1 //===------- VectorCombine.cpp - Optimize partial vector operations -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass optimizes scalar/vector interactions using target cost models. The 10 // transforms implemented here may not fit in traditional loop-based or SLP 11 // vectorization passes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Vectorize/VectorCombine.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/BasicAliasAnalysis.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/Analysis/VectorUtils.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/InitializePasses.h" 28 #include "llvm/Pass.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Transforms/Utils/Local.h" 31 #include "llvm/Transforms/Vectorize.h" 32 33 using namespace llvm; 34 using namespace llvm::PatternMatch; 35 36 #define DEBUG_TYPE "vector-combine" 37 STATISTIC(NumVecLoad, "Number of vector loads formed"); 38 STATISTIC(NumVecCmp, "Number of vector compares formed"); 39 STATISTIC(NumVecBO, "Number of vector binops formed"); 40 STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed"); 41 STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast"); 42 STATISTIC(NumScalarBO, "Number of scalar binops formed"); 43 STATISTIC(NumScalarCmp, "Number of scalar compares formed"); 44 45 static cl::opt<bool> DisableVectorCombine( 46 "disable-vector-combine", cl::init(false), cl::Hidden, 47 cl::desc("Disable all vector combine transforms")); 48 49 static cl::opt<bool> DisableBinopExtractShuffle( 50 "disable-binop-extract-shuffle", cl::init(false), cl::Hidden, 51 cl::desc("Disable binop extract to shuffle transforms")); 52 53 static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max(); 54 55 namespace { 56 class VectorCombine { 57 public: 58 VectorCombine(Function &F, const TargetTransformInfo &TTI, 59 const DominatorTree &DT) 60 : F(F), Builder(F.getContext()), TTI(TTI), DT(DT) {} 61 62 bool run(); 63 64 private: 65 Function &F; 66 IRBuilder<> Builder; 67 const TargetTransformInfo &TTI; 68 const DominatorTree &DT; 69 70 bool vectorizeLoadInsert(Instruction &I); 71 ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0, 72 ExtractElementInst *Ext1, 73 unsigned PreferredExtractIndex) const; 74 bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 75 unsigned Opcode, 76 ExtractElementInst *&ConvertToShuffle, 77 unsigned PreferredExtractIndex); 78 void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 79 Instruction &I); 80 void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 81 Instruction &I); 82 bool foldExtractExtract(Instruction &I); 83 bool foldBitcastShuf(Instruction &I); 84 bool scalarizeBinopOrCmp(Instruction &I); 85 bool foldExtractedCmps(Instruction &I); 86 }; 87 } // namespace 88 89 static void replaceValue(Value &Old, Value &New) { 90 Old.replaceAllUsesWith(&New); 91 New.takeName(&Old); 92 } 93 94 bool VectorCombine::vectorizeLoadInsert(Instruction &I) { 95 // Match insert into fixed vector of scalar load. 96 auto *Ty = dyn_cast<FixedVectorType>(I.getType()); 97 Value *Scalar; 98 if (!Ty || !match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) || 99 !Scalar->hasOneUse()) 100 return false; 101 102 // Do not vectorize scalar load (widening) if atomic/volatile or under 103 // asan/hwasan/memtag/tsan. The widened load may load data from dirty regions 104 // or create data races non-existent in the source. 105 auto *Load = dyn_cast<LoadInst>(Scalar); 106 if (!Load || !Load->isSimple() || 107 Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) || 108 mustSuppressSpeculation(*Load)) 109 return false; 110 111 // TODO: Extend this to match GEP with constant offsets. 112 Value *PtrOp = Load->getPointerOperand()->stripPointerCasts(); 113 assert(isa<PointerType>(PtrOp->getType()) && "Expected a pointer type"); 114 115 Type *ScalarTy = Scalar->getType(); 116 uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits(); 117 unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth(); 118 if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0) 119 return false; 120 121 // Check safety of replacing the scalar load with a larger vector load. 122 unsigned MinVecNumElts = MinVectorSize / ScalarSize; 123 auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false); 124 Align Alignment = Load->getAlign(); 125 const DataLayout &DL = I.getModule()->getDataLayout(); 126 if (!isSafeToLoadUnconditionally(PtrOp, MinVecTy, Alignment, DL, Load, &DT)) 127 return false; 128 129 unsigned AS = Load->getPointerAddressSpace(); 130 131 // Original pattern: insertelt undef, load [free casts of] ScalarPtr, 0 132 int OldCost = TTI.getMemoryOpCost(Instruction::Load, ScalarTy, Alignment, AS); 133 APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0); 134 OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts, true, false); 135 136 // New pattern: load VecPtr 137 int NewCost = TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS); 138 139 // We can aggressively convert to the vector form because the backend can 140 // invert this transform if it does not result in a performance win. 141 if (OldCost < NewCost) 142 return false; 143 144 // It is safe and potentially profitable to load a vector directly: 145 // inselt undef, load Scalar, 0 --> load VecPtr 146 IRBuilder<> Builder(Load); 147 Value *CastedPtr = Builder.CreateBitCast(PtrOp, MinVecTy->getPointerTo(AS)); 148 Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment); 149 150 // If the insert type does not match the target's minimum vector type, 151 // use an identity shuffle to shrink/grow the vector. 152 if (Ty != MinVecTy) { 153 unsigned OutputNumElts = Ty->getNumElements(); 154 SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem); 155 for (unsigned i = 0; i < OutputNumElts && i < MinVecNumElts; ++i) 156 Mask[i] = i; 157 VecLd = Builder.CreateShuffleVector(VecLd, Mask); 158 } 159 replaceValue(I, *VecLd); 160 ++NumVecLoad; 161 return true; 162 } 163 164 /// Determine which, if any, of the inputs should be replaced by a shuffle 165 /// followed by extract from a different index. 166 ExtractElementInst *VectorCombine::getShuffleExtract( 167 ExtractElementInst *Ext0, ExtractElementInst *Ext1, 168 unsigned PreferredExtractIndex = InvalidIndex) const { 169 assert(isa<ConstantInt>(Ext0->getIndexOperand()) && 170 isa<ConstantInt>(Ext1->getIndexOperand()) && 171 "Expected constant extract indexes"); 172 173 unsigned Index0 = cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue(); 174 unsigned Index1 = cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue(); 175 176 // If the extract indexes are identical, no shuffle is needed. 177 if (Index0 == Index1) 178 return nullptr; 179 180 Type *VecTy = Ext0->getVectorOperand()->getType(); 181 assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types"); 182 int Cost0 = TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 183 int Cost1 = TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 184 185 // We are extracting from 2 different indexes, so one operand must be shuffled 186 // before performing a vector operation and/or extract. The more expensive 187 // extract will be replaced by a shuffle. 188 if (Cost0 > Cost1) 189 return Ext0; 190 if (Cost1 > Cost0) 191 return Ext1; 192 193 // If the costs are equal and there is a preferred extract index, shuffle the 194 // opposite operand. 195 if (PreferredExtractIndex == Index0) 196 return Ext1; 197 if (PreferredExtractIndex == Index1) 198 return Ext0; 199 200 // Otherwise, replace the extract with the higher index. 201 return Index0 > Index1 ? Ext0 : Ext1; 202 } 203 204 /// Compare the relative costs of 2 extracts followed by scalar operation vs. 205 /// vector operation(s) followed by extract. Return true if the existing 206 /// instructions are cheaper than a vector alternative. Otherwise, return false 207 /// and if one of the extracts should be transformed to a shufflevector, set 208 /// \p ConvertToShuffle to that extract instruction. 209 bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0, 210 ExtractElementInst *Ext1, 211 unsigned Opcode, 212 ExtractElementInst *&ConvertToShuffle, 213 unsigned PreferredExtractIndex) { 214 assert(isa<ConstantInt>(Ext0->getOperand(1)) && 215 isa<ConstantInt>(Ext1->getOperand(1)) && 216 "Expected constant extract indexes"); 217 Type *ScalarTy = Ext0->getType(); 218 auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType()); 219 int ScalarOpCost, VectorOpCost; 220 221 // Get cost estimates for scalar and vector versions of the operation. 222 bool IsBinOp = Instruction::isBinaryOp(Opcode); 223 if (IsBinOp) { 224 ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 225 VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 226 } else { 227 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 228 "Expected a compare"); 229 ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy, 230 CmpInst::makeCmpResultType(ScalarTy)); 231 VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy, 232 CmpInst::makeCmpResultType(VecTy)); 233 } 234 235 // Get cost estimates for the extract elements. These costs will factor into 236 // both sequences. 237 unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue(); 238 unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue(); 239 240 int Extract0Cost = 241 TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index); 242 int Extract1Cost = 243 TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index); 244 245 // A more expensive extract will always be replaced by a splat shuffle. 246 // For example, if Ext0 is more expensive: 247 // opcode (extelt V0, Ext0), (ext V1, Ext1) --> 248 // extelt (opcode (splat V0, Ext0), V1), Ext1 249 // TODO: Evaluate whether that always results in lowest cost. Alternatively, 250 // check the cost of creating a broadcast shuffle and shuffling both 251 // operands to element 0. 252 int CheapExtractCost = std::min(Extract0Cost, Extract1Cost); 253 254 // Extra uses of the extracts mean that we include those costs in the 255 // vector total because those instructions will not be eliminated. 256 int OldCost, NewCost; 257 if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) { 258 // Handle a special case. If the 2 extracts are identical, adjust the 259 // formulas to account for that. The extra use charge allows for either the 260 // CSE'd pattern or an unoptimized form with identical values: 261 // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C 262 bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2) 263 : !Ext0->hasOneUse() || !Ext1->hasOneUse(); 264 OldCost = CheapExtractCost + ScalarOpCost; 265 NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost; 266 } else { 267 // Handle the general case. Each extract is actually a different value: 268 // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C 269 OldCost = Extract0Cost + Extract1Cost + ScalarOpCost; 270 NewCost = VectorOpCost + CheapExtractCost + 271 !Ext0->hasOneUse() * Extract0Cost + 272 !Ext1->hasOneUse() * Extract1Cost; 273 } 274 275 ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex); 276 if (ConvertToShuffle) { 277 if (IsBinOp && DisableBinopExtractShuffle) 278 return true; 279 280 // If we are extracting from 2 different indexes, then one operand must be 281 // shuffled before performing the vector operation. The shuffle mask is 282 // undefined except for 1 lane that is being translated to the remaining 283 // extraction lane. Therefore, it is a splat shuffle. Ex: 284 // ShufMask = { undef, undef, 0, undef } 285 // TODO: The cost model has an option for a "broadcast" shuffle 286 // (splat-from-element-0), but no option for a more general splat. 287 NewCost += 288 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 289 } 290 291 // Aggressively form a vector op if the cost is equal because the transform 292 // may enable further optimization. 293 // Codegen can reverse this transform (scalarize) if it was not profitable. 294 return OldCost < NewCost; 295 } 296 297 /// Create a shuffle that translates (shifts) 1 element from the input vector 298 /// to a new element location. 299 static Value *createShiftShuffle(Value *Vec, unsigned OldIndex, 300 unsigned NewIndex, IRBuilder<> &Builder) { 301 // The shuffle mask is undefined except for 1 lane that is being translated 302 // to the new element index. Example for OldIndex == 2 and NewIndex == 0: 303 // ShufMask = { 2, undef, undef, undef } 304 auto *VecTy = cast<FixedVectorType>(Vec->getType()); 305 SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem); 306 ShufMask[NewIndex] = OldIndex; 307 return Builder.CreateShuffleVector(Vec, ShufMask, "shift"); 308 } 309 310 /// Given an extract element instruction with constant index operand, shuffle 311 /// the source vector (shift the scalar element) to a NewIndex for extraction. 312 /// Return null if the input can be constant folded, so that we are not creating 313 /// unnecessary instructions. 314 static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt, 315 unsigned NewIndex, 316 IRBuilder<> &Builder) { 317 // If the extract can be constant-folded, this code is unsimplified. Defer 318 // to other passes to handle that. 319 Value *X = ExtElt->getVectorOperand(); 320 Value *C = ExtElt->getIndexOperand(); 321 assert(isa<ConstantInt>(C) && "Expected a constant index operand"); 322 if (isa<Constant>(X)) 323 return nullptr; 324 325 Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(), 326 NewIndex, Builder); 327 return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex)); 328 } 329 330 /// Try to reduce extract element costs by converting scalar compares to vector 331 /// compares followed by extract. 332 /// cmp (ext0 V0, C), (ext1 V1, C) 333 void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0, 334 ExtractElementInst *Ext1, Instruction &I) { 335 assert(isa<CmpInst>(&I) && "Expected a compare"); 336 assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 337 cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 338 "Expected matching constant extract indexes"); 339 340 // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C 341 ++NumVecCmp; 342 CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate(); 343 Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 344 Value *VecCmp = Builder.CreateCmp(Pred, V0, V1); 345 Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand()); 346 replaceValue(I, *NewExt); 347 } 348 349 /// Try to reduce extract element costs by converting scalar binops to vector 350 /// binops followed by extract. 351 /// bo (ext0 V0, C), (ext1 V1, C) 352 void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0, 353 ExtractElementInst *Ext1, Instruction &I) { 354 assert(isa<BinaryOperator>(&I) && "Expected a binary operator"); 355 assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 356 cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 357 "Expected matching constant extract indexes"); 358 359 // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C 360 ++NumVecBO; 361 Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 362 Value *VecBO = 363 Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1); 364 365 // All IR flags are safe to back-propagate because any potential poison 366 // created in unused vector elements is discarded by the extract. 367 if (auto *VecBOInst = dyn_cast<Instruction>(VecBO)) 368 VecBOInst->copyIRFlags(&I); 369 370 Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand()); 371 replaceValue(I, *NewExt); 372 } 373 374 /// Match an instruction with extracted vector operands. 375 bool VectorCombine::foldExtractExtract(Instruction &I) { 376 // It is not safe to transform things like div, urem, etc. because we may 377 // create undefined behavior when executing those on unknown vector elements. 378 if (!isSafeToSpeculativelyExecute(&I)) 379 return false; 380 381 Instruction *I0, *I1; 382 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 383 if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) && 384 !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1)))) 385 return false; 386 387 Value *V0, *V1; 388 uint64_t C0, C1; 389 if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) || 390 !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) || 391 V0->getType() != V1->getType()) 392 return false; 393 394 // If the scalar value 'I' is going to be re-inserted into a vector, then try 395 // to create an extract to that same element. The extract/insert can be 396 // reduced to a "select shuffle". 397 // TODO: If we add a larger pattern match that starts from an insert, this 398 // probably becomes unnecessary. 399 auto *Ext0 = cast<ExtractElementInst>(I0); 400 auto *Ext1 = cast<ExtractElementInst>(I1); 401 uint64_t InsertIndex = InvalidIndex; 402 if (I.hasOneUse()) 403 match(I.user_back(), 404 m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex))); 405 406 ExtractElementInst *ExtractToChange; 407 if (isExtractExtractCheap(Ext0, Ext1, I.getOpcode(), ExtractToChange, 408 InsertIndex)) 409 return false; 410 411 if (ExtractToChange) { 412 unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0; 413 ExtractElementInst *NewExtract = 414 translateExtract(ExtractToChange, CheapExtractIdx, Builder); 415 if (!NewExtract) 416 return false; 417 if (ExtractToChange == Ext0) 418 Ext0 = NewExtract; 419 else 420 Ext1 = NewExtract; 421 } 422 423 if (Pred != CmpInst::BAD_ICMP_PREDICATE) 424 foldExtExtCmp(Ext0, Ext1, I); 425 else 426 foldExtExtBinop(Ext0, Ext1, I); 427 428 return true; 429 } 430 431 /// If this is a bitcast of a shuffle, try to bitcast the source vector to the 432 /// destination type followed by shuffle. This can enable further transforms by 433 /// moving bitcasts or shuffles together. 434 bool VectorCombine::foldBitcastShuf(Instruction &I) { 435 Value *V; 436 ArrayRef<int> Mask; 437 if (!match(&I, m_BitCast( 438 m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask)))))) 439 return false; 440 441 // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for 442 // scalable type is unknown; Second, we cannot reason if the narrowed shuffle 443 // mask for scalable type is a splat or not. 444 // 2) Disallow non-vector casts and length-changing shuffles. 445 // TODO: We could allow any shuffle. 446 auto *DestTy = dyn_cast<FixedVectorType>(I.getType()); 447 auto *SrcTy = dyn_cast<FixedVectorType>(V->getType()); 448 if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy) 449 return false; 450 451 // The new shuffle must not cost more than the old shuffle. The bitcast is 452 // moved ahead of the shuffle, so assume that it has the same cost as before. 453 if (TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, DestTy) > 454 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy)) 455 return false; 456 457 unsigned DestNumElts = DestTy->getNumElements(); 458 unsigned SrcNumElts = SrcTy->getNumElements(); 459 SmallVector<int, 16> NewMask; 460 if (SrcNumElts <= DestNumElts) { 461 // The bitcast is from wide to narrow/equal elements. The shuffle mask can 462 // always be expanded to the equivalent form choosing narrower elements. 463 assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask"); 464 unsigned ScaleFactor = DestNumElts / SrcNumElts; 465 narrowShuffleMaskElts(ScaleFactor, Mask, NewMask); 466 } else { 467 // The bitcast is from narrow elements to wide elements. The shuffle mask 468 // must choose consecutive elements to allow casting first. 469 assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask"); 470 unsigned ScaleFactor = SrcNumElts / DestNumElts; 471 if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask)) 472 return false; 473 } 474 // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC' 475 ++NumShufOfBitcast; 476 Value *CastV = Builder.CreateBitCast(V, DestTy); 477 Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask); 478 replaceValue(I, *Shuf); 479 return true; 480 } 481 482 /// Match a vector binop or compare instruction with at least one inserted 483 /// scalar operand and convert to scalar binop/cmp followed by insertelement. 484 bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) { 485 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 486 Value *Ins0, *Ins1; 487 if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) && 488 !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1)))) 489 return false; 490 491 // Do not convert the vector condition of a vector select into a scalar 492 // condition. That may cause problems for codegen because of differences in 493 // boolean formats and register-file transfers. 494 // TODO: Can we account for that in the cost model? 495 bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE; 496 if (IsCmp) 497 for (User *U : I.users()) 498 if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value()))) 499 return false; 500 501 // Match against one or both scalar values being inserted into constant 502 // vectors: 503 // vec_op VecC0, (inselt VecC1, V1, Index) 504 // vec_op (inselt VecC0, V0, Index), VecC1 505 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) 506 // TODO: Deal with mismatched index constants and variable indexes? 507 Constant *VecC0 = nullptr, *VecC1 = nullptr; 508 Value *V0 = nullptr, *V1 = nullptr; 509 uint64_t Index0 = 0, Index1 = 0; 510 if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0), 511 m_ConstantInt(Index0))) && 512 !match(Ins0, m_Constant(VecC0))) 513 return false; 514 if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1), 515 m_ConstantInt(Index1))) && 516 !match(Ins1, m_Constant(VecC1))) 517 return false; 518 519 bool IsConst0 = !V0; 520 bool IsConst1 = !V1; 521 if (IsConst0 && IsConst1) 522 return false; 523 if (!IsConst0 && !IsConst1 && Index0 != Index1) 524 return false; 525 526 // Bail for single insertion if it is a load. 527 // TODO: Handle this once getVectorInstrCost can cost for load/stores. 528 auto *I0 = dyn_cast_or_null<Instruction>(V0); 529 auto *I1 = dyn_cast_or_null<Instruction>(V1); 530 if ((IsConst0 && I1 && I1->mayReadFromMemory()) || 531 (IsConst1 && I0 && I0->mayReadFromMemory())) 532 return false; 533 534 uint64_t Index = IsConst0 ? Index1 : Index0; 535 Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType(); 536 Type *VecTy = I.getType(); 537 assert(VecTy->isVectorTy() && 538 (IsConst0 || IsConst1 || V0->getType() == V1->getType()) && 539 (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() || 540 ScalarTy->isPointerTy()) && 541 "Unexpected types for insert element into binop or cmp"); 542 543 unsigned Opcode = I.getOpcode(); 544 int ScalarOpCost, VectorOpCost; 545 if (IsCmp) { 546 ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy); 547 VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy); 548 } else { 549 ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 550 VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 551 } 552 553 // Get cost estimate for the insert element. This cost will factor into 554 // both sequences. 555 int InsertCost = 556 TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index); 557 int OldCost = (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + 558 VectorOpCost; 559 int NewCost = ScalarOpCost + InsertCost + 560 (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) + 561 (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost); 562 563 // We want to scalarize unless the vector variant actually has lower cost. 564 if (OldCost < NewCost) 565 return false; 566 567 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) --> 568 // inselt NewVecC, (scalar_op V0, V1), Index 569 if (IsCmp) 570 ++NumScalarCmp; 571 else 572 ++NumScalarBO; 573 574 // For constant cases, extract the scalar element, this should constant fold. 575 if (IsConst0) 576 V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index)); 577 if (IsConst1) 578 V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index)); 579 580 Value *Scalar = 581 IsCmp ? Builder.CreateCmp(Pred, V0, V1) 582 : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1); 583 584 Scalar->setName(I.getName() + ".scalar"); 585 586 // All IR flags are safe to back-propagate. There is no potential for extra 587 // poison to be created by the scalar instruction. 588 if (auto *ScalarInst = dyn_cast<Instruction>(Scalar)) 589 ScalarInst->copyIRFlags(&I); 590 591 // Fold the vector constants in the original vectors into a new base vector. 592 Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1) 593 : ConstantExpr::get(Opcode, VecC0, VecC1); 594 Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index); 595 replaceValue(I, *Insert); 596 return true; 597 } 598 599 /// Try to combine a scalar binop + 2 scalar compares of extracted elements of 600 /// a vector into vector operations followed by extract. Note: The SLP pass 601 /// may miss this pattern because of implementation problems. 602 bool VectorCombine::foldExtractedCmps(Instruction &I) { 603 // We are looking for a scalar binop of booleans. 604 // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1) 605 if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1)) 606 return false; 607 608 // The compare predicates should match, and each compare should have a 609 // constant operand. 610 // TODO: Relax the one-use constraints. 611 Value *B0 = I.getOperand(0), *B1 = I.getOperand(1); 612 Instruction *I0, *I1; 613 Constant *C0, *C1; 614 CmpInst::Predicate P0, P1; 615 if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) || 616 !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) || 617 P0 != P1) 618 return false; 619 620 // The compare operands must be extracts of the same vector with constant 621 // extract indexes. 622 // TODO: Relax the one-use constraints. 623 Value *X; 624 uint64_t Index0, Index1; 625 if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) || 626 !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1))))) 627 return false; 628 629 auto *Ext0 = cast<ExtractElementInst>(I0); 630 auto *Ext1 = cast<ExtractElementInst>(I1); 631 ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1); 632 if (!ConvertToShuf) 633 return false; 634 635 // The original scalar pattern is: 636 // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1) 637 CmpInst::Predicate Pred = P0; 638 unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp 639 : Instruction::ICmp; 640 auto *VecTy = dyn_cast<FixedVectorType>(X->getType()); 641 if (!VecTy) 642 return false; 643 644 int OldCost = TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 645 OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 646 OldCost += TTI.getCmpSelInstrCost(CmpOpcode, I0->getType()) * 2; 647 OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType()); 648 649 // The proposed vector pattern is: 650 // vcmp = cmp Pred X, VecC 651 // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0 652 int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0; 653 int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1; 654 auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType())); 655 int NewCost = TTI.getCmpSelInstrCost(CmpOpcode, X->getType()); 656 NewCost += 657 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy); 658 NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy); 659 NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex); 660 661 // Aggressively form vector ops if the cost is equal because the transform 662 // may enable further optimization. 663 // Codegen can reverse this transform (scalarize) if it was not profitable. 664 if (OldCost < NewCost) 665 return false; 666 667 // Create a vector constant from the 2 scalar constants. 668 SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(), 669 UndefValue::get(VecTy->getElementType())); 670 CmpC[Index0] = C0; 671 CmpC[Index1] = C1; 672 Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC)); 673 674 Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder); 675 Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(), 676 VCmp, Shuf); 677 Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex); 678 replaceValue(I, *NewExt); 679 ++NumVecCmpBO; 680 return true; 681 } 682 683 /// This is the entry point for all transforms. Pass manager differences are 684 /// handled in the callers of this function. 685 bool VectorCombine::run() { 686 if (DisableVectorCombine) 687 return false; 688 689 // Don't attempt vectorization if the target does not support vectors. 690 if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true))) 691 return false; 692 693 bool MadeChange = false; 694 for (BasicBlock &BB : F) { 695 // Ignore unreachable basic blocks. 696 if (!DT.isReachableFromEntry(&BB)) 697 continue; 698 // Do not delete instructions under here and invalidate the iterator. 699 // Walk the block forwards to enable simple iterative chains of transforms. 700 // TODO: It could be more efficient to remove dead instructions 701 // iteratively in this loop rather than waiting until the end. 702 for (Instruction &I : BB) { 703 if (isa<DbgInfoIntrinsic>(I)) 704 continue; 705 Builder.SetInsertPoint(&I); 706 MadeChange |= vectorizeLoadInsert(I); 707 MadeChange |= foldExtractExtract(I); 708 MadeChange |= foldBitcastShuf(I); 709 MadeChange |= scalarizeBinopOrCmp(I); 710 MadeChange |= foldExtractedCmps(I); 711 } 712 } 713 714 // We're done with transforms, so remove dead instructions. 715 if (MadeChange) 716 for (BasicBlock &BB : F) 717 SimplifyInstructionsInBlock(&BB); 718 719 return MadeChange; 720 } 721 722 // Pass manager boilerplate below here. 723 724 namespace { 725 class VectorCombineLegacyPass : public FunctionPass { 726 public: 727 static char ID; 728 VectorCombineLegacyPass() : FunctionPass(ID) { 729 initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry()); 730 } 731 732 void getAnalysisUsage(AnalysisUsage &AU) const override { 733 AU.addRequired<DominatorTreeWrapperPass>(); 734 AU.addRequired<TargetTransformInfoWrapperPass>(); 735 AU.setPreservesCFG(); 736 AU.addPreserved<DominatorTreeWrapperPass>(); 737 AU.addPreserved<GlobalsAAWrapperPass>(); 738 AU.addPreserved<AAResultsWrapperPass>(); 739 AU.addPreserved<BasicAAWrapperPass>(); 740 FunctionPass::getAnalysisUsage(AU); 741 } 742 743 bool runOnFunction(Function &F) override { 744 if (skipFunction(F)) 745 return false; 746 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 747 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 748 VectorCombine Combiner(F, TTI, DT); 749 return Combiner.run(); 750 } 751 }; 752 } // namespace 753 754 char VectorCombineLegacyPass::ID = 0; 755 INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine", 756 "Optimize scalar/vector ops", false, 757 false) 758 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 759 INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine", 760 "Optimize scalar/vector ops", false, false) 761 Pass *llvm::createVectorCombinePass() { 762 return new VectorCombineLegacyPass(); 763 } 764 765 PreservedAnalyses VectorCombinePass::run(Function &F, 766 FunctionAnalysisManager &FAM) { 767 TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); 768 DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); 769 VectorCombine Combiner(F, TTI, DT); 770 if (!Combiner.run()) 771 return PreservedAnalyses::all(); 772 PreservedAnalyses PA; 773 PA.preserveSet<CFGAnalyses>(); 774 PA.preserve<GlobalsAA>(); 775 PA.preserve<AAManager>(); 776 PA.preserve<BasicAA>(); 777 return PA; 778 } 779