1 //===---------- llvm/unittest/Support/Casting.cpp - Casting tests ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Support/Casting.h"
10 #include "llvm/IR/User.h"
11 #include "llvm/Support/Debug.h"
12 #include "llvm/Support/raw_ostream.h"
13 #include "gtest/gtest.h"
14 #include <cstdlib>
15 
16 namespace llvm {
17 // Used to test illegal cast. If a cast doesn't match any of the "real" ones,
18 // it will match this one.
19 struct IllegalCast;
cast(...)20 template <typename T> IllegalCast *cast(...) { return nullptr; }
21 
22 // set up two example classes
23 // with conversion facility
24 //
25 struct bar {
barllvm::bar26   bar() {}
27   struct foo *baz();
28   struct foo *caz();
29   struct foo *daz();
30   struct foo *naz();
31 
32 private:
33   bar(const bar &);
34 };
35 struct foo {
foollvm::foo36   foo(const bar &) {}
37   void ext() const;
38 };
39 
40 struct base {
~basellvm::base41   virtual ~base() {}
42 };
43 
44 struct derived : public base {
classofllvm::derived45   static bool classof(const base *B) { return true; }
46 };
47 
48 template <> struct isa_impl<foo, bar> {
doitllvm::isa_impl49   static inline bool doit(const bar &Val) {
50     dbgs() << "Classof: " << &Val << "\n";
51     return true;
52   }
53 };
54 
55 // Note for the future - please don't do this. isa_impl is an internal template
56 // for the implementation of `isa` and should not be exposed this way.
57 // Completely unrelated types *should* result in compiler errors if you try to
58 // cast between them.
59 template <typename T> struct isa_impl<foo, T> {
doitllvm::isa_impl60   static inline bool doit(const T &Val) { return false; }
61 };
62 
baz()63 foo *bar::baz() { return cast<foo>(this); }
64 
caz()65 foo *bar::caz() { return cast_or_null<foo>(this); }
66 
daz()67 foo *bar::daz() { return dyn_cast<foo>(this); }
68 
naz()69 foo *bar::naz() { return dyn_cast_or_null<foo>(this); }
70 
71 bar *fub();
72 
73 template <> struct simplify_type<foo> {
74   typedef int SimpleType;
getSimplifiedValuellvm::simplify_type75   static SimpleType getSimplifiedValue(foo &Val) { return 0; }
76 };
77 
78 struct T1 {};
79 
80 struct T2 {
T2llvm::T281   T2(const T1 &x) {}
classofllvm::T282   static bool classof(const T1 *x) { return true; }
83 };
84 
85 template <> struct CastInfo<T2, T1> : public OptionalValueCast<T2, T1> {};
86 
87 struct T3 {
T3llvm::T388   T3(const T1 *x) : hasValue(x != nullptr) {}
89 
classofllvm::T390   static bool classof(const T1 *x) { return true; }
91   bool hasValue = false;
92 };
93 
94 // T3 is convertible from a pointer to T1.
95 template <> struct CastInfo<T3, T1 *> : public ValueFromPointerCast<T3, T1> {};
96 
97 struct T4 {
T4llvm::T498   T4() : hasValue(false) {}
T4llvm::T499   T4(const T3 &x) : hasValue(true) {}
100 
classofllvm::T4101   static bool classof(const T3 *x) { return true; }
102   bool hasValue = false;
103 };
104 
105 template <> struct ValueIsPresent<T3> {
106   using UnwrappedType = T3;
isPresentllvm::ValueIsPresent107   static inline bool isPresent(const T3 &t) { return t.hasValue; }
unwrapValuellvm::ValueIsPresent108   static inline const T3 &unwrapValue(const T3 &t) { return t; }
109 };
110 
111 template <> struct CastInfo<T4, T3> {
112   using CastResultType = T4;
doCastllvm::CastInfo113   static inline CastResultType doCast(const T3 &t) { return T4(t); }
castFailedllvm::CastInfo114   static inline CastResultType castFailed() { return CastResultType(); }
doCastIfPossiblellvm::CastInfo115   static inline CastResultType doCastIfPossible(const T3 &f) {
116     return doCast(f);
117   }
118 };
119 
120 } // namespace llvm
121 
122 using namespace llvm;
123 
124 // Test the peculiar behavior of Use in simplify_type.
125 static_assert(std::is_same<simplify_type<Use>::SimpleType, Value *>::value,
126               "Use doesn't simplify correctly!");
127 static_assert(std::is_same<simplify_type<Use *>::SimpleType, Value *>::value,
128               "Use doesn't simplify correctly!");
129 
130 // Test that a regular class behaves as expected.
131 static_assert(std::is_same<simplify_type<foo>::SimpleType, int>::value,
132               "Unexpected simplify_type result!");
133 static_assert(std::is_same<simplify_type<foo *>::SimpleType, foo *>::value,
134               "Unexpected simplify_type result!");
135 
136 namespace {
137 
138 const foo *null_foo = nullptr;
139 
140 bar B;
141 extern bar &B1;
142 bar &B1 = B;
143 extern const bar *B2;
144 // test various configurations of const
145 const bar &B3 = B1;
146 const bar *const B4 = B2;
147 
TEST(CastingTest,isa)148 TEST(CastingTest, isa) {
149   EXPECT_TRUE(isa<foo>(B1));
150   EXPECT_TRUE(isa<foo>(B2));
151   EXPECT_TRUE(isa<foo>(B3));
152   EXPECT_TRUE(isa<foo>(B4));
153 }
154 
TEST(CastingTest,isa_and_nonnull)155 TEST(CastingTest, isa_and_nonnull) {
156   EXPECT_TRUE(isa_and_nonnull<foo>(B2));
157   EXPECT_TRUE(isa_and_nonnull<foo>(B4));
158   EXPECT_FALSE(isa_and_nonnull<foo>(fub()));
159 }
160 
TEST(CastingTest,cast)161 TEST(CastingTest, cast) {
162   foo &F1 = cast<foo>(B1);
163   EXPECT_NE(&F1, null_foo);
164   const foo *F3 = cast<foo>(B2);
165   EXPECT_NE(F3, null_foo);
166   const foo *F4 = cast<foo>(B2);
167   EXPECT_NE(F4, null_foo);
168   const foo &F5 = cast<foo>(B3);
169   EXPECT_NE(&F5, null_foo);
170   const foo *F6 = cast<foo>(B4);
171   EXPECT_NE(F6, null_foo);
172   // Can't pass null pointer to cast<>.
173   // foo *F7 = cast<foo>(fub());
174   // EXPECT_EQ(F7, null_foo);
175   foo *F8 = B1.baz();
176   EXPECT_NE(F8, null_foo);
177 
178   std::unique_ptr<const bar> BP(B2);
179   auto FP = cast<foo>(std::move(BP));
180   static_assert(std::is_same<std::unique_ptr<const foo>, decltype(FP)>::value,
181                 "Incorrect deduced return type!");
182   EXPECT_NE(FP.get(), null_foo);
183   FP.release();
184 }
185 
TEST(CastingTest,cast_or_null)186 TEST(CastingTest, cast_or_null) {
187   const foo *F11 = cast_or_null<foo>(B2);
188   EXPECT_NE(F11, null_foo);
189   const foo *F12 = cast_or_null<foo>(B2);
190   EXPECT_NE(F12, null_foo);
191   const foo *F13 = cast_or_null<foo>(B4);
192   EXPECT_NE(F13, null_foo);
193   const foo *F14 = cast_or_null<foo>(fub()); // Shouldn't print.
194   EXPECT_EQ(F14, null_foo);
195   foo *F15 = B1.caz();
196   EXPECT_NE(F15, null_foo);
197 
198   std::unique_ptr<const bar> BP(fub());
199   auto FP = cast_or_null<foo>(std::move(BP));
200   EXPECT_EQ(FP.get(), null_foo);
201 }
202 
TEST(CastingTest,dyn_cast)203 TEST(CastingTest, dyn_cast) {
204   const foo *F1 = dyn_cast<foo>(B2);
205   EXPECT_NE(F1, null_foo);
206   const foo *F2 = dyn_cast<foo>(B2);
207   EXPECT_NE(F2, null_foo);
208   const foo *F3 = dyn_cast<foo>(B4);
209   EXPECT_NE(F3, null_foo);
210   // Can't pass null pointer to dyn_cast<>.
211   // foo *F4 = dyn_cast<foo>(fub());
212   // EXPECT_EQ(F4, null_foo);
213   foo *F5 = B1.daz();
214   EXPECT_NE(F5, null_foo);
215 }
216 
217 // All these tests forward to dyn_cast_if_present, so they also provde an
218 // effective test for its use cases.
TEST(CastingTest,dyn_cast_or_null)219 TEST(CastingTest, dyn_cast_or_null) {
220   const foo *F1 = dyn_cast_or_null<foo>(B2);
221   EXPECT_NE(F1, null_foo);
222   const foo *F2 = dyn_cast_or_null<foo>(B2);
223   EXPECT_NE(F2, null_foo);
224   const foo *F3 = dyn_cast_or_null<foo>(B4);
225   EXPECT_NE(F3, null_foo);
226   foo *F4 = dyn_cast_or_null<foo>(fub());
227   EXPECT_EQ(F4, null_foo);
228   foo *F5 = B1.naz();
229   EXPECT_NE(F5, null_foo);
230   // dyn_cast_if_present should have exactly the same behavior as
231   // dyn_cast_or_null.
232   const foo *F6 = dyn_cast_if_present<foo>(B2);
233   EXPECT_EQ(F6, F2);
234 }
235 
TEST(CastingTest,dyn_cast_value_types)236 TEST(CastingTest, dyn_cast_value_types) {
237   T1 t1;
238   Optional<T2> t2 = dyn_cast<T2>(t1);
239   EXPECT_TRUE(t2);
240 
241   T2 *t2ptr = dyn_cast<T2>(&t1);
242   EXPECT_TRUE(t2ptr != nullptr);
243 
244   T3 t3 = dyn_cast<T3>(&t1);
245   EXPECT_TRUE(t3.hasValue);
246 }
247 
TEST(CastingTest,dyn_cast_if_present)248 TEST(CastingTest, dyn_cast_if_present) {
249   Optional<T1> empty{};
250   Optional<T2> F1 = dyn_cast_if_present<T2>(empty);
251   EXPECT_FALSE(F1.has_value());
252 
253   T1 t1;
254   Optional<T2> F2 = dyn_cast_if_present<T2>(t1);
255   EXPECT_TRUE(F2.has_value());
256 
257   T1 *t1Null = nullptr;
258 
259   // T3 should have hasValue == false because t1Null is nullptr.
260   T3 t3 = dyn_cast_if_present<T3>(t1Null);
261   EXPECT_FALSE(t3.hasValue);
262 
263   // Now because of that, T4 should receive the castFailed implementation of its
264   // FallibleCastTraits, which default-constructs a T4, which has no value.
265   T4 t4 = dyn_cast_if_present<T4>(t3);
266   EXPECT_FALSE(t4.hasValue);
267 }
268 
newd()269 std::unique_ptr<derived> newd() { return std::make_unique<derived>(); }
newb()270 std::unique_ptr<base> newb() { return std::make_unique<derived>(); }
271 
TEST(CastingTest,unique_dyn_cast)272 TEST(CastingTest, unique_dyn_cast) {
273   derived *OrigD = nullptr;
274   auto D = std::make_unique<derived>();
275   OrigD = D.get();
276 
277   // Converting from D to itself is valid, it should return a new unique_ptr
278   // and the old one should become nullptr.
279   auto NewD = unique_dyn_cast<derived>(D);
280   ASSERT_EQ(OrigD, NewD.get());
281   ASSERT_EQ(nullptr, D);
282 
283   // Converting from D to B is valid, B should have a value and D should be
284   // nullptr.
285   auto B = unique_dyn_cast<base>(NewD);
286   ASSERT_EQ(OrigD, B.get());
287   ASSERT_EQ(nullptr, NewD);
288 
289   // Converting from B to itself is valid, it should return a new unique_ptr
290   // and the old one should become nullptr.
291   auto NewB = unique_dyn_cast<base>(B);
292   ASSERT_EQ(OrigD, NewB.get());
293   ASSERT_EQ(nullptr, B);
294 
295   // Converting from B to D is valid, D should have a value and B should be
296   // nullptr;
297   D = unique_dyn_cast<derived>(NewB);
298   ASSERT_EQ(OrigD, D.get());
299   ASSERT_EQ(nullptr, NewB);
300 
301   // This is a very contrived test, casting between completely unrelated types
302   // should generally fail to compile. See the classof shenanigans we have in
303   // the definition of `foo` above.
304   auto F = unique_dyn_cast<foo>(D);
305   ASSERT_EQ(nullptr, F);
306   ASSERT_EQ(OrigD, D.get());
307 
308   // All of the above should also hold for temporaries.
309   auto D2 = unique_dyn_cast<derived>(newd());
310   EXPECT_NE(nullptr, D2);
311 
312   auto B2 = unique_dyn_cast<derived>(newb());
313   EXPECT_NE(nullptr, B2);
314 
315   auto B3 = unique_dyn_cast<base>(newb());
316   EXPECT_NE(nullptr, B3);
317 
318   // This is a very contrived test, casting between completely unrelated types
319   // should generally fail to compile. See the classof shenanigans we have in
320   // the definition of `foo` above.
321   auto F2 = unique_dyn_cast<foo>(newb());
322   EXPECT_EQ(nullptr, F2);
323 }
324 
325 // These lines are errors...
326 // foo *F20 = cast<foo>(B2);  // Yields const foo*
327 // foo &F21 = cast<foo>(B3);  // Yields const foo&
328 // foo *F22 = cast<foo>(B4);  // Yields const foo*
329 // foo &F23 = cast_or_null<foo>(B1);
330 // const foo &F24 = cast_or_null<foo>(B3);
331 
332 const bar *B2 = &B;
333 } // anonymous namespace
334 
fub()335 bar *llvm::fub() { return nullptr; }
336 
337 namespace {
338 namespace inferred_upcasting {
339 // This test case verifies correct behavior of inferred upcasts when the
340 // types are statically known to be OK to upcast. This is the case when,
341 // for example, Derived inherits from Base, and we do `isa<Base>(Derived)`.
342 
343 // Note: This test will actually fail to compile without inferred
344 // upcasting.
345 
346 class Base {
347 public:
348   // No classof. We are testing that the upcast is inferred.
Base()349   Base() {}
350 };
351 
352 class Derived : public Base {
353 public:
Derived()354   Derived() {}
355 };
356 
357 // Even with no explicit classof() in Base, we should still be able to cast
358 // Derived to its base class.
TEST(CastingTest,UpcastIsInferred)359 TEST(CastingTest, UpcastIsInferred) {
360   Derived D;
361   EXPECT_TRUE(isa<Base>(D));
362   Base *BP = dyn_cast<Base>(&D);
363   EXPECT_NE(BP, nullptr);
364 }
365 
366 // This test verifies that the inferred upcast takes precedence over an
367 // explicitly written one. This is important because it verifies that the
368 // dynamic check gets optimized away.
369 class UseInferredUpcast {
370 public:
371   int Dummy;
classof(const UseInferredUpcast *)372   static bool classof(const UseInferredUpcast *) { return false; }
373 };
374 
TEST(CastingTest,InferredUpcastTakesPrecedence)375 TEST(CastingTest, InferredUpcastTakesPrecedence) {
376   UseInferredUpcast UIU;
377   // Since the explicit classof() returns false, this will fail if the
378   // explicit one is used.
379   EXPECT_TRUE(isa<UseInferredUpcast>(&UIU));
380 }
381 
382 } // end namespace inferred_upcasting
383 } // end anonymous namespace
384 
385 namespace {
386 namespace pointer_wrappers {
387 
388 struct Base {
389   bool IsDerived;
Base__anone271e0110311::pointer_wrappers::Base390   Base(bool IsDerived = false) : IsDerived(IsDerived) {}
391 };
392 
393 struct Derived : Base {
Derived__anone271e0110311::pointer_wrappers::Derived394   Derived() : Base(true) {}
classof__anone271e0110311::pointer_wrappers::Derived395   static bool classof(const Base *B) { return B->IsDerived; }
396 };
397 
398 class PTy {
399   Base *B;
400 
401 public:
PTy(Base * B)402   PTy(Base *B) : B(B) {}
operator bool() const403   explicit operator bool() const { return get(); }
get() const404   Base *get() const { return B; }
405 };
406 
407 } // end namespace pointer_wrappers
408 } // end namespace
409 
410 namespace llvm {
411 
412 template <> struct ValueIsPresent<pointer_wrappers::PTy> {
413   using UnwrappedType = pointer_wrappers::PTy;
isPresentllvm::ValueIsPresent414   static inline bool isPresent(const pointer_wrappers::PTy &P) {
415     return P.get() != nullptr;
416   }
unwrapValuellvm::ValueIsPresent417   static UnwrappedType &unwrapValue(pointer_wrappers::PTy &P) { return P; }
418 };
419 
420 template <> struct ValueIsPresent<const pointer_wrappers::PTy> {
421   using UnwrappedType = pointer_wrappers::PTy;
isPresentllvm::ValueIsPresent422   static inline bool isPresent(const pointer_wrappers::PTy &P) {
423     return P.get() != nullptr;
424   }
425 
unwrapValuellvm::ValueIsPresent426   static UnwrappedType &unwrapValue(const pointer_wrappers::PTy &P) {
427     return const_cast<UnwrappedType &>(P);
428   }
429 };
430 
431 template <> struct simplify_type<pointer_wrappers::PTy> {
432   typedef pointer_wrappers::Base *SimpleType;
getSimplifiedValuellvm::simplify_type433   static SimpleType getSimplifiedValue(pointer_wrappers::PTy &P) {
434     return P.get();
435   }
436 };
437 template <> struct simplify_type<const pointer_wrappers::PTy> {
438   typedef pointer_wrappers::Base *SimpleType;
getSimplifiedValuellvm::simplify_type439   static SimpleType getSimplifiedValue(const pointer_wrappers::PTy &P) {
440     return P.get();
441   }
442 };
443 
444 } // end namespace llvm
445 
446 namespace {
447 namespace pointer_wrappers {
448 
449 // Some objects.
450 pointer_wrappers::Base B;
451 pointer_wrappers::Derived D;
452 
453 // Mutable "smart" pointers.
454 pointer_wrappers::PTy MN(nullptr);
455 pointer_wrappers::PTy MB(&B);
456 pointer_wrappers::PTy MD(&D);
457 
458 // Const "smart" pointers.
459 const pointer_wrappers::PTy CN(nullptr);
460 const pointer_wrappers::PTy CB(&B);
461 const pointer_wrappers::PTy CD(&D);
462 
TEST(CastingTest,smart_isa)463 TEST(CastingTest, smart_isa) {
464   EXPECT_TRUE(!isa<pointer_wrappers::Derived>(MB));
465   EXPECT_TRUE(!isa<pointer_wrappers::Derived>(CB));
466   EXPECT_TRUE(isa<pointer_wrappers::Derived>(MD));
467   EXPECT_TRUE(isa<pointer_wrappers::Derived>(CD));
468 }
469 
TEST(CastingTest,smart_cast)470 TEST(CastingTest, smart_cast) {
471   EXPECT_EQ(cast<pointer_wrappers::Derived>(MD), &D);
472   EXPECT_EQ(cast<pointer_wrappers::Derived>(CD), &D);
473 }
474 
TEST(CastingTest,smart_cast_or_null)475 TEST(CastingTest, smart_cast_or_null) {
476   EXPECT_EQ(cast_or_null<pointer_wrappers::Derived>(MN), nullptr);
477   EXPECT_EQ(cast_or_null<pointer_wrappers::Derived>(CN), nullptr);
478   EXPECT_EQ(cast_or_null<pointer_wrappers::Derived>(MD), &D);
479   EXPECT_EQ(cast_or_null<pointer_wrappers::Derived>(CD), &D);
480 }
481 
TEST(CastingTest,smart_dyn_cast)482 TEST(CastingTest, smart_dyn_cast) {
483   EXPECT_EQ(dyn_cast<pointer_wrappers::Derived>(MB), nullptr);
484   EXPECT_EQ(dyn_cast<pointer_wrappers::Derived>(CB), nullptr);
485   EXPECT_EQ(dyn_cast<pointer_wrappers::Derived>(MD), &D);
486   EXPECT_EQ(dyn_cast<pointer_wrappers::Derived>(CD), &D);
487 }
488 
TEST(CastingTest,smart_dyn_cast_or_null)489 TEST(CastingTest, smart_dyn_cast_or_null) {
490   EXPECT_EQ(dyn_cast_or_null<pointer_wrappers::Derived>(MN), nullptr);
491   EXPECT_EQ(dyn_cast_or_null<pointer_wrappers::Derived>(CN), nullptr);
492   EXPECT_EQ(dyn_cast_or_null<pointer_wrappers::Derived>(MB), nullptr);
493   EXPECT_EQ(dyn_cast_or_null<pointer_wrappers::Derived>(CB), nullptr);
494   EXPECT_EQ(dyn_cast_or_null<pointer_wrappers::Derived>(MD), &D);
495   EXPECT_EQ(dyn_cast_or_null<pointer_wrappers::Derived>(CD), &D);
496 }
497 
498 } // end namespace pointer_wrappers
499 
500 #ifndef NDEBUG
501 namespace assertion_checks {
502 struct Base {
~Base__anone271e0110411::assertion_checks::Base503   virtual ~Base() {}
504 };
505 
506 struct Derived : public Base {
classof__anone271e0110411::assertion_checks::Derived507   static bool classof(const Base *B) { return false; }
508 };
509 
TEST(CastingTest,assertion_check_const_ref)510 TEST(CastingTest, assertion_check_const_ref) {
511   const Base B;
512   EXPECT_DEATH((void)cast<Derived>(B), "argument of incompatible type")
513       << "Invalid cast of const ref did not cause an abort()";
514 }
515 
TEST(CastingTest,assertion_check_ref)516 TEST(CastingTest, assertion_check_ref) {
517   Base B;
518   EXPECT_DEATH((void)cast<Derived>(B), "argument of incompatible type")
519       << "Invalid cast of const ref did not cause an abort()";
520 }
521 
TEST(CastingTest,assertion_check_ptr)522 TEST(CastingTest, assertion_check_ptr) {
523   Base B;
524   EXPECT_DEATH((void)cast<Derived>(&B), "argument of incompatible type")
525       << "Invalid cast of const ref did not cause an abort()";
526 }
527 
TEST(CastingTest,assertion_check_unique_ptr)528 TEST(CastingTest, assertion_check_unique_ptr) {
529   auto B = std::make_unique<Base>();
530   EXPECT_DEATH((void)cast<Derived>(std::move(B)),
531                "argument of incompatible type")
532       << "Invalid cast of const ref did not cause an abort()";
533 }
534 
535 } // end namespace assertion_checks
536 #endif
537 } // end namespace
538