1; RUN: opt -loop-vectorize -force-vector-width=4 -force-vector-interleave=1 -mtriple aarch64-unknown-linux-gnu -mattr=+sve -S < %s | FileCheck %s --check-prefix=CHECK-VF4UF1 2; RUN: opt -loop-vectorize -force-vector-width=4 -force-vector-interleave=2 -mtriple aarch64-unknown-linux-gnu -mattr=+sve -S < %s | FileCheck %s --check-prefix=CHECK-VF4UF2 3 4; We vectorize this first order recurrence, with a set of insertelements for 5; each unrolled part. Make sure these insertelements are generated in-order, 6; because the shuffle of the first order recurrence will be added after the 7; insertelement of the last part UF - 1, assuming the latter appears after the 8; insertelements of all other parts. 9; 10; int PR33613(double *b, double j, int d) { 11; int a = 0; 12; for(int i = 0; i < 10240; i++, b+=25) { 13; double f = b[d]; // Scalarize to form insertelements 14; if (j * f) 15; a++; 16; j = f; 17; } 18; return a; 19; } 20; 21define i32 @PR33613(double* %b, double %j, i32 %d) #0 { 22; CHECK-VF4UF2-LABEL: @PR33613 23; CHECK-VF4UF2: vector.body 24; CHECK-VF4UF2: %[[VEC_RECUR:.*]] = phi <vscale x 4 x double> [ {{.*}}, %vector.ph ], [ {{.*}}, %vector.body ] 25; CHECK-VF4UF2: %[[SPLICE1:.*]] = call <vscale x 4 x double> @llvm.experimental.vector.splice.nxv4f64(<vscale x 4 x double> %[[VEC_RECUR]], <vscale x 4 x double> {{.*}}, i32 -1) 26; CHECK-VF4UF2-NEXT: %[[SPLICE2:.*]] = call <vscale x 4 x double> @llvm.experimental.vector.splice.nxv4f64(<vscale x 4 x double> %{{.*}}, <vscale x 4 x double> %{{.*}}, i32 -1) 27; CHECK-VF4UF2-NOT: insertelement <vscale x 4 x double> 28; CHECK-VF4UF2: middle.block 29entry: 30 %idxprom = sext i32 %d to i64 31 br label %for.body 32 33for.cond.cleanup: 34 %a.1.lcssa = phi i32 [ %a.1, %for.body ] 35 ret i32 %a.1.lcssa 36 37for.body: 38 %b.addr.012 = phi double* [ %b, %entry ], [ %add.ptr, %for.body ] 39 %i.011 = phi i32 [ 0, %entry ], [ %inc1, %for.body ] 40 %a.010 = phi i32 [ 0, %entry ], [ %a.1, %for.body ] 41 %j.addr.09 = phi double [ %j, %entry ], [ %0, %for.body ] 42 %arrayidx = getelementptr inbounds double, double* %b.addr.012, i64 %idxprom 43 %0 = load double, double* %arrayidx, align 8 44 %mul = fmul double %j.addr.09, %0 45 %tobool = fcmp une double %mul, 0.000000e+00 46 %inc = zext i1 %tobool to i32 47 %a.1 = add nsw i32 %a.010, %inc 48 %inc1 = add nuw nsw i32 %i.011, 1 49 %add.ptr = getelementptr inbounds double, double* %b.addr.012, i64 25 50 %exitcond = icmp eq i32 %inc1, 10240 51 br i1 %exitcond, label %for.cond.cleanup, label %for.body, !llvm.loop !0 52} 53 54; PR34711: given three consecutive instructions such that the first will be 55; widened, the second is a cast that will be widened and needs to sink after the 56; third, and the third is a first-order-recurring load that will be replicated 57; instead of widened. Although the cast and the first instruction will both be 58; widened, and are originally adjacent to each other, make sure the replicated 59; load ends up appearing between them. 60; 61; void PR34711(short[2] *a, int *b, int *c, int n) { 62; for(int i = 0; i < n; i++) { 63; c[i] = 7; 64; b[i] = (a[i][0] * a[i][1]); 65; } 66; } 67; 68; Check that the sext sank after the load in the vector loop. 69define void @PR34711([2 x i16]* %a, i32* %b, i32* %c, i64 %n) #0 { 70; CHECK-VF4UF1-LABEL: @PR34711 71; CHECK-VF4UF1: vector.body 72; CHECK-VF4UF1: %[[VEC_RECUR:.*]] = phi <vscale x 4 x i16> [ %vector.recur.init, %vector.ph ], [ %[[MGATHER:.*]], %vector.body ] 73; CHECK-VF4UF1: %[[MGATHER]] = call <vscale x 4 x i16> @llvm.masked.gather.nxv4i16.nxv4p0i16(<vscale x 4 x i16*> {{.*}}, i32 2, <vscale x 4 x i1> shufflevector (<vscale x 4 x i1> insertelement (<vscale x 4 x i1> poison, i1 true, i32 0), <vscale x 4 x i1> poison, <vscale x 4 x i32> zeroinitializer), <vscale x 4 x i16> undef) 74; CHECK-VF4UF1-NEXT: %[[SPLICE:.*]] = call <vscale x 4 x i16> @llvm.experimental.vector.splice.nxv4i16(<vscale x 4 x i16> %[[VEC_RECUR]], <vscale x 4 x i16> %[[MGATHER]], i32 -1) 75; CHECK-VF4UF1-NEXT: %[[SXT1:.*]] = sext <vscale x 4 x i16> %[[SPLICE]] to <vscale x 4 x i32> 76; CHECK-VF4UF1-NEXT: %[[SXT2:.*]] = sext <vscale x 4 x i16> %[[MGATHER]] to <vscale x 4 x i32> 77; CHECK-VF4UF1-NEXT: mul nsw <vscale x 4 x i32> %[[SXT2]], %[[SXT1]] 78entry: 79 %pre.index = getelementptr inbounds [2 x i16], [2 x i16]* %a, i64 0, i64 0 80 %.pre = load i16, i16* %pre.index 81 br label %for.body 82 83for.body: 84 %0 = phi i16 [ %.pre, %entry ], [ %1, %for.body ] 85 %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 86 %arraycidx = getelementptr inbounds i32, i32* %c, i64 %indvars.iv 87 %cur.index = getelementptr inbounds [2 x i16], [2 x i16]* %a, i64 %indvars.iv, i64 1 88 store i32 7, i32* %arraycidx ; 1st instruction, to be widened. 89 %conv = sext i16 %0 to i32 ; 2nd, cast to sink after third. 90 %1 = load i16, i16* %cur.index ; 3rd, first-order-recurring load not widened. 91 %conv3 = sext i16 %1 to i32 92 %mul = mul nsw i32 %conv3, %conv 93 %arrayidx5 = getelementptr inbounds i32, i32* %b, i64 %indvars.iv 94 store i32 %mul, i32* %arrayidx5 95 %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1 96 %exitcond = icmp eq i64 %indvars.iv.next, %n 97 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0 98 99for.end: 100 ret void 101} 102 103attributes #0 = { vscale_range(1, 16) } 104!0 = distinct !{!0, !1} 105!1 = !{!"llvm.loop.vectorize.scalable.enable", i1 true} 106