1 //===------- VectorCombine.cpp - Optimize partial vector operations -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass optimizes scalar/vector interactions using target cost models. The
10 // transforms implemented here may not fit in traditional loop-based or SLP
11 // vectorization passes.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Vectorize/VectorCombine.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/BasicAliasAnalysis.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/Analysis/VectorUtils.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/InitializePasses.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 #include "llvm/Transforms/Vectorize.h"
32 
33 using namespace llvm;
34 using namespace llvm::PatternMatch;
35 
36 #define DEBUG_TYPE "vector-combine"
37 STATISTIC(NumVecLoad, "Number of vector loads formed");
38 STATISTIC(NumVecCmp, "Number of vector compares formed");
39 STATISTIC(NumVecBO, "Number of vector binops formed");
40 STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed");
41 STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast");
42 STATISTIC(NumScalarBO, "Number of scalar binops formed");
43 STATISTIC(NumScalarCmp, "Number of scalar compares formed");
44 
45 static cl::opt<bool> DisableVectorCombine(
46     "disable-vector-combine", cl::init(false), cl::Hidden,
47     cl::desc("Disable all vector combine transforms"));
48 
49 static cl::opt<bool> DisableBinopExtractShuffle(
50     "disable-binop-extract-shuffle", cl::init(false), cl::Hidden,
51     cl::desc("Disable binop extract to shuffle transforms"));
52 
53 static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max();
54 
55 namespace {
56 class VectorCombine {
57 public:
58   VectorCombine(Function &F, const TargetTransformInfo &TTI,
59                 const DominatorTree &DT)
60       : F(F), Builder(F.getContext()), TTI(TTI), DT(DT) {}
61 
62   bool run();
63 
64 private:
65   Function &F;
66   IRBuilder<> Builder;
67   const TargetTransformInfo &TTI;
68   const DominatorTree &DT;
69 
70   bool vectorizeLoadInsert(Instruction &I);
71   ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0,
72                                         ExtractElementInst *Ext1,
73                                         unsigned PreferredExtractIndex) const;
74   bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
75                              unsigned Opcode,
76                              ExtractElementInst *&ConvertToShuffle,
77                              unsigned PreferredExtractIndex);
78   void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
79                      Instruction &I);
80   void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
81                        Instruction &I);
82   bool foldExtractExtract(Instruction &I);
83   bool foldBitcastShuf(Instruction &I);
84   bool scalarizeBinopOrCmp(Instruction &I);
85   bool foldExtractedCmps(Instruction &I);
86 };
87 } // namespace
88 
89 static void replaceValue(Value &Old, Value &New) {
90   Old.replaceAllUsesWith(&New);
91   New.takeName(&Old);
92 }
93 
94 bool VectorCombine::vectorizeLoadInsert(Instruction &I) {
95   // Match insert of scalar load.
96   Value *Scalar;
97   if (!match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())))
98     return false;
99   auto *Load = dyn_cast<LoadInst>(Scalar);
100   Type *ScalarTy = Scalar->getType();
101   // Do not vectorize scalar load (widening) if atomic/volatile or under
102   // asan/hwasan/memtag/tsan. The widened load may load data from dirty regions
103   // or create data races non-existent in the source.
104   if (!Load || !Load->isSimple() ||
105       Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) ||
106       mustSuppressSpeculation(*Load))
107     return false;
108   auto *Ty = dyn_cast<FixedVectorType>(I.getType());
109   if (!Ty)
110     return false;
111 
112   // TODO: Extend this to match GEP with constant offsets.
113   Value *PtrOp = Load->getPointerOperand()->stripPointerCasts();
114   assert(isa<PointerType>(PtrOp->getType()) && "Expected a pointer type");
115 
116   unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
117   uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
118   if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0)
119     return false;
120 
121   // Check safety of replacing the scalar load with a larger vector load.
122   unsigned MinVecNumElts = MinVectorSize / ScalarSize;
123   auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false);
124   Align Alignment = Load->getAlign();
125   const DataLayout &DL = I.getModule()->getDataLayout();
126   if (!isSafeToLoadUnconditionally(PtrOp, MinVecTy, Alignment, DL, Load, &DT))
127     return false;
128 
129   unsigned AS = Load->getPointerAddressSpace();
130 
131   // Original pattern: insertelt undef, load [free casts of] ScalarPtr, 0
132   int OldCost = TTI.getMemoryOpCost(Instruction::Load, ScalarTy, Alignment, AS);
133   APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0);
134   OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts, true, false);
135 
136   // New pattern: load VecPtr
137   int NewCost = TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS);
138 
139   // We can aggressively convert to the vector form because the backend can
140   // invert this transform if it does not result in a performance win.
141   if (OldCost < NewCost)
142     return false;
143 
144   // It is safe and potentially profitable to load a vector directly:
145   // inselt undef, load Scalar, 0 --> load VecPtr
146   IRBuilder<> Builder(Load);
147   Value *CastedPtr = Builder.CreateBitCast(PtrOp, MinVecTy->getPointerTo(AS));
148   Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment);
149 
150   // If the insert type does not match the target's minimum vector type,
151   // use an identity shuffle to shrink/grow the vector.
152   if (Ty != MinVecTy) {
153     unsigned OutputNumElts = Ty->getNumElements();
154     SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem);
155     for (unsigned i = 0; i < OutputNumElts && i < MinVecNumElts; ++i)
156       Mask[i] = i;
157     VecLd = Builder.CreateShuffleVector(VecLd, UndefValue::get(MinVecTy), Mask);
158   }
159   replaceValue(I, *VecLd);
160   ++NumVecLoad;
161   return true;
162 }
163 
164 /// Determine which, if any, of the inputs should be replaced by a shuffle
165 /// followed by extract from a different index.
166 ExtractElementInst *VectorCombine::getShuffleExtract(
167     ExtractElementInst *Ext0, ExtractElementInst *Ext1,
168     unsigned PreferredExtractIndex = InvalidIndex) const {
169   assert(isa<ConstantInt>(Ext0->getIndexOperand()) &&
170          isa<ConstantInt>(Ext1->getIndexOperand()) &&
171          "Expected constant extract indexes");
172 
173   unsigned Index0 = cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue();
174   unsigned Index1 = cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue();
175 
176   // If the extract indexes are identical, no shuffle is needed.
177   if (Index0 == Index1)
178     return nullptr;
179 
180   Type *VecTy = Ext0->getVectorOperand()->getType();
181   assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types");
182   int Cost0 = TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
183   int Cost1 = TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);
184 
185   // We are extracting from 2 different indexes, so one operand must be shuffled
186   // before performing a vector operation and/or extract. The more expensive
187   // extract will be replaced by a shuffle.
188   if (Cost0 > Cost1)
189     return Ext0;
190   if (Cost1 > Cost0)
191     return Ext1;
192 
193   // If the costs are equal and there is a preferred extract index, shuffle the
194   // opposite operand.
195   if (PreferredExtractIndex == Index0)
196     return Ext1;
197   if (PreferredExtractIndex == Index1)
198     return Ext0;
199 
200   // Otherwise, replace the extract with the higher index.
201   return Index0 > Index1 ? Ext0 : Ext1;
202 }
203 
204 /// Compare the relative costs of 2 extracts followed by scalar operation vs.
205 /// vector operation(s) followed by extract. Return true if the existing
206 /// instructions are cheaper than a vector alternative. Otherwise, return false
207 /// and if one of the extracts should be transformed to a shufflevector, set
208 /// \p ConvertToShuffle to that extract instruction.
209 bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0,
210                                           ExtractElementInst *Ext1,
211                                           unsigned Opcode,
212                                           ExtractElementInst *&ConvertToShuffle,
213                                           unsigned PreferredExtractIndex) {
214   assert(isa<ConstantInt>(Ext0->getOperand(1)) &&
215          isa<ConstantInt>(Ext1->getOperand(1)) &&
216          "Expected constant extract indexes");
217   Type *ScalarTy = Ext0->getType();
218   auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType());
219   int ScalarOpCost, VectorOpCost;
220 
221   // Get cost estimates for scalar and vector versions of the operation.
222   bool IsBinOp = Instruction::isBinaryOp(Opcode);
223   if (IsBinOp) {
224     ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
225     VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
226   } else {
227     assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
228            "Expected a compare");
229     ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy,
230                                           CmpInst::makeCmpResultType(ScalarTy));
231     VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy,
232                                           CmpInst::makeCmpResultType(VecTy));
233   }
234 
235   // Get cost estimates for the extract elements. These costs will factor into
236   // both sequences.
237   unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue();
238   unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue();
239 
240   int Extract0Cost =
241       TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index);
242   int Extract1Cost =
243       TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index);
244 
245   // A more expensive extract will always be replaced by a splat shuffle.
246   // For example, if Ext0 is more expensive:
247   // opcode (extelt V0, Ext0), (ext V1, Ext1) -->
248   // extelt (opcode (splat V0, Ext0), V1), Ext1
249   // TODO: Evaluate whether that always results in lowest cost. Alternatively,
250   //       check the cost of creating a broadcast shuffle and shuffling both
251   //       operands to element 0.
252   int CheapExtractCost = std::min(Extract0Cost, Extract1Cost);
253 
254   // Extra uses of the extracts mean that we include those costs in the
255   // vector total because those instructions will not be eliminated.
256   int OldCost, NewCost;
257   if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) {
258     // Handle a special case. If the 2 extracts are identical, adjust the
259     // formulas to account for that. The extra use charge allows for either the
260     // CSE'd pattern or an unoptimized form with identical values:
261     // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C
262     bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2)
263                                   : !Ext0->hasOneUse() || !Ext1->hasOneUse();
264     OldCost = CheapExtractCost + ScalarOpCost;
265     NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost;
266   } else {
267     // Handle the general case. Each extract is actually a different value:
268     // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C
269     OldCost = Extract0Cost + Extract1Cost + ScalarOpCost;
270     NewCost = VectorOpCost + CheapExtractCost +
271               !Ext0->hasOneUse() * Extract0Cost +
272               !Ext1->hasOneUse() * Extract1Cost;
273   }
274 
275   ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex);
276   if (ConvertToShuffle) {
277     if (IsBinOp && DisableBinopExtractShuffle)
278       return true;
279 
280     // If we are extracting from 2 different indexes, then one operand must be
281     // shuffled before performing the vector operation. The shuffle mask is
282     // undefined except for 1 lane that is being translated to the remaining
283     // extraction lane. Therefore, it is a splat shuffle. Ex:
284     // ShufMask = { undef, undef, 0, undef }
285     // TODO: The cost model has an option for a "broadcast" shuffle
286     //       (splat-from-element-0), but no option for a more general splat.
287     NewCost +=
288         TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
289   }
290 
291   // Aggressively form a vector op if the cost is equal because the transform
292   // may enable further optimization.
293   // Codegen can reverse this transform (scalarize) if it was not profitable.
294   return OldCost < NewCost;
295 }
296 
297 /// Create a shuffle that translates (shifts) 1 element from the input vector
298 /// to a new element location.
299 static Value *createShiftShuffle(Value *Vec, unsigned OldIndex,
300                                  unsigned NewIndex, IRBuilder<> &Builder) {
301   // The shuffle mask is undefined except for 1 lane that is being translated
302   // to the new element index. Example for OldIndex == 2 and NewIndex == 0:
303   // ShufMask = { 2, undef, undef, undef }
304   auto *VecTy = cast<FixedVectorType>(Vec->getType());
305   SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem);
306   ShufMask[NewIndex] = OldIndex;
307   Value *Undef = UndefValue::get(VecTy);
308   return Builder.CreateShuffleVector(Vec, Undef, ShufMask, "shift");
309 }
310 
311 /// Given an extract element instruction with constant index operand, shuffle
312 /// the source vector (shift the scalar element) to a NewIndex for extraction.
313 /// Return null if the input can be constant folded, so that we are not creating
314 /// unnecessary instructions.
315 static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt,
316                                             unsigned NewIndex,
317                                             IRBuilder<> &Builder) {
318   // If the extract can be constant-folded, this code is unsimplified. Defer
319   // to other passes to handle that.
320   Value *X = ExtElt->getVectorOperand();
321   Value *C = ExtElt->getIndexOperand();
322   assert(isa<ConstantInt>(C) && "Expected a constant index operand");
323   if (isa<Constant>(X))
324     return nullptr;
325 
326   Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(),
327                                    NewIndex, Builder);
328   return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex));
329 }
330 
331 /// Try to reduce extract element costs by converting scalar compares to vector
332 /// compares followed by extract.
333 /// cmp (ext0 V0, C), (ext1 V1, C)
334 void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0,
335                                   ExtractElementInst *Ext1, Instruction &I) {
336   assert(isa<CmpInst>(&I) && "Expected a compare");
337   assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
338              cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
339          "Expected matching constant extract indexes");
340 
341   // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C
342   ++NumVecCmp;
343   CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate();
344   Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
345   Value *VecCmp = Builder.CreateCmp(Pred, V0, V1);
346   Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand());
347   replaceValue(I, *NewExt);
348 }
349 
350 /// Try to reduce extract element costs by converting scalar binops to vector
351 /// binops followed by extract.
352 /// bo (ext0 V0, C), (ext1 V1, C)
353 void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0,
354                                     ExtractElementInst *Ext1, Instruction &I) {
355   assert(isa<BinaryOperator>(&I) && "Expected a binary operator");
356   assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
357              cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
358          "Expected matching constant extract indexes");
359 
360   // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C
361   ++NumVecBO;
362   Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
363   Value *VecBO =
364       Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1);
365 
366   // All IR flags are safe to back-propagate because any potential poison
367   // created in unused vector elements is discarded by the extract.
368   if (auto *VecBOInst = dyn_cast<Instruction>(VecBO))
369     VecBOInst->copyIRFlags(&I);
370 
371   Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand());
372   replaceValue(I, *NewExt);
373 }
374 
375 /// Match an instruction with extracted vector operands.
376 bool VectorCombine::foldExtractExtract(Instruction &I) {
377   // It is not safe to transform things like div, urem, etc. because we may
378   // create undefined behavior when executing those on unknown vector elements.
379   if (!isSafeToSpeculativelyExecute(&I))
380     return false;
381 
382   Instruction *I0, *I1;
383   CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
384   if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) &&
385       !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1))))
386     return false;
387 
388   Value *V0, *V1;
389   uint64_t C0, C1;
390   if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) ||
391       !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) ||
392       V0->getType() != V1->getType())
393     return false;
394 
395   // If the scalar value 'I' is going to be re-inserted into a vector, then try
396   // to create an extract to that same element. The extract/insert can be
397   // reduced to a "select shuffle".
398   // TODO: If we add a larger pattern match that starts from an insert, this
399   //       probably becomes unnecessary.
400   auto *Ext0 = cast<ExtractElementInst>(I0);
401   auto *Ext1 = cast<ExtractElementInst>(I1);
402   uint64_t InsertIndex = InvalidIndex;
403   if (I.hasOneUse())
404     match(I.user_back(),
405           m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex)));
406 
407   ExtractElementInst *ExtractToChange;
408   if (isExtractExtractCheap(Ext0, Ext1, I.getOpcode(), ExtractToChange,
409                             InsertIndex))
410     return false;
411 
412   if (ExtractToChange) {
413     unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0;
414     ExtractElementInst *NewExtract =
415         translateExtract(ExtractToChange, CheapExtractIdx, Builder);
416     if (!NewExtract)
417       return false;
418     if (ExtractToChange == Ext0)
419       Ext0 = NewExtract;
420     else
421       Ext1 = NewExtract;
422   }
423 
424   if (Pred != CmpInst::BAD_ICMP_PREDICATE)
425     foldExtExtCmp(Ext0, Ext1, I);
426   else
427     foldExtExtBinop(Ext0, Ext1, I);
428 
429   return true;
430 }
431 
432 /// If this is a bitcast of a shuffle, try to bitcast the source vector to the
433 /// destination type followed by shuffle. This can enable further transforms by
434 /// moving bitcasts or shuffles together.
435 bool VectorCombine::foldBitcastShuf(Instruction &I) {
436   Value *V;
437   ArrayRef<int> Mask;
438   if (!match(&I, m_BitCast(
439                      m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))))))
440     return false;
441 
442   // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for
443   // scalable type is unknown; Second, we cannot reason if the narrowed shuffle
444   // mask for scalable type is a splat or not.
445   // 2) Disallow non-vector casts and length-changing shuffles.
446   // TODO: We could allow any shuffle.
447   auto *DestTy = dyn_cast<FixedVectorType>(I.getType());
448   auto *SrcTy = dyn_cast<FixedVectorType>(V->getType());
449   if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy)
450     return false;
451 
452   // The new shuffle must not cost more than the old shuffle. The bitcast is
453   // moved ahead of the shuffle, so assume that it has the same cost as before.
454   if (TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, DestTy) >
455       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy))
456     return false;
457 
458   unsigned DestNumElts = DestTy->getNumElements();
459   unsigned SrcNumElts = SrcTy->getNumElements();
460   SmallVector<int, 16> NewMask;
461   if (SrcNumElts <= DestNumElts) {
462     // The bitcast is from wide to narrow/equal elements. The shuffle mask can
463     // always be expanded to the equivalent form choosing narrower elements.
464     assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask");
465     unsigned ScaleFactor = DestNumElts / SrcNumElts;
466     narrowShuffleMaskElts(ScaleFactor, Mask, NewMask);
467   } else {
468     // The bitcast is from narrow elements to wide elements. The shuffle mask
469     // must choose consecutive elements to allow casting first.
470     assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask");
471     unsigned ScaleFactor = SrcNumElts / DestNumElts;
472     if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask))
473       return false;
474   }
475   // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC'
476   ++NumShufOfBitcast;
477   Value *CastV = Builder.CreateBitCast(V, DestTy);
478   Value *Shuf =
479       Builder.CreateShuffleVector(CastV, UndefValue::get(DestTy), NewMask);
480   replaceValue(I, *Shuf);
481   return true;
482 }
483 
484 /// Match a vector binop or compare instruction with at least one inserted
485 /// scalar operand and convert to scalar binop/cmp followed by insertelement.
486 bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) {
487   CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
488   Value *Ins0, *Ins1;
489   if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) &&
490       !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1))))
491     return false;
492 
493   // Do not convert the vector condition of a vector select into a scalar
494   // condition. That may cause problems for codegen because of differences in
495   // boolean formats and register-file transfers.
496   // TODO: Can we account for that in the cost model?
497   bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE;
498   if (IsCmp)
499     for (User *U : I.users())
500       if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value())))
501         return false;
502 
503   // Match against one or both scalar values being inserted into constant
504   // vectors:
505   // vec_op VecC0, (inselt VecC1, V1, Index)
506   // vec_op (inselt VecC0, V0, Index), VecC1
507   // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index)
508   // TODO: Deal with mismatched index constants and variable indexes?
509   Constant *VecC0 = nullptr, *VecC1 = nullptr;
510   Value *V0 = nullptr, *V1 = nullptr;
511   uint64_t Index0 = 0, Index1 = 0;
512   if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0),
513                                m_ConstantInt(Index0))) &&
514       !match(Ins0, m_Constant(VecC0)))
515     return false;
516   if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1),
517                                m_ConstantInt(Index1))) &&
518       !match(Ins1, m_Constant(VecC1)))
519     return false;
520 
521   bool IsConst0 = !V0;
522   bool IsConst1 = !V1;
523   if (IsConst0 && IsConst1)
524     return false;
525   if (!IsConst0 && !IsConst1 && Index0 != Index1)
526     return false;
527 
528   // Bail for single insertion if it is a load.
529   // TODO: Handle this once getVectorInstrCost can cost for load/stores.
530   auto *I0 = dyn_cast_or_null<Instruction>(V0);
531   auto *I1 = dyn_cast_or_null<Instruction>(V1);
532   if ((IsConst0 && I1 && I1->mayReadFromMemory()) ||
533       (IsConst1 && I0 && I0->mayReadFromMemory()))
534     return false;
535 
536   uint64_t Index = IsConst0 ? Index1 : Index0;
537   Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType();
538   Type *VecTy = I.getType();
539   assert(VecTy->isVectorTy() &&
540          (IsConst0 || IsConst1 || V0->getType() == V1->getType()) &&
541          (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() ||
542           ScalarTy->isPointerTy()) &&
543          "Unexpected types for insert element into binop or cmp");
544 
545   unsigned Opcode = I.getOpcode();
546   int ScalarOpCost, VectorOpCost;
547   if (IsCmp) {
548     ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy);
549     VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy);
550   } else {
551     ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
552     VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
553   }
554 
555   // Get cost estimate for the insert element. This cost will factor into
556   // both sequences.
557   int InsertCost =
558       TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index);
559   int OldCost = (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) +
560                 VectorOpCost;
561   int NewCost = ScalarOpCost + InsertCost +
562                 (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) +
563                 (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost);
564 
565   // We want to scalarize unless the vector variant actually has lower cost.
566   if (OldCost < NewCost)
567     return false;
568 
569   // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) -->
570   // inselt NewVecC, (scalar_op V0, V1), Index
571   if (IsCmp)
572     ++NumScalarCmp;
573   else
574     ++NumScalarBO;
575 
576   // For constant cases, extract the scalar element, this should constant fold.
577   if (IsConst0)
578     V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index));
579   if (IsConst1)
580     V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index));
581 
582   Value *Scalar =
583       IsCmp ? Builder.CreateCmp(Pred, V0, V1)
584             : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1);
585 
586   Scalar->setName(I.getName() + ".scalar");
587 
588   // All IR flags are safe to back-propagate. There is no potential for extra
589   // poison to be created by the scalar instruction.
590   if (auto *ScalarInst = dyn_cast<Instruction>(Scalar))
591     ScalarInst->copyIRFlags(&I);
592 
593   // Fold the vector constants in the original vectors into a new base vector.
594   Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1)
595                             : ConstantExpr::get(Opcode, VecC0, VecC1);
596   Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index);
597   replaceValue(I, *Insert);
598   return true;
599 }
600 
601 /// Try to combine a scalar binop + 2 scalar compares of extracted elements of
602 /// a vector into vector operations followed by extract. Note: The SLP pass
603 /// may miss this pattern because of implementation problems.
604 bool VectorCombine::foldExtractedCmps(Instruction &I) {
605   // We are looking for a scalar binop of booleans.
606   // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1)
607   if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1))
608     return false;
609 
610   // The compare predicates should match, and each compare should have a
611   // constant operand.
612   // TODO: Relax the one-use constraints.
613   Value *B0 = I.getOperand(0), *B1 = I.getOperand(1);
614   Instruction *I0, *I1;
615   Constant *C0, *C1;
616   CmpInst::Predicate P0, P1;
617   if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) ||
618       !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) ||
619       P0 != P1)
620     return false;
621 
622   // The compare operands must be extracts of the same vector with constant
623   // extract indexes.
624   // TODO: Relax the one-use constraints.
625   Value *X;
626   uint64_t Index0, Index1;
627   if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) ||
628       !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1)))))
629     return false;
630 
631   auto *Ext0 = cast<ExtractElementInst>(I0);
632   auto *Ext1 = cast<ExtractElementInst>(I1);
633   ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1);
634   if (!ConvertToShuf)
635     return false;
636 
637   // The original scalar pattern is:
638   // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1)
639   CmpInst::Predicate Pred = P0;
640   unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp
641                                                     : Instruction::ICmp;
642   auto *VecTy = dyn_cast<FixedVectorType>(X->getType());
643   if (!VecTy)
644     return false;
645 
646   int OldCost = TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
647   OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);
648   OldCost += TTI.getCmpSelInstrCost(CmpOpcode, I0->getType()) * 2;
649   OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType());
650 
651   // The proposed vector pattern is:
652   // vcmp = cmp Pred X, VecC
653   // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0
654   int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0;
655   int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1;
656   auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType()));
657   int NewCost = TTI.getCmpSelInstrCost(CmpOpcode, X->getType());
658   NewCost +=
659       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy);
660   NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy);
661   NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex);
662 
663   // Aggressively form vector ops if the cost is equal because the transform
664   // may enable further optimization.
665   // Codegen can reverse this transform (scalarize) if it was not profitable.
666   if (OldCost < NewCost)
667     return false;
668 
669   // Create a vector constant from the 2 scalar constants.
670   SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(),
671                                    UndefValue::get(VecTy->getElementType()));
672   CmpC[Index0] = C0;
673   CmpC[Index1] = C1;
674   Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC));
675 
676   Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder);
677   Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
678                                         VCmp, Shuf);
679   Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex);
680   replaceValue(I, *NewExt);
681   ++NumVecCmpBO;
682   return true;
683 }
684 
685 /// This is the entry point for all transforms. Pass manager differences are
686 /// handled in the callers of this function.
687 bool VectorCombine::run() {
688   if (DisableVectorCombine)
689     return false;
690 
691   // Don't attempt vectorization if the target does not support vectors.
692   if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true)))
693     return false;
694 
695   bool MadeChange = false;
696   for (BasicBlock &BB : F) {
697     // Ignore unreachable basic blocks.
698     if (!DT.isReachableFromEntry(&BB))
699       continue;
700     // Do not delete instructions under here and invalidate the iterator.
701     // Walk the block forwards to enable simple iterative chains of transforms.
702     // TODO: It could be more efficient to remove dead instructions
703     //       iteratively in this loop rather than waiting until the end.
704     for (Instruction &I : BB) {
705       if (isa<DbgInfoIntrinsic>(I))
706         continue;
707       Builder.SetInsertPoint(&I);
708       MadeChange |= vectorizeLoadInsert(I);
709       MadeChange |= foldExtractExtract(I);
710       MadeChange |= foldBitcastShuf(I);
711       MadeChange |= scalarizeBinopOrCmp(I);
712       MadeChange |= foldExtractedCmps(I);
713     }
714   }
715 
716   // We're done with transforms, so remove dead instructions.
717   if (MadeChange)
718     for (BasicBlock &BB : F)
719       SimplifyInstructionsInBlock(&BB);
720 
721   return MadeChange;
722 }
723 
724 // Pass manager boilerplate below here.
725 
726 namespace {
727 class VectorCombineLegacyPass : public FunctionPass {
728 public:
729   static char ID;
730   VectorCombineLegacyPass() : FunctionPass(ID) {
731     initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry());
732   }
733 
734   void getAnalysisUsage(AnalysisUsage &AU) const override {
735     AU.addRequired<DominatorTreeWrapperPass>();
736     AU.addRequired<TargetTransformInfoWrapperPass>();
737     AU.setPreservesCFG();
738     AU.addPreserved<DominatorTreeWrapperPass>();
739     AU.addPreserved<GlobalsAAWrapperPass>();
740     AU.addPreserved<AAResultsWrapperPass>();
741     AU.addPreserved<BasicAAWrapperPass>();
742     FunctionPass::getAnalysisUsage(AU);
743   }
744 
745   bool runOnFunction(Function &F) override {
746     if (skipFunction(F))
747       return false;
748     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
749     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
750     VectorCombine Combiner(F, TTI, DT);
751     return Combiner.run();
752   }
753 };
754 } // namespace
755 
756 char VectorCombineLegacyPass::ID = 0;
757 INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine",
758                       "Optimize scalar/vector ops", false,
759                       false)
760 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
761 INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine",
762                     "Optimize scalar/vector ops", false, false)
763 Pass *llvm::createVectorCombinePass() {
764   return new VectorCombineLegacyPass();
765 }
766 
767 PreservedAnalyses VectorCombinePass::run(Function &F,
768                                          FunctionAnalysisManager &FAM) {
769   TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
770   DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
771   VectorCombine Combiner(F, TTI, DT);
772   if (!Combiner.run())
773     return PreservedAnalyses::all();
774   PreservedAnalyses PA;
775   PA.preserveSet<CFGAnalyses>();
776   PA.preserve<GlobalsAA>();
777   PA.preserve<AAManager>();
778   PA.preserve<BasicAA>();
779   return PA;
780 }
781