1 //===------- VectorCombine.cpp - Optimize partial vector operations -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass optimizes scalar/vector interactions using target cost models. The 10 // transforms implemented here may not fit in traditional loop-based or SLP 11 // vectorization passes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Vectorize/VectorCombine.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/BasicAliasAnalysis.h" 19 #include "llvm/Analysis/GlobalsModRef.h" 20 #include "llvm/Analysis/Loads.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/PatternMatch.h" 28 #include "llvm/InitializePasses.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "llvm/Transforms/Vectorize.h" 33 34 #define DEBUG_TYPE "vector-combine" 35 #include "llvm/Transforms/Utils/InstructionWorklist.h" 36 37 using namespace llvm; 38 using namespace llvm::PatternMatch; 39 40 STATISTIC(NumVecLoad, "Number of vector loads formed"); 41 STATISTIC(NumVecCmp, "Number of vector compares formed"); 42 STATISTIC(NumVecBO, "Number of vector binops formed"); 43 STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed"); 44 STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast"); 45 STATISTIC(NumScalarBO, "Number of scalar binops formed"); 46 STATISTIC(NumScalarCmp, "Number of scalar compares formed"); 47 48 static cl::opt<bool> DisableVectorCombine( 49 "disable-vector-combine", cl::init(false), cl::Hidden, 50 cl::desc("Disable all vector combine transforms")); 51 52 static cl::opt<bool> DisableBinopExtractShuffle( 53 "disable-binop-extract-shuffle", cl::init(false), cl::Hidden, 54 cl::desc("Disable binop extract to shuffle transforms")); 55 56 static cl::opt<unsigned> MaxInstrsToScan( 57 "vector-combine-max-scan-instrs", cl::init(30), cl::Hidden, 58 cl::desc("Max number of instructions to scan for vector combining.")); 59 60 static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max(); 61 62 namespace { 63 class VectorCombine { 64 public: 65 VectorCombine(Function &F, const TargetTransformInfo &TTI, 66 const DominatorTree &DT, AAResults &AA, AssumptionCache &AC) 67 : F(F), Builder(F.getContext()), TTI(TTI), DT(DT), AA(AA), AC(AC) {} 68 69 bool run(); 70 71 private: 72 Function &F; 73 IRBuilder<> Builder; 74 const TargetTransformInfo &TTI; 75 const DominatorTree &DT; 76 AAResults &AA; 77 AssumptionCache &AC; 78 InstructionWorklist Worklist; 79 80 bool vectorizeLoadInsert(Instruction &I); 81 ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0, 82 ExtractElementInst *Ext1, 83 unsigned PreferredExtractIndex) const; 84 bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 85 const Instruction &I, 86 ExtractElementInst *&ConvertToShuffle, 87 unsigned PreferredExtractIndex); 88 void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 89 Instruction &I); 90 void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 91 Instruction &I); 92 bool foldExtractExtract(Instruction &I); 93 bool foldBitcastShuf(Instruction &I); 94 bool scalarizeBinopOrCmp(Instruction &I); 95 bool foldExtractedCmps(Instruction &I); 96 bool foldSingleElementStore(Instruction &I); 97 bool scalarizeLoadExtract(Instruction &I); 98 99 void replaceValue(Value &Old, Value &New) { 100 Old.replaceAllUsesWith(&New); 101 New.takeName(&Old); 102 if (auto *NewI = dyn_cast<Instruction>(&New)) { 103 Worklist.pushUsersToWorkList(*NewI); 104 Worklist.pushValue(NewI); 105 } 106 Worklist.pushValue(&Old); 107 } 108 109 void eraseInstruction(Instruction &I) { 110 for (Value *Op : I.operands()) 111 Worklist.pushValue(Op); 112 Worklist.remove(&I); 113 I.eraseFromParent(); 114 } 115 }; 116 } // namespace 117 118 bool VectorCombine::vectorizeLoadInsert(Instruction &I) { 119 // Match insert into fixed vector of scalar value. 120 // TODO: Handle non-zero insert index. 121 auto *Ty = dyn_cast<FixedVectorType>(I.getType()); 122 Value *Scalar; 123 if (!Ty || !match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) || 124 !Scalar->hasOneUse()) 125 return false; 126 127 // Optionally match an extract from another vector. 128 Value *X; 129 bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt())); 130 if (!HasExtract) 131 X = Scalar; 132 133 // Match source value as load of scalar or vector. 134 // Do not vectorize scalar load (widening) if atomic/volatile or under 135 // asan/hwasan/memtag/tsan. The widened load may load data from dirty regions 136 // or create data races non-existent in the source. 137 auto *Load = dyn_cast<LoadInst>(X); 138 if (!Load || !Load->isSimple() || !Load->hasOneUse() || 139 Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) || 140 mustSuppressSpeculation(*Load)) 141 return false; 142 143 const DataLayout &DL = I.getModule()->getDataLayout(); 144 Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts(); 145 assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type"); 146 147 // If original AS != Load's AS, we can't bitcast the original pointer and have 148 // to use Load's operand instead. Ideally we would want to strip pointer casts 149 // without changing AS, but there's no API to do that ATM. 150 unsigned AS = Load->getPointerAddressSpace(); 151 if (AS != SrcPtr->getType()->getPointerAddressSpace()) 152 SrcPtr = Load->getPointerOperand(); 153 154 // We are potentially transforming byte-sized (8-bit) memory accesses, so make 155 // sure we have all of our type-based constraints in place for this target. 156 Type *ScalarTy = Scalar->getType(); 157 uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits(); 158 unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth(); 159 if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 || 160 ScalarSize % 8 != 0) 161 return false; 162 163 // Check safety of replacing the scalar load with a larger vector load. 164 // We use minimal alignment (maximum flexibility) because we only care about 165 // the dereferenceable region. When calculating cost and creating a new op, 166 // we may use a larger value based on alignment attributes. 167 unsigned MinVecNumElts = MinVectorSize / ScalarSize; 168 auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false); 169 unsigned OffsetEltIndex = 0; 170 Align Alignment = Load->getAlign(); 171 if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) { 172 // It is not safe to load directly from the pointer, but we can still peek 173 // through gep offsets and check if it safe to load from a base address with 174 // updated alignment. If it is, we can shuffle the element(s) into place 175 // after loading. 176 unsigned OffsetBitWidth = DL.getIndexTypeSizeInBits(SrcPtr->getType()); 177 APInt Offset(OffsetBitWidth, 0); 178 SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); 179 180 // We want to shuffle the result down from a high element of a vector, so 181 // the offset must be positive. 182 if (Offset.isNegative()) 183 return false; 184 185 // The offset must be a multiple of the scalar element to shuffle cleanly 186 // in the element's size. 187 uint64_t ScalarSizeInBytes = ScalarSize / 8; 188 if (Offset.urem(ScalarSizeInBytes) != 0) 189 return false; 190 191 // If we load MinVecNumElts, will our target element still be loaded? 192 OffsetEltIndex = Offset.udiv(ScalarSizeInBytes).getZExtValue(); 193 if (OffsetEltIndex >= MinVecNumElts) 194 return false; 195 196 if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) 197 return false; 198 199 // Update alignment with offset value. Note that the offset could be negated 200 // to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but 201 // negation does not change the result of the alignment calculation. 202 Alignment = commonAlignment(Alignment, Offset.getZExtValue()); 203 } 204 205 // Original pattern: insertelt undef, load [free casts of] PtrOp, 0 206 // Use the greater of the alignment on the load or its source pointer. 207 Alignment = std::max(SrcPtr->getPointerAlignment(DL), Alignment); 208 Type *LoadTy = Load->getType(); 209 InstructionCost OldCost = 210 TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS); 211 APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0); 212 OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts, 213 /* Insert */ true, HasExtract); 214 215 // New pattern: load VecPtr 216 InstructionCost NewCost = 217 TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS); 218 // Optionally, we are shuffling the loaded vector element(s) into place. 219 // For the mask set everything but element 0 to undef to prevent poison from 220 // propagating from the extra loaded memory. This will also optionally 221 // shrink/grow the vector from the loaded size to the output size. 222 // We assume this operation has no cost in codegen if there was no offset. 223 // Note that we could use freeze to avoid poison problems, but then we might 224 // still need a shuffle to change the vector size. 225 unsigned OutputNumElts = Ty->getNumElements(); 226 SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem); 227 assert(OffsetEltIndex < MinVecNumElts && "Address offset too big"); 228 Mask[0] = OffsetEltIndex; 229 if (OffsetEltIndex) 230 NewCost += TTI.getShuffleCost(TTI::SK_PermuteSingleSrc, MinVecTy, Mask); 231 232 // We can aggressively convert to the vector form because the backend can 233 // invert this transform if it does not result in a performance win. 234 if (OldCost < NewCost || !NewCost.isValid()) 235 return false; 236 237 // It is safe and potentially profitable to load a vector directly: 238 // inselt undef, load Scalar, 0 --> load VecPtr 239 IRBuilder<> Builder(Load); 240 Value *CastedPtr = Builder.CreateBitCast(SrcPtr, MinVecTy->getPointerTo(AS)); 241 Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment); 242 VecLd = Builder.CreateShuffleVector(VecLd, Mask); 243 244 replaceValue(I, *VecLd); 245 ++NumVecLoad; 246 return true; 247 } 248 249 /// Determine which, if any, of the inputs should be replaced by a shuffle 250 /// followed by extract from a different index. 251 ExtractElementInst *VectorCombine::getShuffleExtract( 252 ExtractElementInst *Ext0, ExtractElementInst *Ext1, 253 unsigned PreferredExtractIndex = InvalidIndex) const { 254 assert(isa<ConstantInt>(Ext0->getIndexOperand()) && 255 isa<ConstantInt>(Ext1->getIndexOperand()) && 256 "Expected constant extract indexes"); 257 258 unsigned Index0 = cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue(); 259 unsigned Index1 = cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue(); 260 261 // If the extract indexes are identical, no shuffle is needed. 262 if (Index0 == Index1) 263 return nullptr; 264 265 Type *VecTy = Ext0->getVectorOperand()->getType(); 266 assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types"); 267 InstructionCost Cost0 = 268 TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 269 InstructionCost Cost1 = 270 TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 271 272 // If both costs are invalid no shuffle is needed 273 if (!Cost0.isValid() && !Cost1.isValid()) 274 return nullptr; 275 276 // We are extracting from 2 different indexes, so one operand must be shuffled 277 // before performing a vector operation and/or extract. The more expensive 278 // extract will be replaced by a shuffle. 279 if (Cost0 > Cost1) 280 return Ext0; 281 if (Cost1 > Cost0) 282 return Ext1; 283 284 // If the costs are equal and there is a preferred extract index, shuffle the 285 // opposite operand. 286 if (PreferredExtractIndex == Index0) 287 return Ext1; 288 if (PreferredExtractIndex == Index1) 289 return Ext0; 290 291 // Otherwise, replace the extract with the higher index. 292 return Index0 > Index1 ? Ext0 : Ext1; 293 } 294 295 /// Compare the relative costs of 2 extracts followed by scalar operation vs. 296 /// vector operation(s) followed by extract. Return true if the existing 297 /// instructions are cheaper than a vector alternative. Otherwise, return false 298 /// and if one of the extracts should be transformed to a shufflevector, set 299 /// \p ConvertToShuffle to that extract instruction. 300 bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0, 301 ExtractElementInst *Ext1, 302 const Instruction &I, 303 ExtractElementInst *&ConvertToShuffle, 304 unsigned PreferredExtractIndex) { 305 assert(isa<ConstantInt>(Ext0->getOperand(1)) && 306 isa<ConstantInt>(Ext1->getOperand(1)) && 307 "Expected constant extract indexes"); 308 unsigned Opcode = I.getOpcode(); 309 Type *ScalarTy = Ext0->getType(); 310 auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType()); 311 InstructionCost ScalarOpCost, VectorOpCost; 312 313 // Get cost estimates for scalar and vector versions of the operation. 314 bool IsBinOp = Instruction::isBinaryOp(Opcode); 315 if (IsBinOp) { 316 ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 317 VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 318 } else { 319 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 320 "Expected a compare"); 321 CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate(); 322 ScalarOpCost = TTI.getCmpSelInstrCost( 323 Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred); 324 VectorOpCost = TTI.getCmpSelInstrCost( 325 Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred); 326 } 327 328 // Get cost estimates for the extract elements. These costs will factor into 329 // both sequences. 330 unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue(); 331 unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue(); 332 333 InstructionCost Extract0Cost = 334 TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index); 335 InstructionCost Extract1Cost = 336 TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index); 337 338 // A more expensive extract will always be replaced by a splat shuffle. 339 // For example, if Ext0 is more expensive: 340 // opcode (extelt V0, Ext0), (ext V1, Ext1) --> 341 // extelt (opcode (splat V0, Ext0), V1), Ext1 342 // TODO: Evaluate whether that always results in lowest cost. Alternatively, 343 // check the cost of creating a broadcast shuffle and shuffling both 344 // operands to element 0. 345 InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost); 346 347 // Extra uses of the extracts mean that we include those costs in the 348 // vector total because those instructions will not be eliminated. 349 InstructionCost OldCost, NewCost; 350 if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) { 351 // Handle a special case. If the 2 extracts are identical, adjust the 352 // formulas to account for that. The extra use charge allows for either the 353 // CSE'd pattern or an unoptimized form with identical values: 354 // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C 355 bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2) 356 : !Ext0->hasOneUse() || !Ext1->hasOneUse(); 357 OldCost = CheapExtractCost + ScalarOpCost; 358 NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost; 359 } else { 360 // Handle the general case. Each extract is actually a different value: 361 // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C 362 OldCost = Extract0Cost + Extract1Cost + ScalarOpCost; 363 NewCost = VectorOpCost + CheapExtractCost + 364 !Ext0->hasOneUse() * Extract0Cost + 365 !Ext1->hasOneUse() * Extract1Cost; 366 } 367 368 ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex); 369 if (ConvertToShuffle) { 370 if (IsBinOp && DisableBinopExtractShuffle) 371 return true; 372 373 // If we are extracting from 2 different indexes, then one operand must be 374 // shuffled before performing the vector operation. The shuffle mask is 375 // undefined except for 1 lane that is being translated to the remaining 376 // extraction lane. Therefore, it is a splat shuffle. Ex: 377 // ShufMask = { undef, undef, 0, undef } 378 // TODO: The cost model has an option for a "broadcast" shuffle 379 // (splat-from-element-0), but no option for a more general splat. 380 NewCost += 381 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 382 } 383 384 // Aggressively form a vector op if the cost is equal because the transform 385 // may enable further optimization. 386 // Codegen can reverse this transform (scalarize) if it was not profitable. 387 return OldCost < NewCost; 388 } 389 390 /// Create a shuffle that translates (shifts) 1 element from the input vector 391 /// to a new element location. 392 static Value *createShiftShuffle(Value *Vec, unsigned OldIndex, 393 unsigned NewIndex, IRBuilder<> &Builder) { 394 // The shuffle mask is undefined except for 1 lane that is being translated 395 // to the new element index. Example for OldIndex == 2 and NewIndex == 0: 396 // ShufMask = { 2, undef, undef, undef } 397 auto *VecTy = cast<FixedVectorType>(Vec->getType()); 398 SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem); 399 ShufMask[NewIndex] = OldIndex; 400 return Builder.CreateShuffleVector(Vec, ShufMask, "shift"); 401 } 402 403 /// Given an extract element instruction with constant index operand, shuffle 404 /// the source vector (shift the scalar element) to a NewIndex for extraction. 405 /// Return null if the input can be constant folded, so that we are not creating 406 /// unnecessary instructions. 407 static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt, 408 unsigned NewIndex, 409 IRBuilder<> &Builder) { 410 // If the extract can be constant-folded, this code is unsimplified. Defer 411 // to other passes to handle that. 412 Value *X = ExtElt->getVectorOperand(); 413 Value *C = ExtElt->getIndexOperand(); 414 assert(isa<ConstantInt>(C) && "Expected a constant index operand"); 415 if (isa<Constant>(X)) 416 return nullptr; 417 418 Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(), 419 NewIndex, Builder); 420 return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex)); 421 } 422 423 /// Try to reduce extract element costs by converting scalar compares to vector 424 /// compares followed by extract. 425 /// cmp (ext0 V0, C), (ext1 V1, C) 426 void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0, 427 ExtractElementInst *Ext1, Instruction &I) { 428 assert(isa<CmpInst>(&I) && "Expected a compare"); 429 assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 430 cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 431 "Expected matching constant extract indexes"); 432 433 // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C 434 ++NumVecCmp; 435 CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate(); 436 Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 437 Value *VecCmp = Builder.CreateCmp(Pred, V0, V1); 438 Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand()); 439 replaceValue(I, *NewExt); 440 } 441 442 /// Try to reduce extract element costs by converting scalar binops to vector 443 /// binops followed by extract. 444 /// bo (ext0 V0, C), (ext1 V1, C) 445 void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0, 446 ExtractElementInst *Ext1, Instruction &I) { 447 assert(isa<BinaryOperator>(&I) && "Expected a binary operator"); 448 assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 449 cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 450 "Expected matching constant extract indexes"); 451 452 // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C 453 ++NumVecBO; 454 Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 455 Value *VecBO = 456 Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1); 457 458 // All IR flags are safe to back-propagate because any potential poison 459 // created in unused vector elements is discarded by the extract. 460 if (auto *VecBOInst = dyn_cast<Instruction>(VecBO)) 461 VecBOInst->copyIRFlags(&I); 462 463 Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand()); 464 replaceValue(I, *NewExt); 465 } 466 467 /// Match an instruction with extracted vector operands. 468 bool VectorCombine::foldExtractExtract(Instruction &I) { 469 // It is not safe to transform things like div, urem, etc. because we may 470 // create undefined behavior when executing those on unknown vector elements. 471 if (!isSafeToSpeculativelyExecute(&I)) 472 return false; 473 474 Instruction *I0, *I1; 475 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 476 if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) && 477 !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1)))) 478 return false; 479 480 Value *V0, *V1; 481 uint64_t C0, C1; 482 if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) || 483 !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) || 484 V0->getType() != V1->getType()) 485 return false; 486 487 // If the scalar value 'I' is going to be re-inserted into a vector, then try 488 // to create an extract to that same element. The extract/insert can be 489 // reduced to a "select shuffle". 490 // TODO: If we add a larger pattern match that starts from an insert, this 491 // probably becomes unnecessary. 492 auto *Ext0 = cast<ExtractElementInst>(I0); 493 auto *Ext1 = cast<ExtractElementInst>(I1); 494 uint64_t InsertIndex = InvalidIndex; 495 if (I.hasOneUse()) 496 match(I.user_back(), 497 m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex))); 498 499 ExtractElementInst *ExtractToChange; 500 if (isExtractExtractCheap(Ext0, Ext1, I, ExtractToChange, InsertIndex)) 501 return false; 502 503 if (ExtractToChange) { 504 unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0; 505 ExtractElementInst *NewExtract = 506 translateExtract(ExtractToChange, CheapExtractIdx, Builder); 507 if (!NewExtract) 508 return false; 509 if (ExtractToChange == Ext0) 510 Ext0 = NewExtract; 511 else 512 Ext1 = NewExtract; 513 } 514 515 if (Pred != CmpInst::BAD_ICMP_PREDICATE) 516 foldExtExtCmp(Ext0, Ext1, I); 517 else 518 foldExtExtBinop(Ext0, Ext1, I); 519 520 Worklist.push(Ext0); 521 Worklist.push(Ext1); 522 return true; 523 } 524 525 /// If this is a bitcast of a shuffle, try to bitcast the source vector to the 526 /// destination type followed by shuffle. This can enable further transforms by 527 /// moving bitcasts or shuffles together. 528 bool VectorCombine::foldBitcastShuf(Instruction &I) { 529 Value *V; 530 ArrayRef<int> Mask; 531 if (!match(&I, m_BitCast( 532 m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask)))))) 533 return false; 534 535 // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for 536 // scalable type is unknown; Second, we cannot reason if the narrowed shuffle 537 // mask for scalable type is a splat or not. 538 // 2) Disallow non-vector casts and length-changing shuffles. 539 // TODO: We could allow any shuffle. 540 auto *DestTy = dyn_cast<FixedVectorType>(I.getType()); 541 auto *SrcTy = dyn_cast<FixedVectorType>(V->getType()); 542 if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy) 543 return false; 544 545 unsigned DestNumElts = DestTy->getNumElements(); 546 unsigned SrcNumElts = SrcTy->getNumElements(); 547 SmallVector<int, 16> NewMask; 548 if (SrcNumElts <= DestNumElts) { 549 // The bitcast is from wide to narrow/equal elements. The shuffle mask can 550 // always be expanded to the equivalent form choosing narrower elements. 551 assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask"); 552 unsigned ScaleFactor = DestNumElts / SrcNumElts; 553 narrowShuffleMaskElts(ScaleFactor, Mask, NewMask); 554 } else { 555 // The bitcast is from narrow elements to wide elements. The shuffle mask 556 // must choose consecutive elements to allow casting first. 557 assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask"); 558 unsigned ScaleFactor = SrcNumElts / DestNumElts; 559 if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask)) 560 return false; 561 } 562 563 // The new shuffle must not cost more than the old shuffle. The bitcast is 564 // moved ahead of the shuffle, so assume that it has the same cost as before. 565 InstructionCost DestCost = TTI.getShuffleCost( 566 TargetTransformInfo::SK_PermuteSingleSrc, DestTy, NewMask); 567 InstructionCost SrcCost = 568 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy, Mask); 569 if (DestCost > SrcCost || !DestCost.isValid()) 570 return false; 571 572 // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC' 573 ++NumShufOfBitcast; 574 Value *CastV = Builder.CreateBitCast(V, DestTy); 575 Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask); 576 replaceValue(I, *Shuf); 577 return true; 578 } 579 580 /// Match a vector binop or compare instruction with at least one inserted 581 /// scalar operand and convert to scalar binop/cmp followed by insertelement. 582 bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) { 583 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 584 Value *Ins0, *Ins1; 585 if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) && 586 !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1)))) 587 return false; 588 589 // Do not convert the vector condition of a vector select into a scalar 590 // condition. That may cause problems for codegen because of differences in 591 // boolean formats and register-file transfers. 592 // TODO: Can we account for that in the cost model? 593 bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE; 594 if (IsCmp) 595 for (User *U : I.users()) 596 if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value()))) 597 return false; 598 599 // Match against one or both scalar values being inserted into constant 600 // vectors: 601 // vec_op VecC0, (inselt VecC1, V1, Index) 602 // vec_op (inselt VecC0, V0, Index), VecC1 603 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) 604 // TODO: Deal with mismatched index constants and variable indexes? 605 Constant *VecC0 = nullptr, *VecC1 = nullptr; 606 Value *V0 = nullptr, *V1 = nullptr; 607 uint64_t Index0 = 0, Index1 = 0; 608 if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0), 609 m_ConstantInt(Index0))) && 610 !match(Ins0, m_Constant(VecC0))) 611 return false; 612 if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1), 613 m_ConstantInt(Index1))) && 614 !match(Ins1, m_Constant(VecC1))) 615 return false; 616 617 bool IsConst0 = !V0; 618 bool IsConst1 = !V1; 619 if (IsConst0 && IsConst1) 620 return false; 621 if (!IsConst0 && !IsConst1 && Index0 != Index1) 622 return false; 623 624 // Bail for single insertion if it is a load. 625 // TODO: Handle this once getVectorInstrCost can cost for load/stores. 626 auto *I0 = dyn_cast_or_null<Instruction>(V0); 627 auto *I1 = dyn_cast_or_null<Instruction>(V1); 628 if ((IsConst0 && I1 && I1->mayReadFromMemory()) || 629 (IsConst1 && I0 && I0->mayReadFromMemory())) 630 return false; 631 632 uint64_t Index = IsConst0 ? Index1 : Index0; 633 Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType(); 634 Type *VecTy = I.getType(); 635 assert(VecTy->isVectorTy() && 636 (IsConst0 || IsConst1 || V0->getType() == V1->getType()) && 637 (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() || 638 ScalarTy->isPointerTy()) && 639 "Unexpected types for insert element into binop or cmp"); 640 641 unsigned Opcode = I.getOpcode(); 642 InstructionCost ScalarOpCost, VectorOpCost; 643 if (IsCmp) { 644 CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate(); 645 ScalarOpCost = TTI.getCmpSelInstrCost( 646 Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred); 647 VectorOpCost = TTI.getCmpSelInstrCost( 648 Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred); 649 } else { 650 ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 651 VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 652 } 653 654 // Get cost estimate for the insert element. This cost will factor into 655 // both sequences. 656 InstructionCost InsertCost = 657 TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index); 658 InstructionCost OldCost = 659 (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + VectorOpCost; 660 InstructionCost NewCost = ScalarOpCost + InsertCost + 661 (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) + 662 (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost); 663 664 // We want to scalarize unless the vector variant actually has lower cost. 665 if (OldCost < NewCost || !NewCost.isValid()) 666 return false; 667 668 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) --> 669 // inselt NewVecC, (scalar_op V0, V1), Index 670 if (IsCmp) 671 ++NumScalarCmp; 672 else 673 ++NumScalarBO; 674 675 // For constant cases, extract the scalar element, this should constant fold. 676 if (IsConst0) 677 V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index)); 678 if (IsConst1) 679 V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index)); 680 681 Value *Scalar = 682 IsCmp ? Builder.CreateCmp(Pred, V0, V1) 683 : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1); 684 685 Scalar->setName(I.getName() + ".scalar"); 686 687 // All IR flags are safe to back-propagate. There is no potential for extra 688 // poison to be created by the scalar instruction. 689 if (auto *ScalarInst = dyn_cast<Instruction>(Scalar)) 690 ScalarInst->copyIRFlags(&I); 691 692 // Fold the vector constants in the original vectors into a new base vector. 693 Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1) 694 : ConstantExpr::get(Opcode, VecC0, VecC1); 695 Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index); 696 replaceValue(I, *Insert); 697 return true; 698 } 699 700 /// Try to combine a scalar binop + 2 scalar compares of extracted elements of 701 /// a vector into vector operations followed by extract. Note: The SLP pass 702 /// may miss this pattern because of implementation problems. 703 bool VectorCombine::foldExtractedCmps(Instruction &I) { 704 // We are looking for a scalar binop of booleans. 705 // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1) 706 if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1)) 707 return false; 708 709 // The compare predicates should match, and each compare should have a 710 // constant operand. 711 // TODO: Relax the one-use constraints. 712 Value *B0 = I.getOperand(0), *B1 = I.getOperand(1); 713 Instruction *I0, *I1; 714 Constant *C0, *C1; 715 CmpInst::Predicate P0, P1; 716 if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) || 717 !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) || 718 P0 != P1) 719 return false; 720 721 // The compare operands must be extracts of the same vector with constant 722 // extract indexes. 723 // TODO: Relax the one-use constraints. 724 Value *X; 725 uint64_t Index0, Index1; 726 if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) || 727 !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1))))) 728 return false; 729 730 auto *Ext0 = cast<ExtractElementInst>(I0); 731 auto *Ext1 = cast<ExtractElementInst>(I1); 732 ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1); 733 if (!ConvertToShuf) 734 return false; 735 736 // The original scalar pattern is: 737 // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1) 738 CmpInst::Predicate Pred = P0; 739 unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp 740 : Instruction::ICmp; 741 auto *VecTy = dyn_cast<FixedVectorType>(X->getType()); 742 if (!VecTy) 743 return false; 744 745 InstructionCost OldCost = 746 TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 747 OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 748 OldCost += 749 TTI.getCmpSelInstrCost(CmpOpcode, I0->getType(), 750 CmpInst::makeCmpResultType(I0->getType()), Pred) * 751 2; 752 OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType()); 753 754 // The proposed vector pattern is: 755 // vcmp = cmp Pred X, VecC 756 // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0 757 int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0; 758 int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1; 759 auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType())); 760 InstructionCost NewCost = TTI.getCmpSelInstrCost( 761 CmpOpcode, X->getType(), CmpInst::makeCmpResultType(X->getType()), Pred); 762 SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem); 763 ShufMask[CheapIndex] = ExpensiveIndex; 764 NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy, 765 ShufMask); 766 NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy); 767 NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex); 768 769 // Aggressively form vector ops if the cost is equal because the transform 770 // may enable further optimization. 771 // Codegen can reverse this transform (scalarize) if it was not profitable. 772 if (OldCost < NewCost || !NewCost.isValid()) 773 return false; 774 775 // Create a vector constant from the 2 scalar constants. 776 SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(), 777 UndefValue::get(VecTy->getElementType())); 778 CmpC[Index0] = C0; 779 CmpC[Index1] = C1; 780 Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC)); 781 782 Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder); 783 Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(), 784 VCmp, Shuf); 785 Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex); 786 replaceValue(I, *NewExt); 787 ++NumVecCmpBO; 788 return true; 789 } 790 791 // Check if memory loc modified between two instrs in the same BB 792 static bool isMemModifiedBetween(BasicBlock::iterator Begin, 793 BasicBlock::iterator End, 794 const MemoryLocation &Loc, AAResults &AA) { 795 unsigned NumScanned = 0; 796 return std::any_of(Begin, End, [&](const Instruction &Instr) { 797 return isModSet(AA.getModRefInfo(&Instr, Loc)) || 798 ++NumScanned > MaxInstrsToScan; 799 }); 800 } 801 802 /// Helper class to indicate whether a vector index can be safely scalarized and 803 /// if a freeze needs to be inserted. 804 class ScalarizationResult { 805 enum class StatusTy { Unsafe, Safe, SafeWithFreeze }; 806 807 StatusTy Status; 808 Value *ToFreeze; 809 810 ScalarizationResult(StatusTy Status, Value *ToFreeze = nullptr) 811 : Status(Status), ToFreeze(ToFreeze) {} 812 813 public: 814 ScalarizationResult(const ScalarizationResult &Other) = default; 815 ~ScalarizationResult() { 816 assert(!ToFreeze && "freeze() not called with ToFreeze being set"); 817 } 818 819 static ScalarizationResult unsafe() { return {StatusTy::Unsafe}; } 820 static ScalarizationResult safe() { return {StatusTy::Safe}; } 821 static ScalarizationResult safeWithFreeze(Value *ToFreeze) { 822 return {StatusTy::SafeWithFreeze, ToFreeze}; 823 } 824 825 /// Returns true if the index can be scalarize without requiring a freeze. 826 bool isSafe() const { return Status == StatusTy::Safe; } 827 /// Returns true if the index cannot be scalarized. 828 bool isUnsafe() const { return Status == StatusTy::Unsafe; } 829 /// Returns true if the index can be scalarize, but requires inserting a 830 /// freeze. 831 bool isSafeWithFreeze() const { return Status == StatusTy::SafeWithFreeze; } 832 833 /// Reset the state of Unsafe and clear ToFreze if set. 834 void discard() { 835 ToFreeze = nullptr; 836 Status = StatusTy::Unsafe; 837 } 838 839 /// Freeze the ToFreeze and update the use in \p User to use it. 840 void freeze(IRBuilder<> &Builder, Instruction &UserI) { 841 assert(isSafeWithFreeze() && 842 "should only be used when freezing is required"); 843 assert(is_contained(ToFreeze->users(), &UserI) && 844 "UserI must be a user of ToFreeze"); 845 IRBuilder<>::InsertPointGuard Guard(Builder); 846 Builder.SetInsertPoint(cast<Instruction>(&UserI)); 847 Value *Frozen = 848 Builder.CreateFreeze(ToFreeze, ToFreeze->getName() + ".frozen"); 849 for (Use &U : make_early_inc_range((UserI.operands()))) 850 if (U.get() == ToFreeze) 851 U.set(Frozen); 852 853 ToFreeze = nullptr; 854 } 855 }; 856 857 /// Check if it is legal to scalarize a memory access to \p VecTy at index \p 858 /// Idx. \p Idx must access a valid vector element. 859 static ScalarizationResult canScalarizeAccess(FixedVectorType *VecTy, 860 Value *Idx, Instruction *CtxI, 861 AssumptionCache &AC, 862 const DominatorTree &DT) { 863 if (auto *C = dyn_cast<ConstantInt>(Idx)) { 864 if (C->getValue().ult(VecTy->getNumElements())) 865 return ScalarizationResult::safe(); 866 return ScalarizationResult::unsafe(); 867 } 868 869 unsigned IntWidth = Idx->getType()->getScalarSizeInBits(); 870 APInt Zero(IntWidth, 0); 871 APInt MaxElts(IntWidth, VecTy->getNumElements()); 872 ConstantRange ValidIndices(Zero, MaxElts); 873 ConstantRange IdxRange(IntWidth, true); 874 875 if (isGuaranteedNotToBePoison(Idx, &AC)) { 876 if (ValidIndices.contains(computeConstantRange(Idx, true, &AC, CtxI, &DT))) 877 return ScalarizationResult::safe(); 878 return ScalarizationResult::unsafe(); 879 } 880 881 // If the index may be poison, check if we can insert a freeze before the 882 // range of the index is restricted. 883 Value *IdxBase; 884 ConstantInt *CI; 885 if (match(Idx, m_And(m_Value(IdxBase), m_ConstantInt(CI)))) { 886 IdxRange = IdxRange.binaryAnd(CI->getValue()); 887 } else if (match(Idx, m_URem(m_Value(IdxBase), m_ConstantInt(CI)))) { 888 IdxRange = IdxRange.urem(CI->getValue()); 889 } 890 891 if (ValidIndices.contains(IdxRange)) 892 return ScalarizationResult::safeWithFreeze(IdxBase); 893 return ScalarizationResult::unsafe(); 894 } 895 896 /// The memory operation on a vector of \p ScalarType had alignment of 897 /// \p VectorAlignment. Compute the maximal, but conservatively correct, 898 /// alignment that will be valid for the memory operation on a single scalar 899 /// element of the same type with index \p Idx. 900 static Align computeAlignmentAfterScalarization(Align VectorAlignment, 901 Type *ScalarType, Value *Idx, 902 const DataLayout &DL) { 903 if (auto *C = dyn_cast<ConstantInt>(Idx)) 904 return commonAlignment(VectorAlignment, 905 C->getZExtValue() * DL.getTypeStoreSize(ScalarType)); 906 return commonAlignment(VectorAlignment, DL.getTypeStoreSize(ScalarType)); 907 } 908 909 // Combine patterns like: 910 // %0 = load <4 x i32>, <4 x i32>* %a 911 // %1 = insertelement <4 x i32> %0, i32 %b, i32 1 912 // store <4 x i32> %1, <4 x i32>* %a 913 // to: 914 // %0 = bitcast <4 x i32>* %a to i32* 915 // %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1 916 // store i32 %b, i32* %1 917 bool VectorCombine::foldSingleElementStore(Instruction &I) { 918 StoreInst *SI = dyn_cast<StoreInst>(&I); 919 if (!SI || !SI->isSimple() || 920 !isa<FixedVectorType>(SI->getValueOperand()->getType())) 921 return false; 922 923 // TODO: Combine more complicated patterns (multiple insert) by referencing 924 // TargetTransformInfo. 925 Instruction *Source; 926 Value *NewElement; 927 Value *Idx; 928 if (!match(SI->getValueOperand(), 929 m_InsertElt(m_Instruction(Source), m_Value(NewElement), 930 m_Value(Idx)))) 931 return false; 932 933 if (auto *Load = dyn_cast<LoadInst>(Source)) { 934 auto VecTy = cast<FixedVectorType>(SI->getValueOperand()->getType()); 935 const DataLayout &DL = I.getModule()->getDataLayout(); 936 Value *SrcAddr = Load->getPointerOperand()->stripPointerCasts(); 937 // Don't optimize for atomic/volatile load or store. Ensure memory is not 938 // modified between, vector type matches store size, and index is inbounds. 939 if (!Load->isSimple() || Load->getParent() != SI->getParent() || 940 !DL.typeSizeEqualsStoreSize(Load->getType()) || 941 SrcAddr != SI->getPointerOperand()->stripPointerCasts()) 942 return false; 943 944 auto ScalarizableIdx = canScalarizeAccess(VecTy, Idx, Load, AC, DT); 945 if (ScalarizableIdx.isUnsafe() || 946 isMemModifiedBetween(Load->getIterator(), SI->getIterator(), 947 MemoryLocation::get(SI), AA)) 948 return false; 949 950 if (ScalarizableIdx.isSafeWithFreeze()) 951 ScalarizableIdx.freeze(Builder, *cast<Instruction>(Idx)); 952 Value *GEP = Builder.CreateInBoundsGEP( 953 SI->getValueOperand()->getType(), SI->getPointerOperand(), 954 {ConstantInt::get(Idx->getType(), 0), Idx}); 955 StoreInst *NSI = Builder.CreateStore(NewElement, GEP); 956 NSI->copyMetadata(*SI); 957 Align ScalarOpAlignment = computeAlignmentAfterScalarization( 958 std::max(SI->getAlign(), Load->getAlign()), NewElement->getType(), Idx, 959 DL); 960 NSI->setAlignment(ScalarOpAlignment); 961 replaceValue(I, *NSI); 962 eraseInstruction(I); 963 return true; 964 } 965 966 return false; 967 } 968 969 /// Try to scalarize vector loads feeding extractelement instructions. 970 bool VectorCombine::scalarizeLoadExtract(Instruction &I) { 971 Value *Ptr; 972 if (!match(&I, m_Load(m_Value(Ptr)))) 973 return false; 974 975 auto *LI = cast<LoadInst>(&I); 976 const DataLayout &DL = I.getModule()->getDataLayout(); 977 if (LI->isVolatile() || !DL.typeSizeEqualsStoreSize(LI->getType())) 978 return false; 979 980 auto *FixedVT = dyn_cast<FixedVectorType>(LI->getType()); 981 if (!FixedVT) 982 return false; 983 984 InstructionCost OriginalCost = TTI.getMemoryOpCost( 985 Instruction::Load, LI->getType(), Align(LI->getAlignment()), 986 LI->getPointerAddressSpace()); 987 InstructionCost ScalarizedCost = 0; 988 989 Instruction *LastCheckedInst = LI; 990 unsigned NumInstChecked = 0; 991 // Check if all users of the load are extracts with no memory modifications 992 // between the load and the extract. Compute the cost of both the original 993 // code and the scalarized version. 994 for (User *U : LI->users()) { 995 auto *UI = dyn_cast<ExtractElementInst>(U); 996 if (!UI || UI->getParent() != LI->getParent()) 997 return false; 998 999 if (!isGuaranteedNotToBePoison(UI->getOperand(1), &AC, LI, &DT)) 1000 return false; 1001 1002 // Check if any instruction between the load and the extract may modify 1003 // memory. 1004 if (LastCheckedInst->comesBefore(UI)) { 1005 for (Instruction &I : 1006 make_range(std::next(LI->getIterator()), UI->getIterator())) { 1007 // Bail out if we reached the check limit or the instruction may write 1008 // to memory. 1009 if (NumInstChecked == MaxInstrsToScan || I.mayWriteToMemory()) 1010 return false; 1011 NumInstChecked++; 1012 } 1013 } 1014 1015 if (!LastCheckedInst) 1016 LastCheckedInst = UI; 1017 else if (LastCheckedInst->comesBefore(UI)) 1018 LastCheckedInst = UI; 1019 1020 auto ScalarIdx = canScalarizeAccess(FixedVT, UI->getOperand(1), &I, AC, DT); 1021 if (!ScalarIdx.isSafe()) { 1022 // TODO: Freeze index if it is safe to do so. 1023 ScalarIdx.discard(); 1024 return false; 1025 } 1026 1027 auto *Index = dyn_cast<ConstantInt>(UI->getOperand(1)); 1028 OriginalCost += 1029 TTI.getVectorInstrCost(Instruction::ExtractElement, LI->getType(), 1030 Index ? Index->getZExtValue() : -1); 1031 ScalarizedCost += 1032 TTI.getMemoryOpCost(Instruction::Load, FixedVT->getElementType(), 1033 Align(1), LI->getPointerAddressSpace()); 1034 ScalarizedCost += TTI.getAddressComputationCost(FixedVT->getElementType()); 1035 } 1036 1037 if (ScalarizedCost >= OriginalCost) 1038 return false; 1039 1040 // Replace extracts with narrow scalar loads. 1041 for (User *U : LI->users()) { 1042 auto *EI = cast<ExtractElementInst>(U); 1043 Builder.SetInsertPoint(EI); 1044 1045 Value *Idx = EI->getOperand(1); 1046 Value *GEP = 1047 Builder.CreateInBoundsGEP(FixedVT, Ptr, {Builder.getInt32(0), Idx}); 1048 auto *NewLoad = cast<LoadInst>(Builder.CreateLoad( 1049 FixedVT->getElementType(), GEP, EI->getName() + ".scalar")); 1050 1051 Align ScalarOpAlignment = computeAlignmentAfterScalarization( 1052 LI->getAlign(), FixedVT->getElementType(), Idx, DL); 1053 NewLoad->setAlignment(ScalarOpAlignment); 1054 1055 replaceValue(*EI, *NewLoad); 1056 } 1057 1058 return true; 1059 } 1060 1061 /// This is the entry point for all transforms. Pass manager differences are 1062 /// handled in the callers of this function. 1063 bool VectorCombine::run() { 1064 if (DisableVectorCombine) 1065 return false; 1066 1067 // Don't attempt vectorization if the target does not support vectors. 1068 if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true))) 1069 return false; 1070 1071 bool MadeChange = false; 1072 auto FoldInst = [this, &MadeChange](Instruction &I) { 1073 Builder.SetInsertPoint(&I); 1074 MadeChange |= vectorizeLoadInsert(I); 1075 MadeChange |= foldExtractExtract(I); 1076 MadeChange |= foldBitcastShuf(I); 1077 MadeChange |= scalarizeBinopOrCmp(I); 1078 MadeChange |= foldExtractedCmps(I); 1079 MadeChange |= scalarizeLoadExtract(I); 1080 MadeChange |= foldSingleElementStore(I); 1081 }; 1082 for (BasicBlock &BB : F) { 1083 // Ignore unreachable basic blocks. 1084 if (!DT.isReachableFromEntry(&BB)) 1085 continue; 1086 // Use early increment range so that we can erase instructions in loop. 1087 for (Instruction &I : make_early_inc_range(BB)) { 1088 if (I.isDebugOrPseudoInst()) 1089 continue; 1090 FoldInst(I); 1091 } 1092 } 1093 1094 while (!Worklist.isEmpty()) { 1095 Instruction *I = Worklist.removeOne(); 1096 if (!I) 1097 continue; 1098 1099 if (isInstructionTriviallyDead(I)) { 1100 eraseInstruction(*I); 1101 continue; 1102 } 1103 1104 FoldInst(*I); 1105 } 1106 1107 return MadeChange; 1108 } 1109 1110 // Pass manager boilerplate below here. 1111 1112 namespace { 1113 class VectorCombineLegacyPass : public FunctionPass { 1114 public: 1115 static char ID; 1116 VectorCombineLegacyPass() : FunctionPass(ID) { 1117 initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry()); 1118 } 1119 1120 void getAnalysisUsage(AnalysisUsage &AU) const override { 1121 AU.addRequired<AssumptionCacheTracker>(); 1122 AU.addRequired<DominatorTreeWrapperPass>(); 1123 AU.addRequired<TargetTransformInfoWrapperPass>(); 1124 AU.addRequired<AAResultsWrapperPass>(); 1125 AU.setPreservesCFG(); 1126 AU.addPreserved<DominatorTreeWrapperPass>(); 1127 AU.addPreserved<GlobalsAAWrapperPass>(); 1128 AU.addPreserved<AAResultsWrapperPass>(); 1129 AU.addPreserved<BasicAAWrapperPass>(); 1130 FunctionPass::getAnalysisUsage(AU); 1131 } 1132 1133 bool runOnFunction(Function &F) override { 1134 if (skipFunction(F)) 1135 return false; 1136 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1137 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1138 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1139 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 1140 VectorCombine Combiner(F, TTI, DT, AA, AC); 1141 return Combiner.run(); 1142 } 1143 }; 1144 } // namespace 1145 1146 char VectorCombineLegacyPass::ID = 0; 1147 INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine", 1148 "Optimize scalar/vector ops", false, 1149 false) 1150 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1151 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1152 INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine", 1153 "Optimize scalar/vector ops", false, false) 1154 Pass *llvm::createVectorCombinePass() { 1155 return new VectorCombineLegacyPass(); 1156 } 1157 1158 PreservedAnalyses VectorCombinePass::run(Function &F, 1159 FunctionAnalysisManager &FAM) { 1160 auto &AC = FAM.getResult<AssumptionAnalysis>(F); 1161 TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); 1162 DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); 1163 AAResults &AA = FAM.getResult<AAManager>(F); 1164 VectorCombine Combiner(F, TTI, DT, AA, AC); 1165 if (!Combiner.run()) 1166 return PreservedAnalyses::all(); 1167 PreservedAnalyses PA; 1168 PA.preserveSet<CFGAnalyses>(); 1169 return PA; 1170 } 1171