1 //===------- VectorCombine.cpp - Optimize partial vector operations -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass optimizes scalar/vector interactions using target cost models. The
10 // transforms implemented here may not fit in traditional loop-based or SLP
11 // vectorization passes.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Vectorize/VectorCombine.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/BasicAliasAnalysis.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/Analysis/VectorUtils.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/InitializePasses.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 #include "llvm/Transforms/Vectorize.h"
32 
33 using namespace llvm;
34 using namespace llvm::PatternMatch;
35 
36 #define DEBUG_TYPE "vector-combine"
37 STATISTIC(NumVecLoad, "Number of vector loads formed");
38 STATISTIC(NumVecCmp, "Number of vector compares formed");
39 STATISTIC(NumVecBO, "Number of vector binops formed");
40 STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed");
41 STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast");
42 STATISTIC(NumScalarBO, "Number of scalar binops formed");
43 STATISTIC(NumScalarCmp, "Number of scalar compares formed");
44 
45 static cl::opt<bool> DisableVectorCombine(
46     "disable-vector-combine", cl::init(false), cl::Hidden,
47     cl::desc("Disable all vector combine transforms"));
48 
49 static cl::opt<bool> DisableBinopExtractShuffle(
50     "disable-binop-extract-shuffle", cl::init(false), cl::Hidden,
51     cl::desc("Disable binop extract to shuffle transforms"));
52 
53 static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max();
54 
55 namespace {
56 class VectorCombine {
57 public:
58   VectorCombine(Function &F, const TargetTransformInfo &TTI,
59                 const DominatorTree &DT)
60       : F(F), Builder(F.getContext()), TTI(TTI), DT(DT) {}
61 
62   bool run();
63 
64 private:
65   Function &F;
66   IRBuilder<> Builder;
67   const TargetTransformInfo &TTI;
68   const DominatorTree &DT;
69 
70   bool vectorizeLoadInsert(Instruction &I);
71   ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0,
72                                         ExtractElementInst *Ext1,
73                                         unsigned PreferredExtractIndex) const;
74   bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
75                              unsigned Opcode,
76                              ExtractElementInst *&ConvertToShuffle,
77                              unsigned PreferredExtractIndex);
78   void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
79                      Instruction &I);
80   void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
81                        Instruction &I);
82   bool foldExtractExtract(Instruction &I);
83   bool foldBitcastShuf(Instruction &I);
84   bool scalarizeBinopOrCmp(Instruction &I);
85   bool foldExtractedCmps(Instruction &I);
86 };
87 } // namespace
88 
89 static void replaceValue(Value &Old, Value &New) {
90   Old.replaceAllUsesWith(&New);
91   New.takeName(&Old);
92 }
93 
94 bool VectorCombine::vectorizeLoadInsert(Instruction &I) {
95   // Match insert of scalar load.
96   Value *Scalar;
97   if (!match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())))
98     return false;
99   auto *Load = dyn_cast<LoadInst>(Scalar);
100   Type *ScalarTy = Scalar->getType();
101   if (!Load || !Load->isSimple())
102     return false;
103   auto *Ty = dyn_cast<FixedVectorType>(I.getType());
104   if (!Ty)
105     return false;
106 
107   // TODO: Extend this to match GEP with constant offsets.
108   Value *PtrOp = Load->getPointerOperand()->stripPointerCasts();
109   assert(isa<PointerType>(PtrOp->getType()) && "Expected a pointer type");
110 
111   unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
112   uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
113   if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0)
114     return false;
115 
116   // Check safety of replacing the scalar load with a larger vector load.
117   unsigned MinVecNumElts = MinVectorSize / ScalarSize;
118   auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false);
119   Align Alignment = Load->getAlign();
120   const DataLayout &DL = I.getModule()->getDataLayout();
121   if (!isSafeToLoadUnconditionally(PtrOp, MinVecTy, Alignment, DL, Load, &DT))
122     return false;
123 
124   unsigned AS = Load->getPointerAddressSpace();
125 
126   // Original pattern: insertelt undef, load [free casts of] ScalarPtr, 0
127   int OldCost = TTI.getMemoryOpCost(Instruction::Load, ScalarTy, Alignment, AS);
128   APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0);
129   OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts, true, false);
130 
131   // New pattern: load VecPtr
132   int NewCost = TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS);
133 
134   // We can aggressively convert to the vector form because the backend can
135   // invert this transform if it does not result in a performance win.
136   if (OldCost < NewCost)
137     return false;
138 
139   // It is safe and potentially profitable to load a vector directly:
140   // inselt undef, load Scalar, 0 --> load VecPtr
141   IRBuilder<> Builder(Load);
142   Value *CastedPtr = Builder.CreateBitCast(PtrOp, MinVecTy->getPointerTo(AS));
143   Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment);
144 
145   // If the insert type does not match the target's minimum vector type,
146   // use an identity shuffle to shrink/grow the vector.
147   if (Ty != MinVecTy) {
148     unsigned OutputNumElts = Ty->getNumElements();
149     SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem);
150     for (unsigned i = 0; i < OutputNumElts && i < MinVecNumElts; ++i)
151       Mask[i] = i;
152     VecLd = Builder.CreateShuffleVector(VecLd, UndefValue::get(MinVecTy), Mask);
153   }
154   replaceValue(I, *VecLd);
155   ++NumVecLoad;
156   return true;
157 }
158 
159 /// Determine which, if any, of the inputs should be replaced by a shuffle
160 /// followed by extract from a different index.
161 ExtractElementInst *VectorCombine::getShuffleExtract(
162     ExtractElementInst *Ext0, ExtractElementInst *Ext1,
163     unsigned PreferredExtractIndex = InvalidIndex) const {
164   assert(isa<ConstantInt>(Ext0->getIndexOperand()) &&
165          isa<ConstantInt>(Ext1->getIndexOperand()) &&
166          "Expected constant extract indexes");
167 
168   unsigned Index0 = cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue();
169   unsigned Index1 = cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue();
170 
171   // If the extract indexes are identical, no shuffle is needed.
172   if (Index0 == Index1)
173     return nullptr;
174 
175   Type *VecTy = Ext0->getVectorOperand()->getType();
176   assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types");
177   int Cost0 = TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
178   int Cost1 = TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);
179 
180   // We are extracting from 2 different indexes, so one operand must be shuffled
181   // before performing a vector operation and/or extract. The more expensive
182   // extract will be replaced by a shuffle.
183   if (Cost0 > Cost1)
184     return Ext0;
185   if (Cost1 > Cost0)
186     return Ext1;
187 
188   // If the costs are equal and there is a preferred extract index, shuffle the
189   // opposite operand.
190   if (PreferredExtractIndex == Index0)
191     return Ext1;
192   if (PreferredExtractIndex == Index1)
193     return Ext0;
194 
195   // Otherwise, replace the extract with the higher index.
196   return Index0 > Index1 ? Ext0 : Ext1;
197 }
198 
199 /// Compare the relative costs of 2 extracts followed by scalar operation vs.
200 /// vector operation(s) followed by extract. Return true if the existing
201 /// instructions are cheaper than a vector alternative. Otherwise, return false
202 /// and if one of the extracts should be transformed to a shufflevector, set
203 /// \p ConvertToShuffle to that extract instruction.
204 bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0,
205                                           ExtractElementInst *Ext1,
206                                           unsigned Opcode,
207                                           ExtractElementInst *&ConvertToShuffle,
208                                           unsigned PreferredExtractIndex) {
209   assert(isa<ConstantInt>(Ext0->getOperand(1)) &&
210          isa<ConstantInt>(Ext1->getOperand(1)) &&
211          "Expected constant extract indexes");
212   Type *ScalarTy = Ext0->getType();
213   auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType());
214   int ScalarOpCost, VectorOpCost;
215 
216   // Get cost estimates for scalar and vector versions of the operation.
217   bool IsBinOp = Instruction::isBinaryOp(Opcode);
218   if (IsBinOp) {
219     ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
220     VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
221   } else {
222     assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
223            "Expected a compare");
224     ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy,
225                                           CmpInst::makeCmpResultType(ScalarTy));
226     VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy,
227                                           CmpInst::makeCmpResultType(VecTy));
228   }
229 
230   // Get cost estimates for the extract elements. These costs will factor into
231   // both sequences.
232   unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue();
233   unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue();
234 
235   int Extract0Cost =
236       TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index);
237   int Extract1Cost =
238       TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index);
239 
240   // A more expensive extract will always be replaced by a splat shuffle.
241   // For example, if Ext0 is more expensive:
242   // opcode (extelt V0, Ext0), (ext V1, Ext1) -->
243   // extelt (opcode (splat V0, Ext0), V1), Ext1
244   // TODO: Evaluate whether that always results in lowest cost. Alternatively,
245   //       check the cost of creating a broadcast shuffle and shuffling both
246   //       operands to element 0.
247   int CheapExtractCost = std::min(Extract0Cost, Extract1Cost);
248 
249   // Extra uses of the extracts mean that we include those costs in the
250   // vector total because those instructions will not be eliminated.
251   int OldCost, NewCost;
252   if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) {
253     // Handle a special case. If the 2 extracts are identical, adjust the
254     // formulas to account for that. The extra use charge allows for either the
255     // CSE'd pattern or an unoptimized form with identical values:
256     // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C
257     bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2)
258                                   : !Ext0->hasOneUse() || !Ext1->hasOneUse();
259     OldCost = CheapExtractCost + ScalarOpCost;
260     NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost;
261   } else {
262     // Handle the general case. Each extract is actually a different value:
263     // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C
264     OldCost = Extract0Cost + Extract1Cost + ScalarOpCost;
265     NewCost = VectorOpCost + CheapExtractCost +
266               !Ext0->hasOneUse() * Extract0Cost +
267               !Ext1->hasOneUse() * Extract1Cost;
268   }
269 
270   ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex);
271   if (ConvertToShuffle) {
272     if (IsBinOp && DisableBinopExtractShuffle)
273       return true;
274 
275     // If we are extracting from 2 different indexes, then one operand must be
276     // shuffled before performing the vector operation. The shuffle mask is
277     // undefined except for 1 lane that is being translated to the remaining
278     // extraction lane. Therefore, it is a splat shuffle. Ex:
279     // ShufMask = { undef, undef, 0, undef }
280     // TODO: The cost model has an option for a "broadcast" shuffle
281     //       (splat-from-element-0), but no option for a more general splat.
282     NewCost +=
283         TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
284   }
285 
286   // Aggressively form a vector op if the cost is equal because the transform
287   // may enable further optimization.
288   // Codegen can reverse this transform (scalarize) if it was not profitable.
289   return OldCost < NewCost;
290 }
291 
292 /// Create a shuffle that translates (shifts) 1 element from the input vector
293 /// to a new element location.
294 static Value *createShiftShuffle(Value *Vec, unsigned OldIndex,
295                                  unsigned NewIndex, IRBuilder<> &Builder) {
296   // The shuffle mask is undefined except for 1 lane that is being translated
297   // to the new element index. Example for OldIndex == 2 and NewIndex == 0:
298   // ShufMask = { 2, undef, undef, undef }
299   auto *VecTy = cast<FixedVectorType>(Vec->getType());
300   SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem);
301   ShufMask[NewIndex] = OldIndex;
302   Value *Undef = UndefValue::get(VecTy);
303   return Builder.CreateShuffleVector(Vec, Undef, ShufMask, "shift");
304 }
305 
306 /// Given an extract element instruction with constant index operand, shuffle
307 /// the source vector (shift the scalar element) to a NewIndex for extraction.
308 /// Return null if the input can be constant folded, so that we are not creating
309 /// unnecessary instructions.
310 static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt,
311                                             unsigned NewIndex,
312                                             IRBuilder<> &Builder) {
313   // If the extract can be constant-folded, this code is unsimplified. Defer
314   // to other passes to handle that.
315   Value *X = ExtElt->getVectorOperand();
316   Value *C = ExtElt->getIndexOperand();
317   assert(isa<ConstantInt>(C) && "Expected a constant index operand");
318   if (isa<Constant>(X))
319     return nullptr;
320 
321   Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(),
322                                    NewIndex, Builder);
323   return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex));
324 }
325 
326 /// Try to reduce extract element costs by converting scalar compares to vector
327 /// compares followed by extract.
328 /// cmp (ext0 V0, C), (ext1 V1, C)
329 void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0,
330                                   ExtractElementInst *Ext1, Instruction &I) {
331   assert(isa<CmpInst>(&I) && "Expected a compare");
332   assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
333              cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
334          "Expected matching constant extract indexes");
335 
336   // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C
337   ++NumVecCmp;
338   CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate();
339   Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
340   Value *VecCmp = Builder.CreateCmp(Pred, V0, V1);
341   Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand());
342   replaceValue(I, *NewExt);
343 }
344 
345 /// Try to reduce extract element costs by converting scalar binops to vector
346 /// binops followed by extract.
347 /// bo (ext0 V0, C), (ext1 V1, C)
348 void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0,
349                                     ExtractElementInst *Ext1, Instruction &I) {
350   assert(isa<BinaryOperator>(&I) && "Expected a binary operator");
351   assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
352              cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
353          "Expected matching constant extract indexes");
354 
355   // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C
356   ++NumVecBO;
357   Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
358   Value *VecBO =
359       Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1);
360 
361   // All IR flags are safe to back-propagate because any potential poison
362   // created in unused vector elements is discarded by the extract.
363   if (auto *VecBOInst = dyn_cast<Instruction>(VecBO))
364     VecBOInst->copyIRFlags(&I);
365 
366   Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand());
367   replaceValue(I, *NewExt);
368 }
369 
370 /// Match an instruction with extracted vector operands.
371 bool VectorCombine::foldExtractExtract(Instruction &I) {
372   // It is not safe to transform things like div, urem, etc. because we may
373   // create undefined behavior when executing those on unknown vector elements.
374   if (!isSafeToSpeculativelyExecute(&I))
375     return false;
376 
377   Instruction *I0, *I1;
378   CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
379   if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) &&
380       !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1))))
381     return false;
382 
383   Value *V0, *V1;
384   uint64_t C0, C1;
385   if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) ||
386       !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) ||
387       V0->getType() != V1->getType())
388     return false;
389 
390   // If the scalar value 'I' is going to be re-inserted into a vector, then try
391   // to create an extract to that same element. The extract/insert can be
392   // reduced to a "select shuffle".
393   // TODO: If we add a larger pattern match that starts from an insert, this
394   //       probably becomes unnecessary.
395   auto *Ext0 = cast<ExtractElementInst>(I0);
396   auto *Ext1 = cast<ExtractElementInst>(I1);
397   uint64_t InsertIndex = InvalidIndex;
398   if (I.hasOneUse())
399     match(I.user_back(),
400           m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex)));
401 
402   ExtractElementInst *ExtractToChange;
403   if (isExtractExtractCheap(Ext0, Ext1, I.getOpcode(), ExtractToChange,
404                             InsertIndex))
405     return false;
406 
407   if (ExtractToChange) {
408     unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0;
409     ExtractElementInst *NewExtract =
410         translateExtract(ExtractToChange, CheapExtractIdx, Builder);
411     if (!NewExtract)
412       return false;
413     if (ExtractToChange == Ext0)
414       Ext0 = NewExtract;
415     else
416       Ext1 = NewExtract;
417   }
418 
419   if (Pred != CmpInst::BAD_ICMP_PREDICATE)
420     foldExtExtCmp(Ext0, Ext1, I);
421   else
422     foldExtExtBinop(Ext0, Ext1, I);
423 
424   return true;
425 }
426 
427 /// If this is a bitcast of a shuffle, try to bitcast the source vector to the
428 /// destination type followed by shuffle. This can enable further transforms by
429 /// moving bitcasts or shuffles together.
430 bool VectorCombine::foldBitcastShuf(Instruction &I) {
431   Value *V;
432   ArrayRef<int> Mask;
433   if (!match(&I, m_BitCast(
434                      m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))))))
435     return false;
436 
437   // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for
438   // scalable type is unknown; Second, we cannot reason if the narrowed shuffle
439   // mask for scalable type is a splat or not.
440   // 2) Disallow non-vector casts and length-changing shuffles.
441   // TODO: We could allow any shuffle.
442   auto *DestTy = dyn_cast<FixedVectorType>(I.getType());
443   auto *SrcTy = dyn_cast<FixedVectorType>(V->getType());
444   if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy)
445     return false;
446 
447   // The new shuffle must not cost more than the old shuffle. The bitcast is
448   // moved ahead of the shuffle, so assume that it has the same cost as before.
449   if (TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, DestTy) >
450       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy))
451     return false;
452 
453   unsigned DestNumElts = DestTy->getNumElements();
454   unsigned SrcNumElts = SrcTy->getNumElements();
455   SmallVector<int, 16> NewMask;
456   if (SrcNumElts <= DestNumElts) {
457     // The bitcast is from wide to narrow/equal elements. The shuffle mask can
458     // always be expanded to the equivalent form choosing narrower elements.
459     assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask");
460     unsigned ScaleFactor = DestNumElts / SrcNumElts;
461     narrowShuffleMaskElts(ScaleFactor, Mask, NewMask);
462   } else {
463     // The bitcast is from narrow elements to wide elements. The shuffle mask
464     // must choose consecutive elements to allow casting first.
465     assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask");
466     unsigned ScaleFactor = SrcNumElts / DestNumElts;
467     if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask))
468       return false;
469   }
470   // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC'
471   ++NumShufOfBitcast;
472   Value *CastV = Builder.CreateBitCast(V, DestTy);
473   Value *Shuf =
474       Builder.CreateShuffleVector(CastV, UndefValue::get(DestTy), NewMask);
475   replaceValue(I, *Shuf);
476   return true;
477 }
478 
479 /// Match a vector binop or compare instruction with at least one inserted
480 /// scalar operand and convert to scalar binop/cmp followed by insertelement.
481 bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) {
482   CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
483   Value *Ins0, *Ins1;
484   if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) &&
485       !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1))))
486     return false;
487 
488   // Do not convert the vector condition of a vector select into a scalar
489   // condition. That may cause problems for codegen because of differences in
490   // boolean formats and register-file transfers.
491   // TODO: Can we account for that in the cost model?
492   bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE;
493   if (IsCmp)
494     for (User *U : I.users())
495       if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value())))
496         return false;
497 
498   // Match against one or both scalar values being inserted into constant
499   // vectors:
500   // vec_op VecC0, (inselt VecC1, V1, Index)
501   // vec_op (inselt VecC0, V0, Index), VecC1
502   // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index)
503   // TODO: Deal with mismatched index constants and variable indexes?
504   Constant *VecC0 = nullptr, *VecC1 = nullptr;
505   Value *V0 = nullptr, *V1 = nullptr;
506   uint64_t Index0 = 0, Index1 = 0;
507   if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0),
508                                m_ConstantInt(Index0))) &&
509       !match(Ins0, m_Constant(VecC0)))
510     return false;
511   if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1),
512                                m_ConstantInt(Index1))) &&
513       !match(Ins1, m_Constant(VecC1)))
514     return false;
515 
516   bool IsConst0 = !V0;
517   bool IsConst1 = !V1;
518   if (IsConst0 && IsConst1)
519     return false;
520   if (!IsConst0 && !IsConst1 && Index0 != Index1)
521     return false;
522 
523   // Bail for single insertion if it is a load.
524   // TODO: Handle this once getVectorInstrCost can cost for load/stores.
525   auto *I0 = dyn_cast_or_null<Instruction>(V0);
526   auto *I1 = dyn_cast_or_null<Instruction>(V1);
527   if ((IsConst0 && I1 && I1->mayReadFromMemory()) ||
528       (IsConst1 && I0 && I0->mayReadFromMemory()))
529     return false;
530 
531   uint64_t Index = IsConst0 ? Index1 : Index0;
532   Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType();
533   Type *VecTy = I.getType();
534   assert(VecTy->isVectorTy() &&
535          (IsConst0 || IsConst1 || V0->getType() == V1->getType()) &&
536          (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() ||
537           ScalarTy->isPointerTy()) &&
538          "Unexpected types for insert element into binop or cmp");
539 
540   unsigned Opcode = I.getOpcode();
541   int ScalarOpCost, VectorOpCost;
542   if (IsCmp) {
543     ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy);
544     VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy);
545   } else {
546     ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
547     VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
548   }
549 
550   // Get cost estimate for the insert element. This cost will factor into
551   // both sequences.
552   int InsertCost =
553       TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index);
554   int OldCost = (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) +
555                 VectorOpCost;
556   int NewCost = ScalarOpCost + InsertCost +
557                 (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) +
558                 (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost);
559 
560   // We want to scalarize unless the vector variant actually has lower cost.
561   if (OldCost < NewCost)
562     return false;
563 
564   // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) -->
565   // inselt NewVecC, (scalar_op V0, V1), Index
566   if (IsCmp)
567     ++NumScalarCmp;
568   else
569     ++NumScalarBO;
570 
571   // For constant cases, extract the scalar element, this should constant fold.
572   if (IsConst0)
573     V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index));
574   if (IsConst1)
575     V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index));
576 
577   Value *Scalar =
578       IsCmp ? Builder.CreateCmp(Pred, V0, V1)
579             : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1);
580 
581   Scalar->setName(I.getName() + ".scalar");
582 
583   // All IR flags are safe to back-propagate. There is no potential for extra
584   // poison to be created by the scalar instruction.
585   if (auto *ScalarInst = dyn_cast<Instruction>(Scalar))
586     ScalarInst->copyIRFlags(&I);
587 
588   // Fold the vector constants in the original vectors into a new base vector.
589   Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1)
590                             : ConstantExpr::get(Opcode, VecC0, VecC1);
591   Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index);
592   replaceValue(I, *Insert);
593   return true;
594 }
595 
596 /// Try to combine a scalar binop + 2 scalar compares of extracted elements of
597 /// a vector into vector operations followed by extract. Note: The SLP pass
598 /// may miss this pattern because of implementation problems.
599 bool VectorCombine::foldExtractedCmps(Instruction &I) {
600   // We are looking for a scalar binop of booleans.
601   // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1)
602   if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1))
603     return false;
604 
605   // The compare predicates should match, and each compare should have a
606   // constant operand.
607   // TODO: Relax the one-use constraints.
608   Value *B0 = I.getOperand(0), *B1 = I.getOperand(1);
609   Instruction *I0, *I1;
610   Constant *C0, *C1;
611   CmpInst::Predicate P0, P1;
612   if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) ||
613       !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) ||
614       P0 != P1)
615     return false;
616 
617   // The compare operands must be extracts of the same vector with constant
618   // extract indexes.
619   // TODO: Relax the one-use constraints.
620   Value *X;
621   uint64_t Index0, Index1;
622   if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) ||
623       !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1)))))
624     return false;
625 
626   auto *Ext0 = cast<ExtractElementInst>(I0);
627   auto *Ext1 = cast<ExtractElementInst>(I1);
628   ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1);
629   if (!ConvertToShuf)
630     return false;
631 
632   // The original scalar pattern is:
633   // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1)
634   CmpInst::Predicate Pred = P0;
635   unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp
636                                                     : Instruction::ICmp;
637   auto *VecTy = dyn_cast<FixedVectorType>(X->getType());
638   if (!VecTy)
639     return false;
640 
641   int OldCost = TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
642   OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);
643   OldCost += TTI.getCmpSelInstrCost(CmpOpcode, I0->getType()) * 2;
644   OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType());
645 
646   // The proposed vector pattern is:
647   // vcmp = cmp Pred X, VecC
648   // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0
649   int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0;
650   int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1;
651   auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType()));
652   int NewCost = TTI.getCmpSelInstrCost(CmpOpcode, X->getType());
653   NewCost +=
654       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy);
655   NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy);
656   NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex);
657 
658   // Aggressively form vector ops if the cost is equal because the transform
659   // may enable further optimization.
660   // Codegen can reverse this transform (scalarize) if it was not profitable.
661   if (OldCost < NewCost)
662     return false;
663 
664   // Create a vector constant from the 2 scalar constants.
665   SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(),
666                                    UndefValue::get(VecTy->getElementType()));
667   CmpC[Index0] = C0;
668   CmpC[Index1] = C1;
669   Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC));
670 
671   Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder);
672   Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
673                                         VCmp, Shuf);
674   Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex);
675   replaceValue(I, *NewExt);
676   ++NumVecCmpBO;
677   return true;
678 }
679 
680 /// This is the entry point for all transforms. Pass manager differences are
681 /// handled in the callers of this function.
682 bool VectorCombine::run() {
683   if (DisableVectorCombine)
684     return false;
685 
686   // Don't attempt vectorization if the target does not support vectors.
687   if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true)))
688     return false;
689 
690   bool MadeChange = false;
691   for (BasicBlock &BB : F) {
692     // Ignore unreachable basic blocks.
693     if (!DT.isReachableFromEntry(&BB))
694       continue;
695     // Do not delete instructions under here and invalidate the iterator.
696     // Walk the block forwards to enable simple iterative chains of transforms.
697     // TODO: It could be more efficient to remove dead instructions
698     //       iteratively in this loop rather than waiting until the end.
699     for (Instruction &I : BB) {
700       if (isa<DbgInfoIntrinsic>(I))
701         continue;
702       Builder.SetInsertPoint(&I);
703       MadeChange |= vectorizeLoadInsert(I);
704       MadeChange |= foldExtractExtract(I);
705       MadeChange |= foldBitcastShuf(I);
706       MadeChange |= scalarizeBinopOrCmp(I);
707       MadeChange |= foldExtractedCmps(I);
708     }
709   }
710 
711   // We're done with transforms, so remove dead instructions.
712   if (MadeChange)
713     for (BasicBlock &BB : F)
714       SimplifyInstructionsInBlock(&BB);
715 
716   return MadeChange;
717 }
718 
719 // Pass manager boilerplate below here.
720 
721 namespace {
722 class VectorCombineLegacyPass : public FunctionPass {
723 public:
724   static char ID;
725   VectorCombineLegacyPass() : FunctionPass(ID) {
726     initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry());
727   }
728 
729   void getAnalysisUsage(AnalysisUsage &AU) const override {
730     AU.addRequired<DominatorTreeWrapperPass>();
731     AU.addRequired<TargetTransformInfoWrapperPass>();
732     AU.setPreservesCFG();
733     AU.addPreserved<DominatorTreeWrapperPass>();
734     AU.addPreserved<GlobalsAAWrapperPass>();
735     AU.addPreserved<AAResultsWrapperPass>();
736     AU.addPreserved<BasicAAWrapperPass>();
737     FunctionPass::getAnalysisUsage(AU);
738   }
739 
740   bool runOnFunction(Function &F) override {
741     if (skipFunction(F))
742       return false;
743     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
744     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
745     VectorCombine Combiner(F, TTI, DT);
746     return Combiner.run();
747   }
748 };
749 } // namespace
750 
751 char VectorCombineLegacyPass::ID = 0;
752 INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine",
753                       "Optimize scalar/vector ops", false,
754                       false)
755 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
756 INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine",
757                     "Optimize scalar/vector ops", false, false)
758 Pass *llvm::createVectorCombinePass() {
759   return new VectorCombineLegacyPass();
760 }
761 
762 PreservedAnalyses VectorCombinePass::run(Function &F,
763                                          FunctionAnalysisManager &FAM) {
764   TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
765   DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
766   VectorCombine Combiner(F, TTI, DT);
767   if (!Combiner.run())
768     return PreservedAnalyses::all();
769   PreservedAnalyses PA;
770   PA.preserveSet<CFGAnalyses>();
771   PA.preserve<GlobalsAA>();
772   PA.preserve<AAManager>();
773   PA.preserve<BasicAA>();
774   return PA;
775 }
776