRAnalysis(); }); 301 302 // Register required pass instrumentation analysis. 303 LAM.registerPass([&] { return PassInstrumentationAnalysis(); }); 304 FAM.registerPass([&] { return PassInstrumentationAnalysis(); }); 305 MAM.registerPass([&] { return PassInstrumentationAnalysis(); }); 306 307 // Cross-register proxies. 308 LAM.registerPass([&] { return FunctionAnalysisManagerLoopProxy(FAM); }); 309 FAM.registerPass([&] { return LoopAnalysisManagerFunctionProxy(LAM); }); 310 FAM.registerPass([&] { return ModuleAnalysisManagerFunctionProxy(MAM); }); 311 MAM.registerPass([&] { return FunctionAnalysisManagerModuleProxy(FAM); }); 312 } 313 }; 314 315 TEST_F(LoopPassManagerTest, Basic) { 316 ModulePassManager MPM(true); 317 ::testing::InSequence MakeExpectationsSequenced; 318 319 // First we just visit all the loops in all the functions and get their 320 // analysis results. This will run the analysis a total of four times, 321 // once for each loop. 322 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) 323 .WillOnce(Invoke(getLoopAnalysisResult)); 324 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); 325 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) 326 .WillOnce(Invoke(getLoopAnalysisResult)); 327 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); 328 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) 329 .WillOnce(Invoke(getLoopAnalysisResult)); 330 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); 331 EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _)) 332 .WillOnce(Invoke(getLoopAnalysisResult)); 333 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _)); 334 // Wire the loop pass through pass managers into the module pipeline. 335 { 336 LoopPassManager LPM(true); 337 LPM.addPass(MLPHandle.getPass()); 338 FunctionPassManager FPM(true); 339 FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM))); 340 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 341 } 342 343 // Next we run two passes over the loops. The first one invalidates the 344 // analyses for one loop, the second ones try to get the analysis results. 345 // This should force only one analysis to re-run within the loop PM, but will 346 // also invalidate everything after the loop pass manager finishes. 347 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) 348 .WillOnce(DoDefault()) 349 .WillOnce(Invoke(getLoopAnalysisResult)); 350 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) 351 .WillOnce(InvokeWithoutArgs([] { return PreservedAnalyses::none(); })) 352 .WillOnce(Invoke(getLoopAnalysisResult)); 353 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); 354 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) 355 .WillOnce(DoDefault()) 356 .WillOnce(Invoke(getLoopAnalysisResult)); 357 EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _)) 358 .WillOnce(DoDefault()) 359 .WillOnce(Invoke(getLoopAnalysisResult)); 360 // Wire two loop pass runs into the module pipeline. 361 { 362 LoopPassManager LPM(true); 363 LPM.addPass(MLPHandle.getPass()); 364 LPM.addPass(MLPHandle.getPass()); 365 FunctionPassManager FPM(true); 366 FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM))); 367 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 368 } 369 370 // And now run the pipeline across the module. 371 MPM.run(*M, MAM); 372 } 373 374 TEST_F(LoopPassManagerTest, FunctionPassInvalidationOfLoopAnalyses) { 375 ModulePassManager MPM(true); 376 FunctionPassManager FPM(true); 377 // We process each function completely in sequence. 378 ::testing::Sequence FSequence, GSequence; 379 380 // First, force the analysis result to be computed for each loop. 381 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)) 382 .InSequence(FSequence) 383 .WillOnce(DoDefault()); 384 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)) 385 .InSequence(FSequence) 386 .WillOnce(DoDefault()); 387 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)) 388 .InSequence(FSequence) 389 .WillOnce(DoDefault()); 390 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _)) 391 .InSequence(GSequence) 392 .WillOnce(DoDefault()); 393 FPM.addPass(createFunctionToLoopPassAdaptor( 394 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())); 395 396 // No need to re-run if we require again from a fresh loop pass manager. 397 FPM.addPass(createFunctionToLoopPassAdaptor( 398 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())); 399 // For 'f', preserve most things but not the specific loop analyses. 400 auto PA = getLoopPassPreservedAnalyses(); 401 if (EnableMSSALoopDependency) 402 PA.preserve<MemorySSAAnalysis>(); 403 EXPECT_CALL(MFPHandle, run(HasName("f"), _)) 404 .InSequence(FSequence) 405 .WillOnce(Return(PA)); 406 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _)) 407 .InSequence(FSequence) 408 .WillOnce(DoDefault()); 409 // On one loop, skip the invalidation (as though we did an internal update). 410 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _)) 411 .InSequence(FSequence) 412 .WillOnce(Return(false)); 413 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _)) 414 .InSequence(FSequence) 415 .WillOnce(DoDefault()); 416 // Now two loops still have to be recomputed. 417 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)) 418 .InSequence(FSequence) 419 .WillOnce(DoDefault()); 420 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)) 421 .InSequence(FSequence) 422 .WillOnce(DoDefault()); 423 // Preserve things in the second function to ensure invalidation remains 424 // isolated to one function. 425 EXPECT_CALL(MFPHandle, run(HasName("g"), _)) 426 .InSequence(GSequence) 427 .WillOnce(DoDefault()); 428 FPM.addPass(MFPHandle.getPass()); 429 FPM.addPass(createFunctionToLoopPassAdaptor( 430 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())); 431 432 EXPECT_CALL(MFPHandle, run(HasName("f"), _)) 433 .InSequence(FSequence) 434 .WillOnce(DoDefault()); 435 // For 'g', fail to preserve anything, causing the loops themselves to be 436 // cleared. We don't get an invalidation event here as the loop is gone, but 437 // we should still have to recompute the analysis. 438 EXPECT_CALL(MFPHandle, run(HasName("g"), _)) 439 .InSequence(GSequence) 440 .WillOnce(Return(PreservedAnalyses::none())); 441 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _)) 442 .InSequence(GSequence) 443 .WillOnce(DoDefault()); 444 FPM.addPass(MFPHandle.getPass()); 445 FPM.addPass(createFunctionToLoopPassAdaptor( 446 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())); 447 448 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 449 450 // Verify with a separate function pass run that we didn't mess up 'f's 451 // cache. No analysis runs should be necessary here. 452 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor( 453 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()))); 454 455 MPM.run(*M, MAM); 456 } 457 458 TEST_F(LoopPassManagerTest, ModulePassInvalidationOfLoopAnalyses) { 459 ModulePassManager MPM(true); 460 ::testing::InSequence MakeExpectationsSequenced; 461 462 // First, force the analysis result to be computed for each loop. 463 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); 464 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); 465 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); 466 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _)); 467 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor( 468 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()))); 469 470 // Walking all the way out and all the way back in doesn't re-run the 471 // analysis. 472 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor( 473 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()))); 474 475 // But a module pass that doesn't preserve the actual mock loop analysis 476 // invalidates all the way down and forces recomputing. 477 EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] { 478 auto PA = getLoopPassPreservedAnalyses(); 479 PA.preserve<FunctionAnalysisManagerModuleProxy>(); 480 if (EnableMSSALoopDependency) 481 PA.preserve<MemorySSAAnalysis>(); 482 return PA; 483 })); 484 // All the loop analyses from both functions get invalidated before we 485 // recompute anything. 486 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _)); 487 // On one loop, again skip the invalidation (as though we did an internal 488 // update). 489 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _)) 490 .WillOnce(Return(false)); 491 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _)); 492 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.g.0"), _, _)); 493 // Now all but one of the loops gets re-analyzed. 494 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); 495 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); 496 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _)); 497 MPM.addPass(MMPHandle.getPass()); 498 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor( 499 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()))); 500 501 // Verify that the cached values persist. 502 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor( 503 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()))); 504 505 // Now we fail to preserve the loop analysis and observe that the loop 506 // analyses are cleared (so no invalidation event) as the loops themselves 507 // are no longer valid. 508 EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] { 509 auto PA = PreservedAnalyses::none(); 510 PA.preserve<FunctionAnalysisManagerModuleProxy>(); 511 return PA; 512 })); 513 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); 514 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); 515 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); 516 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _)); 517 MPM.addPass(MMPHandle.getPass()); 518 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor( 519 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()))); 520 521 // Verify that the cached values persist. 522 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor( 523 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()))); 524 525 // Next, check that even if we preserve everything within the function itelf, 526 // if the function's module pass proxy isn't preserved and the potential set 527 // of functions changes, the clear reaches the loop analyses as well. This 528 // will again trigger re-runs but not invalidation events. 529 EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] { 530 auto PA = PreservedAnalyses::none(); 531 PA.preserveSet<AllAnalysesOn<Function>>(); 532 PA.preserveSet<AllAnalysesOn<Loop>>(); 533 return PA; 534 })); 535 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); 536 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); 537 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); 538 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _)); 539 MPM.addPass(MMPHandle.getPass()); 540 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor( 541 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()))); 542 543 MPM.run(*M, MAM); 544 } 545 546 // Test that if any of the bundled analyses provided in the LPM's signature 547 // become invalid, the analysis proxy itself becomes invalid and we clear all 548 // loop analysis results. 549 TEST_F(LoopPassManagerTest, InvalidationOfBundledAnalyses) { 550 ModulePassManager MPM(true); 551 FunctionPassManager FPM(true); 552 ::testing::InSequence MakeExpectationsSequenced; 553 554 // First, force the analysis result to be computed for each loop. 555 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); 556 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); 557 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); 558 FPM.addPass(createFunctionToLoopPassAdaptor( 559 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())); 560 561 // No need to re-run if we require again from a fresh loop pass manager. 562 FPM.addPass(createFunctionToLoopPassAdaptor( 563 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())); 564 565 // Preserving everything but the loop analyses themselves results in 566 // invalidation and running. 567 EXPECT_CALL(MFPHandle, run(HasName("f"), _)) 568 .WillOnce(Return(getLoopPassPreservedAnalyses())); 569 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); 570 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); 571 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); 572 FPM.addPass(MFPHandle.getPass()); 573 FPM.addPass(createFunctionToLoopPassAdaptor( 574 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())); 575 576 // The rest don't invalidate analyses, they only trigger re-runs because we 577 // clear the cache completely. 578 EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] { 579 auto PA = PreservedAnalyses::none(); 580 // Not preserving `AAManager`. 581 PA.preserve<DominatorTreeAnalysis>(); 582 PA.preserve<LoopAnalysis>(); 583 PA.preserve<LoopAnalysisManagerFunctionProxy>(); 584 PA.preserve<ScalarEvolutionAnalysis>(); 585 return PA; 586 })); 587 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); 588 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); 589 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); 590 FPM.addPass(MFPHandle.getPass()); 591 FPM.addPass(createFunctionToLoopPassAdaptor( 592 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())); 593 594 EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] { 595 auto PA = PreservedAnalyses::none(); 596 PA.preserve<AAManager>(); 597 // Not preserving `DominatorTreeAnalysis`. 598 PA.preserve<LoopAnalysis>(); 599 PA.preserve<LoopAnalysisManagerFunctionProxy>(); 600 PA.preserve<ScalarEvolutionAnalysis>(); 601 return PA; 602 })); 603 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); 604 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); 605 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); 606 FPM.addPass(MFPHandle.getPass()); 607 FPM.addPass(createFunctionToLoopPassAdaptor( 608 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())); 609 610 EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] { 611 auto PA = PreservedAnalyses::none(); 612 PA.preserve<AAManager>(); 613 PA.preserve<DominatorTreeAnalysis>(); 614 // Not preserving the `LoopAnalysis`. 615 PA.preserve<LoopAnalysisManagerFunctionProxy>(); 616 PA.preserve<ScalarEvolutionAnalysis>(); 617 return PA; 618 })); 619 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); 620 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); 621 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); 622 FPM.addPass(MFPHandle.getPass()); 623 FPM.addPass(createFunctionToLoopPassAdaptor( 624 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())); 625 626 EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] { 627 auto PA = PreservedAnalyses::none(); 628 PA.preserve<AAManager>(); 629 PA.preserve<DominatorTreeAnalysis>(); 630 PA.preserve<LoopAnalysis>(); 631 // Not preserving the `LoopAnalysisManagerFunctionProxy`. 632 PA.preserve<ScalarEvolutionAnalysis>(); 633 return PA; 634 })); 635 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); 636 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); 637 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); 638 FPM.addPass(MFPHandle.getPass()); 639 FPM.addPass(createFunctionToLoopPassAdaptor( 640 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())); 641 642 EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] { 643 auto PA = PreservedAnalyses::none(); 644 PA.preserve<AAManager>(); 645 PA.preserve<DominatorTreeAnalysis>(); 646 PA.preserve<LoopAnalysis>(); 647 PA.preserve<LoopAnalysisManagerFunctionProxy>(); 648 // Not preserving `ScalarEvolutionAnalysis`. 649 return PA; 650 })); 651 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); 652 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); 653 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); 654 FPM.addPass(MFPHandle.getPass()); 655 FPM.addPass(createFunctionToLoopPassAdaptor( 656 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())); 657 658 // After all the churn on 'f', we'll compute the loop analysis results for 659 // 'g' once with a requires pass and then run our mock pass over g a bunch 660 // but just get cached results each time. 661 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _)); 662 EXPECT_CALL(MFPHandle, run(HasName("g"), _)).Times(6); 663 664 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 665 MPM.run(*M, MAM); 666 } 667 668 TEST_F(LoopPassManagerTest, IndirectInvalidation) { 669 // We need two distinct analysis types and handles. 670 enum { A, B }; 671 MockLoopAnalysisHandleTemplate<A> MLAHandleA; 672 MockLoopAnalysisHandleTemplate<B> MLAHandleB; 673 LAM.registerPass([&] { return MLAHandleA.getAnalysis(); }); 674 LAM.registerPass([&] { return MLAHandleB.getAnalysis(); }); 675 typedef decltype(MLAHandleA)::Analysis AnalysisA; 676 typedef decltype(MLAHandleB)::Analysis AnalysisB; 677 678 // Set up AnalysisA to depend on our AnalysisB. For testing purposes we just 679 // need to get the AnalysisB results in AnalysisA's run method and check if 680 // AnalysisB gets invalidated in AnalysisA's invalidate method. 681 ON_CALL(MLAHandleA, run(_, _, _)) 682 .WillByDefault(Invoke([&](Loop &L, LoopAnalysisManager &AM, 683 LoopStandardAnalysisResults &AR) { 684 (void)AM.getResult<AnalysisB>(L, AR); 685 return MLAHandleA.getResult(); 686 })); 687 ON_CALL(MLAHandleA, invalidate(_, _, _)) 688 .WillByDefault(Invoke([](Loop &L, const PreservedAnalyses &PA, 689 LoopAnalysisManager::Invalidator &Inv) { 690 auto PAC = PA.getChecker<AnalysisA>(); 691 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Loop>>()) || 692 Inv.invalidate<AnalysisB>(L, PA); 693 })); 694 695 ::testing::InSequence MakeExpectationsSequenced; 696 697 // Compute the analyses across all of 'f' first. 698 EXPECT_CALL(MLAHandleA, run(HasName("loop.0.0"), _, _)); 699 EXPECT_CALL(MLAHandleB, run(HasName("loop.0.0"), _, _)); 700 EXPECT_CALL(MLAHandleA, run(HasName("loop.0.1"), _, _)); 701 EXPECT_CALL(MLAHandleB, run(HasName("loop.0.1"), _, _)); 702 EXPECT_CALL(MLAHandleA, run(HasName("loop.0"), _, _)); 703 EXPECT_CALL(MLAHandleB, run(HasName("loop.0"), _, _)); 704 705 // Now we invalidate AnalysisB (but not AnalysisA) for one of the loops and 706 // preserve everything for the rest. This in turn triggers that one loop to 707 // recompute both AnalysisB *and* AnalysisA if indirect invalidation is 708 // working. 709 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) 710 .WillOnce(InvokeWithoutArgs([] { 711 auto PA = getLoopPassPreservedAnalyses(); 712 // Specifically preserve AnalysisA so that it would survive if it 713 // didn't depend on AnalysisB. 714 PA.preserve<AnalysisA>(); 715 return PA; 716 })); 717 // It happens that AnalysisB is invalidated first. That shouldn't matter 718 // though, and we should still call AnalysisA's invalidation. 719 EXPECT_CALL(MLAHandleB, invalidate(HasName("loop.0.0"), _, _)); 720 EXPECT_CALL(MLAHandleA, invalidate(HasName("loop.0.0"), _, _)); 721 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) 722 .WillOnce(Invoke([](Loop &L, LoopAnalysisManager &AM, 723 LoopStandardAnalysisResults &AR, LPMUpdater &) { 724 (void)AM.getResult<AnalysisA>(L, AR); 725 return PreservedAnalyses::all(); 726 })); 727 EXPECT_CALL(MLAHandleA, run(HasName("loop.0.0"), _, _)); 728 EXPECT_CALL(MLAHandleB, run(HasName("loop.0.0"), _, _)); 729 // The rest of the loops should run and get cached results. 730 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) 731 .Times(2) 732 .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM, 733 LoopStandardAnalysisResults &AR, LPMUpdater &) { 734 (void)AM.getResult<AnalysisA>(L, AR); 735 return PreservedAnalyses::all(); 736 })); 737 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) 738 .Times(2) 739 .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM, 740 LoopStandardAnalysisResults &AR, LPMUpdater &) { 741 (void)AM.getResult<AnalysisA>(L, AR); 742 return PreservedAnalyses::all(); 743 })); 744 745 // The run over 'g' should be boring, with us just computing the analyses once 746 // up front and then running loop passes and getting cached results. 747 EXPECT_CALL(MLAHandleA, run(HasName("loop.g.0"), _, _)); 748 EXPECT_CALL(MLAHandleB, run(HasName("loop.g.0"), _, _)); 749 EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _)) 750 .Times(2) 751 .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM, 752 LoopStandardAnalysisResults &AR, LPMUpdater &) { 753 (void)AM.getResult<AnalysisA>(L, AR); 754 return PreservedAnalyses::all(); 755 })); 756 757 // Build the pipeline and run it. 758 ModulePassManager MPM(true); 759 FunctionPassManager FPM(true); 760 FPM.addPass( 761 createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<AnalysisA>())); 762 LoopPassManager LPM(true); 763 LPM.addPass(MLPHandle.getPass()); 764 LPM.addPass(MLPHandle.getPass()); 765 FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM))); 766 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 767 MPM.run(*M, MAM); 768 } 769 770 TEST_F(LoopPassManagerTest, IndirectOuterPassInvalidation) { 771 typedef decltype(MLAHandle)::Analysis LoopAnalysis; 772 773 MockFunctionAnalysisHandle MFAHandle; 774 FAM.registerPass([&] { return MFAHandle.getAnalysis(); }); 775 typedef decltype(MFAHandle)::Analysis FunctionAnalysis; 776 777 // Set up the loop analysis to depend on both the function and module 778 // analysis. 779 ON_CALL(MLAHandle, run(_, _, _)) 780 .WillByDefault(Invoke([&](Loop &L, LoopAnalysisManager &AM, 781 LoopStandardAnalysisResults &AR) { 782 auto &FAMP = AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR); 783 auto &FAM = FAMP.getManager(); 784 Function &F = *L.getHeader()->getParent(); 785 if (FAM.getCachedResult<FunctionAnalysis>(F)) 786 FAMP.registerOuterAnalysisInvalidation<FunctionAnalysis, 787 LoopAnalysis>(); 788 return MLAHandle.getResult(); 789 })); 790 791 ::testing::InSequence MakeExpectationsSequenced; 792 793 // Compute the analyses across all of 'f' first. 794 EXPECT_CALL(MFPHandle, run(HasName("f"), _)) 795 .WillOnce(Invoke([](Function &F, FunctionAnalysisManager &AM) { 796 // Force the computing of the function analysis so it is available in 797 // this function. 798 (void)AM.getResult<FunctionAnalysis>(F); 799 return PreservedAnalyses::all(); 800 })); 801 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); 802 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); 803 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); 804 805 // Now invalidate the function analysis but preserve the loop analyses. 806 // This should trigger immediate invalidation of the loop analyses, despite 807 // the fact that they were preserved. 808 EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] { 809 auto PA = getLoopPassPreservedAnalyses(); 810 if (EnableMSSALoopDependency) 811 PA.preserve<MemorySSAAnalysis>(); 812 PA.preserveSet<AllAnalysesOn<Loop>>(); 813 return PA; 814 })); 815 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _)); 816 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _)); 817 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _)); 818 819 // And re-running a requires pass recomputes them. 820 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); 821 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); 822 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); 823 824 // When we run over 'g' we don't populate the cache with the function 825 // analysis. 826 EXPECT_CALL(MFPHandle, run(HasName("g"), _)) 827 .WillOnce(Return(PreservedAnalyses::all())); 828 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _)); 829 830 // Which means that no extra invalidation occurs and cached values are used. 831 EXPECT_CALL(MFPHandle, run(HasName("g"), _)).WillOnce(InvokeWithoutArgs([] { 832 auto PA = getLoopPassPreservedAnalyses(); 833 if (EnableMSSALoopDependency) 834 PA.preserve<MemorySSAAnalysis>(); 835 PA.preserveSet<AllAnalysesOn<Loop>>(); 836 return PA; 837 })); 838 839 // Build the pipeline and run it. 840 ModulePassManager MPM(true); 841 FunctionPassManager FPM(true); 842 FPM.addPass(MFPHandle.getPass()); 843 FPM.addPass( 844 createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<LoopAnalysis>())); 845 FPM.addPass(MFPHandle.getPass()); 846 FPM.addPass( 847 createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<LoopAnalysis>())); 848 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 849 MPM.run(*M, MAM); 850 } 851 852 TEST_F(LoopPassManagerTest, LoopChildInsertion) { 853 // Super boring module with three loops in a single loop nest. 854 M = parseIR(Context, "define void @f(i1* %ptr) {\n" 855 "entry:\n" 856 " br label %loop.0\n" 857 "loop.0:\n" 858 " %cond.0 = load volatile i1, i1* %ptr\n" 859 " br i1 %cond.0, label %loop.0.0.ph, label %end\n" 860 "loop.0.0.ph:\n" 861 " br label %loop.0.0\n" 862 "loop.0.0:\n" 863 " %cond.0.0 = load volatile i1, i1* %ptr\n" 864 " br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n" 865 "loop.0.1.ph:\n" 866 " br label %loop.0.1\n" 867 "loop.0.1:\n" 868 " %cond.0.1 = load volatile i1, i1* %ptr\n" 869 " br i1 %cond.0.1, label %loop.0.1, label %loop.0.2.ph\n" 870 "loop.0.2.ph:\n" 871 " br label %loop.0.2\n" 872 "loop.0.2:\n" 873 " %cond.0.2 = load volatile i1, i1* %ptr\n" 874 " br i1 %cond.0.2, label %loop.0.2, label %loop.0.latch\n" 875 "loop.0.latch:\n" 876 " br label %loop.0\n" 877 "end:\n" 878 " ret void\n" 879 "}\n"); 880 881 // Build up variables referring into the IR so we can rewrite it below 882 // easily. 883 Function &F = *M->begin(); 884 ASSERT_THAT(F, HasName("f")); 885 Argument &Ptr = *F.arg_begin(); 886 auto BBI = F.begin(); 887 BasicBlock &EntryBB = *BBI++; 888 ASSERT_THAT(EntryBB, HasName("entry")); 889 BasicBlock &Loop0BB = *BBI++; 890 ASSERT_THAT(Loop0BB, HasName("loop.0")); 891 BasicBlock &Loop00PHBB = *BBI++; 892 ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph")); 893 BasicBlock &Loop00BB = *BBI++; 894 ASSERT_THAT(Loop00BB, HasName("loop.0.0")); 895 BasicBlock &Loop01PHBB = *BBI++; 896 ASSERT_THAT(Loop01PHBB, HasName("loop.0.1.ph")); 897 BasicBlock &Loop01BB = *BBI++; 898 ASSERT_THAT(Loop01BB, HasName("loop.0.1")); 899 BasicBlock &Loop02PHBB = *BBI++; 900 ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph")); 901 BasicBlock &Loop02BB = *BBI++; 902 ASSERT_THAT(Loop02BB, HasName("loop.0.2")); 903 BasicBlock &Loop0LatchBB = *BBI++; 904 ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch")); 905 BasicBlock &EndBB = *BBI++; 906 ASSERT_THAT(EndBB, HasName("end")); 907 ASSERT_THAT(BBI, F.end()); 908 auto CreateCondBr = [&](BasicBlock *TrueBB, BasicBlock *FalseBB, 909 const char *Name, BasicBlock *BB) { 910 auto *Cond = new LoadInst(Type::getInt1Ty(Context), &Ptr, Name, 911 /*isVolatile*/ true, BB); 912 BranchInst::Create(TrueBB, FalseBB, Cond, BB); 913 }; 914 915 // Build the pass managers and register our pipeline. We build a single loop 916 // pass pipeline consisting of three mock pass runs over each loop. After 917 // this we run both domtree and loop verification passes to make sure that 918 // the IR remained valid during our mutations. 919 ModulePassManager MPM(true); 920 FunctionPassManager FPM(true); 921 LoopPassManager LPM(true); 922 LPM.addPass(MLPHandle.getPass()); 923 LPM.addPass(MLPHandle.getPass()); 924 LPM.addPass(MLPHandle.getPass()); 925 FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM))); 926 FPM.addPass(DominatorTreeVerifierPass()); 927 FPM.addPass(LoopVerifierPass()); 928 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 929 930 // All the visit orders are deterministic, so we use simple fully order 931 // expectations. 932 ::testing::InSequence MakeExpectationsSequenced; 933 934 // We run loop passes three times over each of the loops. 935 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) 936 .WillOnce(Invoke(getLoopAnalysisResult)); 937 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); 938 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) 939 .Times(2) 940 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 941 942 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) 943 .WillOnce(Invoke(getLoopAnalysisResult)); 944 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); 945 946 // When running over the middle loop, the second run inserts two new child 947 // loops, inserting them and itself into the worklist. 948 BasicBlock *NewLoop010BB, *NewLoop01LatchBB; 949 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) 950 .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM, 951 LoopStandardAnalysisResults &AR, 952 LPMUpdater &Updater) { 953 auto *NewLoop = AR.LI.AllocateLoop(); 954 L.addChildLoop(NewLoop); 955 auto *NewLoop010PHBB = 956 BasicBlock::Create(Context, "loop.0.1.0.ph", &F, &Loop02PHBB); 957 NewLoop010BB = 958 BasicBlock::Create(Context, "loop.0.1.0", &F, &Loop02PHBB); 959 NewLoop01LatchBB = 960 BasicBlock::Create(Context, "loop.0.1.latch", &F, &Loop02PHBB); 961 Loop01BB.getTerminator()->replaceUsesOfWith(&Loop01BB, NewLoop010PHBB); 962 BranchInst::Create(NewLoop010BB, NewLoop010PHBB); 963 CreateCondBr(NewLoop01LatchBB, NewLoop010BB, "cond.0.1.0", 964 NewLoop010BB); 965 BranchInst::Create(&Loop01BB, NewLoop01LatchBB); 966 AR.DT.addNewBlock(NewLoop010PHBB, &Loop01BB); 967 AR.DT.addNewBlock(NewLoop010BB, NewLoop010PHBB); 968 AR.DT.addNewBlock(NewLoop01LatchBB, NewLoop010BB); 969 EXPECT_TRUE(AR.DT.verify()); 970 L.addBasicBlockToLoop(NewLoop010PHBB, AR.LI); 971 NewLoop->addBasicBlockToLoop(NewLoop010BB, AR.LI); 972 L.addBasicBlockToLoop(NewLoop01LatchBB, AR.LI); 973 NewLoop->verifyLoop(); 974 L.verifyLoop(); 975 Updater.addChildLoops({NewLoop}); 976 return PreservedAnalyses::all(); 977 })); 978 979 // We should immediately drop down to fully visit the new inner loop. 980 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.0"), _, _, _)) 981 .WillOnce(Invoke(getLoopAnalysisResult)); 982 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1.0"), _, _)); 983 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.0"), _, _, _)) 984 .Times(2) 985 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 986 987 // After visiting the inner loop, we should re-visit the second loop 988 // reflecting its new loop nest structure. 989 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) 990 .WillOnce(Invoke(getLoopAnalysisResult)); 991 992 // In the second run over the middle loop after we've visited the new child, 993 // we add another child to check that we can repeatedly add children, and add 994 // children to a loop that already has children. 995 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) 996 .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM, 997 LoopStandardAnalysisResults &AR, 998 LPMUpdater &Updater) { 999 auto *NewLoop = AR.LI.AllocateLoop(); 1000 L.addChildLoop(NewLoop); 1001 auto *NewLoop011PHBB = BasicBlock::Create(Context, "loop.0.1.1.ph", &F, NewLoop01LatchBB); 1002 auto *NewLoop011BB = BasicBlock::Create(Context, "loop.0.1.1", &F, NewLoop01LatchBB); 1003 NewLoop010BB->getTerminator()->replaceUsesOfWith(NewLoop01LatchBB, 1004 NewLoop011PHBB); 1005 BranchInst::Create(NewLoop011BB, NewLoop011PHBB); 1006 CreateCondBr(NewLoop01LatchBB, NewLoop011BB, "cond.0.1.1", 1007 NewLoop011BB); 1008 AR.DT.addNewBlock(NewLoop011PHBB, NewLoop010BB); 1009 auto *NewDTNode = AR.DT.addNewBlock(NewLoop011BB, NewLoop011PHBB); 1010 AR.DT.changeImmediateDominator(AR.DT[NewLoop01LatchBB], NewDTNode); 1011 EXPECT_TRUE(AR.DT.verify()); 1012 L.addBasicBlockToLoop(NewLoop011PHBB, AR.LI); 1013 NewLoop->addBasicBlockToLoop(NewLoop011BB, AR.LI); 1014 NewLoop->verifyLoop(); 1015 L.verifyLoop(); 1016 Updater.addChildLoops({NewLoop}); 1017 return PreservedAnalyses::all(); 1018 })); 1019 1020 // Again, we should immediately drop down to visit the new, unvisited child 1021 // loop. We don't need to revisit the other child though. 1022 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.1"), _, _, _)) 1023 .WillOnce(Invoke(getLoopAnalysisResult)); 1024 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1.1"), _, _)); 1025 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.1"), _, _, _)) 1026 .Times(2) 1027 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1028 1029 // And now we should pop back up to the second loop and do a full pipeline of 1030 // three passes on its current form. 1031 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) 1032 .Times(3) 1033 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1034 1035 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _)) 1036 .WillOnce(Invoke(getLoopAnalysisResult)); 1037 EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _)); 1038 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _)) 1039 .Times(2) 1040 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1041 1042 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) 1043 .WillOnce(Invoke(getLoopAnalysisResult)); 1044 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); 1045 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) 1046 .Times(2) 1047 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1048 1049 // Now that all the expected actions are registered, run the pipeline over 1050 // our module. All of our expectations are verified when the test finishes. 1051 MPM.run(*M, MAM); 1052 } 1053 1054 TEST_F(LoopPassManagerTest, LoopPeerInsertion) { 1055 // Super boring module with two loop nests and loop nest with two child 1056 // loops. 1057 M = parseIR(Context, "define void @f(i1* %ptr) {\n" 1058 "entry:\n" 1059 " br label %loop.0\n" 1060 "loop.0:\n" 1061 " %cond.0 = load volatile i1, i1* %ptr\n" 1062 " br i1 %cond.0, label %loop.0.0.ph, label %loop.2.ph\n" 1063 "loop.0.0.ph:\n" 1064 " br label %loop.0.0\n" 1065 "loop.0.0:\n" 1066 " %cond.0.0 = load volatile i1, i1* %ptr\n" 1067 " br i1 %cond.0.0, label %loop.0.0, label %loop.0.2.ph\n" 1068 "loop.0.2.ph:\n" 1069 " br label %loop.0.2\n" 1070 "loop.0.2:\n" 1071 " %cond.0.2 = load volatile i1, i1* %ptr\n" 1072 " br i1 %cond.0.2, label %loop.0.2, label %loop.0.latch\n" 1073 "loop.0.latch:\n" 1074 " br label %loop.0\n" 1075 "loop.2.ph:\n" 1076 " br label %loop.2\n" 1077 "loop.2:\n" 1078 " %cond.2 = load volatile i1, i1* %ptr\n" 1079 " br i1 %cond.2, label %loop.2, label %end\n" 1080 "end:\n" 1081 " ret void\n" 1082 "}\n"); 1083 1084 // Build up variables referring into the IR so we can rewrite it below 1085 // easily. 1086 Function &F = *M->begin(); 1087 ASSERT_THAT(F, HasName("f")); 1088 Argument &Ptr = *F.arg_begin(); 1089 auto BBI = F.begin(); 1090 BasicBlock &EntryBB = *BBI++; 1091 ASSERT_THAT(EntryBB, HasName("entry")); 1092 BasicBlock &Loop0BB = *BBI++; 1093 ASSERT_THAT(Loop0BB, HasName("loop.0")); 1094 BasicBlock &Loop00PHBB = *BBI++; 1095 ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph")); 1096 BasicBlock &Loop00BB = *BBI++; 1097 ASSERT_THAT(Loop00BB, HasName("loop.0.0")); 1098 BasicBlock &Loop02PHBB = *BBI++; 1099 ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph")); 1100 BasicBlock &Loop02BB = *BBI++; 1101 ASSERT_THAT(Loop02BB, HasName("loop.0.2")); 1102 BasicBlock &Loop0LatchBB = *BBI++; 1103 ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch")); 1104 BasicBlock &Loop2PHBB = *BBI++; 1105 ASSERT_THAT(Loop2PHBB, HasName("loop.2.ph")); 1106 BasicBlock &Loop2BB = *BBI++; 1107 ASSERT_THAT(Loop2BB, HasName("loop.2")); 1108 BasicBlock &EndBB = *BBI++; 1109 ASSERT_THAT(EndBB, HasName("end")); 1110 ASSERT_THAT(BBI, F.end()); 1111 auto CreateCondBr = [&](BasicBlock *TrueBB, BasicBlock *FalseBB, 1112 const char *Name, BasicBlock *BB) { 1113 auto *Cond = new LoadInst(Type::getInt1Ty(Context), &Ptr, Name, 1114 /*isVolatile*/ true, BB); 1115 BranchInst::Create(TrueBB, FalseBB, Cond, BB); 1116 }; 1117 1118 // Build the pass managers and register our pipeline. We build a single loop 1119 // pass pipeline consisting of three mock pass runs over each loop. After 1120 // this we run both domtree and loop verification passes to make sure that 1121 // the IR remained valid during our mutations. 1122 ModulePassManager MPM(true); 1123 FunctionPassManager FPM(true); 1124 LoopPassManager LPM(true); 1125 LPM.addPass(MLPHandle.getPass()); 1126 LPM.addPass(MLPHandle.getPass()); 1127 LPM.addPass(MLPHandle.getPass()); 1128 FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM))); 1129 FPM.addPass(DominatorTreeVerifierPass()); 1130 FPM.addPass(LoopVerifierPass()); 1131 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 1132 1133 // All the visit orders are deterministic, so we use simple fully order 1134 // expectations. 1135 ::testing::InSequence MakeExpectationsSequenced; 1136 1137 // We run loop passes three times over each of the loops. 1138 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) 1139 .WillOnce(Invoke(getLoopAnalysisResult)); 1140 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); 1141 1142 // On the second run, we insert a sibling loop. 1143 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) 1144 .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM, 1145 LoopStandardAnalysisResults &AR, 1146 LPMUpdater &Updater) { 1147 auto *NewLoop = AR.LI.AllocateLoop(); 1148 L.getParentLoop()->addChildLoop(NewLoop); 1149 auto *NewLoop01PHBB = BasicBlock::Create(Context, "loop.0.1.ph", &F, &Loop02PHBB); 1150 auto *NewLoop01BB = BasicBlock::Create(Context, "loop.0.1", &F, &Loop02PHBB); 1151 BranchInst::Create(NewLoop01BB, NewLoop01PHBB); 1152 CreateCondBr(&Loop02PHBB, NewLoop01BB, "cond.0.1", NewLoop01BB); 1153 Loop00BB.getTerminator()->replaceUsesOfWith(&Loop02PHBB, NewLoop01PHBB); 1154 AR.DT.addNewBlock(NewLoop01PHBB, &Loop00BB); 1155 auto *NewDTNode = AR.DT.addNewBlock(NewLoop01BB, NewLoop01PHBB); 1156 AR.DT.changeImmediateDominator(AR.DT[&Loop02PHBB], NewDTNode); 1157 EXPECT_TRUE(AR.DT.verify()); 1158 L.getParentLoop()->addBasicBlockToLoop(NewLoop01PHBB, AR.LI); 1159 NewLoop->addBasicBlockToLoop(NewLoop01BB, AR.LI); 1160 L.getParentLoop()->verifyLoop(); 1161 Updater.addSiblingLoops({NewLoop}); 1162 return PreservedAnalyses::all(); 1163 })); 1164 // We finish processing this loop as sibling loops don't perturb the 1165 // postorder walk. 1166 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) 1167 .WillOnce(Invoke(getLoopAnalysisResult)); 1168 1169 // We visit the inserted sibling next. 1170 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) 1171 .WillOnce(Invoke(getLoopAnalysisResult)); 1172 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); 1173 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) 1174 .Times(2) 1175 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1176 1177 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _)) 1178 .WillOnce(Invoke(getLoopAnalysisResult)); 1179 EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _)); 1180 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _)) 1181 .WillOnce(Invoke(getLoopAnalysisResult)); 1182 // Next, on the third pass run on the last inner loop we add more new 1183 // siblings, more than one, and one with nested child loops. By doing this at 1184 // the end we make sure that edge case works well. 1185 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _)) 1186 .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM, 1187 LoopStandardAnalysisResults &AR, 1188 LPMUpdater &Updater) { 1189 Loop *NewLoops[] = {AR.LI.AllocateLoop(), AR.LI.AllocateLoop(), 1190 AR.LI.AllocateLoop()}; 1191 L.getParentLoop()->addChildLoop(NewLoops[0]); 1192 L.getParentLoop()->addChildLoop(NewLoops[1]); 1193 NewLoops[1]->addChildLoop(NewLoops[2]); 1194 auto *NewLoop03PHBB = 1195 BasicBlock::Create(Context, "loop.0.3.ph", &F, &Loop0LatchBB); 1196 auto *NewLoop03BB = 1197 BasicBlock::Create(Context, "loop.0.3", &F, &Loop0LatchBB); 1198 auto *NewLoop04PHBB = 1199 BasicBlock::Create(Context, "loop.0.4.ph", &F, &Loop0LatchBB); 1200 auto *NewLoop04BB = 1201 BasicBlock::Create(Context, "loop.0.4", &F, &Loop0LatchBB); 1202 auto *NewLoop040PHBB = 1203 BasicBlock::Create(Context, "loop.0.4.0.ph", &F, &Loop0LatchBB); 1204 auto *NewLoop040BB = 1205 BasicBlock::Create(Context, "loop.0.4.0", &F, &Loop0LatchBB); 1206 auto *NewLoop04LatchBB = 1207 BasicBlock::Create(Context, "loop.0.4.latch", &F, &Loop0LatchBB); 1208 Loop02BB.getTerminator()->replaceUsesOfWith(&Loop0LatchBB, NewLoop03PHBB); 1209 BranchInst::Create(NewLoop03BB, NewLoop03PHBB); 1210 CreateCondBr(NewLoop04PHBB, NewLoop03BB, "cond.0.3", NewLoop03BB); 1211 BranchInst::Create(NewLoop04BB, NewLoop04PHBB); 1212 CreateCondBr(&Loop0LatchBB, NewLoop040PHBB, "cond.0.4", NewLoop04BB); 1213 BranchInst::Create(NewLoop040BB, NewLoop040PHBB); 1214 CreateCondBr(NewLoop04LatchBB, NewLoop040BB, "cond.0.4.0", NewLoop040BB); 1215 BranchInst::Create(NewLoop04BB, NewLoop04LatchBB); 1216 AR.DT.addNewBlock(NewLoop03PHBB, &Loop02BB); 1217 AR.DT.addNewBlock(NewLoop03BB, NewLoop03PHBB); 1218 AR.DT.addNewBlock(NewLoop04PHBB, NewLoop03BB); 1219 auto *NewDTNode = AR.DT.addNewBlock(NewLoop04BB, NewLoop04PHBB); 1220 AR.DT.changeImmediateDominator(AR.DT[&Loop0LatchBB], NewDTNode); 1221 AR.DT.addNewBlock(NewLoop040PHBB, NewLoop04BB); 1222 AR.DT.addNewBlock(NewLoop040BB, NewLoop040PHBB); 1223 AR.DT.addNewBlock(NewLoop04LatchBB, NewLoop040BB); 1224 EXPECT_TRUE(AR.DT.verify()); 1225 L.getParentLoop()->addBasicBlockToLoop(NewLoop03PHBB, AR.LI); 1226 NewLoops[0]->addBasicBlockToLoop(NewLoop03BB, AR.LI); 1227 L.getParentLoop()->addBasicBlockToLoop(NewLoop04PHBB, AR.LI); 1228 NewLoops[1]->addBasicBlockToLoop(NewLoop04BB, AR.LI); 1229 NewLoops[1]->addBasicBlockToLoop(NewLoop040PHBB, AR.LI); 1230 NewLoops[2]->addBasicBlockToLoop(NewLoop040BB, AR.LI); 1231 NewLoops[1]->addBasicBlockToLoop(NewLoop04LatchBB, AR.LI); 1232 L.getParentLoop()->verifyLoop(); 1233 Updater.addSiblingLoops({NewLoops[0], NewLoops[1]}); 1234 return PreservedAnalyses::all(); 1235 })); 1236 1237 EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _)) 1238 .WillOnce(Invoke(getLoopAnalysisResult)); 1239 EXPECT_CALL(MLAHandle, run(HasName("loop.0.3"), _, _)); 1240 EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _)) 1241 .Times(2) 1242 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1243 1244 // Note that we need to visit the inner loop of this added sibling before the 1245 // sibling itself! 1246 EXPECT_CALL(MLPHandle, run(HasName("loop.0.4.0"), _, _, _)) 1247 .WillOnce(Invoke(getLoopAnalysisResult)); 1248 EXPECT_CALL(MLAHandle, run(HasName("loop.0.4.0"), _, _)); 1249 EXPECT_CALL(MLPHandle, run(HasName("loop.0.4.0"), _, _, _)) 1250 .Times(2) 1251 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1252 1253 EXPECT_CALL(MLPHandle, run(HasName("loop.0.4"), _, _, _)) 1254 .WillOnce(Invoke(getLoopAnalysisResult)); 1255 EXPECT_CALL(MLAHandle, run(HasName("loop.0.4"), _, _)); 1256 EXPECT_CALL(MLPHandle, run(HasName("loop.0.4"), _, _, _)) 1257 .Times(2) 1258 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1259 1260 // And only now do we visit the outermost loop of the nest. 1261 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) 1262 .WillOnce(Invoke(getLoopAnalysisResult)); 1263 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); 1264 // On the second pass, we add sibling loops which become new top-level loops. 1265 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) 1266 .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM, 1267 LoopStandardAnalysisResults &AR, 1268 LPMUpdater &Updater) { 1269 auto *NewLoop = AR.LI.AllocateLoop(); 1270 AR.LI.addTopLevelLoop(NewLoop); 1271 auto *NewLoop1PHBB = BasicBlock::Create(Context, "loop.1.ph", &F, &Loop2BB); 1272 auto *NewLoop1BB = BasicBlock::Create(Context, "loop.1", &F, &Loop2BB); 1273 BranchInst::Create(NewLoop1BB, NewLoop1PHBB); 1274 CreateCondBr(&Loop2PHBB, NewLoop1BB, "cond.1", NewLoop1BB); 1275 Loop0BB.getTerminator()->replaceUsesOfWith(&Loop2PHBB, NewLoop1PHBB); 1276 AR.DT.addNewBlock(NewLoop1PHBB, &Loop0BB); 1277 auto *NewDTNode = AR.DT.addNewBlock(NewLoop1BB, NewLoop1PHBB); 1278 AR.DT.changeImmediateDominator(AR.DT[&Loop2PHBB], NewDTNode); 1279 EXPECT_TRUE(AR.DT.verify()); 1280 NewLoop->addBasicBlockToLoop(NewLoop1BB, AR.LI); 1281 NewLoop->verifyLoop(); 1282 Updater.addSiblingLoops({NewLoop}); 1283 return PreservedAnalyses::all(); 1284 })); 1285 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) 1286 .WillOnce(Invoke(getLoopAnalysisResult)); 1287 1288 EXPECT_CALL(MLPHandle, run(HasName("loop.1"), _, _, _)) 1289 .WillOnce(Invoke(getLoopAnalysisResult)); 1290 EXPECT_CALL(MLAHandle, run(HasName("loop.1"), _, _)); 1291 EXPECT_CALL(MLPHandle, run(HasName("loop.1"), _, _, _)) 1292 .Times(2) 1293 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1294 1295 EXPECT_CALL(MLPHandle, run(HasName("loop.2"), _, _, _)) 1296 .WillOnce(Invoke(getLoopAnalysisResult)); 1297 EXPECT_CALL(MLAHandle, run(HasName("loop.2"), _, _)); 1298 EXPECT_CALL(MLPHandle, run(HasName("loop.2"), _, _, _)) 1299 .Times(2) 1300 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1301 1302 // Now that all the expected actions are registered, run the pipeline over 1303 // our module. All of our expectations are verified when the test finishes. 1304 MPM.run(*M, MAM); 1305 } 1306 1307 TEST_F(LoopPassManagerTest, LoopDeletion) { 1308 // Build a module with a single loop nest that contains one outer loop with 1309 // three subloops, and one of those with its own subloop. We will 1310 // incrementally delete all of these to test different deletion scenarios. 1311 M = parseIR(Context, "define void @f(i1* %ptr) {\n" 1312 "entry:\n" 1313 " br label %loop.0\n" 1314 "loop.0:\n" 1315 " %cond.0 = load volatile i1, i1* %ptr\n" 1316 " br i1 %cond.0, label %loop.0.0.ph, label %end\n" 1317 "loop.0.0.ph:\n" 1318 " br label %loop.0.0\n" 1319 "loop.0.0:\n" 1320 " %cond.0.0 = load volatile i1, i1* %ptr\n" 1321 " br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n" 1322 "loop.0.1.ph:\n" 1323 " br label %loop.0.1\n" 1324 "loop.0.1:\n" 1325 " %cond.0.1 = load volatile i1, i1* %ptr\n" 1326 " br i1 %cond.0.1, label %loop.0.1, label %loop.0.2.ph\n" 1327 "loop.0.2.ph:\n" 1328 " br label %loop.0.2\n" 1329 "loop.0.2:\n" 1330 " %cond.0.2 = load volatile i1, i1* %ptr\n" 1331 " br i1 %cond.0.2, label %loop.0.2.0.ph, label %loop.0.latch\n" 1332 "loop.0.2.0.ph:\n" 1333 " br label %loop.0.2.0\n" 1334 "loop.0.2.0:\n" 1335 " %cond.0.2.0 = load volatile i1, i1* %ptr\n" 1336 " br i1 %cond.0.2.0, label %loop.0.2.0, label %loop.0.2.latch\n" 1337 "loop.0.2.latch:\n" 1338 " br label %loop.0.2\n" 1339 "loop.0.latch:\n" 1340 " br label %loop.0\n" 1341 "end:\n" 1342 " ret void\n" 1343 "}\n"); 1344 1345 // Build up variables referring into the IR so we can rewrite it below 1346 // easily. 1347 Function &F = *M->begin(); 1348 ASSERT_THAT(F, HasName("f")); 1349 Argument &Ptr = *F.arg_begin(); 1350 auto BBI = F.begin(); 1351 BasicBlock &EntryBB = *BBI++; 1352 ASSERT_THAT(EntryBB, HasName("entry")); 1353 BasicBlock &Loop0BB = *BBI++; 1354 ASSERT_THAT(Loop0BB, HasName("loop.0")); 1355 BasicBlock &Loop00PHBB = *BBI++; 1356 ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph")); 1357 BasicBlock &Loop00BB = *BBI++; 1358 ASSERT_THAT(Loop00BB, HasName("loop.0.0")); 1359 BasicBlock &Loop01PHBB = *BBI++; 1360 ASSERT_THAT(Loop01PHBB, HasName("loop.0.1.ph")); 1361 BasicBlock &Loop01BB = *BBI++; 1362 ASSERT_THAT(Loop01BB, HasName("loop.0.1")); 1363 BasicBlock &Loop02PHBB = *BBI++; 1364 ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph")); 1365 BasicBlock &Loop02BB = *BBI++; 1366 ASSERT_THAT(Loop02BB, HasName("loop.0.2")); 1367 BasicBlock &Loop020PHBB = *BBI++; 1368 ASSERT_THAT(Loop020PHBB, HasName("loop.0.2.0.ph")); 1369 BasicBlock &Loop020BB = *BBI++; 1370 ASSERT_THAT(Loop020BB, HasName("loop.0.2.0")); 1371 BasicBlock &Loop02LatchBB = *BBI++; 1372 ASSERT_THAT(Loop02LatchBB, HasName("loop.0.2.latch")); 1373 BasicBlock &Loop0LatchBB = *BBI++; 1374 ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch")); 1375 BasicBlock &EndBB = *BBI++; 1376 ASSERT_THAT(EndBB, HasName("end")); 1377 ASSERT_THAT(BBI, F.end()); 1378 1379 // Helper to do the actual deletion of a loop. We directly encode this here 1380 // to isolate ourselves from the rest of LLVM and for simplicity. Here we can 1381 // egregiously cheat based on knowledge of the test case. For example, we 1382 // have no PHI nodes and there is always a single i-dom. 1383 auto EraseLoop = [](Loop &L, BasicBlock &IDomBB, 1384 LoopStandardAnalysisResults &AR, LPMUpdater &Updater) { 1385 assert(L.empty() && "Can only delete leaf loops with this routine!"); 1386 SmallVector<BasicBlock *, 4> LoopBBs(L.block_begin(), L.block_end()); 1387 Updater.markLoopAsDeleted(L, L.getName()); 1388 IDomBB.getTerminator()->replaceUsesOfWith(L.getHeader(), 1389 L.getUniqueExitBlock()); 1390 for (BasicBlock *LoopBB : LoopBBs) { 1391 SmallVector<DomTreeNode *, 4> ChildNodes(AR.DT[LoopBB]->begin(), 1392 AR.DT[LoopBB]->end()); 1393 for (DomTreeNode *ChildNode : ChildNodes) 1394 AR.DT.changeImmediateDominator(ChildNode, AR.DT[&IDomBB]); 1395 AR.DT.eraseNode(LoopBB); 1396 AR.LI.removeBlock(LoopBB); 1397 LoopBB->dropAllReferences(); 1398 } 1399 for (BasicBlock *LoopBB : LoopBBs) 1400 LoopBB->eraseFromParent(); 1401 1402 AR.LI.erase(&L); 1403 }; 1404 1405 // Build up the pass managers. 1406 ModulePassManager MPM(true); 1407 FunctionPassManager FPM(true); 1408 // We run several loop pass pipelines across the loop nest, but they all take 1409 // the same form of three mock pass runs in a loop pipeline followed by 1410 // domtree and loop verification. We use a lambda to stamp this out each 1411 // time. 1412 auto AddLoopPipelineAndVerificationPasses = [&] { 1413 LoopPassManager LPM(true); 1414 LPM.addPass(MLPHandle.getPass()); 1415 LPM.addPass(MLPHandle.getPass()); 1416 LPM.addPass(MLPHandle.getPass()); 1417 FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM))); 1418 FPM.addPass(DominatorTreeVerifierPass()); 1419 FPM.addPass(LoopVerifierPass()); 1420 }; 1421 1422 // All the visit orders are deterministic so we use simple fully order 1423 // expectations. 1424 ::testing::InSequence MakeExpectationsSequenced; 1425 1426 // We run the loop pipeline with three passes over each of the loops. When 1427 // running over the middle loop, the second pass in the pipeline deletes it. 1428 // This should prevent the third pass from visiting it but otherwise leave 1429 // the process unimpacted. 1430 AddLoopPipelineAndVerificationPasses(); 1431 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) 1432 .WillOnce(Invoke(getLoopAnalysisResult)); 1433 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); 1434 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) 1435 .Times(2) 1436 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1437 1438 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) 1439 .WillOnce(Invoke(getLoopAnalysisResult)); 1440 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); 1441 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) 1442 .WillOnce( 1443 Invoke([&](Loop &L, LoopAnalysisManager &AM, 1444 LoopStandardAnalysisResults &AR, LPMUpdater &Updater) { 1445 Loop *ParentL = L.getParentLoop(); 1446 AR.SE.forgetLoop(&L); 1447 EraseLoop(L, Loop01PHBB, AR, Updater); 1448 ParentL->verifyLoop(); 1449 return PreservedAnalyses::all(); 1450 })); 1451 1452 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _)) 1453 .WillOnce(Invoke(getLoopAnalysisResult)); 1454 EXPECT_CALL(MLAHandle, run(HasName("loop.0.2.0"), _, _)); 1455 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _)) 1456 .Times(2) 1457 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1458 1459 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _)) 1460 .WillOnce(Invoke(getLoopAnalysisResult)); 1461 EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _)); 1462 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _)) 1463 .Times(2) 1464 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1465 1466 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) 1467 .WillOnce(Invoke(getLoopAnalysisResult)); 1468 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); 1469 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) 1470 .Times(2) 1471 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1472 1473 // Run the loop pipeline again. This time we delete the last loop, which 1474 // contains a nested loop within it and insert a new loop into the nest. This 1475 // makes sure we can handle nested loop deletion. 1476 AddLoopPipelineAndVerificationPasses(); 1477 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) 1478 .Times(3) 1479 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1480 1481 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _)) 1482 .Times(3) 1483 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1484 1485 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _)) 1486 .WillOnce(Invoke(getLoopAnalysisResult)); 1487 BasicBlock *NewLoop03PHBB; 1488 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _)) 1489 .WillOnce( 1490 Invoke([&](Loop &L, LoopAnalysisManager &AM, 1491 LoopStandardAnalysisResults &AR, LPMUpdater &Updater) { 1492 AR.SE.forgetLoop(*L.begin()); 1493 EraseLoop(**L.begin(), Loop020PHBB, AR, Updater); 1494 1495 auto *ParentL = L.getParentLoop(); 1496 AR.SE.forgetLoop(&L); 1497 EraseLoop(L, Loop02PHBB, AR, Updater); 1498 1499 // Now insert a new sibling loop. 1500 auto *NewSibling = AR.LI.AllocateLoop(); 1501 ParentL->addChildLoop(NewSibling); 1502 NewLoop03PHBB = 1503 BasicBlock::Create(Context, "loop.0.3.ph", &F, &Loop0LatchBB); 1504 auto *NewLoop03BB = 1505 BasicBlock::Create(Context, "loop.0.3", &F, &Loop0LatchBB); 1506 BranchInst::Create(NewLoop03BB, NewLoop03PHBB); 1507 auto *Cond = 1508 new LoadInst(Type::getInt1Ty(Context), &Ptr, "cond.0.3", 1509 /*isVolatile*/ true, NewLoop03BB); 1510 BranchInst::Create(&Loop0LatchBB, NewLoop03BB, Cond, NewLoop03BB); 1511 Loop02PHBB.getTerminator()->replaceUsesOfWith(&Loop0LatchBB, 1512 NewLoop03PHBB); 1513 AR.DT.addNewBlock(NewLoop03PHBB, &Loop02PHBB); 1514 AR.DT.addNewBlock(NewLoop03BB, NewLoop03PHBB); 1515 AR.DT.changeImmediateDominator(AR.DT[&Loop0LatchBB], 1516 AR.DT[NewLoop03BB]); 1517 EXPECT_TRUE(AR.DT.verify()); 1518 ParentL->addBasicBlockToLoop(NewLoop03PHBB, AR.LI); 1519 NewSibling->addBasicBlockToLoop(NewLoop03BB, AR.LI); 1520 NewSibling->verifyLoop(); 1521 ParentL->verifyLoop(); 1522 Updater.addSiblingLoops({NewSibling}); 1523 return PreservedAnalyses::all(); 1524 })); 1525 1526 // To respect our inner-to-outer traversal order, we must visit the 1527 // newly-inserted sibling of the loop we just deleted before we visit the 1528 // outer loop. When we do so, this must compute a fresh analysis result, even 1529 // though our new loop has the same pointer value as the loop we deleted. 1530 EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _)) 1531 .WillOnce(Invoke(getLoopAnalysisResult)); 1532 EXPECT_CALL(MLAHandle, run(HasName("loop.0.3"), _, _)); 1533 EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _)) 1534 .Times(2) 1535 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1536 1537 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) 1538 .Times(3) 1539 .WillRepeatedly(Invoke(getLoopAnalysisResult)); 1540 1541 // In the final loop pipeline run we delete every loop, including the last 1542 // loop of the nest. We do this again in the second pass in the pipeline, and 1543 // as a consequence we never make it to three runs on any loop. We also cover 1544 // deleting multiple loops in a single pipeline, deleting the first loop and 1545 // deleting the (last) top level loop. 1546 AddLoopPipelineAndVerificationPasses(); 1547 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) 1548 .WillOnce(Invoke(getLoopAnalysisResult)); 1549 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) 1550 .WillOnce( 1551 Invoke([&](Loop &L, LoopAnalysisManager &AM, 1552 LoopStandardAnalysisResults &AR, LPMUpdater &Updater) { 1553 AR.SE.forgetLoop(&L); 1554 EraseLoop(L, Loop00PHBB, AR, Updater); 1555 return PreservedAnalyses::all(); 1556 })); 1557 1558 EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _)) 1559 .WillOnce(Invoke(getLoopAnalysisResult)); 1560 EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _)) 1561 .WillOnce( 1562 Invoke([&](Loop &L, LoopAnalysisManager &AM, 1563 LoopStandardAnalysisResults &AR, LPMUpdater &Updater) { 1564 AR.SE.forgetLoop(&L); 1565 EraseLoop(L, *NewLoop03PHBB, AR, Updater); 1566 return PreservedAnalyses::all(); 1567 })); 1568 1569 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) 1570 .WillOnce(Invoke(getLoopAnalysisResult)); 1571 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) 1572 .WillOnce( 1573 Invoke([&](Loop &L, LoopAnalysisManager &AM, 1574 LoopStandardAnalysisResults &AR, LPMUpdater &Updater) { 1575 AR.SE.forgetLoop(&L); 1576 EraseLoop(L, EntryBB, AR, Updater); 1577 return PreservedAnalyses::all(); 1578 })); 1579 1580 // Add the function pass pipeline now that it is fully built up and run it 1581 // over the module's one function. 1582 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 1583 MPM.run(*M, MAM); 1584 } 1585 } 1586