1 //===------- VectorCombine.cpp - Optimize partial vector operations -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass optimizes scalar/vector interactions using target cost models. The 10 // transforms implemented here may not fit in traditional loop-based or SLP 11 // vectorization passes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Vectorize/VectorCombine.h" 16 #include "llvm/ADT/SmallBitVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/BasicAliasAnalysis.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/Loads.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/Analysis/VectorUtils.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/InitializePasses.h" 30 #include "llvm/Pass.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Transforms/Utils/Local.h" 33 #include "llvm/Transforms/Vectorize.h" 34 35 #define DEBUG_TYPE "vector-combine" 36 #include "llvm/Transforms/Utils/InstructionWorklist.h" 37 38 using namespace llvm; 39 using namespace llvm::PatternMatch; 40 41 STATISTIC(NumVecLoad, "Number of vector loads formed"); 42 STATISTIC(NumVecCmp, "Number of vector compares formed"); 43 STATISTIC(NumVecBO, "Number of vector binops formed"); 44 STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed"); 45 STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast"); 46 STATISTIC(NumScalarBO, "Number of scalar binops formed"); 47 STATISTIC(NumScalarCmp, "Number of scalar compares formed"); 48 49 static cl::opt<bool> DisableVectorCombine( 50 "disable-vector-combine", cl::init(false), cl::Hidden, 51 cl::desc("Disable all vector combine transforms")); 52 53 static cl::opt<bool> DisableBinopExtractShuffle( 54 "disable-binop-extract-shuffle", cl::init(false), cl::Hidden, 55 cl::desc("Disable binop extract to shuffle transforms")); 56 57 static cl::opt<unsigned> MaxInstrsToScan( 58 "vector-combine-max-scan-instrs", cl::init(30), cl::Hidden, 59 cl::desc("Max number of instructions to scan for vector combining.")); 60 61 static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max(); 62 63 namespace { 64 class VectorCombine { 65 public: 66 VectorCombine(Function &F, const TargetTransformInfo &TTI, 67 const DominatorTree &DT, AAResults &AA, AssumptionCache &AC, 68 bool ScalarizationOnly) 69 : F(F), Builder(F.getContext()), TTI(TTI), DT(DT), AA(AA), AC(AC), 70 ScalarizationOnly(ScalarizationOnly) {} 71 72 bool run(); 73 74 private: 75 Function &F; 76 IRBuilder<> Builder; 77 const TargetTransformInfo &TTI; 78 const DominatorTree &DT; 79 AAResults &AA; 80 AssumptionCache &AC; 81 82 /// If true only perform scalarization combines and do not introduce new 83 /// vector operations. 84 bool ScalarizationOnly; 85 86 InstructionWorklist Worklist; 87 88 bool vectorizeLoadInsert(Instruction &I); 89 ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0, 90 ExtractElementInst *Ext1, 91 unsigned PreferredExtractIndex) const; 92 bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 93 const Instruction &I, 94 ExtractElementInst *&ConvertToShuffle, 95 unsigned PreferredExtractIndex); 96 void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 97 Instruction &I); 98 void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 99 Instruction &I); 100 bool foldExtractExtract(Instruction &I); 101 bool foldBitcastShuf(Instruction &I); 102 bool scalarizeBinopOrCmp(Instruction &I); 103 bool foldExtractedCmps(Instruction &I); 104 bool foldSingleElementStore(Instruction &I); 105 bool scalarizeLoadExtract(Instruction &I); 106 bool foldShuffleOfBinops(Instruction &I); 107 bool foldShuffleFromReductions(Instruction &I); 108 109 void replaceValue(Value &Old, Value &New) { 110 Old.replaceAllUsesWith(&New); 111 if (auto *NewI = dyn_cast<Instruction>(&New)) { 112 New.takeName(&Old); 113 Worklist.pushUsersToWorkList(*NewI); 114 Worklist.pushValue(NewI); 115 } 116 Worklist.pushValue(&Old); 117 } 118 119 void eraseInstruction(Instruction &I) { 120 for (Value *Op : I.operands()) 121 Worklist.pushValue(Op); 122 Worklist.remove(&I); 123 I.eraseFromParent(); 124 } 125 }; 126 } // namespace 127 128 bool VectorCombine::vectorizeLoadInsert(Instruction &I) { 129 // Match insert into fixed vector of scalar value. 130 // TODO: Handle non-zero insert index. 131 auto *Ty = dyn_cast<FixedVectorType>(I.getType()); 132 Value *Scalar; 133 if (!Ty || !match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) || 134 !Scalar->hasOneUse()) 135 return false; 136 137 // Optionally match an extract from another vector. 138 Value *X; 139 bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt())); 140 if (!HasExtract) 141 X = Scalar; 142 143 // Match source value as load of scalar or vector. 144 // Do not vectorize scalar load (widening) if atomic/volatile or under 145 // asan/hwasan/memtag/tsan. The widened load may load data from dirty regions 146 // or create data races non-existent in the source. 147 auto *Load = dyn_cast<LoadInst>(X); 148 if (!Load || !Load->isSimple() || !Load->hasOneUse() || 149 Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) || 150 mustSuppressSpeculation(*Load)) 151 return false; 152 153 const DataLayout &DL = I.getModule()->getDataLayout(); 154 Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts(); 155 assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type"); 156 157 unsigned AS = Load->getPointerAddressSpace(); 158 159 // We are potentially transforming byte-sized (8-bit) memory accesses, so make 160 // sure we have all of our type-based constraints in place for this target. 161 Type *ScalarTy = Scalar->getType(); 162 uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits(); 163 unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth(); 164 if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 || 165 ScalarSize % 8 != 0) 166 return false; 167 168 // Check safety of replacing the scalar load with a larger vector load. 169 // We use minimal alignment (maximum flexibility) because we only care about 170 // the dereferenceable region. When calculating cost and creating a new op, 171 // we may use a larger value based on alignment attributes. 172 unsigned MinVecNumElts = MinVectorSize / ScalarSize; 173 auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false); 174 unsigned OffsetEltIndex = 0; 175 Align Alignment = Load->getAlign(); 176 if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) { 177 // It is not safe to load directly from the pointer, but we can still peek 178 // through gep offsets and check if it safe to load from a base address with 179 // updated alignment. If it is, we can shuffle the element(s) into place 180 // after loading. 181 unsigned OffsetBitWidth = DL.getIndexTypeSizeInBits(SrcPtr->getType()); 182 APInt Offset(OffsetBitWidth, 0); 183 SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); 184 185 // We want to shuffle the result down from a high element of a vector, so 186 // the offset must be positive. 187 if (Offset.isNegative()) 188 return false; 189 190 // The offset must be a multiple of the scalar element to shuffle cleanly 191 // in the element's size. 192 uint64_t ScalarSizeInBytes = ScalarSize / 8; 193 if (Offset.urem(ScalarSizeInBytes) != 0) 194 return false; 195 196 // If we load MinVecNumElts, will our target element still be loaded? 197 OffsetEltIndex = Offset.udiv(ScalarSizeInBytes).getZExtValue(); 198 if (OffsetEltIndex >= MinVecNumElts) 199 return false; 200 201 if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) 202 return false; 203 204 // Update alignment with offset value. Note that the offset could be negated 205 // to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but 206 // negation does not change the result of the alignment calculation. 207 Alignment = commonAlignment(Alignment, Offset.getZExtValue()); 208 } 209 210 // Original pattern: insertelt undef, load [free casts of] PtrOp, 0 211 // Use the greater of the alignment on the load or its source pointer. 212 Alignment = std::max(SrcPtr->getPointerAlignment(DL), Alignment); 213 Type *LoadTy = Load->getType(); 214 InstructionCost OldCost = 215 TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS); 216 APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0); 217 OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts, 218 /* Insert */ true, HasExtract); 219 220 // New pattern: load VecPtr 221 InstructionCost NewCost = 222 TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS); 223 // Optionally, we are shuffling the loaded vector element(s) into place. 224 // For the mask set everything but element 0 to undef to prevent poison from 225 // propagating from the extra loaded memory. This will also optionally 226 // shrink/grow the vector from the loaded size to the output size. 227 // We assume this operation has no cost in codegen if there was no offset. 228 // Note that we could use freeze to avoid poison problems, but then we might 229 // still need a shuffle to change the vector size. 230 unsigned OutputNumElts = Ty->getNumElements(); 231 SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem); 232 assert(OffsetEltIndex < MinVecNumElts && "Address offset too big"); 233 Mask[0] = OffsetEltIndex; 234 if (OffsetEltIndex) 235 NewCost += TTI.getShuffleCost(TTI::SK_PermuteSingleSrc, MinVecTy, Mask); 236 237 // We can aggressively convert to the vector form because the backend can 238 // invert this transform if it does not result in a performance win. 239 if (OldCost < NewCost || !NewCost.isValid()) 240 return false; 241 242 // It is safe and potentially profitable to load a vector directly: 243 // inselt undef, load Scalar, 0 --> load VecPtr 244 IRBuilder<> Builder(Load); 245 Value *CastedPtr = Builder.CreatePointerBitCastOrAddrSpaceCast( 246 SrcPtr, MinVecTy->getPointerTo(AS)); 247 Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment); 248 VecLd = Builder.CreateShuffleVector(VecLd, Mask); 249 250 replaceValue(I, *VecLd); 251 ++NumVecLoad; 252 return true; 253 } 254 255 /// Determine which, if any, of the inputs should be replaced by a shuffle 256 /// followed by extract from a different index. 257 ExtractElementInst *VectorCombine::getShuffleExtract( 258 ExtractElementInst *Ext0, ExtractElementInst *Ext1, 259 unsigned PreferredExtractIndex = InvalidIndex) const { 260 assert(isa<ConstantInt>(Ext0->getIndexOperand()) && 261 isa<ConstantInt>(Ext1->getIndexOperand()) && 262 "Expected constant extract indexes"); 263 264 unsigned Index0 = cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue(); 265 unsigned Index1 = cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue(); 266 267 // If the extract indexes are identical, no shuffle is needed. 268 if (Index0 == Index1) 269 return nullptr; 270 271 Type *VecTy = Ext0->getVectorOperand()->getType(); 272 assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types"); 273 InstructionCost Cost0 = 274 TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 275 InstructionCost Cost1 = 276 TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 277 278 // If both costs are invalid no shuffle is needed 279 if (!Cost0.isValid() && !Cost1.isValid()) 280 return nullptr; 281 282 // We are extracting from 2 different indexes, so one operand must be shuffled 283 // before performing a vector operation and/or extract. The more expensive 284 // extract will be replaced by a shuffle. 285 if (Cost0 > Cost1) 286 return Ext0; 287 if (Cost1 > Cost0) 288 return Ext1; 289 290 // If the costs are equal and there is a preferred extract index, shuffle the 291 // opposite operand. 292 if (PreferredExtractIndex == Index0) 293 return Ext1; 294 if (PreferredExtractIndex == Index1) 295 return Ext0; 296 297 // Otherwise, replace the extract with the higher index. 298 return Index0 > Index1 ? Ext0 : Ext1; 299 } 300 301 /// Compare the relative costs of 2 extracts followed by scalar operation vs. 302 /// vector operation(s) followed by extract. Return true if the existing 303 /// instructions are cheaper than a vector alternative. Otherwise, return false 304 /// and if one of the extracts should be transformed to a shufflevector, set 305 /// \p ConvertToShuffle to that extract instruction. 306 bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0, 307 ExtractElementInst *Ext1, 308 const Instruction &I, 309 ExtractElementInst *&ConvertToShuffle, 310 unsigned PreferredExtractIndex) { 311 assert(isa<ConstantInt>(Ext0->getOperand(1)) && 312 isa<ConstantInt>(Ext1->getOperand(1)) && 313 "Expected constant extract indexes"); 314 unsigned Opcode = I.getOpcode(); 315 Type *ScalarTy = Ext0->getType(); 316 auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType()); 317 InstructionCost ScalarOpCost, VectorOpCost; 318 319 // Get cost estimates for scalar and vector versions of the operation. 320 bool IsBinOp = Instruction::isBinaryOp(Opcode); 321 if (IsBinOp) { 322 ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 323 VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 324 } else { 325 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 326 "Expected a compare"); 327 CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate(); 328 ScalarOpCost = TTI.getCmpSelInstrCost( 329 Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred); 330 VectorOpCost = TTI.getCmpSelInstrCost( 331 Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred); 332 } 333 334 // Get cost estimates for the extract elements. These costs will factor into 335 // both sequences. 336 unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue(); 337 unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue(); 338 339 InstructionCost Extract0Cost = 340 TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index); 341 InstructionCost Extract1Cost = 342 TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index); 343 344 // A more expensive extract will always be replaced by a splat shuffle. 345 // For example, if Ext0 is more expensive: 346 // opcode (extelt V0, Ext0), (ext V1, Ext1) --> 347 // extelt (opcode (splat V0, Ext0), V1), Ext1 348 // TODO: Evaluate whether that always results in lowest cost. Alternatively, 349 // check the cost of creating a broadcast shuffle and shuffling both 350 // operands to element 0. 351 InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost); 352 353 // Extra uses of the extracts mean that we include those costs in the 354 // vector total because those instructions will not be eliminated. 355 InstructionCost OldCost, NewCost; 356 if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) { 357 // Handle a special case. If the 2 extracts are identical, adjust the 358 // formulas to account for that. The extra use charge allows for either the 359 // CSE'd pattern or an unoptimized form with identical values: 360 // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C 361 bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2) 362 : !Ext0->hasOneUse() || !Ext1->hasOneUse(); 363 OldCost = CheapExtractCost + ScalarOpCost; 364 NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost; 365 } else { 366 // Handle the general case. Each extract is actually a different value: 367 // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C 368 OldCost = Extract0Cost + Extract1Cost + ScalarOpCost; 369 NewCost = VectorOpCost + CheapExtractCost + 370 !Ext0->hasOneUse() * Extract0Cost + 371 !Ext1->hasOneUse() * Extract1Cost; 372 } 373 374 ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex); 375 if (ConvertToShuffle) { 376 if (IsBinOp && DisableBinopExtractShuffle) 377 return true; 378 379 // If we are extracting from 2 different indexes, then one operand must be 380 // shuffled before performing the vector operation. The shuffle mask is 381 // undefined except for 1 lane that is being translated to the remaining 382 // extraction lane. Therefore, it is a splat shuffle. Ex: 383 // ShufMask = { undef, undef, 0, undef } 384 // TODO: The cost model has an option for a "broadcast" shuffle 385 // (splat-from-element-0), but no option for a more general splat. 386 NewCost += 387 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 388 } 389 390 // Aggressively form a vector op if the cost is equal because the transform 391 // may enable further optimization. 392 // Codegen can reverse this transform (scalarize) if it was not profitable. 393 return OldCost < NewCost; 394 } 395 396 /// Create a shuffle that translates (shifts) 1 element from the input vector 397 /// to a new element location. 398 static Value *createShiftShuffle(Value *Vec, unsigned OldIndex, 399 unsigned NewIndex, IRBuilder<> &Builder) { 400 // The shuffle mask is undefined except for 1 lane that is being translated 401 // to the new element index. Example for OldIndex == 2 and NewIndex == 0: 402 // ShufMask = { 2, undef, undef, undef } 403 auto *VecTy = cast<FixedVectorType>(Vec->getType()); 404 SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem); 405 ShufMask[NewIndex] = OldIndex; 406 return Builder.CreateShuffleVector(Vec, ShufMask, "shift"); 407 } 408 409 /// Given an extract element instruction with constant index operand, shuffle 410 /// the source vector (shift the scalar element) to a NewIndex for extraction. 411 /// Return null if the input can be constant folded, so that we are not creating 412 /// unnecessary instructions. 413 static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt, 414 unsigned NewIndex, 415 IRBuilder<> &Builder) { 416 // If the extract can be constant-folded, this code is unsimplified. Defer 417 // to other passes to handle that. 418 Value *X = ExtElt->getVectorOperand(); 419 Value *C = ExtElt->getIndexOperand(); 420 assert(isa<ConstantInt>(C) && "Expected a constant index operand"); 421 if (isa<Constant>(X)) 422 return nullptr; 423 424 Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(), 425 NewIndex, Builder); 426 return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex)); 427 } 428 429 /// Try to reduce extract element costs by converting scalar compares to vector 430 /// compares followed by extract. 431 /// cmp (ext0 V0, C), (ext1 V1, C) 432 void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0, 433 ExtractElementInst *Ext1, Instruction &I) { 434 assert(isa<CmpInst>(&I) && "Expected a compare"); 435 assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 436 cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 437 "Expected matching constant extract indexes"); 438 439 // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C 440 ++NumVecCmp; 441 CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate(); 442 Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 443 Value *VecCmp = Builder.CreateCmp(Pred, V0, V1); 444 Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand()); 445 replaceValue(I, *NewExt); 446 } 447 448 /// Try to reduce extract element costs by converting scalar binops to vector 449 /// binops followed by extract. 450 /// bo (ext0 V0, C), (ext1 V1, C) 451 void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0, 452 ExtractElementInst *Ext1, Instruction &I) { 453 assert(isa<BinaryOperator>(&I) && "Expected a binary operator"); 454 assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 455 cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 456 "Expected matching constant extract indexes"); 457 458 // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C 459 ++NumVecBO; 460 Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 461 Value *VecBO = 462 Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1); 463 464 // All IR flags are safe to back-propagate because any potential poison 465 // created in unused vector elements is discarded by the extract. 466 if (auto *VecBOInst = dyn_cast<Instruction>(VecBO)) 467 VecBOInst->copyIRFlags(&I); 468 469 Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand()); 470 replaceValue(I, *NewExt); 471 } 472 473 /// Match an instruction with extracted vector operands. 474 bool VectorCombine::foldExtractExtract(Instruction &I) { 475 // It is not safe to transform things like div, urem, etc. because we may 476 // create undefined behavior when executing those on unknown vector elements. 477 if (!isSafeToSpeculativelyExecute(&I)) 478 return false; 479 480 Instruction *I0, *I1; 481 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 482 if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) && 483 !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1)))) 484 return false; 485 486 Value *V0, *V1; 487 uint64_t C0, C1; 488 if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) || 489 !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) || 490 V0->getType() != V1->getType()) 491 return false; 492 493 // If the scalar value 'I' is going to be re-inserted into a vector, then try 494 // to create an extract to that same element. The extract/insert can be 495 // reduced to a "select shuffle". 496 // TODO: If we add a larger pattern match that starts from an insert, this 497 // probably becomes unnecessary. 498 auto *Ext0 = cast<ExtractElementInst>(I0); 499 auto *Ext1 = cast<ExtractElementInst>(I1); 500 uint64_t InsertIndex = InvalidIndex; 501 if (I.hasOneUse()) 502 match(I.user_back(), 503 m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex))); 504 505 ExtractElementInst *ExtractToChange; 506 if (isExtractExtractCheap(Ext0, Ext1, I, ExtractToChange, InsertIndex)) 507 return false; 508 509 if (ExtractToChange) { 510 unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0; 511 ExtractElementInst *NewExtract = 512 translateExtract(ExtractToChange, CheapExtractIdx, Builder); 513 if (!NewExtract) 514 return false; 515 if (ExtractToChange == Ext0) 516 Ext0 = NewExtract; 517 else 518 Ext1 = NewExtract; 519 } 520 521 if (Pred != CmpInst::BAD_ICMP_PREDICATE) 522 foldExtExtCmp(Ext0, Ext1, I); 523 else 524 foldExtExtBinop(Ext0, Ext1, I); 525 526 Worklist.push(Ext0); 527 Worklist.push(Ext1); 528 return true; 529 } 530 531 /// If this is a bitcast of a shuffle, try to bitcast the source vector to the 532 /// destination type followed by shuffle. This can enable further transforms by 533 /// moving bitcasts or shuffles together. 534 bool VectorCombine::foldBitcastShuf(Instruction &I) { 535 Value *V; 536 ArrayRef<int> Mask; 537 if (!match(&I, m_BitCast( 538 m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask)))))) 539 return false; 540 541 // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for 542 // scalable type is unknown; Second, we cannot reason if the narrowed shuffle 543 // mask for scalable type is a splat or not. 544 // 2) Disallow non-vector casts and length-changing shuffles. 545 // TODO: We could allow any shuffle. 546 auto *DestTy = dyn_cast<FixedVectorType>(I.getType()); 547 auto *SrcTy = dyn_cast<FixedVectorType>(V->getType()); 548 if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy) 549 return false; 550 551 unsigned DestNumElts = DestTy->getNumElements(); 552 unsigned SrcNumElts = SrcTy->getNumElements(); 553 SmallVector<int, 16> NewMask; 554 if (SrcNumElts <= DestNumElts) { 555 // The bitcast is from wide to narrow/equal elements. The shuffle mask can 556 // always be expanded to the equivalent form choosing narrower elements. 557 assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask"); 558 unsigned ScaleFactor = DestNumElts / SrcNumElts; 559 narrowShuffleMaskElts(ScaleFactor, Mask, NewMask); 560 } else { 561 // The bitcast is from narrow elements to wide elements. The shuffle mask 562 // must choose consecutive elements to allow casting first. 563 assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask"); 564 unsigned ScaleFactor = SrcNumElts / DestNumElts; 565 if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask)) 566 return false; 567 } 568 569 // The new shuffle must not cost more than the old shuffle. The bitcast is 570 // moved ahead of the shuffle, so assume that it has the same cost as before. 571 InstructionCost DestCost = TTI.getShuffleCost( 572 TargetTransformInfo::SK_PermuteSingleSrc, DestTy, NewMask); 573 InstructionCost SrcCost = 574 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy, Mask); 575 if (DestCost > SrcCost || !DestCost.isValid()) 576 return false; 577 578 // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC' 579 ++NumShufOfBitcast; 580 Value *CastV = Builder.CreateBitCast(V, DestTy); 581 Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask); 582 replaceValue(I, *Shuf); 583 return true; 584 } 585 586 /// Match a vector binop or compare instruction with at least one inserted 587 /// scalar operand and convert to scalar binop/cmp followed by insertelement. 588 bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) { 589 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 590 Value *Ins0, *Ins1; 591 if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) && 592 !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1)))) 593 return false; 594 595 // Do not convert the vector condition of a vector select into a scalar 596 // condition. That may cause problems for codegen because of differences in 597 // boolean formats and register-file transfers. 598 // TODO: Can we account for that in the cost model? 599 bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE; 600 if (IsCmp) 601 for (User *U : I.users()) 602 if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value()))) 603 return false; 604 605 // Match against one or both scalar values being inserted into constant 606 // vectors: 607 // vec_op VecC0, (inselt VecC1, V1, Index) 608 // vec_op (inselt VecC0, V0, Index), VecC1 609 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) 610 // TODO: Deal with mismatched index constants and variable indexes? 611 Constant *VecC0 = nullptr, *VecC1 = nullptr; 612 Value *V0 = nullptr, *V1 = nullptr; 613 uint64_t Index0 = 0, Index1 = 0; 614 if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0), 615 m_ConstantInt(Index0))) && 616 !match(Ins0, m_Constant(VecC0))) 617 return false; 618 if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1), 619 m_ConstantInt(Index1))) && 620 !match(Ins1, m_Constant(VecC1))) 621 return false; 622 623 bool IsConst0 = !V0; 624 bool IsConst1 = !V1; 625 if (IsConst0 && IsConst1) 626 return false; 627 if (!IsConst0 && !IsConst1 && Index0 != Index1) 628 return false; 629 630 // Bail for single insertion if it is a load. 631 // TODO: Handle this once getVectorInstrCost can cost for load/stores. 632 auto *I0 = dyn_cast_or_null<Instruction>(V0); 633 auto *I1 = dyn_cast_or_null<Instruction>(V1); 634 if ((IsConst0 && I1 && I1->mayReadFromMemory()) || 635 (IsConst1 && I0 && I0->mayReadFromMemory())) 636 return false; 637 638 uint64_t Index = IsConst0 ? Index1 : Index0; 639 Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType(); 640 Type *VecTy = I.getType(); 641 assert(VecTy->isVectorTy() && 642 (IsConst0 || IsConst1 || V0->getType() == V1->getType()) && 643 (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() || 644 ScalarTy->isPointerTy()) && 645 "Unexpected types for insert element into binop or cmp"); 646 647 unsigned Opcode = I.getOpcode(); 648 InstructionCost ScalarOpCost, VectorOpCost; 649 if (IsCmp) { 650 CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate(); 651 ScalarOpCost = TTI.getCmpSelInstrCost( 652 Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred); 653 VectorOpCost = TTI.getCmpSelInstrCost( 654 Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred); 655 } else { 656 ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 657 VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 658 } 659 660 // Get cost estimate for the insert element. This cost will factor into 661 // both sequences. 662 InstructionCost InsertCost = 663 TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index); 664 InstructionCost OldCost = 665 (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + VectorOpCost; 666 InstructionCost NewCost = ScalarOpCost + InsertCost + 667 (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) + 668 (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost); 669 670 // We want to scalarize unless the vector variant actually has lower cost. 671 if (OldCost < NewCost || !NewCost.isValid()) 672 return false; 673 674 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) --> 675 // inselt NewVecC, (scalar_op V0, V1), Index 676 if (IsCmp) 677 ++NumScalarCmp; 678 else 679 ++NumScalarBO; 680 681 // For constant cases, extract the scalar element, this should constant fold. 682 if (IsConst0) 683 V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index)); 684 if (IsConst1) 685 V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index)); 686 687 Value *Scalar = 688 IsCmp ? Builder.CreateCmp(Pred, V0, V1) 689 : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1); 690 691 Scalar->setName(I.getName() + ".scalar"); 692 693 // All IR flags are safe to back-propagate. There is no potential for extra 694 // poison to be created by the scalar instruction. 695 if (auto *ScalarInst = dyn_cast<Instruction>(Scalar)) 696 ScalarInst->copyIRFlags(&I); 697 698 // Fold the vector constants in the original vectors into a new base vector. 699 Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1) 700 : ConstantExpr::get(Opcode, VecC0, VecC1); 701 Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index); 702 replaceValue(I, *Insert); 703 return true; 704 } 705 706 /// Try to combine a scalar binop + 2 scalar compares of extracted elements of 707 /// a vector into vector operations followed by extract. Note: The SLP pass 708 /// may miss this pattern because of implementation problems. 709 bool VectorCombine::foldExtractedCmps(Instruction &I) { 710 // We are looking for a scalar binop of booleans. 711 // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1) 712 if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1)) 713 return false; 714 715 // The compare predicates should match, and each compare should have a 716 // constant operand. 717 // TODO: Relax the one-use constraints. 718 Value *B0 = I.getOperand(0), *B1 = I.getOperand(1); 719 Instruction *I0, *I1; 720 Constant *C0, *C1; 721 CmpInst::Predicate P0, P1; 722 if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) || 723 !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) || 724 P0 != P1) 725 return false; 726 727 // The compare operands must be extracts of the same vector with constant 728 // extract indexes. 729 // TODO: Relax the one-use constraints. 730 Value *X; 731 uint64_t Index0, Index1; 732 if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) || 733 !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1))))) 734 return false; 735 736 auto *Ext0 = cast<ExtractElementInst>(I0); 737 auto *Ext1 = cast<ExtractElementInst>(I1); 738 ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1); 739 if (!ConvertToShuf) 740 return false; 741 742 // The original scalar pattern is: 743 // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1) 744 CmpInst::Predicate Pred = P0; 745 unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp 746 : Instruction::ICmp; 747 auto *VecTy = dyn_cast<FixedVectorType>(X->getType()); 748 if (!VecTy) 749 return false; 750 751 InstructionCost OldCost = 752 TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 753 OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 754 OldCost += 755 TTI.getCmpSelInstrCost(CmpOpcode, I0->getType(), 756 CmpInst::makeCmpResultType(I0->getType()), Pred) * 757 2; 758 OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType()); 759 760 // The proposed vector pattern is: 761 // vcmp = cmp Pred X, VecC 762 // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0 763 int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0; 764 int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1; 765 auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType())); 766 InstructionCost NewCost = TTI.getCmpSelInstrCost( 767 CmpOpcode, X->getType(), CmpInst::makeCmpResultType(X->getType()), Pred); 768 SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem); 769 ShufMask[CheapIndex] = ExpensiveIndex; 770 NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy, 771 ShufMask); 772 NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy); 773 NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex); 774 775 // Aggressively form vector ops if the cost is equal because the transform 776 // may enable further optimization. 777 // Codegen can reverse this transform (scalarize) if it was not profitable. 778 if (OldCost < NewCost || !NewCost.isValid()) 779 return false; 780 781 // Create a vector constant from the 2 scalar constants. 782 SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(), 783 UndefValue::get(VecTy->getElementType())); 784 CmpC[Index0] = C0; 785 CmpC[Index1] = C1; 786 Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC)); 787 788 Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder); 789 Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(), 790 VCmp, Shuf); 791 Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex); 792 replaceValue(I, *NewExt); 793 ++NumVecCmpBO; 794 return true; 795 } 796 797 // Check if memory loc modified between two instrs in the same BB 798 static bool isMemModifiedBetween(BasicBlock::iterator Begin, 799 BasicBlock::iterator End, 800 const MemoryLocation &Loc, AAResults &AA) { 801 unsigned NumScanned = 0; 802 return std::any_of(Begin, End, [&](const Instruction &Instr) { 803 return isModSet(AA.getModRefInfo(&Instr, Loc)) || 804 ++NumScanned > MaxInstrsToScan; 805 }); 806 } 807 808 /// Helper class to indicate whether a vector index can be safely scalarized and 809 /// if a freeze needs to be inserted. 810 class ScalarizationResult { 811 enum class StatusTy { Unsafe, Safe, SafeWithFreeze }; 812 813 StatusTy Status; 814 Value *ToFreeze; 815 816 ScalarizationResult(StatusTy Status, Value *ToFreeze = nullptr) 817 : Status(Status), ToFreeze(ToFreeze) {} 818 819 public: 820 ScalarizationResult(const ScalarizationResult &Other) = default; 821 ~ScalarizationResult() { 822 assert(!ToFreeze && "freeze() not called with ToFreeze being set"); 823 } 824 825 static ScalarizationResult unsafe() { return {StatusTy::Unsafe}; } 826 static ScalarizationResult safe() { return {StatusTy::Safe}; } 827 static ScalarizationResult safeWithFreeze(Value *ToFreeze) { 828 return {StatusTy::SafeWithFreeze, ToFreeze}; 829 } 830 831 /// Returns true if the index can be scalarize without requiring a freeze. 832 bool isSafe() const { return Status == StatusTy::Safe; } 833 /// Returns true if the index cannot be scalarized. 834 bool isUnsafe() const { return Status == StatusTy::Unsafe; } 835 /// Returns true if the index can be scalarize, but requires inserting a 836 /// freeze. 837 bool isSafeWithFreeze() const { return Status == StatusTy::SafeWithFreeze; } 838 839 /// Reset the state of Unsafe and clear ToFreze if set. 840 void discard() { 841 ToFreeze = nullptr; 842 Status = StatusTy::Unsafe; 843 } 844 845 /// Freeze the ToFreeze and update the use in \p User to use it. 846 void freeze(IRBuilder<> &Builder, Instruction &UserI) { 847 assert(isSafeWithFreeze() && 848 "should only be used when freezing is required"); 849 assert(is_contained(ToFreeze->users(), &UserI) && 850 "UserI must be a user of ToFreeze"); 851 IRBuilder<>::InsertPointGuard Guard(Builder); 852 Builder.SetInsertPoint(cast<Instruction>(&UserI)); 853 Value *Frozen = 854 Builder.CreateFreeze(ToFreeze, ToFreeze->getName() + ".frozen"); 855 for (Use &U : make_early_inc_range((UserI.operands()))) 856 if (U.get() == ToFreeze) 857 U.set(Frozen); 858 859 ToFreeze = nullptr; 860 } 861 }; 862 863 /// Check if it is legal to scalarize a memory access to \p VecTy at index \p 864 /// Idx. \p Idx must access a valid vector element. 865 static ScalarizationResult canScalarizeAccess(FixedVectorType *VecTy, 866 Value *Idx, Instruction *CtxI, 867 AssumptionCache &AC, 868 const DominatorTree &DT) { 869 if (auto *C = dyn_cast<ConstantInt>(Idx)) { 870 if (C->getValue().ult(VecTy->getNumElements())) 871 return ScalarizationResult::safe(); 872 return ScalarizationResult::unsafe(); 873 } 874 875 unsigned IntWidth = Idx->getType()->getScalarSizeInBits(); 876 APInt Zero(IntWidth, 0); 877 APInt MaxElts(IntWidth, VecTy->getNumElements()); 878 ConstantRange ValidIndices(Zero, MaxElts); 879 ConstantRange IdxRange(IntWidth, true); 880 881 if (isGuaranteedNotToBePoison(Idx, &AC)) { 882 if (ValidIndices.contains(computeConstantRange(Idx, /* ForSigned */ false, 883 true, &AC, CtxI, &DT))) 884 return ScalarizationResult::safe(); 885 return ScalarizationResult::unsafe(); 886 } 887 888 // If the index may be poison, check if we can insert a freeze before the 889 // range of the index is restricted. 890 Value *IdxBase; 891 ConstantInt *CI; 892 if (match(Idx, m_And(m_Value(IdxBase), m_ConstantInt(CI)))) { 893 IdxRange = IdxRange.binaryAnd(CI->getValue()); 894 } else if (match(Idx, m_URem(m_Value(IdxBase), m_ConstantInt(CI)))) { 895 IdxRange = IdxRange.urem(CI->getValue()); 896 } 897 898 if (ValidIndices.contains(IdxRange)) 899 return ScalarizationResult::safeWithFreeze(IdxBase); 900 return ScalarizationResult::unsafe(); 901 } 902 903 /// The memory operation on a vector of \p ScalarType had alignment of 904 /// \p VectorAlignment. Compute the maximal, but conservatively correct, 905 /// alignment that will be valid for the memory operation on a single scalar 906 /// element of the same type with index \p Idx. 907 static Align computeAlignmentAfterScalarization(Align VectorAlignment, 908 Type *ScalarType, Value *Idx, 909 const DataLayout &DL) { 910 if (auto *C = dyn_cast<ConstantInt>(Idx)) 911 return commonAlignment(VectorAlignment, 912 C->getZExtValue() * DL.getTypeStoreSize(ScalarType)); 913 return commonAlignment(VectorAlignment, DL.getTypeStoreSize(ScalarType)); 914 } 915 916 // Combine patterns like: 917 // %0 = load <4 x i32>, <4 x i32>* %a 918 // %1 = insertelement <4 x i32> %0, i32 %b, i32 1 919 // store <4 x i32> %1, <4 x i32>* %a 920 // to: 921 // %0 = bitcast <4 x i32>* %a to i32* 922 // %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1 923 // store i32 %b, i32* %1 924 bool VectorCombine::foldSingleElementStore(Instruction &I) { 925 StoreInst *SI = dyn_cast<StoreInst>(&I); 926 if (!SI || !SI->isSimple() || 927 !isa<FixedVectorType>(SI->getValueOperand()->getType())) 928 return false; 929 930 // TODO: Combine more complicated patterns (multiple insert) by referencing 931 // TargetTransformInfo. 932 Instruction *Source; 933 Value *NewElement; 934 Value *Idx; 935 if (!match(SI->getValueOperand(), 936 m_InsertElt(m_Instruction(Source), m_Value(NewElement), 937 m_Value(Idx)))) 938 return false; 939 940 if (auto *Load = dyn_cast<LoadInst>(Source)) { 941 auto VecTy = cast<FixedVectorType>(SI->getValueOperand()->getType()); 942 const DataLayout &DL = I.getModule()->getDataLayout(); 943 Value *SrcAddr = Load->getPointerOperand()->stripPointerCasts(); 944 // Don't optimize for atomic/volatile load or store. Ensure memory is not 945 // modified between, vector type matches store size, and index is inbounds. 946 if (!Load->isSimple() || Load->getParent() != SI->getParent() || 947 !DL.typeSizeEqualsStoreSize(Load->getType()) || 948 SrcAddr != SI->getPointerOperand()->stripPointerCasts()) 949 return false; 950 951 auto ScalarizableIdx = canScalarizeAccess(VecTy, Idx, Load, AC, DT); 952 if (ScalarizableIdx.isUnsafe() || 953 isMemModifiedBetween(Load->getIterator(), SI->getIterator(), 954 MemoryLocation::get(SI), AA)) 955 return false; 956 957 if (ScalarizableIdx.isSafeWithFreeze()) 958 ScalarizableIdx.freeze(Builder, *cast<Instruction>(Idx)); 959 Value *GEP = Builder.CreateInBoundsGEP( 960 SI->getValueOperand()->getType(), SI->getPointerOperand(), 961 {ConstantInt::get(Idx->getType(), 0), Idx}); 962 StoreInst *NSI = Builder.CreateStore(NewElement, GEP); 963 NSI->copyMetadata(*SI); 964 Align ScalarOpAlignment = computeAlignmentAfterScalarization( 965 std::max(SI->getAlign(), Load->getAlign()), NewElement->getType(), Idx, 966 DL); 967 NSI->setAlignment(ScalarOpAlignment); 968 replaceValue(I, *NSI); 969 eraseInstruction(I); 970 return true; 971 } 972 973 return false; 974 } 975 976 /// Try to scalarize vector loads feeding extractelement instructions. 977 bool VectorCombine::scalarizeLoadExtract(Instruction &I) { 978 Value *Ptr; 979 if (!match(&I, m_Load(m_Value(Ptr)))) 980 return false; 981 982 auto *LI = cast<LoadInst>(&I); 983 const DataLayout &DL = I.getModule()->getDataLayout(); 984 if (LI->isVolatile() || !DL.typeSizeEqualsStoreSize(LI->getType())) 985 return false; 986 987 auto *FixedVT = dyn_cast<FixedVectorType>(LI->getType()); 988 if (!FixedVT) 989 return false; 990 991 InstructionCost OriginalCost = 992 TTI.getMemoryOpCost(Instruction::Load, LI->getType(), LI->getAlign(), 993 LI->getPointerAddressSpace()); 994 InstructionCost ScalarizedCost = 0; 995 996 Instruction *LastCheckedInst = LI; 997 unsigned NumInstChecked = 0; 998 // Check if all users of the load are extracts with no memory modifications 999 // between the load and the extract. Compute the cost of both the original 1000 // code and the scalarized version. 1001 for (User *U : LI->users()) { 1002 auto *UI = dyn_cast<ExtractElementInst>(U); 1003 if (!UI || UI->getParent() != LI->getParent()) 1004 return false; 1005 1006 if (!isGuaranteedNotToBePoison(UI->getOperand(1), &AC, LI, &DT)) 1007 return false; 1008 1009 // Check if any instruction between the load and the extract may modify 1010 // memory. 1011 if (LastCheckedInst->comesBefore(UI)) { 1012 for (Instruction &I : 1013 make_range(std::next(LI->getIterator()), UI->getIterator())) { 1014 // Bail out if we reached the check limit or the instruction may write 1015 // to memory. 1016 if (NumInstChecked == MaxInstrsToScan || I.mayWriteToMemory()) 1017 return false; 1018 NumInstChecked++; 1019 } 1020 LastCheckedInst = UI; 1021 } 1022 1023 auto ScalarIdx = canScalarizeAccess(FixedVT, UI->getOperand(1), &I, AC, DT); 1024 if (!ScalarIdx.isSafe()) { 1025 // TODO: Freeze index if it is safe to do so. 1026 ScalarIdx.discard(); 1027 return false; 1028 } 1029 1030 auto *Index = dyn_cast<ConstantInt>(UI->getOperand(1)); 1031 OriginalCost += 1032 TTI.getVectorInstrCost(Instruction::ExtractElement, LI->getType(), 1033 Index ? Index->getZExtValue() : -1); 1034 ScalarizedCost += 1035 TTI.getMemoryOpCost(Instruction::Load, FixedVT->getElementType(), 1036 Align(1), LI->getPointerAddressSpace()); 1037 ScalarizedCost += TTI.getAddressComputationCost(FixedVT->getElementType()); 1038 } 1039 1040 if (ScalarizedCost >= OriginalCost) 1041 return false; 1042 1043 // Replace extracts with narrow scalar loads. 1044 for (User *U : LI->users()) { 1045 auto *EI = cast<ExtractElementInst>(U); 1046 Builder.SetInsertPoint(EI); 1047 1048 Value *Idx = EI->getOperand(1); 1049 Value *GEP = 1050 Builder.CreateInBoundsGEP(FixedVT, Ptr, {Builder.getInt32(0), Idx}); 1051 auto *NewLoad = cast<LoadInst>(Builder.CreateLoad( 1052 FixedVT->getElementType(), GEP, EI->getName() + ".scalar")); 1053 1054 Align ScalarOpAlignment = computeAlignmentAfterScalarization( 1055 LI->getAlign(), FixedVT->getElementType(), Idx, DL); 1056 NewLoad->setAlignment(ScalarOpAlignment); 1057 1058 replaceValue(*EI, *NewLoad); 1059 } 1060 1061 return true; 1062 } 1063 1064 /// Try to convert "shuffle (binop), (binop)" with a shared binop operand into 1065 /// "binop (shuffle), (shuffle)". 1066 bool VectorCombine::foldShuffleOfBinops(Instruction &I) { 1067 auto *VecTy = dyn_cast<FixedVectorType>(I.getType()); 1068 if (!VecTy) 1069 return false; 1070 1071 BinaryOperator *B0, *B1; 1072 ArrayRef<int> Mask; 1073 if (!match(&I, m_Shuffle(m_OneUse(m_BinOp(B0)), m_OneUse(m_BinOp(B1)), 1074 m_Mask(Mask))) || 1075 B0->getOpcode() != B1->getOpcode() || B0->getType() != VecTy) 1076 return false; 1077 1078 // Try to replace a binop with a shuffle if the shuffle is not costly. 1079 // The new shuffle will choose from a single, common operand, so it may be 1080 // cheaper than the existing two-operand shuffle. 1081 SmallVector<int> UnaryMask = createUnaryMask(Mask, Mask.size()); 1082 Instruction::BinaryOps Opcode = B0->getOpcode(); 1083 InstructionCost BinopCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 1084 InstructionCost ShufCost = TTI.getShuffleCost( 1085 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, UnaryMask); 1086 if (ShufCost > BinopCost) 1087 return false; 1088 1089 // If we have something like "add X, Y" and "add Z, X", swap ops to match. 1090 Value *X = B0->getOperand(0), *Y = B0->getOperand(1); 1091 Value *Z = B1->getOperand(0), *W = B1->getOperand(1); 1092 if (BinaryOperator::isCommutative(Opcode) && X != Z && Y != W) 1093 std::swap(X, Y); 1094 1095 Value *Shuf0, *Shuf1; 1096 if (X == Z) { 1097 // shuf (bo X, Y), (bo X, W) --> bo (shuf X), (shuf Y, W) 1098 Shuf0 = Builder.CreateShuffleVector(X, UnaryMask); 1099 Shuf1 = Builder.CreateShuffleVector(Y, W, Mask); 1100 } else if (Y == W) { 1101 // shuf (bo X, Y), (bo Z, Y) --> bo (shuf X, Z), (shuf Y) 1102 Shuf0 = Builder.CreateShuffleVector(X, Z, Mask); 1103 Shuf1 = Builder.CreateShuffleVector(Y, UnaryMask); 1104 } else { 1105 return false; 1106 } 1107 1108 Value *NewBO = Builder.CreateBinOp(Opcode, Shuf0, Shuf1); 1109 // Intersect flags from the old binops. 1110 if (auto *NewInst = dyn_cast<Instruction>(NewBO)) { 1111 NewInst->copyIRFlags(B0); 1112 NewInst->andIRFlags(B1); 1113 } 1114 replaceValue(I, *NewBO); 1115 return true; 1116 } 1117 1118 /// Given a commutative reduction, the order of the input lanes does not alter 1119 /// the results. We can use this to remove certain shuffles feeding the 1120 /// reduction, removing the need to shuffle at all. 1121 bool VectorCombine::foldShuffleFromReductions(Instruction &I) { 1122 auto *II = dyn_cast<IntrinsicInst>(&I); 1123 if (!II) 1124 return false; 1125 switch (II->getIntrinsicID()) { 1126 case Intrinsic::vector_reduce_add: 1127 case Intrinsic::vector_reduce_mul: 1128 case Intrinsic::vector_reduce_and: 1129 case Intrinsic::vector_reduce_or: 1130 case Intrinsic::vector_reduce_xor: 1131 case Intrinsic::vector_reduce_smin: 1132 case Intrinsic::vector_reduce_smax: 1133 case Intrinsic::vector_reduce_umin: 1134 case Intrinsic::vector_reduce_umax: 1135 break; 1136 default: 1137 return false; 1138 } 1139 1140 // Find all the inputs when looking through operations that do not alter the 1141 // lane order (binops, for example). Currently we look for a single shuffle, 1142 // and can ignore splat values. 1143 std::queue<Value *> Worklist; 1144 SmallPtrSet<Value *, 4> Visited; 1145 ShuffleVectorInst *Shuffle = nullptr; 1146 if (auto *Op = dyn_cast<Instruction>(I.getOperand(0))) 1147 Worklist.push(Op); 1148 1149 while (!Worklist.empty()) { 1150 Value *CV = Worklist.front(); 1151 Worklist.pop(); 1152 if (Visited.contains(CV)) 1153 continue; 1154 1155 // Splats don't change the order, so can be safely ignored. 1156 if (isSplatValue(CV)) 1157 continue; 1158 1159 Visited.insert(CV); 1160 1161 if (auto *CI = dyn_cast<Instruction>(CV)) { 1162 if (CI->isBinaryOp()) { 1163 for (auto *Op : CI->operand_values()) 1164 Worklist.push(Op); 1165 continue; 1166 } else if (auto *SV = dyn_cast<ShuffleVectorInst>(CI)) { 1167 if (Shuffle && Shuffle != SV) 1168 return false; 1169 Shuffle = SV; 1170 continue; 1171 } 1172 } 1173 1174 // Anything else is currently an unknown node. 1175 return false; 1176 } 1177 1178 if (!Shuffle) 1179 return false; 1180 1181 // Check all uses of the binary ops and shuffles are also included in the 1182 // lane-invariant operations (Visited should be the list of lanewise 1183 // instructions, including the shuffle that we found). 1184 for (auto *V : Visited) 1185 for (auto *U : V->users()) 1186 if (!Visited.contains(U) && U != &I) 1187 return false; 1188 1189 FixedVectorType *VecType = 1190 dyn_cast<FixedVectorType>(II->getOperand(0)->getType()); 1191 if (!VecType) 1192 return false; 1193 FixedVectorType *ShuffleInputType = 1194 dyn_cast<FixedVectorType>(Shuffle->getOperand(0)->getType()); 1195 if (!ShuffleInputType) 1196 return false; 1197 int NumInputElts = ShuffleInputType->getNumElements(); 1198 1199 // Find the mask from sorting the lanes into order. This is most likely to 1200 // become a identity or concat mask. Undef elements are pushed to the end. 1201 SmallVector<int> ConcatMask; 1202 Shuffle->getShuffleMask(ConcatMask); 1203 sort(ConcatMask, [](int X, int Y) { return (unsigned)X < (unsigned)Y; }); 1204 bool UsesSecondVec = 1205 any_of(ConcatMask, [&](int M) { return M >= NumInputElts; }); 1206 InstructionCost OldCost = TTI.getShuffleCost( 1207 UsesSecondVec ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc, VecType, 1208 Shuffle->getShuffleMask()); 1209 InstructionCost NewCost = TTI.getShuffleCost( 1210 UsesSecondVec ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc, VecType, 1211 ConcatMask); 1212 1213 LLVM_DEBUG(dbgs() << "Found a reduction feeding from a shuffle: " << *Shuffle 1214 << "\n"); 1215 LLVM_DEBUG(dbgs() << " OldCost: " << OldCost << " vs NewCost: " << NewCost 1216 << "\n"); 1217 if (NewCost < OldCost) { 1218 Builder.SetInsertPoint(Shuffle); 1219 Value *NewShuffle = Builder.CreateShuffleVector( 1220 Shuffle->getOperand(0), Shuffle->getOperand(1), ConcatMask); 1221 LLVM_DEBUG(dbgs() << "Created new shuffle: " << *NewShuffle << "\n"); 1222 replaceValue(*Shuffle, *NewShuffle); 1223 } 1224 1225 return false; 1226 } 1227 1228 /// This is the entry point for all transforms. Pass manager differences are 1229 /// handled in the callers of this function. 1230 bool VectorCombine::run() { 1231 if (DisableVectorCombine) 1232 return false; 1233 1234 // Don't attempt vectorization if the target does not support vectors. 1235 if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true))) 1236 return false; 1237 1238 bool MadeChange = false; 1239 auto FoldInst = [this, &MadeChange](Instruction &I) { 1240 Builder.SetInsertPoint(&I); 1241 if (!ScalarizationOnly) { 1242 MadeChange |= vectorizeLoadInsert(I); 1243 MadeChange |= foldExtractExtract(I); 1244 MadeChange |= foldBitcastShuf(I); 1245 MadeChange |= foldExtractedCmps(I); 1246 MadeChange |= foldShuffleOfBinops(I); 1247 MadeChange |= foldShuffleFromReductions(I); 1248 } 1249 MadeChange |= scalarizeBinopOrCmp(I); 1250 MadeChange |= scalarizeLoadExtract(I); 1251 MadeChange |= foldSingleElementStore(I); 1252 }; 1253 for (BasicBlock &BB : F) { 1254 // Ignore unreachable basic blocks. 1255 if (!DT.isReachableFromEntry(&BB)) 1256 continue; 1257 // Use early increment range so that we can erase instructions in loop. 1258 for (Instruction &I : make_early_inc_range(BB)) { 1259 if (I.isDebugOrPseudoInst()) 1260 continue; 1261 FoldInst(I); 1262 } 1263 } 1264 1265 while (!Worklist.isEmpty()) { 1266 Instruction *I = Worklist.removeOne(); 1267 if (!I) 1268 continue; 1269 1270 if (isInstructionTriviallyDead(I)) { 1271 eraseInstruction(*I); 1272 continue; 1273 } 1274 1275 FoldInst(*I); 1276 } 1277 1278 return MadeChange; 1279 } 1280 1281 // Pass manager boilerplate below here. 1282 1283 namespace { 1284 class VectorCombineLegacyPass : public FunctionPass { 1285 public: 1286 static char ID; 1287 VectorCombineLegacyPass() : FunctionPass(ID) { 1288 initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry()); 1289 } 1290 1291 void getAnalysisUsage(AnalysisUsage &AU) const override { 1292 AU.addRequired<AssumptionCacheTracker>(); 1293 AU.addRequired<DominatorTreeWrapperPass>(); 1294 AU.addRequired<TargetTransformInfoWrapperPass>(); 1295 AU.addRequired<AAResultsWrapperPass>(); 1296 AU.setPreservesCFG(); 1297 AU.addPreserved<DominatorTreeWrapperPass>(); 1298 AU.addPreserved<GlobalsAAWrapperPass>(); 1299 AU.addPreserved<AAResultsWrapperPass>(); 1300 AU.addPreserved<BasicAAWrapperPass>(); 1301 FunctionPass::getAnalysisUsage(AU); 1302 } 1303 1304 bool runOnFunction(Function &F) override { 1305 if (skipFunction(F)) 1306 return false; 1307 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1308 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1309 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1310 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 1311 VectorCombine Combiner(F, TTI, DT, AA, AC, false); 1312 return Combiner.run(); 1313 } 1314 }; 1315 } // namespace 1316 1317 char VectorCombineLegacyPass::ID = 0; 1318 INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine", 1319 "Optimize scalar/vector ops", false, 1320 false) 1321 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1322 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1323 INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine", 1324 "Optimize scalar/vector ops", false, false) 1325 Pass *llvm::createVectorCombinePass() { 1326 return new VectorCombineLegacyPass(); 1327 } 1328 1329 PreservedAnalyses VectorCombinePass::run(Function &F, 1330 FunctionAnalysisManager &FAM) { 1331 auto &AC = FAM.getResult<AssumptionAnalysis>(F); 1332 TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); 1333 DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); 1334 AAResults &AA = FAM.getResult<AAManager>(F); 1335 VectorCombine Combiner(F, TTI, DT, AA, AC, ScalarizationOnly); 1336 if (!Combiner.run()) 1337 return PreservedAnalyses::all(); 1338 PreservedAnalyses PA; 1339 PA.preserveSet<CFGAnalyses>(); 1340 return PA; 1341 } 1342