1 //===------- VectorCombine.cpp - Optimize partial vector operations -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass optimizes scalar/vector interactions using target cost models. The
10 // transforms implemented here may not fit in traditional loop-based or SLP
11 // vectorization passes.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Vectorize/VectorCombine.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/BasicAliasAnalysis.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/Analysis/VectorUtils.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/InitializePasses.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 #include "llvm/Transforms/Vectorize.h"
32 
33 using namespace llvm;
34 using namespace llvm::PatternMatch;
35 
36 #define DEBUG_TYPE "vector-combine"
37 STATISTIC(NumVecLoad, "Number of vector loads formed");
38 STATISTIC(NumVecCmp, "Number of vector compares formed");
39 STATISTIC(NumVecBO, "Number of vector binops formed");
40 STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed");
41 STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast");
42 STATISTIC(NumScalarBO, "Number of scalar binops formed");
43 STATISTIC(NumScalarCmp, "Number of scalar compares formed");
44 
45 static cl::opt<bool> DisableVectorCombine(
46     "disable-vector-combine", cl::init(false), cl::Hidden,
47     cl::desc("Disable all vector combine transforms"));
48 
49 static cl::opt<bool> DisableBinopExtractShuffle(
50     "disable-binop-extract-shuffle", cl::init(false), cl::Hidden,
51     cl::desc("Disable binop extract to shuffle transforms"));
52 
53 static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max();
54 
55 namespace {
56 class VectorCombine {
57 public:
58   VectorCombine(Function &F, const TargetTransformInfo &TTI,
59                 const DominatorTree &DT)
60       : F(F), Builder(F.getContext()), TTI(TTI), DT(DT) {}
61 
62   bool run();
63 
64 private:
65   Function &F;
66   IRBuilder<> Builder;
67   const TargetTransformInfo &TTI;
68   const DominatorTree &DT;
69 
70   bool vectorizeLoadInsert(Instruction &I);
71   ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0,
72                                         ExtractElementInst *Ext1,
73                                         unsigned PreferredExtractIndex) const;
74   bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
75                              unsigned Opcode,
76                              ExtractElementInst *&ConvertToShuffle,
77                              unsigned PreferredExtractIndex);
78   void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
79                      Instruction &I);
80   void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
81                        Instruction &I);
82   bool foldExtractExtract(Instruction &I);
83   bool foldBitcastShuf(Instruction &I);
84   bool scalarizeBinopOrCmp(Instruction &I);
85   bool foldExtractedCmps(Instruction &I);
86 };
87 } // namespace
88 
89 static void replaceValue(Value &Old, Value &New) {
90   Old.replaceAllUsesWith(&New);
91   New.takeName(&Old);
92 }
93 
94 bool VectorCombine::vectorizeLoadInsert(Instruction &I) {
95   // Match insert into fixed vector of scalar value.
96   auto *Ty = dyn_cast<FixedVectorType>(I.getType());
97   Value *Scalar;
98   if (!Ty || !match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) ||
99       !Scalar->hasOneUse())
100     return false;
101 
102   // Optionally match an extract from another vector.
103   Value *X;
104   bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt()));
105   if (!HasExtract)
106     X = Scalar;
107 
108   // Match source value as load of scalar or vector.
109   // Do not vectorize scalar load (widening) if atomic/volatile or under
110   // asan/hwasan/memtag/tsan. The widened load may load data from dirty regions
111   // or create data races non-existent in the source.
112   auto *Load = dyn_cast<LoadInst>(X);
113   if (!Load || !Load->isSimple() || !Load->hasOneUse() ||
114       Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) ||
115       mustSuppressSpeculation(*Load))
116     return false;
117 
118   // TODO: Extend this to match GEP with constant offsets.
119   const DataLayout &DL = I.getModule()->getDataLayout();
120   Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts();
121   assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type");
122 
123   // If original AS != Load's AS, we can't bitcast the original pointer and have
124   // to use Load's operand instead. Ideally we would want to strip pointer casts
125   // without changing AS, but there's no API to do that ATM.
126   unsigned AS = Load->getPointerAddressSpace();
127   if (AS != SrcPtr->getType()->getPointerAddressSpace())
128     SrcPtr = Load->getPointerOperand();
129 
130   Type *ScalarTy = Scalar->getType();
131   uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
132   unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
133   if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0)
134     return false;
135 
136   // Check safety of replacing the scalar load with a larger vector load.
137   unsigned MinVecNumElts = MinVectorSize / ScalarSize;
138   auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false);
139   Align Alignment = Load->getAlign();
140   if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Alignment, DL, Load, &DT))
141     return false;
142 
143   // Original pattern: insertelt undef, load [free casts of] PtrOp, 0
144   Type *LoadTy = Load->getType();
145   int OldCost = TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS);
146   APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0);
147   OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts,
148                                           /* Insert */ true, HasExtract);
149 
150   // New pattern: load VecPtr
151   int NewCost = TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS);
152 
153   // We can aggressively convert to the vector form because the backend can
154   // invert this transform if it does not result in a performance win.
155   if (OldCost < NewCost)
156     return false;
157 
158   // It is safe and potentially profitable to load a vector directly:
159   // inselt undef, load Scalar, 0 --> load VecPtr
160   IRBuilder<> Builder(Load);
161   Value *CastedPtr = Builder.CreateBitCast(SrcPtr, MinVecTy->getPointerTo(AS));
162   Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment);
163 
164   // Set everything but element 0 to undef to prevent poison from propagating
165   // from the extra loaded memory. This will also optionally shrink/grow the
166   // vector from the loaded size to the output size.
167   // We assume this operation has no cost in codegen.
168   // Note that we could use freeze to avoid poison problems, but then we might
169   // still need a shuffle to change the vector size.
170   unsigned OutputNumElts = Ty->getNumElements();
171   SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem);
172   Mask[0] = 0;
173   VecLd = Builder.CreateShuffleVector(VecLd, Mask);
174 
175   replaceValue(I, *VecLd);
176   ++NumVecLoad;
177   return true;
178 }
179 
180 /// Determine which, if any, of the inputs should be replaced by a shuffle
181 /// followed by extract from a different index.
182 ExtractElementInst *VectorCombine::getShuffleExtract(
183     ExtractElementInst *Ext0, ExtractElementInst *Ext1,
184     unsigned PreferredExtractIndex = InvalidIndex) const {
185   assert(isa<ConstantInt>(Ext0->getIndexOperand()) &&
186          isa<ConstantInt>(Ext1->getIndexOperand()) &&
187          "Expected constant extract indexes");
188 
189   unsigned Index0 = cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue();
190   unsigned Index1 = cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue();
191 
192   // If the extract indexes are identical, no shuffle is needed.
193   if (Index0 == Index1)
194     return nullptr;
195 
196   Type *VecTy = Ext0->getVectorOperand()->getType();
197   assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types");
198   int Cost0 = TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
199   int Cost1 = TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);
200 
201   // We are extracting from 2 different indexes, so one operand must be shuffled
202   // before performing a vector operation and/or extract. The more expensive
203   // extract will be replaced by a shuffle.
204   if (Cost0 > Cost1)
205     return Ext0;
206   if (Cost1 > Cost0)
207     return Ext1;
208 
209   // If the costs are equal and there is a preferred extract index, shuffle the
210   // opposite operand.
211   if (PreferredExtractIndex == Index0)
212     return Ext1;
213   if (PreferredExtractIndex == Index1)
214     return Ext0;
215 
216   // Otherwise, replace the extract with the higher index.
217   return Index0 > Index1 ? Ext0 : Ext1;
218 }
219 
220 /// Compare the relative costs of 2 extracts followed by scalar operation vs.
221 /// vector operation(s) followed by extract. Return true if the existing
222 /// instructions are cheaper than a vector alternative. Otherwise, return false
223 /// and if one of the extracts should be transformed to a shufflevector, set
224 /// \p ConvertToShuffle to that extract instruction.
225 bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0,
226                                           ExtractElementInst *Ext1,
227                                           unsigned Opcode,
228                                           ExtractElementInst *&ConvertToShuffle,
229                                           unsigned PreferredExtractIndex) {
230   assert(isa<ConstantInt>(Ext0->getOperand(1)) &&
231          isa<ConstantInt>(Ext1->getOperand(1)) &&
232          "Expected constant extract indexes");
233   Type *ScalarTy = Ext0->getType();
234   auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType());
235   int ScalarOpCost, VectorOpCost;
236 
237   // Get cost estimates for scalar and vector versions of the operation.
238   bool IsBinOp = Instruction::isBinaryOp(Opcode);
239   if (IsBinOp) {
240     ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
241     VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
242   } else {
243     assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
244            "Expected a compare");
245     ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy,
246                                           CmpInst::makeCmpResultType(ScalarTy));
247     VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy,
248                                           CmpInst::makeCmpResultType(VecTy));
249   }
250 
251   // Get cost estimates for the extract elements. These costs will factor into
252   // both sequences.
253   unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue();
254   unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue();
255 
256   int Extract0Cost =
257       TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index);
258   int Extract1Cost =
259       TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index);
260 
261   // A more expensive extract will always be replaced by a splat shuffle.
262   // For example, if Ext0 is more expensive:
263   // opcode (extelt V0, Ext0), (ext V1, Ext1) -->
264   // extelt (opcode (splat V0, Ext0), V1), Ext1
265   // TODO: Evaluate whether that always results in lowest cost. Alternatively,
266   //       check the cost of creating a broadcast shuffle and shuffling both
267   //       operands to element 0.
268   int CheapExtractCost = std::min(Extract0Cost, Extract1Cost);
269 
270   // Extra uses of the extracts mean that we include those costs in the
271   // vector total because those instructions will not be eliminated.
272   int OldCost, NewCost;
273   if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) {
274     // Handle a special case. If the 2 extracts are identical, adjust the
275     // formulas to account for that. The extra use charge allows for either the
276     // CSE'd pattern or an unoptimized form with identical values:
277     // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C
278     bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2)
279                                   : !Ext0->hasOneUse() || !Ext1->hasOneUse();
280     OldCost = CheapExtractCost + ScalarOpCost;
281     NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost;
282   } else {
283     // Handle the general case. Each extract is actually a different value:
284     // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C
285     OldCost = Extract0Cost + Extract1Cost + ScalarOpCost;
286     NewCost = VectorOpCost + CheapExtractCost +
287               !Ext0->hasOneUse() * Extract0Cost +
288               !Ext1->hasOneUse() * Extract1Cost;
289   }
290 
291   ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex);
292   if (ConvertToShuffle) {
293     if (IsBinOp && DisableBinopExtractShuffle)
294       return true;
295 
296     // If we are extracting from 2 different indexes, then one operand must be
297     // shuffled before performing the vector operation. The shuffle mask is
298     // undefined except for 1 lane that is being translated to the remaining
299     // extraction lane. Therefore, it is a splat shuffle. Ex:
300     // ShufMask = { undef, undef, 0, undef }
301     // TODO: The cost model has an option for a "broadcast" shuffle
302     //       (splat-from-element-0), but no option for a more general splat.
303     NewCost +=
304         TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
305   }
306 
307   // Aggressively form a vector op if the cost is equal because the transform
308   // may enable further optimization.
309   // Codegen can reverse this transform (scalarize) if it was not profitable.
310   return OldCost < NewCost;
311 }
312 
313 /// Create a shuffle that translates (shifts) 1 element from the input vector
314 /// to a new element location.
315 static Value *createShiftShuffle(Value *Vec, unsigned OldIndex,
316                                  unsigned NewIndex, IRBuilder<> &Builder) {
317   // The shuffle mask is undefined except for 1 lane that is being translated
318   // to the new element index. Example for OldIndex == 2 and NewIndex == 0:
319   // ShufMask = { 2, undef, undef, undef }
320   auto *VecTy = cast<FixedVectorType>(Vec->getType());
321   SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem);
322   ShufMask[NewIndex] = OldIndex;
323   return Builder.CreateShuffleVector(Vec, ShufMask, "shift");
324 }
325 
326 /// Given an extract element instruction with constant index operand, shuffle
327 /// the source vector (shift the scalar element) to a NewIndex for extraction.
328 /// Return null if the input can be constant folded, so that we are not creating
329 /// unnecessary instructions.
330 static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt,
331                                             unsigned NewIndex,
332                                             IRBuilder<> &Builder) {
333   // If the extract can be constant-folded, this code is unsimplified. Defer
334   // to other passes to handle that.
335   Value *X = ExtElt->getVectorOperand();
336   Value *C = ExtElt->getIndexOperand();
337   assert(isa<ConstantInt>(C) && "Expected a constant index operand");
338   if (isa<Constant>(X))
339     return nullptr;
340 
341   Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(),
342                                    NewIndex, Builder);
343   return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex));
344 }
345 
346 /// Try to reduce extract element costs by converting scalar compares to vector
347 /// compares followed by extract.
348 /// cmp (ext0 V0, C), (ext1 V1, C)
349 void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0,
350                                   ExtractElementInst *Ext1, Instruction &I) {
351   assert(isa<CmpInst>(&I) && "Expected a compare");
352   assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
353              cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
354          "Expected matching constant extract indexes");
355 
356   // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C
357   ++NumVecCmp;
358   CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate();
359   Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
360   Value *VecCmp = Builder.CreateCmp(Pred, V0, V1);
361   Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand());
362   replaceValue(I, *NewExt);
363 }
364 
365 /// Try to reduce extract element costs by converting scalar binops to vector
366 /// binops followed by extract.
367 /// bo (ext0 V0, C), (ext1 V1, C)
368 void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0,
369                                     ExtractElementInst *Ext1, Instruction &I) {
370   assert(isa<BinaryOperator>(&I) && "Expected a binary operator");
371   assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
372              cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
373          "Expected matching constant extract indexes");
374 
375   // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C
376   ++NumVecBO;
377   Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
378   Value *VecBO =
379       Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1);
380 
381   // All IR flags are safe to back-propagate because any potential poison
382   // created in unused vector elements is discarded by the extract.
383   if (auto *VecBOInst = dyn_cast<Instruction>(VecBO))
384     VecBOInst->copyIRFlags(&I);
385 
386   Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand());
387   replaceValue(I, *NewExt);
388 }
389 
390 /// Match an instruction with extracted vector operands.
391 bool VectorCombine::foldExtractExtract(Instruction &I) {
392   // It is not safe to transform things like div, urem, etc. because we may
393   // create undefined behavior when executing those on unknown vector elements.
394   if (!isSafeToSpeculativelyExecute(&I))
395     return false;
396 
397   Instruction *I0, *I1;
398   CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
399   if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) &&
400       !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1))))
401     return false;
402 
403   Value *V0, *V1;
404   uint64_t C0, C1;
405   if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) ||
406       !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) ||
407       V0->getType() != V1->getType())
408     return false;
409 
410   // If the scalar value 'I' is going to be re-inserted into a vector, then try
411   // to create an extract to that same element. The extract/insert can be
412   // reduced to a "select shuffle".
413   // TODO: If we add a larger pattern match that starts from an insert, this
414   //       probably becomes unnecessary.
415   auto *Ext0 = cast<ExtractElementInst>(I0);
416   auto *Ext1 = cast<ExtractElementInst>(I1);
417   uint64_t InsertIndex = InvalidIndex;
418   if (I.hasOneUse())
419     match(I.user_back(),
420           m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex)));
421 
422   ExtractElementInst *ExtractToChange;
423   if (isExtractExtractCheap(Ext0, Ext1, I.getOpcode(), ExtractToChange,
424                             InsertIndex))
425     return false;
426 
427   if (ExtractToChange) {
428     unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0;
429     ExtractElementInst *NewExtract =
430         translateExtract(ExtractToChange, CheapExtractIdx, Builder);
431     if (!NewExtract)
432       return false;
433     if (ExtractToChange == Ext0)
434       Ext0 = NewExtract;
435     else
436       Ext1 = NewExtract;
437   }
438 
439   if (Pred != CmpInst::BAD_ICMP_PREDICATE)
440     foldExtExtCmp(Ext0, Ext1, I);
441   else
442     foldExtExtBinop(Ext0, Ext1, I);
443 
444   return true;
445 }
446 
447 /// If this is a bitcast of a shuffle, try to bitcast the source vector to the
448 /// destination type followed by shuffle. This can enable further transforms by
449 /// moving bitcasts or shuffles together.
450 bool VectorCombine::foldBitcastShuf(Instruction &I) {
451   Value *V;
452   ArrayRef<int> Mask;
453   if (!match(&I, m_BitCast(
454                      m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))))))
455     return false;
456 
457   // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for
458   // scalable type is unknown; Second, we cannot reason if the narrowed shuffle
459   // mask for scalable type is a splat or not.
460   // 2) Disallow non-vector casts and length-changing shuffles.
461   // TODO: We could allow any shuffle.
462   auto *DestTy = dyn_cast<FixedVectorType>(I.getType());
463   auto *SrcTy = dyn_cast<FixedVectorType>(V->getType());
464   if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy)
465     return false;
466 
467   // The new shuffle must not cost more than the old shuffle. The bitcast is
468   // moved ahead of the shuffle, so assume that it has the same cost as before.
469   if (TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, DestTy) >
470       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy))
471     return false;
472 
473   unsigned DestNumElts = DestTy->getNumElements();
474   unsigned SrcNumElts = SrcTy->getNumElements();
475   SmallVector<int, 16> NewMask;
476   if (SrcNumElts <= DestNumElts) {
477     // The bitcast is from wide to narrow/equal elements. The shuffle mask can
478     // always be expanded to the equivalent form choosing narrower elements.
479     assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask");
480     unsigned ScaleFactor = DestNumElts / SrcNumElts;
481     narrowShuffleMaskElts(ScaleFactor, Mask, NewMask);
482   } else {
483     // The bitcast is from narrow elements to wide elements. The shuffle mask
484     // must choose consecutive elements to allow casting first.
485     assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask");
486     unsigned ScaleFactor = SrcNumElts / DestNumElts;
487     if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask))
488       return false;
489   }
490   // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC'
491   ++NumShufOfBitcast;
492   Value *CastV = Builder.CreateBitCast(V, DestTy);
493   Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask);
494   replaceValue(I, *Shuf);
495   return true;
496 }
497 
498 /// Match a vector binop or compare instruction with at least one inserted
499 /// scalar operand and convert to scalar binop/cmp followed by insertelement.
500 bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) {
501   CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
502   Value *Ins0, *Ins1;
503   if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) &&
504       !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1))))
505     return false;
506 
507   // Do not convert the vector condition of a vector select into a scalar
508   // condition. That may cause problems for codegen because of differences in
509   // boolean formats and register-file transfers.
510   // TODO: Can we account for that in the cost model?
511   bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE;
512   if (IsCmp)
513     for (User *U : I.users())
514       if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value())))
515         return false;
516 
517   // Match against one or both scalar values being inserted into constant
518   // vectors:
519   // vec_op VecC0, (inselt VecC1, V1, Index)
520   // vec_op (inselt VecC0, V0, Index), VecC1
521   // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index)
522   // TODO: Deal with mismatched index constants and variable indexes?
523   Constant *VecC0 = nullptr, *VecC1 = nullptr;
524   Value *V0 = nullptr, *V1 = nullptr;
525   uint64_t Index0 = 0, Index1 = 0;
526   if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0),
527                                m_ConstantInt(Index0))) &&
528       !match(Ins0, m_Constant(VecC0)))
529     return false;
530   if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1),
531                                m_ConstantInt(Index1))) &&
532       !match(Ins1, m_Constant(VecC1)))
533     return false;
534 
535   bool IsConst0 = !V0;
536   bool IsConst1 = !V1;
537   if (IsConst0 && IsConst1)
538     return false;
539   if (!IsConst0 && !IsConst1 && Index0 != Index1)
540     return false;
541 
542   // Bail for single insertion if it is a load.
543   // TODO: Handle this once getVectorInstrCost can cost for load/stores.
544   auto *I0 = dyn_cast_or_null<Instruction>(V0);
545   auto *I1 = dyn_cast_or_null<Instruction>(V1);
546   if ((IsConst0 && I1 && I1->mayReadFromMemory()) ||
547       (IsConst1 && I0 && I0->mayReadFromMemory()))
548     return false;
549 
550   uint64_t Index = IsConst0 ? Index1 : Index0;
551   Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType();
552   Type *VecTy = I.getType();
553   assert(VecTy->isVectorTy() &&
554          (IsConst0 || IsConst1 || V0->getType() == V1->getType()) &&
555          (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() ||
556           ScalarTy->isPointerTy()) &&
557          "Unexpected types for insert element into binop or cmp");
558 
559   unsigned Opcode = I.getOpcode();
560   int ScalarOpCost, VectorOpCost;
561   if (IsCmp) {
562     ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy);
563     VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy);
564   } else {
565     ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
566     VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
567   }
568 
569   // Get cost estimate for the insert element. This cost will factor into
570   // both sequences.
571   int InsertCost =
572       TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index);
573   int OldCost = (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) +
574                 VectorOpCost;
575   int NewCost = ScalarOpCost + InsertCost +
576                 (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) +
577                 (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost);
578 
579   // We want to scalarize unless the vector variant actually has lower cost.
580   if (OldCost < NewCost)
581     return false;
582 
583   // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) -->
584   // inselt NewVecC, (scalar_op V0, V1), Index
585   if (IsCmp)
586     ++NumScalarCmp;
587   else
588     ++NumScalarBO;
589 
590   // For constant cases, extract the scalar element, this should constant fold.
591   if (IsConst0)
592     V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index));
593   if (IsConst1)
594     V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index));
595 
596   Value *Scalar =
597       IsCmp ? Builder.CreateCmp(Pred, V0, V1)
598             : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1);
599 
600   Scalar->setName(I.getName() + ".scalar");
601 
602   // All IR flags are safe to back-propagate. There is no potential for extra
603   // poison to be created by the scalar instruction.
604   if (auto *ScalarInst = dyn_cast<Instruction>(Scalar))
605     ScalarInst->copyIRFlags(&I);
606 
607   // Fold the vector constants in the original vectors into a new base vector.
608   Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1)
609                             : ConstantExpr::get(Opcode, VecC0, VecC1);
610   Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index);
611   replaceValue(I, *Insert);
612   return true;
613 }
614 
615 /// Try to combine a scalar binop + 2 scalar compares of extracted elements of
616 /// a vector into vector operations followed by extract. Note: The SLP pass
617 /// may miss this pattern because of implementation problems.
618 bool VectorCombine::foldExtractedCmps(Instruction &I) {
619   // We are looking for a scalar binop of booleans.
620   // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1)
621   if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1))
622     return false;
623 
624   // The compare predicates should match, and each compare should have a
625   // constant operand.
626   // TODO: Relax the one-use constraints.
627   Value *B0 = I.getOperand(0), *B1 = I.getOperand(1);
628   Instruction *I0, *I1;
629   Constant *C0, *C1;
630   CmpInst::Predicate P0, P1;
631   if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) ||
632       !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) ||
633       P0 != P1)
634     return false;
635 
636   // The compare operands must be extracts of the same vector with constant
637   // extract indexes.
638   // TODO: Relax the one-use constraints.
639   Value *X;
640   uint64_t Index0, Index1;
641   if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) ||
642       !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1)))))
643     return false;
644 
645   auto *Ext0 = cast<ExtractElementInst>(I0);
646   auto *Ext1 = cast<ExtractElementInst>(I1);
647   ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1);
648   if (!ConvertToShuf)
649     return false;
650 
651   // The original scalar pattern is:
652   // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1)
653   CmpInst::Predicate Pred = P0;
654   unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp
655                                                     : Instruction::ICmp;
656   auto *VecTy = dyn_cast<FixedVectorType>(X->getType());
657   if (!VecTy)
658     return false;
659 
660   int OldCost = TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
661   OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);
662   OldCost += TTI.getCmpSelInstrCost(CmpOpcode, I0->getType()) * 2;
663   OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType());
664 
665   // The proposed vector pattern is:
666   // vcmp = cmp Pred X, VecC
667   // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0
668   int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0;
669   int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1;
670   auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType()));
671   int NewCost = TTI.getCmpSelInstrCost(CmpOpcode, X->getType());
672   NewCost +=
673       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy);
674   NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy);
675   NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex);
676 
677   // Aggressively form vector ops if the cost is equal because the transform
678   // may enable further optimization.
679   // Codegen can reverse this transform (scalarize) if it was not profitable.
680   if (OldCost < NewCost)
681     return false;
682 
683   // Create a vector constant from the 2 scalar constants.
684   SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(),
685                                    UndefValue::get(VecTy->getElementType()));
686   CmpC[Index0] = C0;
687   CmpC[Index1] = C1;
688   Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC));
689 
690   Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder);
691   Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
692                                         VCmp, Shuf);
693   Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex);
694   replaceValue(I, *NewExt);
695   ++NumVecCmpBO;
696   return true;
697 }
698 
699 /// This is the entry point for all transforms. Pass manager differences are
700 /// handled in the callers of this function.
701 bool VectorCombine::run() {
702   if (DisableVectorCombine)
703     return false;
704 
705   // Don't attempt vectorization if the target does not support vectors.
706   if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true)))
707     return false;
708 
709   bool MadeChange = false;
710   for (BasicBlock &BB : F) {
711     // Ignore unreachable basic blocks.
712     if (!DT.isReachableFromEntry(&BB))
713       continue;
714     // Do not delete instructions under here and invalidate the iterator.
715     // Walk the block forwards to enable simple iterative chains of transforms.
716     // TODO: It could be more efficient to remove dead instructions
717     //       iteratively in this loop rather than waiting until the end.
718     for (Instruction &I : BB) {
719       if (isa<DbgInfoIntrinsic>(I))
720         continue;
721       Builder.SetInsertPoint(&I);
722       MadeChange |= vectorizeLoadInsert(I);
723       MadeChange |= foldExtractExtract(I);
724       MadeChange |= foldBitcastShuf(I);
725       MadeChange |= scalarizeBinopOrCmp(I);
726       MadeChange |= foldExtractedCmps(I);
727     }
728   }
729 
730   // We're done with transforms, so remove dead instructions.
731   if (MadeChange)
732     for (BasicBlock &BB : F)
733       SimplifyInstructionsInBlock(&BB);
734 
735   return MadeChange;
736 }
737 
738 // Pass manager boilerplate below here.
739 
740 namespace {
741 class VectorCombineLegacyPass : public FunctionPass {
742 public:
743   static char ID;
744   VectorCombineLegacyPass() : FunctionPass(ID) {
745     initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry());
746   }
747 
748   void getAnalysisUsage(AnalysisUsage &AU) const override {
749     AU.addRequired<DominatorTreeWrapperPass>();
750     AU.addRequired<TargetTransformInfoWrapperPass>();
751     AU.setPreservesCFG();
752     AU.addPreserved<DominatorTreeWrapperPass>();
753     AU.addPreserved<GlobalsAAWrapperPass>();
754     AU.addPreserved<AAResultsWrapperPass>();
755     AU.addPreserved<BasicAAWrapperPass>();
756     FunctionPass::getAnalysisUsage(AU);
757   }
758 
759   bool runOnFunction(Function &F) override {
760     if (skipFunction(F))
761       return false;
762     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
763     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
764     VectorCombine Combiner(F, TTI, DT);
765     return Combiner.run();
766   }
767 };
768 } // namespace
769 
770 char VectorCombineLegacyPass::ID = 0;
771 INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine",
772                       "Optimize scalar/vector ops", false,
773                       false)
774 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
775 INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine",
776                     "Optimize scalar/vector ops", false, false)
777 Pass *llvm::createVectorCombinePass() {
778   return new VectorCombineLegacyPass();
779 }
780 
781 PreservedAnalyses VectorCombinePass::run(Function &F,
782                                          FunctionAnalysisManager &FAM) {
783   TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
784   DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
785   VectorCombine Combiner(F, TTI, DT);
786   if (!Combiner.run())
787     return PreservedAnalyses::all();
788   PreservedAnalyses PA;
789   PA.preserveSet<CFGAnalyses>();
790   PA.preserve<GlobalsAA>();
791   PA.preserve<AAManager>();
792   PA.preserve<BasicAA>();
793   return PA;
794 }
795