1 //===------- VectorCombine.cpp - Optimize partial vector operations -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass optimizes scalar/vector interactions using target cost models. The
10 // transforms implemented here may not fit in traditional loop-based or SLP
11 // vectorization passes.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Vectorize/VectorCombine.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/AssumptionCache.h"
18 #include "llvm/Analysis/BasicAliasAnalysis.h"
19 #include "llvm/Analysis/GlobalsModRef.h"
20 #include "llvm/Analysis/Loads.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/Analysis/VectorUtils.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/InitializePasses.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "llvm/Transforms/Vectorize.h"
33
34 #define DEBUG_TYPE "vector-combine"
35 #include "llvm/Transforms/Utils/InstructionWorklist.h"
36
37 using namespace llvm;
38 using namespace llvm::PatternMatch;
39
40 STATISTIC(NumVecLoad, "Number of vector loads formed");
41 STATISTIC(NumVecCmp, "Number of vector compares formed");
42 STATISTIC(NumVecBO, "Number of vector binops formed");
43 STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed");
44 STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast");
45 STATISTIC(NumScalarBO, "Number of scalar binops formed");
46 STATISTIC(NumScalarCmp, "Number of scalar compares formed");
47
48 static cl::opt<bool> DisableVectorCombine(
49 "disable-vector-combine", cl::init(false), cl::Hidden,
50 cl::desc("Disable all vector combine transforms"));
51
52 static cl::opt<bool> DisableBinopExtractShuffle(
53 "disable-binop-extract-shuffle", cl::init(false), cl::Hidden,
54 cl::desc("Disable binop extract to shuffle transforms"));
55
56 static cl::opt<unsigned> MaxInstrsToScan(
57 "vector-combine-max-scan-instrs", cl::init(30), cl::Hidden,
58 cl::desc("Max number of instructions to scan for vector combining."));
59
60 static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max();
61
62 namespace {
63 class VectorCombine {
64 public:
VectorCombine(Function & F,const TargetTransformInfo & TTI,const DominatorTree & DT,AAResults & AA,AssumptionCache & AC,bool ScalarizationOnly)65 VectorCombine(Function &F, const TargetTransformInfo &TTI,
66 const DominatorTree &DT, AAResults &AA, AssumptionCache &AC,
67 bool ScalarizationOnly)
68 : F(F), Builder(F.getContext()), TTI(TTI), DT(DT), AA(AA), AC(AC),
69 ScalarizationOnly(ScalarizationOnly) {}
70
71 bool run();
72
73 private:
74 Function &F;
75 IRBuilder<> Builder;
76 const TargetTransformInfo &TTI;
77 const DominatorTree &DT;
78 AAResults &AA;
79 AssumptionCache &AC;
80
81 /// If true only perform scalarization combines and do not introduce new
82 /// vector operations.
83 bool ScalarizationOnly;
84
85 InstructionWorklist Worklist;
86
87 bool vectorizeLoadInsert(Instruction &I);
88 ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0,
89 ExtractElementInst *Ext1,
90 unsigned PreferredExtractIndex) const;
91 bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
92 const Instruction &I,
93 ExtractElementInst *&ConvertToShuffle,
94 unsigned PreferredExtractIndex);
95 void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
96 Instruction &I);
97 void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
98 Instruction &I);
99 bool foldExtractExtract(Instruction &I);
100 bool foldBitcastShuf(Instruction &I);
101 bool scalarizeBinopOrCmp(Instruction &I);
102 bool foldExtractedCmps(Instruction &I);
103 bool foldSingleElementStore(Instruction &I);
104 bool scalarizeLoadExtract(Instruction &I);
105 bool foldShuffleOfBinops(Instruction &I);
106 bool foldShuffleFromReductions(Instruction &I);
107 bool foldSelectShuffle(Instruction &I, bool FromReduction = false);
108
replaceValue(Value & Old,Value & New)109 void replaceValue(Value &Old, Value &New) {
110 Old.replaceAllUsesWith(&New);
111 if (auto *NewI = dyn_cast<Instruction>(&New)) {
112 New.takeName(&Old);
113 Worklist.pushUsersToWorkList(*NewI);
114 Worklist.pushValue(NewI);
115 }
116 Worklist.pushValue(&Old);
117 }
118
eraseInstruction(Instruction & I)119 void eraseInstruction(Instruction &I) {
120 for (Value *Op : I.operands())
121 Worklist.pushValue(Op);
122 Worklist.remove(&I);
123 I.eraseFromParent();
124 }
125 };
126 } // namespace
127
vectorizeLoadInsert(Instruction & I)128 bool VectorCombine::vectorizeLoadInsert(Instruction &I) {
129 // Match insert into fixed vector of scalar value.
130 // TODO: Handle non-zero insert index.
131 auto *Ty = dyn_cast<FixedVectorType>(I.getType());
132 Value *Scalar;
133 if (!Ty || !match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) ||
134 !Scalar->hasOneUse())
135 return false;
136
137 // Optionally match an extract from another vector.
138 Value *X;
139 bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt()));
140 if (!HasExtract)
141 X = Scalar;
142
143 // Match source value as load of scalar or vector.
144 // Do not vectorize scalar load (widening) if atomic/volatile or under
145 // asan/hwasan/memtag/tsan. The widened load may load data from dirty regions
146 // or create data races non-existent in the source.
147 auto *Load = dyn_cast<LoadInst>(X);
148 if (!Load || !Load->isSimple() || !Load->hasOneUse() ||
149 Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) ||
150 mustSuppressSpeculation(*Load))
151 return false;
152
153 const DataLayout &DL = I.getModule()->getDataLayout();
154 Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts();
155 assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type");
156
157 unsigned AS = Load->getPointerAddressSpace();
158
159 // We are potentially transforming byte-sized (8-bit) memory accesses, so make
160 // sure we have all of our type-based constraints in place for this target.
161 Type *ScalarTy = Scalar->getType();
162 uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
163 unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
164 if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 ||
165 ScalarSize % 8 != 0)
166 return false;
167
168 // Check safety of replacing the scalar load with a larger vector load.
169 // We use minimal alignment (maximum flexibility) because we only care about
170 // the dereferenceable region. When calculating cost and creating a new op,
171 // we may use a larger value based on alignment attributes.
172 unsigned MinVecNumElts = MinVectorSize / ScalarSize;
173 auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false);
174 unsigned OffsetEltIndex = 0;
175 Align Alignment = Load->getAlign();
176 if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) {
177 // It is not safe to load directly from the pointer, but we can still peek
178 // through gep offsets and check if it safe to load from a base address with
179 // updated alignment. If it is, we can shuffle the element(s) into place
180 // after loading.
181 unsigned OffsetBitWidth = DL.getIndexTypeSizeInBits(SrcPtr->getType());
182 APInt Offset(OffsetBitWidth, 0);
183 SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
184
185 // We want to shuffle the result down from a high element of a vector, so
186 // the offset must be positive.
187 if (Offset.isNegative())
188 return false;
189
190 // The offset must be a multiple of the scalar element to shuffle cleanly
191 // in the element's size.
192 uint64_t ScalarSizeInBytes = ScalarSize / 8;
193 if (Offset.urem(ScalarSizeInBytes) != 0)
194 return false;
195
196 // If we load MinVecNumElts, will our target element still be loaded?
197 OffsetEltIndex = Offset.udiv(ScalarSizeInBytes).getZExtValue();
198 if (OffsetEltIndex >= MinVecNumElts)
199 return false;
200
201 if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT))
202 return false;
203
204 // Update alignment with offset value. Note that the offset could be negated
205 // to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but
206 // negation does not change the result of the alignment calculation.
207 Alignment = commonAlignment(Alignment, Offset.getZExtValue());
208 }
209
210 // Original pattern: insertelt undef, load [free casts of] PtrOp, 0
211 // Use the greater of the alignment on the load or its source pointer.
212 Alignment = std::max(SrcPtr->getPointerAlignment(DL), Alignment);
213 Type *LoadTy = Load->getType();
214 InstructionCost OldCost =
215 TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS);
216 APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0);
217 OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts,
218 /* Insert */ true, HasExtract);
219
220 // New pattern: load VecPtr
221 InstructionCost NewCost =
222 TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS);
223 // Optionally, we are shuffling the loaded vector element(s) into place.
224 // For the mask set everything but element 0 to undef to prevent poison from
225 // propagating from the extra loaded memory. This will also optionally
226 // shrink/grow the vector from the loaded size to the output size.
227 // We assume this operation has no cost in codegen if there was no offset.
228 // Note that we could use freeze to avoid poison problems, but then we might
229 // still need a shuffle to change the vector size.
230 unsigned OutputNumElts = Ty->getNumElements();
231 SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem);
232 assert(OffsetEltIndex < MinVecNumElts && "Address offset too big");
233 Mask[0] = OffsetEltIndex;
234 if (OffsetEltIndex)
235 NewCost += TTI.getShuffleCost(TTI::SK_PermuteSingleSrc, MinVecTy, Mask);
236
237 // We can aggressively convert to the vector form because the backend can
238 // invert this transform if it does not result in a performance win.
239 if (OldCost < NewCost || !NewCost.isValid())
240 return false;
241
242 // It is safe and potentially profitable to load a vector directly:
243 // inselt undef, load Scalar, 0 --> load VecPtr
244 IRBuilder<> Builder(Load);
245 Value *CastedPtr = Builder.CreatePointerBitCastOrAddrSpaceCast(
246 SrcPtr, MinVecTy->getPointerTo(AS));
247 Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment);
248 VecLd = Builder.CreateShuffleVector(VecLd, Mask);
249
250 replaceValue(I, *VecLd);
251 ++NumVecLoad;
252 return true;
253 }
254
255 /// Determine which, if any, of the inputs should be replaced by a shuffle
256 /// followed by extract from a different index.
getShuffleExtract(ExtractElementInst * Ext0,ExtractElementInst * Ext1,unsigned PreferredExtractIndex=InvalidIndex) const257 ExtractElementInst *VectorCombine::getShuffleExtract(
258 ExtractElementInst *Ext0, ExtractElementInst *Ext1,
259 unsigned PreferredExtractIndex = InvalidIndex) const {
260 auto *Index0C = dyn_cast<ConstantInt>(Ext0->getIndexOperand());
261 auto *Index1C = dyn_cast<ConstantInt>(Ext1->getIndexOperand());
262 assert(Index0C && Index1C && "Expected constant extract indexes");
263
264 unsigned Index0 = Index0C->getZExtValue();
265 unsigned Index1 = Index1C->getZExtValue();
266
267 // If the extract indexes are identical, no shuffle is needed.
268 if (Index0 == Index1)
269 return nullptr;
270
271 Type *VecTy = Ext0->getVectorOperand()->getType();
272 assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types");
273 InstructionCost Cost0 =
274 TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
275 InstructionCost Cost1 =
276 TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);
277
278 // If both costs are invalid no shuffle is needed
279 if (!Cost0.isValid() && !Cost1.isValid())
280 return nullptr;
281
282 // We are extracting from 2 different indexes, so one operand must be shuffled
283 // before performing a vector operation and/or extract. The more expensive
284 // extract will be replaced by a shuffle.
285 if (Cost0 > Cost1)
286 return Ext0;
287 if (Cost1 > Cost0)
288 return Ext1;
289
290 // If the costs are equal and there is a preferred extract index, shuffle the
291 // opposite operand.
292 if (PreferredExtractIndex == Index0)
293 return Ext1;
294 if (PreferredExtractIndex == Index1)
295 return Ext0;
296
297 // Otherwise, replace the extract with the higher index.
298 return Index0 > Index1 ? Ext0 : Ext1;
299 }
300
301 /// Compare the relative costs of 2 extracts followed by scalar operation vs.
302 /// vector operation(s) followed by extract. Return true if the existing
303 /// instructions are cheaper than a vector alternative. Otherwise, return false
304 /// and if one of the extracts should be transformed to a shufflevector, set
305 /// \p ConvertToShuffle to that extract instruction.
isExtractExtractCheap(ExtractElementInst * Ext0,ExtractElementInst * Ext1,const Instruction & I,ExtractElementInst * & ConvertToShuffle,unsigned PreferredExtractIndex)306 bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0,
307 ExtractElementInst *Ext1,
308 const Instruction &I,
309 ExtractElementInst *&ConvertToShuffle,
310 unsigned PreferredExtractIndex) {
311 auto *Ext0IndexC = dyn_cast<ConstantInt>(Ext0->getOperand(1));
312 auto *Ext1IndexC = dyn_cast<ConstantInt>(Ext1->getOperand(1));
313 assert(Ext0IndexC && Ext1IndexC && "Expected constant extract indexes");
314
315 unsigned Opcode = I.getOpcode();
316 Type *ScalarTy = Ext0->getType();
317 auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType());
318 InstructionCost ScalarOpCost, VectorOpCost;
319
320 // Get cost estimates for scalar and vector versions of the operation.
321 bool IsBinOp = Instruction::isBinaryOp(Opcode);
322 if (IsBinOp) {
323 ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
324 VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
325 } else {
326 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
327 "Expected a compare");
328 CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate();
329 ScalarOpCost = TTI.getCmpSelInstrCost(
330 Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred);
331 VectorOpCost = TTI.getCmpSelInstrCost(
332 Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred);
333 }
334
335 // Get cost estimates for the extract elements. These costs will factor into
336 // both sequences.
337 unsigned Ext0Index = Ext0IndexC->getZExtValue();
338 unsigned Ext1Index = Ext1IndexC->getZExtValue();
339
340 InstructionCost Extract0Cost =
341 TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index);
342 InstructionCost Extract1Cost =
343 TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index);
344
345 // A more expensive extract will always be replaced by a splat shuffle.
346 // For example, if Ext0 is more expensive:
347 // opcode (extelt V0, Ext0), (ext V1, Ext1) -->
348 // extelt (opcode (splat V0, Ext0), V1), Ext1
349 // TODO: Evaluate whether that always results in lowest cost. Alternatively,
350 // check the cost of creating a broadcast shuffle and shuffling both
351 // operands to element 0.
352 InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost);
353
354 // Extra uses of the extracts mean that we include those costs in the
355 // vector total because those instructions will not be eliminated.
356 InstructionCost OldCost, NewCost;
357 if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) {
358 // Handle a special case. If the 2 extracts are identical, adjust the
359 // formulas to account for that. The extra use charge allows for either the
360 // CSE'd pattern or an unoptimized form with identical values:
361 // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C
362 bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2)
363 : !Ext0->hasOneUse() || !Ext1->hasOneUse();
364 OldCost = CheapExtractCost + ScalarOpCost;
365 NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost;
366 } else {
367 // Handle the general case. Each extract is actually a different value:
368 // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C
369 OldCost = Extract0Cost + Extract1Cost + ScalarOpCost;
370 NewCost = VectorOpCost + CheapExtractCost +
371 !Ext0->hasOneUse() * Extract0Cost +
372 !Ext1->hasOneUse() * Extract1Cost;
373 }
374
375 ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex);
376 if (ConvertToShuffle) {
377 if (IsBinOp && DisableBinopExtractShuffle)
378 return true;
379
380 // If we are extracting from 2 different indexes, then one operand must be
381 // shuffled before performing the vector operation. The shuffle mask is
382 // undefined except for 1 lane that is being translated to the remaining
383 // extraction lane. Therefore, it is a splat shuffle. Ex:
384 // ShufMask = { undef, undef, 0, undef }
385 // TODO: The cost model has an option for a "broadcast" shuffle
386 // (splat-from-element-0), but no option for a more general splat.
387 NewCost +=
388 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
389 }
390
391 // Aggressively form a vector op if the cost is equal because the transform
392 // may enable further optimization.
393 // Codegen can reverse this transform (scalarize) if it was not profitable.
394 return OldCost < NewCost;
395 }
396
397 /// Create a shuffle that translates (shifts) 1 element from the input vector
398 /// to a new element location.
createShiftShuffle(Value * Vec,unsigned OldIndex,unsigned NewIndex,IRBuilder<> & Builder)399 static Value *createShiftShuffle(Value *Vec, unsigned OldIndex,
400 unsigned NewIndex, IRBuilder<> &Builder) {
401 // The shuffle mask is undefined except for 1 lane that is being translated
402 // to the new element index. Example for OldIndex == 2 and NewIndex == 0:
403 // ShufMask = { 2, undef, undef, undef }
404 auto *VecTy = cast<FixedVectorType>(Vec->getType());
405 SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem);
406 ShufMask[NewIndex] = OldIndex;
407 return Builder.CreateShuffleVector(Vec, ShufMask, "shift");
408 }
409
410 /// Given an extract element instruction with constant index operand, shuffle
411 /// the source vector (shift the scalar element) to a NewIndex for extraction.
412 /// Return null if the input can be constant folded, so that we are not creating
413 /// unnecessary instructions.
translateExtract(ExtractElementInst * ExtElt,unsigned NewIndex,IRBuilder<> & Builder)414 static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt,
415 unsigned NewIndex,
416 IRBuilder<> &Builder) {
417 // Shufflevectors can only be created for fixed-width vectors.
418 if (!isa<FixedVectorType>(ExtElt->getOperand(0)->getType()))
419 return nullptr;
420
421 // If the extract can be constant-folded, this code is unsimplified. Defer
422 // to other passes to handle that.
423 Value *X = ExtElt->getVectorOperand();
424 Value *C = ExtElt->getIndexOperand();
425 assert(isa<ConstantInt>(C) && "Expected a constant index operand");
426 if (isa<Constant>(X))
427 return nullptr;
428
429 Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(),
430 NewIndex, Builder);
431 return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex));
432 }
433
434 /// Try to reduce extract element costs by converting scalar compares to vector
435 /// compares followed by extract.
436 /// cmp (ext0 V0, C), (ext1 V1, C)
foldExtExtCmp(ExtractElementInst * Ext0,ExtractElementInst * Ext1,Instruction & I)437 void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0,
438 ExtractElementInst *Ext1, Instruction &I) {
439 assert(isa<CmpInst>(&I) && "Expected a compare");
440 assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
441 cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
442 "Expected matching constant extract indexes");
443
444 // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C
445 ++NumVecCmp;
446 CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate();
447 Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
448 Value *VecCmp = Builder.CreateCmp(Pred, V0, V1);
449 Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand());
450 replaceValue(I, *NewExt);
451 }
452
453 /// Try to reduce extract element costs by converting scalar binops to vector
454 /// binops followed by extract.
455 /// bo (ext0 V0, C), (ext1 V1, C)
foldExtExtBinop(ExtractElementInst * Ext0,ExtractElementInst * Ext1,Instruction & I)456 void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0,
457 ExtractElementInst *Ext1, Instruction &I) {
458 assert(isa<BinaryOperator>(&I) && "Expected a binary operator");
459 assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
460 cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
461 "Expected matching constant extract indexes");
462
463 // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C
464 ++NumVecBO;
465 Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
466 Value *VecBO =
467 Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1);
468
469 // All IR flags are safe to back-propagate because any potential poison
470 // created in unused vector elements is discarded by the extract.
471 if (auto *VecBOInst = dyn_cast<Instruction>(VecBO))
472 VecBOInst->copyIRFlags(&I);
473
474 Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand());
475 replaceValue(I, *NewExt);
476 }
477
478 /// Match an instruction with extracted vector operands.
foldExtractExtract(Instruction & I)479 bool VectorCombine::foldExtractExtract(Instruction &I) {
480 // It is not safe to transform things like div, urem, etc. because we may
481 // create undefined behavior when executing those on unknown vector elements.
482 if (!isSafeToSpeculativelyExecute(&I))
483 return false;
484
485 Instruction *I0, *I1;
486 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
487 if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) &&
488 !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1))))
489 return false;
490
491 Value *V0, *V1;
492 uint64_t C0, C1;
493 if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) ||
494 !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) ||
495 V0->getType() != V1->getType())
496 return false;
497
498 // If the scalar value 'I' is going to be re-inserted into a vector, then try
499 // to create an extract to that same element. The extract/insert can be
500 // reduced to a "select shuffle".
501 // TODO: If we add a larger pattern match that starts from an insert, this
502 // probably becomes unnecessary.
503 auto *Ext0 = cast<ExtractElementInst>(I0);
504 auto *Ext1 = cast<ExtractElementInst>(I1);
505 uint64_t InsertIndex = InvalidIndex;
506 if (I.hasOneUse())
507 match(I.user_back(),
508 m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex)));
509
510 ExtractElementInst *ExtractToChange;
511 if (isExtractExtractCheap(Ext0, Ext1, I, ExtractToChange, InsertIndex))
512 return false;
513
514 if (ExtractToChange) {
515 unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0;
516 ExtractElementInst *NewExtract =
517 translateExtract(ExtractToChange, CheapExtractIdx, Builder);
518 if (!NewExtract)
519 return false;
520 if (ExtractToChange == Ext0)
521 Ext0 = NewExtract;
522 else
523 Ext1 = NewExtract;
524 }
525
526 if (Pred != CmpInst::BAD_ICMP_PREDICATE)
527 foldExtExtCmp(Ext0, Ext1, I);
528 else
529 foldExtExtBinop(Ext0, Ext1, I);
530
531 Worklist.push(Ext0);
532 Worklist.push(Ext1);
533 return true;
534 }
535
536 /// If this is a bitcast of a shuffle, try to bitcast the source vector to the
537 /// destination type followed by shuffle. This can enable further transforms by
538 /// moving bitcasts or shuffles together.
foldBitcastShuf(Instruction & I)539 bool VectorCombine::foldBitcastShuf(Instruction &I) {
540 Value *V;
541 ArrayRef<int> Mask;
542 if (!match(&I, m_BitCast(
543 m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))))))
544 return false;
545
546 // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for
547 // scalable type is unknown; Second, we cannot reason if the narrowed shuffle
548 // mask for scalable type is a splat or not.
549 // 2) Disallow non-vector casts and length-changing shuffles.
550 // TODO: We could allow any shuffle.
551 auto *DestTy = dyn_cast<FixedVectorType>(I.getType());
552 auto *SrcTy = dyn_cast<FixedVectorType>(V->getType());
553 if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy)
554 return false;
555
556 unsigned DestNumElts = DestTy->getNumElements();
557 unsigned SrcNumElts = SrcTy->getNumElements();
558 SmallVector<int, 16> NewMask;
559 if (SrcNumElts <= DestNumElts) {
560 // The bitcast is from wide to narrow/equal elements. The shuffle mask can
561 // always be expanded to the equivalent form choosing narrower elements.
562 assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask");
563 unsigned ScaleFactor = DestNumElts / SrcNumElts;
564 narrowShuffleMaskElts(ScaleFactor, Mask, NewMask);
565 } else {
566 // The bitcast is from narrow elements to wide elements. The shuffle mask
567 // must choose consecutive elements to allow casting first.
568 assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask");
569 unsigned ScaleFactor = SrcNumElts / DestNumElts;
570 if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask))
571 return false;
572 }
573
574 // The new shuffle must not cost more than the old shuffle. The bitcast is
575 // moved ahead of the shuffle, so assume that it has the same cost as before.
576 InstructionCost DestCost = TTI.getShuffleCost(
577 TargetTransformInfo::SK_PermuteSingleSrc, DestTy, NewMask);
578 InstructionCost SrcCost =
579 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy, Mask);
580 if (DestCost > SrcCost || !DestCost.isValid())
581 return false;
582
583 // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC'
584 ++NumShufOfBitcast;
585 Value *CastV = Builder.CreateBitCast(V, DestTy);
586 Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask);
587 replaceValue(I, *Shuf);
588 return true;
589 }
590
591 /// Match a vector binop or compare instruction with at least one inserted
592 /// scalar operand and convert to scalar binop/cmp followed by insertelement.
scalarizeBinopOrCmp(Instruction & I)593 bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) {
594 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
595 Value *Ins0, *Ins1;
596 if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) &&
597 !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1))))
598 return false;
599
600 // Do not convert the vector condition of a vector select into a scalar
601 // condition. That may cause problems for codegen because of differences in
602 // boolean formats and register-file transfers.
603 // TODO: Can we account for that in the cost model?
604 bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE;
605 if (IsCmp)
606 for (User *U : I.users())
607 if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value())))
608 return false;
609
610 // Match against one or both scalar values being inserted into constant
611 // vectors:
612 // vec_op VecC0, (inselt VecC1, V1, Index)
613 // vec_op (inselt VecC0, V0, Index), VecC1
614 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index)
615 // TODO: Deal with mismatched index constants and variable indexes?
616 Constant *VecC0 = nullptr, *VecC1 = nullptr;
617 Value *V0 = nullptr, *V1 = nullptr;
618 uint64_t Index0 = 0, Index1 = 0;
619 if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0),
620 m_ConstantInt(Index0))) &&
621 !match(Ins0, m_Constant(VecC0)))
622 return false;
623 if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1),
624 m_ConstantInt(Index1))) &&
625 !match(Ins1, m_Constant(VecC1)))
626 return false;
627
628 bool IsConst0 = !V0;
629 bool IsConst1 = !V1;
630 if (IsConst0 && IsConst1)
631 return false;
632 if (!IsConst0 && !IsConst1 && Index0 != Index1)
633 return false;
634
635 // Bail for single insertion if it is a load.
636 // TODO: Handle this once getVectorInstrCost can cost for load/stores.
637 auto *I0 = dyn_cast_or_null<Instruction>(V0);
638 auto *I1 = dyn_cast_or_null<Instruction>(V1);
639 if ((IsConst0 && I1 && I1->mayReadFromMemory()) ||
640 (IsConst1 && I0 && I0->mayReadFromMemory()))
641 return false;
642
643 uint64_t Index = IsConst0 ? Index1 : Index0;
644 Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType();
645 Type *VecTy = I.getType();
646 assert(VecTy->isVectorTy() &&
647 (IsConst0 || IsConst1 || V0->getType() == V1->getType()) &&
648 (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() ||
649 ScalarTy->isPointerTy()) &&
650 "Unexpected types for insert element into binop or cmp");
651
652 unsigned Opcode = I.getOpcode();
653 InstructionCost ScalarOpCost, VectorOpCost;
654 if (IsCmp) {
655 CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate();
656 ScalarOpCost = TTI.getCmpSelInstrCost(
657 Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred);
658 VectorOpCost = TTI.getCmpSelInstrCost(
659 Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred);
660 } else {
661 ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
662 VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
663 }
664
665 // Get cost estimate for the insert element. This cost will factor into
666 // both sequences.
667 InstructionCost InsertCost =
668 TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index);
669 InstructionCost OldCost =
670 (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + VectorOpCost;
671 InstructionCost NewCost = ScalarOpCost + InsertCost +
672 (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) +
673 (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost);
674
675 // We want to scalarize unless the vector variant actually has lower cost.
676 if (OldCost < NewCost || !NewCost.isValid())
677 return false;
678
679 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) -->
680 // inselt NewVecC, (scalar_op V0, V1), Index
681 if (IsCmp)
682 ++NumScalarCmp;
683 else
684 ++NumScalarBO;
685
686 // For constant cases, extract the scalar element, this should constant fold.
687 if (IsConst0)
688 V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index));
689 if (IsConst1)
690 V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index));
691
692 Value *Scalar =
693 IsCmp ? Builder.CreateCmp(Pred, V0, V1)
694 : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1);
695
696 Scalar->setName(I.getName() + ".scalar");
697
698 // All IR flags are safe to back-propagate. There is no potential for extra
699 // poison to be created by the scalar instruction.
700 if (auto *ScalarInst = dyn_cast<Instruction>(Scalar))
701 ScalarInst->copyIRFlags(&I);
702
703 // Fold the vector constants in the original vectors into a new base vector.
704 Value *NewVecC =
705 IsCmp ? Builder.CreateCmp(Pred, VecC0, VecC1)
706 : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, VecC0, VecC1);
707 Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index);
708 replaceValue(I, *Insert);
709 return true;
710 }
711
712 /// Try to combine a scalar binop + 2 scalar compares of extracted elements of
713 /// a vector into vector operations followed by extract. Note: The SLP pass
714 /// may miss this pattern because of implementation problems.
foldExtractedCmps(Instruction & I)715 bool VectorCombine::foldExtractedCmps(Instruction &I) {
716 // We are looking for a scalar binop of booleans.
717 // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1)
718 if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1))
719 return false;
720
721 // The compare predicates should match, and each compare should have a
722 // constant operand.
723 // TODO: Relax the one-use constraints.
724 Value *B0 = I.getOperand(0), *B1 = I.getOperand(1);
725 Instruction *I0, *I1;
726 Constant *C0, *C1;
727 CmpInst::Predicate P0, P1;
728 if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) ||
729 !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) ||
730 P0 != P1)
731 return false;
732
733 // The compare operands must be extracts of the same vector with constant
734 // extract indexes.
735 // TODO: Relax the one-use constraints.
736 Value *X;
737 uint64_t Index0, Index1;
738 if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) ||
739 !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1)))))
740 return false;
741
742 auto *Ext0 = cast<ExtractElementInst>(I0);
743 auto *Ext1 = cast<ExtractElementInst>(I1);
744 ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1);
745 if (!ConvertToShuf)
746 return false;
747
748 // The original scalar pattern is:
749 // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1)
750 CmpInst::Predicate Pred = P0;
751 unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp
752 : Instruction::ICmp;
753 auto *VecTy = dyn_cast<FixedVectorType>(X->getType());
754 if (!VecTy)
755 return false;
756
757 InstructionCost OldCost =
758 TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
759 OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);
760 OldCost +=
761 TTI.getCmpSelInstrCost(CmpOpcode, I0->getType(),
762 CmpInst::makeCmpResultType(I0->getType()), Pred) *
763 2;
764 OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType());
765
766 // The proposed vector pattern is:
767 // vcmp = cmp Pred X, VecC
768 // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0
769 int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0;
770 int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1;
771 auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType()));
772 InstructionCost NewCost = TTI.getCmpSelInstrCost(
773 CmpOpcode, X->getType(), CmpInst::makeCmpResultType(X->getType()), Pred);
774 SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem);
775 ShufMask[CheapIndex] = ExpensiveIndex;
776 NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy,
777 ShufMask);
778 NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy);
779 NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex);
780
781 // Aggressively form vector ops if the cost is equal because the transform
782 // may enable further optimization.
783 // Codegen can reverse this transform (scalarize) if it was not profitable.
784 if (OldCost < NewCost || !NewCost.isValid())
785 return false;
786
787 // Create a vector constant from the 2 scalar constants.
788 SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(),
789 UndefValue::get(VecTy->getElementType()));
790 CmpC[Index0] = C0;
791 CmpC[Index1] = C1;
792 Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC));
793
794 Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder);
795 Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
796 VCmp, Shuf);
797 Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex);
798 replaceValue(I, *NewExt);
799 ++NumVecCmpBO;
800 return true;
801 }
802
803 // Check if memory loc modified between two instrs in the same BB
isMemModifiedBetween(BasicBlock::iterator Begin,BasicBlock::iterator End,const MemoryLocation & Loc,AAResults & AA)804 static bool isMemModifiedBetween(BasicBlock::iterator Begin,
805 BasicBlock::iterator End,
806 const MemoryLocation &Loc, AAResults &AA) {
807 unsigned NumScanned = 0;
808 return std::any_of(Begin, End, [&](const Instruction &Instr) {
809 return isModSet(AA.getModRefInfo(&Instr, Loc)) ||
810 ++NumScanned > MaxInstrsToScan;
811 });
812 }
813
814 /// Helper class to indicate whether a vector index can be safely scalarized and
815 /// if a freeze needs to be inserted.
816 class ScalarizationResult {
817 enum class StatusTy { Unsafe, Safe, SafeWithFreeze };
818
819 StatusTy Status;
820 Value *ToFreeze;
821
ScalarizationResult(StatusTy Status,Value * ToFreeze=nullptr)822 ScalarizationResult(StatusTy Status, Value *ToFreeze = nullptr)
823 : Status(Status), ToFreeze(ToFreeze) {}
824
825 public:
826 ScalarizationResult(const ScalarizationResult &Other) = default;
~ScalarizationResult()827 ~ScalarizationResult() {
828 assert(!ToFreeze && "freeze() not called with ToFreeze being set");
829 }
830
unsafe()831 static ScalarizationResult unsafe() { return {StatusTy::Unsafe}; }
safe()832 static ScalarizationResult safe() { return {StatusTy::Safe}; }
safeWithFreeze(Value * ToFreeze)833 static ScalarizationResult safeWithFreeze(Value *ToFreeze) {
834 return {StatusTy::SafeWithFreeze, ToFreeze};
835 }
836
837 /// Returns true if the index can be scalarize without requiring a freeze.
isSafe() const838 bool isSafe() const { return Status == StatusTy::Safe; }
839 /// Returns true if the index cannot be scalarized.
isUnsafe() const840 bool isUnsafe() const { return Status == StatusTy::Unsafe; }
841 /// Returns true if the index can be scalarize, but requires inserting a
842 /// freeze.
isSafeWithFreeze() const843 bool isSafeWithFreeze() const { return Status == StatusTy::SafeWithFreeze; }
844
845 /// Reset the state of Unsafe and clear ToFreze if set.
discard()846 void discard() {
847 ToFreeze = nullptr;
848 Status = StatusTy::Unsafe;
849 }
850
851 /// Freeze the ToFreeze and update the use in \p User to use it.
freeze(IRBuilder<> & Builder,Instruction & UserI)852 void freeze(IRBuilder<> &Builder, Instruction &UserI) {
853 assert(isSafeWithFreeze() &&
854 "should only be used when freezing is required");
855 assert(is_contained(ToFreeze->users(), &UserI) &&
856 "UserI must be a user of ToFreeze");
857 IRBuilder<>::InsertPointGuard Guard(Builder);
858 Builder.SetInsertPoint(cast<Instruction>(&UserI));
859 Value *Frozen =
860 Builder.CreateFreeze(ToFreeze, ToFreeze->getName() + ".frozen");
861 for (Use &U : make_early_inc_range((UserI.operands())))
862 if (U.get() == ToFreeze)
863 U.set(Frozen);
864
865 ToFreeze = nullptr;
866 }
867 };
868
869 /// Check if it is legal to scalarize a memory access to \p VecTy at index \p
870 /// Idx. \p Idx must access a valid vector element.
canScalarizeAccess(FixedVectorType * VecTy,Value * Idx,Instruction * CtxI,AssumptionCache & AC,const DominatorTree & DT)871 static ScalarizationResult canScalarizeAccess(FixedVectorType *VecTy,
872 Value *Idx, Instruction *CtxI,
873 AssumptionCache &AC,
874 const DominatorTree &DT) {
875 if (auto *C = dyn_cast<ConstantInt>(Idx)) {
876 if (C->getValue().ult(VecTy->getNumElements()))
877 return ScalarizationResult::safe();
878 return ScalarizationResult::unsafe();
879 }
880
881 unsigned IntWidth = Idx->getType()->getScalarSizeInBits();
882 APInt Zero(IntWidth, 0);
883 APInt MaxElts(IntWidth, VecTy->getNumElements());
884 ConstantRange ValidIndices(Zero, MaxElts);
885 ConstantRange IdxRange(IntWidth, true);
886
887 if (isGuaranteedNotToBePoison(Idx, &AC)) {
888 if (ValidIndices.contains(computeConstantRange(Idx, /* ForSigned */ false,
889 true, &AC, CtxI, &DT)))
890 return ScalarizationResult::safe();
891 return ScalarizationResult::unsafe();
892 }
893
894 // If the index may be poison, check if we can insert a freeze before the
895 // range of the index is restricted.
896 Value *IdxBase;
897 ConstantInt *CI;
898 if (match(Idx, m_And(m_Value(IdxBase), m_ConstantInt(CI)))) {
899 IdxRange = IdxRange.binaryAnd(CI->getValue());
900 } else if (match(Idx, m_URem(m_Value(IdxBase), m_ConstantInt(CI)))) {
901 IdxRange = IdxRange.urem(CI->getValue());
902 }
903
904 if (ValidIndices.contains(IdxRange))
905 return ScalarizationResult::safeWithFreeze(IdxBase);
906 return ScalarizationResult::unsafe();
907 }
908
909 /// The memory operation on a vector of \p ScalarType had alignment of
910 /// \p VectorAlignment. Compute the maximal, but conservatively correct,
911 /// alignment that will be valid for the memory operation on a single scalar
912 /// element of the same type with index \p Idx.
computeAlignmentAfterScalarization(Align VectorAlignment,Type * ScalarType,Value * Idx,const DataLayout & DL)913 static Align computeAlignmentAfterScalarization(Align VectorAlignment,
914 Type *ScalarType, Value *Idx,
915 const DataLayout &DL) {
916 if (auto *C = dyn_cast<ConstantInt>(Idx))
917 return commonAlignment(VectorAlignment,
918 C->getZExtValue() * DL.getTypeStoreSize(ScalarType));
919 return commonAlignment(VectorAlignment, DL.getTypeStoreSize(ScalarType));
920 }
921
922 // Combine patterns like:
923 // %0 = load <4 x i32>, <4 x i32>* %a
924 // %1 = insertelement <4 x i32> %0, i32 %b, i32 1
925 // store <4 x i32> %1, <4 x i32>* %a
926 // to:
927 // %0 = bitcast <4 x i32>* %a to i32*
928 // %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1
929 // store i32 %b, i32* %1
foldSingleElementStore(Instruction & I)930 bool VectorCombine::foldSingleElementStore(Instruction &I) {
931 StoreInst *SI = dyn_cast<StoreInst>(&I);
932 if (!SI || !SI->isSimple() ||
933 !isa<FixedVectorType>(SI->getValueOperand()->getType()))
934 return false;
935
936 // TODO: Combine more complicated patterns (multiple insert) by referencing
937 // TargetTransformInfo.
938 Instruction *Source;
939 Value *NewElement;
940 Value *Idx;
941 if (!match(SI->getValueOperand(),
942 m_InsertElt(m_Instruction(Source), m_Value(NewElement),
943 m_Value(Idx))))
944 return false;
945
946 if (auto *Load = dyn_cast<LoadInst>(Source)) {
947 auto VecTy = cast<FixedVectorType>(SI->getValueOperand()->getType());
948 const DataLayout &DL = I.getModule()->getDataLayout();
949 Value *SrcAddr = Load->getPointerOperand()->stripPointerCasts();
950 // Don't optimize for atomic/volatile load or store. Ensure memory is not
951 // modified between, vector type matches store size, and index is inbounds.
952 if (!Load->isSimple() || Load->getParent() != SI->getParent() ||
953 !DL.typeSizeEqualsStoreSize(Load->getType()) ||
954 SrcAddr != SI->getPointerOperand()->stripPointerCasts())
955 return false;
956
957 auto ScalarizableIdx = canScalarizeAccess(VecTy, Idx, Load, AC, DT);
958 if (ScalarizableIdx.isUnsafe() ||
959 isMemModifiedBetween(Load->getIterator(), SI->getIterator(),
960 MemoryLocation::get(SI), AA))
961 return false;
962
963 if (ScalarizableIdx.isSafeWithFreeze())
964 ScalarizableIdx.freeze(Builder, *cast<Instruction>(Idx));
965 Value *GEP = Builder.CreateInBoundsGEP(
966 SI->getValueOperand()->getType(), SI->getPointerOperand(),
967 {ConstantInt::get(Idx->getType(), 0), Idx});
968 StoreInst *NSI = Builder.CreateStore(NewElement, GEP);
969 NSI->copyMetadata(*SI);
970 Align ScalarOpAlignment = computeAlignmentAfterScalarization(
971 std::max(SI->getAlign(), Load->getAlign()), NewElement->getType(), Idx,
972 DL);
973 NSI->setAlignment(ScalarOpAlignment);
974 replaceValue(I, *NSI);
975 eraseInstruction(I);
976 return true;
977 }
978
979 return false;
980 }
981
982 /// Try to scalarize vector loads feeding extractelement instructions.
scalarizeLoadExtract(Instruction & I)983 bool VectorCombine::scalarizeLoadExtract(Instruction &I) {
984 Value *Ptr;
985 if (!match(&I, m_Load(m_Value(Ptr))))
986 return false;
987
988 auto *LI = cast<LoadInst>(&I);
989 const DataLayout &DL = I.getModule()->getDataLayout();
990 if (LI->isVolatile() || !DL.typeSizeEqualsStoreSize(LI->getType()))
991 return false;
992
993 auto *FixedVT = dyn_cast<FixedVectorType>(LI->getType());
994 if (!FixedVT)
995 return false;
996
997 InstructionCost OriginalCost =
998 TTI.getMemoryOpCost(Instruction::Load, LI->getType(), LI->getAlign(),
999 LI->getPointerAddressSpace());
1000 InstructionCost ScalarizedCost = 0;
1001
1002 Instruction *LastCheckedInst = LI;
1003 unsigned NumInstChecked = 0;
1004 // Check if all users of the load are extracts with no memory modifications
1005 // between the load and the extract. Compute the cost of both the original
1006 // code and the scalarized version.
1007 for (User *U : LI->users()) {
1008 auto *UI = dyn_cast<ExtractElementInst>(U);
1009 if (!UI || UI->getParent() != LI->getParent())
1010 return false;
1011
1012 if (!isGuaranteedNotToBePoison(UI->getOperand(1), &AC, LI, &DT))
1013 return false;
1014
1015 // Check if any instruction between the load and the extract may modify
1016 // memory.
1017 if (LastCheckedInst->comesBefore(UI)) {
1018 for (Instruction &I :
1019 make_range(std::next(LI->getIterator()), UI->getIterator())) {
1020 // Bail out if we reached the check limit or the instruction may write
1021 // to memory.
1022 if (NumInstChecked == MaxInstrsToScan || I.mayWriteToMemory())
1023 return false;
1024 NumInstChecked++;
1025 }
1026 LastCheckedInst = UI;
1027 }
1028
1029 auto ScalarIdx = canScalarizeAccess(FixedVT, UI->getOperand(1), &I, AC, DT);
1030 if (!ScalarIdx.isSafe()) {
1031 // TODO: Freeze index if it is safe to do so.
1032 ScalarIdx.discard();
1033 return false;
1034 }
1035
1036 auto *Index = dyn_cast<ConstantInt>(UI->getOperand(1));
1037 OriginalCost +=
1038 TTI.getVectorInstrCost(Instruction::ExtractElement, LI->getType(),
1039 Index ? Index->getZExtValue() : -1);
1040 ScalarizedCost +=
1041 TTI.getMemoryOpCost(Instruction::Load, FixedVT->getElementType(),
1042 Align(1), LI->getPointerAddressSpace());
1043 ScalarizedCost += TTI.getAddressComputationCost(FixedVT->getElementType());
1044 }
1045
1046 if (ScalarizedCost >= OriginalCost)
1047 return false;
1048
1049 // Replace extracts with narrow scalar loads.
1050 for (User *U : LI->users()) {
1051 auto *EI = cast<ExtractElementInst>(U);
1052 Builder.SetInsertPoint(EI);
1053
1054 Value *Idx = EI->getOperand(1);
1055 Value *GEP =
1056 Builder.CreateInBoundsGEP(FixedVT, Ptr, {Builder.getInt32(0), Idx});
1057 auto *NewLoad = cast<LoadInst>(Builder.CreateLoad(
1058 FixedVT->getElementType(), GEP, EI->getName() + ".scalar"));
1059
1060 Align ScalarOpAlignment = computeAlignmentAfterScalarization(
1061 LI->getAlign(), FixedVT->getElementType(), Idx, DL);
1062 NewLoad->setAlignment(ScalarOpAlignment);
1063
1064 replaceValue(*EI, *NewLoad);
1065 }
1066
1067 return true;
1068 }
1069
1070 /// Try to convert "shuffle (binop), (binop)" with a shared binop operand into
1071 /// "binop (shuffle), (shuffle)".
foldShuffleOfBinops(Instruction & I)1072 bool VectorCombine::foldShuffleOfBinops(Instruction &I) {
1073 auto *VecTy = dyn_cast<FixedVectorType>(I.getType());
1074 if (!VecTy)
1075 return false;
1076
1077 BinaryOperator *B0, *B1;
1078 ArrayRef<int> Mask;
1079 if (!match(&I, m_Shuffle(m_OneUse(m_BinOp(B0)), m_OneUse(m_BinOp(B1)),
1080 m_Mask(Mask))) ||
1081 B0->getOpcode() != B1->getOpcode() || B0->getType() != VecTy)
1082 return false;
1083
1084 // Try to replace a binop with a shuffle if the shuffle is not costly.
1085 // The new shuffle will choose from a single, common operand, so it may be
1086 // cheaper than the existing two-operand shuffle.
1087 SmallVector<int> UnaryMask = createUnaryMask(Mask, Mask.size());
1088 Instruction::BinaryOps Opcode = B0->getOpcode();
1089 InstructionCost BinopCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
1090 InstructionCost ShufCost = TTI.getShuffleCost(
1091 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, UnaryMask);
1092 if (ShufCost > BinopCost)
1093 return false;
1094
1095 // If we have something like "add X, Y" and "add Z, X", swap ops to match.
1096 Value *X = B0->getOperand(0), *Y = B0->getOperand(1);
1097 Value *Z = B1->getOperand(0), *W = B1->getOperand(1);
1098 if (BinaryOperator::isCommutative(Opcode) && X != Z && Y != W)
1099 std::swap(X, Y);
1100
1101 Value *Shuf0, *Shuf1;
1102 if (X == Z) {
1103 // shuf (bo X, Y), (bo X, W) --> bo (shuf X), (shuf Y, W)
1104 Shuf0 = Builder.CreateShuffleVector(X, UnaryMask);
1105 Shuf1 = Builder.CreateShuffleVector(Y, W, Mask);
1106 } else if (Y == W) {
1107 // shuf (bo X, Y), (bo Z, Y) --> bo (shuf X, Z), (shuf Y)
1108 Shuf0 = Builder.CreateShuffleVector(X, Z, Mask);
1109 Shuf1 = Builder.CreateShuffleVector(Y, UnaryMask);
1110 } else {
1111 return false;
1112 }
1113
1114 Value *NewBO = Builder.CreateBinOp(Opcode, Shuf0, Shuf1);
1115 // Intersect flags from the old binops.
1116 if (auto *NewInst = dyn_cast<Instruction>(NewBO)) {
1117 NewInst->copyIRFlags(B0);
1118 NewInst->andIRFlags(B1);
1119 }
1120 replaceValue(I, *NewBO);
1121 return true;
1122 }
1123
1124 /// Given a commutative reduction, the order of the input lanes does not alter
1125 /// the results. We can use this to remove certain shuffles feeding the
1126 /// reduction, removing the need to shuffle at all.
foldShuffleFromReductions(Instruction & I)1127 bool VectorCombine::foldShuffleFromReductions(Instruction &I) {
1128 auto *II = dyn_cast<IntrinsicInst>(&I);
1129 if (!II)
1130 return false;
1131 switch (II->getIntrinsicID()) {
1132 case Intrinsic::vector_reduce_add:
1133 case Intrinsic::vector_reduce_mul:
1134 case Intrinsic::vector_reduce_and:
1135 case Intrinsic::vector_reduce_or:
1136 case Intrinsic::vector_reduce_xor:
1137 case Intrinsic::vector_reduce_smin:
1138 case Intrinsic::vector_reduce_smax:
1139 case Intrinsic::vector_reduce_umin:
1140 case Intrinsic::vector_reduce_umax:
1141 break;
1142 default:
1143 return false;
1144 }
1145
1146 // Find all the inputs when looking through operations that do not alter the
1147 // lane order (binops, for example). Currently we look for a single shuffle,
1148 // and can ignore splat values.
1149 std::queue<Value *> Worklist;
1150 SmallPtrSet<Value *, 4> Visited;
1151 ShuffleVectorInst *Shuffle = nullptr;
1152 if (auto *Op = dyn_cast<Instruction>(I.getOperand(0)))
1153 Worklist.push(Op);
1154
1155 while (!Worklist.empty()) {
1156 Value *CV = Worklist.front();
1157 Worklist.pop();
1158 if (Visited.contains(CV))
1159 continue;
1160
1161 // Splats don't change the order, so can be safely ignored.
1162 if (isSplatValue(CV))
1163 continue;
1164
1165 Visited.insert(CV);
1166
1167 if (auto *CI = dyn_cast<Instruction>(CV)) {
1168 if (CI->isBinaryOp()) {
1169 for (auto *Op : CI->operand_values())
1170 Worklist.push(Op);
1171 continue;
1172 } else if (auto *SV = dyn_cast<ShuffleVectorInst>(CI)) {
1173 if (Shuffle && Shuffle != SV)
1174 return false;
1175 Shuffle = SV;
1176 continue;
1177 }
1178 }
1179
1180 // Anything else is currently an unknown node.
1181 return false;
1182 }
1183
1184 if (!Shuffle)
1185 return false;
1186
1187 // Check all uses of the binary ops and shuffles are also included in the
1188 // lane-invariant operations (Visited should be the list of lanewise
1189 // instructions, including the shuffle that we found).
1190 for (auto *V : Visited)
1191 for (auto *U : V->users())
1192 if (!Visited.contains(U) && U != &I)
1193 return false;
1194
1195 FixedVectorType *VecType =
1196 dyn_cast<FixedVectorType>(II->getOperand(0)->getType());
1197 if (!VecType)
1198 return false;
1199 FixedVectorType *ShuffleInputType =
1200 dyn_cast<FixedVectorType>(Shuffle->getOperand(0)->getType());
1201 if (!ShuffleInputType)
1202 return false;
1203 int NumInputElts = ShuffleInputType->getNumElements();
1204
1205 // Find the mask from sorting the lanes into order. This is most likely to
1206 // become a identity or concat mask. Undef elements are pushed to the end.
1207 SmallVector<int> ConcatMask;
1208 Shuffle->getShuffleMask(ConcatMask);
1209 sort(ConcatMask, [](int X, int Y) { return (unsigned)X < (unsigned)Y; });
1210 bool UsesSecondVec =
1211 any_of(ConcatMask, [&](int M) { return M >= NumInputElts; });
1212 InstructionCost OldCost = TTI.getShuffleCost(
1213 UsesSecondVec ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc, VecType,
1214 Shuffle->getShuffleMask());
1215 InstructionCost NewCost = TTI.getShuffleCost(
1216 UsesSecondVec ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc, VecType,
1217 ConcatMask);
1218
1219 LLVM_DEBUG(dbgs() << "Found a reduction feeding from a shuffle: " << *Shuffle
1220 << "\n");
1221 LLVM_DEBUG(dbgs() << " OldCost: " << OldCost << " vs NewCost: " << NewCost
1222 << "\n");
1223 if (NewCost < OldCost) {
1224 Builder.SetInsertPoint(Shuffle);
1225 Value *NewShuffle = Builder.CreateShuffleVector(
1226 Shuffle->getOperand(0), Shuffle->getOperand(1), ConcatMask);
1227 LLVM_DEBUG(dbgs() << "Created new shuffle: " << *NewShuffle << "\n");
1228 replaceValue(*Shuffle, *NewShuffle);
1229 }
1230
1231 // See if we can re-use foldSelectShuffle, getting it to reduce the size of
1232 // the shuffle into a nicer order, as it can ignore the order of the shuffles.
1233 return foldSelectShuffle(*Shuffle, true);
1234 }
1235
1236 /// This method looks for groups of shuffles acting on binops, of the form:
1237 /// %x = shuffle ...
1238 /// %y = shuffle ...
1239 /// %a = binop %x, %y
1240 /// %b = binop %x, %y
1241 /// shuffle %a, %b, selectmask
1242 /// We may, especially if the shuffle is wider than legal, be able to convert
1243 /// the shuffle to a form where only parts of a and b need to be computed. On
1244 /// architectures with no obvious "select" shuffle, this can reduce the total
1245 /// number of operations if the target reports them as cheaper.
foldSelectShuffle(Instruction & I,bool FromReduction)1246 bool VectorCombine::foldSelectShuffle(Instruction &I, bool FromReduction) {
1247 auto *SVI = dyn_cast<ShuffleVectorInst>(&I);
1248 auto *VT = dyn_cast<FixedVectorType>(I.getType());
1249 if (!SVI || !VT)
1250 return false;
1251 auto *Op0 = dyn_cast<Instruction>(SVI->getOperand(0));
1252 auto *Op1 = dyn_cast<Instruction>(SVI->getOperand(1));
1253 if (!Op0 || !Op1 || Op0 == Op1 || !Op0->isBinaryOp() || !Op1->isBinaryOp() ||
1254 VT != Op0->getType())
1255 return false;
1256 auto *SVI0A = dyn_cast<Instruction>(Op0->getOperand(0));
1257 auto *SVI0B = dyn_cast<Instruction>(Op0->getOperand(1));
1258 auto *SVI1A = dyn_cast<Instruction>(Op1->getOperand(0));
1259 auto *SVI1B = dyn_cast<Instruction>(Op1->getOperand(1));
1260 SmallPtrSet<Instruction *, 4> InputShuffles({SVI0A, SVI0B, SVI1A, SVI1B});
1261 auto checkSVNonOpUses = [&](Instruction *I) {
1262 if (!I || I->getOperand(0)->getType() != VT)
1263 return true;
1264 return any_of(I->users(), [&](User *U) {
1265 return U != Op0 && U != Op1 &&
1266 !(isa<ShuffleVectorInst>(U) &&
1267 (InputShuffles.contains(cast<Instruction>(U)) ||
1268 isInstructionTriviallyDead(cast<Instruction>(U))));
1269 });
1270 };
1271 if (checkSVNonOpUses(SVI0A) || checkSVNonOpUses(SVI0B) ||
1272 checkSVNonOpUses(SVI1A) || checkSVNonOpUses(SVI1B))
1273 return false;
1274
1275 // Collect all the uses that are shuffles that we can transform together. We
1276 // may not have a single shuffle, but a group that can all be transformed
1277 // together profitably.
1278 SmallVector<ShuffleVectorInst *> Shuffles;
1279 auto collectShuffles = [&](Instruction *I) {
1280 for (auto *U : I->users()) {
1281 auto *SV = dyn_cast<ShuffleVectorInst>(U);
1282 if (!SV || SV->getType() != VT)
1283 return false;
1284 if ((SV->getOperand(0) != Op0 && SV->getOperand(0) != Op1) ||
1285 (SV->getOperand(1) != Op0 && SV->getOperand(1) != Op1))
1286 return false;
1287 if (!llvm::is_contained(Shuffles, SV))
1288 Shuffles.push_back(SV);
1289 }
1290 return true;
1291 };
1292 if (!collectShuffles(Op0) || !collectShuffles(Op1))
1293 return false;
1294 // From a reduction, we need to be processing a single shuffle, otherwise the
1295 // other uses will not be lane-invariant.
1296 if (FromReduction && Shuffles.size() > 1)
1297 return false;
1298
1299 // Add any shuffle uses for the shuffles we have found, to include them in our
1300 // cost calculations.
1301 if (!FromReduction) {
1302 for (ShuffleVectorInst *SV : Shuffles) {
1303 for (auto U : SV->users()) {
1304 ShuffleVectorInst *SSV = dyn_cast<ShuffleVectorInst>(U);
1305 if (SSV && isa<UndefValue>(SSV->getOperand(1)) && SSV->getType() == VT)
1306 Shuffles.push_back(SSV);
1307 }
1308 }
1309 }
1310
1311 // For each of the output shuffles, we try to sort all the first vector
1312 // elements to the beginning, followed by the second array elements at the
1313 // end. If the binops are legalized to smaller vectors, this may reduce total
1314 // number of binops. We compute the ReconstructMask mask needed to convert
1315 // back to the original lane order.
1316 SmallVector<std::pair<int, int>> V1, V2;
1317 SmallVector<SmallVector<int>> OrigReconstructMasks;
1318 int MaxV1Elt = 0, MaxV2Elt = 0;
1319 unsigned NumElts = VT->getNumElements();
1320 for (ShuffleVectorInst *SVN : Shuffles) {
1321 SmallVector<int> Mask;
1322 SVN->getShuffleMask(Mask);
1323
1324 // Check the operands are the same as the original, or reversed (in which
1325 // case we need to commute the mask).
1326 Value *SVOp0 = SVN->getOperand(0);
1327 Value *SVOp1 = SVN->getOperand(1);
1328 if (isa<UndefValue>(SVOp1)) {
1329 auto *SSV = cast<ShuffleVectorInst>(SVOp0);
1330 SVOp0 = SSV->getOperand(0);
1331 SVOp1 = SSV->getOperand(1);
1332 for (unsigned I = 0, E = Mask.size(); I != E; I++) {
1333 if (Mask[I] >= static_cast<int>(SSV->getShuffleMask().size()))
1334 return false;
1335 Mask[I] = Mask[I] < 0 ? Mask[I] : SSV->getMaskValue(Mask[I]);
1336 }
1337 }
1338 if (SVOp0 == Op1 && SVOp1 == Op0) {
1339 std::swap(SVOp0, SVOp1);
1340 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
1341 }
1342 if (SVOp0 != Op0 || SVOp1 != Op1)
1343 return false;
1344
1345 // Calculate the reconstruction mask for this shuffle, as the mask needed to
1346 // take the packed values from Op0/Op1 and reconstructing to the original
1347 // order.
1348 SmallVector<int> ReconstructMask;
1349 for (unsigned I = 0; I < Mask.size(); I++) {
1350 if (Mask[I] < 0) {
1351 ReconstructMask.push_back(-1);
1352 } else if (Mask[I] < static_cast<int>(NumElts)) {
1353 MaxV1Elt = std::max(MaxV1Elt, Mask[I]);
1354 auto It = find_if(V1, [&](const std::pair<int, int> &A) {
1355 return Mask[I] == A.first;
1356 });
1357 if (It != V1.end())
1358 ReconstructMask.push_back(It - V1.begin());
1359 else {
1360 ReconstructMask.push_back(V1.size());
1361 V1.emplace_back(Mask[I], V1.size());
1362 }
1363 } else {
1364 MaxV2Elt = std::max<int>(MaxV2Elt, Mask[I] - NumElts);
1365 auto It = find_if(V2, [&](const std::pair<int, int> &A) {
1366 return Mask[I] - static_cast<int>(NumElts) == A.first;
1367 });
1368 if (It != V2.end())
1369 ReconstructMask.push_back(NumElts + It - V2.begin());
1370 else {
1371 ReconstructMask.push_back(NumElts + V2.size());
1372 V2.emplace_back(Mask[I] - NumElts, NumElts + V2.size());
1373 }
1374 }
1375 }
1376
1377 // For reductions, we know that the lane ordering out doesn't alter the
1378 // result. In-order can help simplify the shuffle away.
1379 if (FromReduction)
1380 sort(ReconstructMask);
1381 OrigReconstructMasks.push_back(std::move(ReconstructMask));
1382 }
1383
1384 // If the Maximum element used from V1 and V2 are not larger than the new
1385 // vectors, the vectors are already packes and performing the optimization
1386 // again will likely not help any further. This also prevents us from getting
1387 // stuck in a cycle in case the costs do not also rule it out.
1388 if (V1.empty() || V2.empty() ||
1389 (MaxV1Elt == static_cast<int>(V1.size()) - 1 &&
1390 MaxV2Elt == static_cast<int>(V2.size()) - 1))
1391 return false;
1392
1393 // GetBaseMaskValue takes one of the inputs, which may either be a shuffle, a
1394 // shuffle of another shuffle, or not a shuffle (that is treated like a
1395 // identity shuffle).
1396 auto GetBaseMaskValue = [&](Instruction *I, int M) {
1397 auto *SV = dyn_cast<ShuffleVectorInst>(I);
1398 if (!SV)
1399 return M;
1400 if (isa<UndefValue>(SV->getOperand(1)))
1401 if (auto *SSV = dyn_cast<ShuffleVectorInst>(SV->getOperand(0)))
1402 if (InputShuffles.contains(SSV))
1403 return SSV->getMaskValue(SV->getMaskValue(M));
1404 return SV->getMaskValue(M);
1405 };
1406
1407 // Attempt to sort the inputs my ascending mask values to make simpler input
1408 // shuffles and push complex shuffles down to the uses. We sort on the first
1409 // of the two input shuffle orders, to try and get at least one input into a
1410 // nice order.
1411 auto SortBase = [&](Instruction *A, std::pair<int, int> X,
1412 std::pair<int, int> Y) {
1413 int MXA = GetBaseMaskValue(A, X.first);
1414 int MYA = GetBaseMaskValue(A, Y.first);
1415 return MXA < MYA;
1416 };
1417 stable_sort(V1, [&](std::pair<int, int> A, std::pair<int, int> B) {
1418 return SortBase(SVI0A, A, B);
1419 });
1420 stable_sort(V2, [&](std::pair<int, int> A, std::pair<int, int> B) {
1421 return SortBase(SVI1A, A, B);
1422 });
1423 // Calculate our ReconstructMasks from the OrigReconstructMasks and the
1424 // modified order of the input shuffles.
1425 SmallVector<SmallVector<int>> ReconstructMasks;
1426 for (auto Mask : OrigReconstructMasks) {
1427 SmallVector<int> ReconstructMask;
1428 for (int M : Mask) {
1429 auto FindIndex = [](const SmallVector<std::pair<int, int>> &V, int M) {
1430 auto It = find_if(V, [M](auto A) { return A.second == M; });
1431 assert(It != V.end() && "Expected all entries in Mask");
1432 return std::distance(V.begin(), It);
1433 };
1434 if (M < 0)
1435 ReconstructMask.push_back(-1);
1436 else if (M < static_cast<int>(NumElts)) {
1437 ReconstructMask.push_back(FindIndex(V1, M));
1438 } else {
1439 ReconstructMask.push_back(NumElts + FindIndex(V2, M));
1440 }
1441 }
1442 ReconstructMasks.push_back(std::move(ReconstructMask));
1443 }
1444
1445 // Calculate the masks needed for the new input shuffles, which get padded
1446 // with undef
1447 SmallVector<int> V1A, V1B, V2A, V2B;
1448 for (unsigned I = 0; I < V1.size(); I++) {
1449 V1A.push_back(GetBaseMaskValue(SVI0A, V1[I].first));
1450 V1B.push_back(GetBaseMaskValue(SVI0B, V1[I].first));
1451 }
1452 for (unsigned I = 0; I < V2.size(); I++) {
1453 V2A.push_back(GetBaseMaskValue(SVI1A, V2[I].first));
1454 V2B.push_back(GetBaseMaskValue(SVI1B, V2[I].first));
1455 }
1456 while (V1A.size() < NumElts) {
1457 V1A.push_back(UndefMaskElem);
1458 V1B.push_back(UndefMaskElem);
1459 }
1460 while (V2A.size() < NumElts) {
1461 V2A.push_back(UndefMaskElem);
1462 V2B.push_back(UndefMaskElem);
1463 }
1464
1465 auto AddShuffleCost = [&](InstructionCost C, Instruction *I) {
1466 auto *SV = dyn_cast<ShuffleVectorInst>(I);
1467 if (!SV)
1468 return C;
1469 return C + TTI.getShuffleCost(isa<UndefValue>(SV->getOperand(1))
1470 ? TTI::SK_PermuteSingleSrc
1471 : TTI::SK_PermuteTwoSrc,
1472 VT, SV->getShuffleMask());
1473 };
1474 auto AddShuffleMaskCost = [&](InstructionCost C, ArrayRef<int> Mask) {
1475 return C + TTI.getShuffleCost(TTI::SK_PermuteTwoSrc, VT, Mask);
1476 };
1477
1478 // Get the costs of the shuffles + binops before and after with the new
1479 // shuffle masks.
1480 InstructionCost CostBefore =
1481 TTI.getArithmeticInstrCost(Op0->getOpcode(), VT) +
1482 TTI.getArithmeticInstrCost(Op1->getOpcode(), VT);
1483 CostBefore += std::accumulate(Shuffles.begin(), Shuffles.end(),
1484 InstructionCost(0), AddShuffleCost);
1485 CostBefore += std::accumulate(InputShuffles.begin(), InputShuffles.end(),
1486 InstructionCost(0), AddShuffleCost);
1487
1488 // The new binops will be unused for lanes past the used shuffle lengths.
1489 // These types attempt to get the correct cost for that from the target.
1490 FixedVectorType *Op0SmallVT =
1491 FixedVectorType::get(VT->getScalarType(), V1.size());
1492 FixedVectorType *Op1SmallVT =
1493 FixedVectorType::get(VT->getScalarType(), V2.size());
1494 InstructionCost CostAfter =
1495 TTI.getArithmeticInstrCost(Op0->getOpcode(), Op0SmallVT) +
1496 TTI.getArithmeticInstrCost(Op1->getOpcode(), Op1SmallVT);
1497 CostAfter += std::accumulate(ReconstructMasks.begin(), ReconstructMasks.end(),
1498 InstructionCost(0), AddShuffleMaskCost);
1499 std::set<SmallVector<int>> OutputShuffleMasks({V1A, V1B, V2A, V2B});
1500 CostAfter +=
1501 std::accumulate(OutputShuffleMasks.begin(), OutputShuffleMasks.end(),
1502 InstructionCost(0), AddShuffleMaskCost);
1503
1504 LLVM_DEBUG(dbgs() << "Found a binop select shuffle pattern: " << I << "\n");
1505 LLVM_DEBUG(dbgs() << " CostBefore: " << CostBefore
1506 << " vs CostAfter: " << CostAfter << "\n");
1507 if (CostBefore <= CostAfter)
1508 return false;
1509
1510 // The cost model has passed, create the new instructions.
1511 auto GetShuffleOperand = [&](Instruction *I, unsigned Op) -> Value * {
1512 auto *SV = dyn_cast<ShuffleVectorInst>(I);
1513 if (!SV)
1514 return I;
1515 if (isa<UndefValue>(SV->getOperand(1)))
1516 if (auto *SSV = dyn_cast<ShuffleVectorInst>(SV->getOperand(0)))
1517 if (InputShuffles.contains(SSV))
1518 return SSV->getOperand(Op);
1519 return SV->getOperand(Op);
1520 };
1521 Builder.SetInsertPoint(SVI0A->getNextNode());
1522 Value *NSV0A = Builder.CreateShuffleVector(GetShuffleOperand(SVI0A, 0),
1523 GetShuffleOperand(SVI0A, 1), V1A);
1524 Builder.SetInsertPoint(SVI0B->getNextNode());
1525 Value *NSV0B = Builder.CreateShuffleVector(GetShuffleOperand(SVI0B, 0),
1526 GetShuffleOperand(SVI0B, 1), V1B);
1527 Builder.SetInsertPoint(SVI1A->getNextNode());
1528 Value *NSV1A = Builder.CreateShuffleVector(GetShuffleOperand(SVI1A, 0),
1529 GetShuffleOperand(SVI1A, 1), V2A);
1530 Builder.SetInsertPoint(SVI1B->getNextNode());
1531 Value *NSV1B = Builder.CreateShuffleVector(GetShuffleOperand(SVI1B, 0),
1532 GetShuffleOperand(SVI1B, 1), V2B);
1533 Builder.SetInsertPoint(Op0);
1534 Value *NOp0 = Builder.CreateBinOp((Instruction::BinaryOps)Op0->getOpcode(),
1535 NSV0A, NSV0B);
1536 if (auto *I = dyn_cast<Instruction>(NOp0))
1537 I->copyIRFlags(Op0, true);
1538 Builder.SetInsertPoint(Op1);
1539 Value *NOp1 = Builder.CreateBinOp((Instruction::BinaryOps)Op1->getOpcode(),
1540 NSV1A, NSV1B);
1541 if (auto *I = dyn_cast<Instruction>(NOp1))
1542 I->copyIRFlags(Op1, true);
1543
1544 for (int S = 0, E = ReconstructMasks.size(); S != E; S++) {
1545 Builder.SetInsertPoint(Shuffles[S]);
1546 Value *NSV = Builder.CreateShuffleVector(NOp0, NOp1, ReconstructMasks[S]);
1547 replaceValue(*Shuffles[S], *NSV);
1548 }
1549
1550 Worklist.pushValue(NSV0A);
1551 Worklist.pushValue(NSV0B);
1552 Worklist.pushValue(NSV1A);
1553 Worklist.pushValue(NSV1B);
1554 for (auto *S : Shuffles)
1555 Worklist.add(S);
1556 return true;
1557 }
1558
1559 /// This is the entry point for all transforms. Pass manager differences are
1560 /// handled in the callers of this function.
run()1561 bool VectorCombine::run() {
1562 if (DisableVectorCombine)
1563 return false;
1564
1565 // Don't attempt vectorization if the target does not support vectors.
1566 if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true)))
1567 return false;
1568
1569 bool MadeChange = false;
1570 auto FoldInst = [this, &MadeChange](Instruction &I) {
1571 Builder.SetInsertPoint(&I);
1572 if (!ScalarizationOnly) {
1573 MadeChange |= vectorizeLoadInsert(I);
1574 MadeChange |= foldExtractExtract(I);
1575 MadeChange |= foldBitcastShuf(I);
1576 MadeChange |= foldExtractedCmps(I);
1577 MadeChange |= foldShuffleOfBinops(I);
1578 MadeChange |= foldShuffleFromReductions(I);
1579 MadeChange |= foldSelectShuffle(I);
1580 }
1581 MadeChange |= scalarizeBinopOrCmp(I);
1582 MadeChange |= scalarizeLoadExtract(I);
1583 MadeChange |= foldSingleElementStore(I);
1584 };
1585 for (BasicBlock &BB : F) {
1586 // Ignore unreachable basic blocks.
1587 if (!DT.isReachableFromEntry(&BB))
1588 continue;
1589 // Use early increment range so that we can erase instructions in loop.
1590 for (Instruction &I : make_early_inc_range(BB)) {
1591 if (I.isDebugOrPseudoInst())
1592 continue;
1593 FoldInst(I);
1594 }
1595 }
1596
1597 while (!Worklist.isEmpty()) {
1598 Instruction *I = Worklist.removeOne();
1599 if (!I)
1600 continue;
1601
1602 if (isInstructionTriviallyDead(I)) {
1603 eraseInstruction(*I);
1604 continue;
1605 }
1606
1607 FoldInst(*I);
1608 }
1609
1610 return MadeChange;
1611 }
1612
1613 // Pass manager boilerplate below here.
1614
1615 namespace {
1616 class VectorCombineLegacyPass : public FunctionPass {
1617 public:
1618 static char ID;
VectorCombineLegacyPass()1619 VectorCombineLegacyPass() : FunctionPass(ID) {
1620 initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry());
1621 }
1622
getAnalysisUsage(AnalysisUsage & AU) const1623 void getAnalysisUsage(AnalysisUsage &AU) const override {
1624 AU.addRequired<AssumptionCacheTracker>();
1625 AU.addRequired<DominatorTreeWrapperPass>();
1626 AU.addRequired<TargetTransformInfoWrapperPass>();
1627 AU.addRequired<AAResultsWrapperPass>();
1628 AU.setPreservesCFG();
1629 AU.addPreserved<DominatorTreeWrapperPass>();
1630 AU.addPreserved<GlobalsAAWrapperPass>();
1631 AU.addPreserved<AAResultsWrapperPass>();
1632 AU.addPreserved<BasicAAWrapperPass>();
1633 FunctionPass::getAnalysisUsage(AU);
1634 }
1635
runOnFunction(Function & F)1636 bool runOnFunction(Function &F) override {
1637 if (skipFunction(F))
1638 return false;
1639 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1640 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1641 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1642 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1643 VectorCombine Combiner(F, TTI, DT, AA, AC, false);
1644 return Combiner.run();
1645 }
1646 };
1647 } // namespace
1648
1649 char VectorCombineLegacyPass::ID = 0;
1650 INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine",
1651 "Optimize scalar/vector ops", false,
1652 false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)1653 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1654 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1655 INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine",
1656 "Optimize scalar/vector ops", false, false)
1657 Pass *llvm::createVectorCombinePass() {
1658 return new VectorCombineLegacyPass();
1659 }
1660
run(Function & F,FunctionAnalysisManager & FAM)1661 PreservedAnalyses VectorCombinePass::run(Function &F,
1662 FunctionAnalysisManager &FAM) {
1663 auto &AC = FAM.getResult<AssumptionAnalysis>(F);
1664 TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
1665 DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
1666 AAResults &AA = FAM.getResult<AAManager>(F);
1667 VectorCombine Combiner(F, TTI, DT, AA, AC, ScalarizationOnly);
1668 if (!Combiner.run())
1669 return PreservedAnalyses::all();
1670 PreservedAnalyses PA;
1671 PA.preserveSet<CFGAnalyses>();
1672 return PA;
1673 }
1674