1 //===------- VectorCombine.cpp - Optimize partial vector operations -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass optimizes scalar/vector interactions using target cost models. The 10 // transforms implemented here may not fit in traditional loop-based or SLP 11 // vectorization passes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Vectorize/VectorCombine.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/BasicAliasAnalysis.h" 19 #include "llvm/Analysis/GlobalsModRef.h" 20 #include "llvm/Analysis/Loads.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/PatternMatch.h" 28 #include "llvm/InitializePasses.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "llvm/Transforms/Vectorize.h" 33 34 #define DEBUG_TYPE "vector-combine" 35 #include "llvm/Transforms/Utils/InstructionWorklist.h" 36 37 using namespace llvm; 38 using namespace llvm::PatternMatch; 39 40 STATISTIC(NumVecLoad, "Number of vector loads formed"); 41 STATISTIC(NumVecCmp, "Number of vector compares formed"); 42 STATISTIC(NumVecBO, "Number of vector binops formed"); 43 STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed"); 44 STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast"); 45 STATISTIC(NumScalarBO, "Number of scalar binops formed"); 46 STATISTIC(NumScalarCmp, "Number of scalar compares formed"); 47 48 static cl::opt<bool> DisableVectorCombine( 49 "disable-vector-combine", cl::init(false), cl::Hidden, 50 cl::desc("Disable all vector combine transforms")); 51 52 static cl::opt<bool> DisableBinopExtractShuffle( 53 "disable-binop-extract-shuffle", cl::init(false), cl::Hidden, 54 cl::desc("Disable binop extract to shuffle transforms")); 55 56 static cl::opt<unsigned> MaxInstrsToScan( 57 "vector-combine-max-scan-instrs", cl::init(30), cl::Hidden, 58 cl::desc("Max number of instructions to scan for vector combining.")); 59 60 static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max(); 61 62 namespace { 63 class VectorCombine { 64 public: 65 VectorCombine(Function &F, const TargetTransformInfo &TTI, 66 const DominatorTree &DT, AAResults &AA, AssumptionCache &AC, 67 bool ScalarizationOnly) 68 : F(F), Builder(F.getContext()), TTI(TTI), DT(DT), AA(AA), AC(AC), 69 ScalarizationOnly(ScalarizationOnly) {} 70 71 bool run(); 72 73 private: 74 Function &F; 75 IRBuilder<> Builder; 76 const TargetTransformInfo &TTI; 77 const DominatorTree &DT; 78 AAResults &AA; 79 AssumptionCache &AC; 80 81 /// If true only perform scalarization combines and do not introduce new 82 /// vector operations. 83 bool ScalarizationOnly; 84 85 InstructionWorklist Worklist; 86 87 bool vectorizeLoadInsert(Instruction &I); 88 ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0, 89 ExtractElementInst *Ext1, 90 unsigned PreferredExtractIndex) const; 91 bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 92 const Instruction &I, 93 ExtractElementInst *&ConvertToShuffle, 94 unsigned PreferredExtractIndex); 95 void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 96 Instruction &I); 97 void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 98 Instruction &I); 99 bool foldExtractExtract(Instruction &I); 100 bool foldBitcastShuf(Instruction &I); 101 bool scalarizeBinopOrCmp(Instruction &I); 102 bool foldExtractedCmps(Instruction &I); 103 bool foldSingleElementStore(Instruction &I); 104 bool scalarizeLoadExtract(Instruction &I); 105 bool foldShuffleOfBinops(Instruction &I); 106 bool foldShuffleFromReductions(Instruction &I); 107 bool foldSelectShuffle(Instruction &I); 108 109 void replaceValue(Value &Old, Value &New) { 110 Old.replaceAllUsesWith(&New); 111 if (auto *NewI = dyn_cast<Instruction>(&New)) { 112 New.takeName(&Old); 113 Worklist.pushUsersToWorkList(*NewI); 114 Worklist.pushValue(NewI); 115 } 116 Worklist.pushValue(&Old); 117 } 118 119 void eraseInstruction(Instruction &I) { 120 for (Value *Op : I.operands()) 121 Worklist.pushValue(Op); 122 Worklist.remove(&I); 123 I.eraseFromParent(); 124 } 125 }; 126 } // namespace 127 128 bool VectorCombine::vectorizeLoadInsert(Instruction &I) { 129 // Match insert into fixed vector of scalar value. 130 // TODO: Handle non-zero insert index. 131 auto *Ty = dyn_cast<FixedVectorType>(I.getType()); 132 Value *Scalar; 133 if (!Ty || !match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) || 134 !Scalar->hasOneUse()) 135 return false; 136 137 // Optionally match an extract from another vector. 138 Value *X; 139 bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt())); 140 if (!HasExtract) 141 X = Scalar; 142 143 // Match source value as load of scalar or vector. 144 // Do not vectorize scalar load (widening) if atomic/volatile or under 145 // asan/hwasan/memtag/tsan. The widened load may load data from dirty regions 146 // or create data races non-existent in the source. 147 auto *Load = dyn_cast<LoadInst>(X); 148 if (!Load || !Load->isSimple() || !Load->hasOneUse() || 149 Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) || 150 mustSuppressSpeculation(*Load)) 151 return false; 152 153 const DataLayout &DL = I.getModule()->getDataLayout(); 154 Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts(); 155 assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type"); 156 157 unsigned AS = Load->getPointerAddressSpace(); 158 159 // We are potentially transforming byte-sized (8-bit) memory accesses, so make 160 // sure we have all of our type-based constraints in place for this target. 161 Type *ScalarTy = Scalar->getType(); 162 uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits(); 163 unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth(); 164 if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 || 165 ScalarSize % 8 != 0) 166 return false; 167 168 // Check safety of replacing the scalar load with a larger vector load. 169 // We use minimal alignment (maximum flexibility) because we only care about 170 // the dereferenceable region. When calculating cost and creating a new op, 171 // we may use a larger value based on alignment attributes. 172 unsigned MinVecNumElts = MinVectorSize / ScalarSize; 173 auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false); 174 unsigned OffsetEltIndex = 0; 175 Align Alignment = Load->getAlign(); 176 if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) { 177 // It is not safe to load directly from the pointer, but we can still peek 178 // through gep offsets and check if it safe to load from a base address with 179 // updated alignment. If it is, we can shuffle the element(s) into place 180 // after loading. 181 unsigned OffsetBitWidth = DL.getIndexTypeSizeInBits(SrcPtr->getType()); 182 APInt Offset(OffsetBitWidth, 0); 183 SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); 184 185 // We want to shuffle the result down from a high element of a vector, so 186 // the offset must be positive. 187 if (Offset.isNegative()) 188 return false; 189 190 // The offset must be a multiple of the scalar element to shuffle cleanly 191 // in the element's size. 192 uint64_t ScalarSizeInBytes = ScalarSize / 8; 193 if (Offset.urem(ScalarSizeInBytes) != 0) 194 return false; 195 196 // If we load MinVecNumElts, will our target element still be loaded? 197 OffsetEltIndex = Offset.udiv(ScalarSizeInBytes).getZExtValue(); 198 if (OffsetEltIndex >= MinVecNumElts) 199 return false; 200 201 if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) 202 return false; 203 204 // Update alignment with offset value. Note that the offset could be negated 205 // to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but 206 // negation does not change the result of the alignment calculation. 207 Alignment = commonAlignment(Alignment, Offset.getZExtValue()); 208 } 209 210 // Original pattern: insertelt undef, load [free casts of] PtrOp, 0 211 // Use the greater of the alignment on the load or its source pointer. 212 Alignment = std::max(SrcPtr->getPointerAlignment(DL), Alignment); 213 Type *LoadTy = Load->getType(); 214 InstructionCost OldCost = 215 TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS); 216 APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0); 217 OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts, 218 /* Insert */ true, HasExtract); 219 220 // New pattern: load VecPtr 221 InstructionCost NewCost = 222 TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS); 223 // Optionally, we are shuffling the loaded vector element(s) into place. 224 // For the mask set everything but element 0 to undef to prevent poison from 225 // propagating from the extra loaded memory. This will also optionally 226 // shrink/grow the vector from the loaded size to the output size. 227 // We assume this operation has no cost in codegen if there was no offset. 228 // Note that we could use freeze to avoid poison problems, but then we might 229 // still need a shuffle to change the vector size. 230 unsigned OutputNumElts = Ty->getNumElements(); 231 SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem); 232 assert(OffsetEltIndex < MinVecNumElts && "Address offset too big"); 233 Mask[0] = OffsetEltIndex; 234 if (OffsetEltIndex) 235 NewCost += TTI.getShuffleCost(TTI::SK_PermuteSingleSrc, MinVecTy, Mask); 236 237 // We can aggressively convert to the vector form because the backend can 238 // invert this transform if it does not result in a performance win. 239 if (OldCost < NewCost || !NewCost.isValid()) 240 return false; 241 242 // It is safe and potentially profitable to load a vector directly: 243 // inselt undef, load Scalar, 0 --> load VecPtr 244 IRBuilder<> Builder(Load); 245 Value *CastedPtr = Builder.CreatePointerBitCastOrAddrSpaceCast( 246 SrcPtr, MinVecTy->getPointerTo(AS)); 247 Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment); 248 VecLd = Builder.CreateShuffleVector(VecLd, Mask); 249 250 replaceValue(I, *VecLd); 251 ++NumVecLoad; 252 return true; 253 } 254 255 /// Determine which, if any, of the inputs should be replaced by a shuffle 256 /// followed by extract from a different index. 257 ExtractElementInst *VectorCombine::getShuffleExtract( 258 ExtractElementInst *Ext0, ExtractElementInst *Ext1, 259 unsigned PreferredExtractIndex = InvalidIndex) const { 260 auto *Index0C = dyn_cast<ConstantInt>(Ext0->getIndexOperand()); 261 auto *Index1C = dyn_cast<ConstantInt>(Ext1->getIndexOperand()); 262 assert(Index0C && Index1C && "Expected constant extract indexes"); 263 264 unsigned Index0 = Index0C->getZExtValue(); 265 unsigned Index1 = Index1C->getZExtValue(); 266 267 // If the extract indexes are identical, no shuffle is needed. 268 if (Index0 == Index1) 269 return nullptr; 270 271 Type *VecTy = Ext0->getVectorOperand()->getType(); 272 assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types"); 273 InstructionCost Cost0 = 274 TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 275 InstructionCost Cost1 = 276 TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 277 278 // If both costs are invalid no shuffle is needed 279 if (!Cost0.isValid() && !Cost1.isValid()) 280 return nullptr; 281 282 // We are extracting from 2 different indexes, so one operand must be shuffled 283 // before performing a vector operation and/or extract. The more expensive 284 // extract will be replaced by a shuffle. 285 if (Cost0 > Cost1) 286 return Ext0; 287 if (Cost1 > Cost0) 288 return Ext1; 289 290 // If the costs are equal and there is a preferred extract index, shuffle the 291 // opposite operand. 292 if (PreferredExtractIndex == Index0) 293 return Ext1; 294 if (PreferredExtractIndex == Index1) 295 return Ext0; 296 297 // Otherwise, replace the extract with the higher index. 298 return Index0 > Index1 ? Ext0 : Ext1; 299 } 300 301 /// Compare the relative costs of 2 extracts followed by scalar operation vs. 302 /// vector operation(s) followed by extract. Return true if the existing 303 /// instructions are cheaper than a vector alternative. Otherwise, return false 304 /// and if one of the extracts should be transformed to a shufflevector, set 305 /// \p ConvertToShuffle to that extract instruction. 306 bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0, 307 ExtractElementInst *Ext1, 308 const Instruction &I, 309 ExtractElementInst *&ConvertToShuffle, 310 unsigned PreferredExtractIndex) { 311 auto *Ext0IndexC = dyn_cast<ConstantInt>(Ext0->getOperand(1)); 312 auto *Ext1IndexC = dyn_cast<ConstantInt>(Ext1->getOperand(1)); 313 assert(Ext0IndexC && Ext1IndexC && "Expected constant extract indexes"); 314 315 unsigned Opcode = I.getOpcode(); 316 Type *ScalarTy = Ext0->getType(); 317 auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType()); 318 InstructionCost ScalarOpCost, VectorOpCost; 319 320 // Get cost estimates for scalar and vector versions of the operation. 321 bool IsBinOp = Instruction::isBinaryOp(Opcode); 322 if (IsBinOp) { 323 ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 324 VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 325 } else { 326 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 327 "Expected a compare"); 328 CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate(); 329 ScalarOpCost = TTI.getCmpSelInstrCost( 330 Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred); 331 VectorOpCost = TTI.getCmpSelInstrCost( 332 Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred); 333 } 334 335 // Get cost estimates for the extract elements. These costs will factor into 336 // both sequences. 337 unsigned Ext0Index = Ext0IndexC->getZExtValue(); 338 unsigned Ext1Index = Ext1IndexC->getZExtValue(); 339 340 InstructionCost Extract0Cost = 341 TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index); 342 InstructionCost Extract1Cost = 343 TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index); 344 345 // A more expensive extract will always be replaced by a splat shuffle. 346 // For example, if Ext0 is more expensive: 347 // opcode (extelt V0, Ext0), (ext V1, Ext1) --> 348 // extelt (opcode (splat V0, Ext0), V1), Ext1 349 // TODO: Evaluate whether that always results in lowest cost. Alternatively, 350 // check the cost of creating a broadcast shuffle and shuffling both 351 // operands to element 0. 352 InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost); 353 354 // Extra uses of the extracts mean that we include those costs in the 355 // vector total because those instructions will not be eliminated. 356 InstructionCost OldCost, NewCost; 357 if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) { 358 // Handle a special case. If the 2 extracts are identical, adjust the 359 // formulas to account for that. The extra use charge allows for either the 360 // CSE'd pattern or an unoptimized form with identical values: 361 // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C 362 bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2) 363 : !Ext0->hasOneUse() || !Ext1->hasOneUse(); 364 OldCost = CheapExtractCost + ScalarOpCost; 365 NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost; 366 } else { 367 // Handle the general case. Each extract is actually a different value: 368 // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C 369 OldCost = Extract0Cost + Extract1Cost + ScalarOpCost; 370 NewCost = VectorOpCost + CheapExtractCost + 371 !Ext0->hasOneUse() * Extract0Cost + 372 !Ext1->hasOneUse() * Extract1Cost; 373 } 374 375 ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex); 376 if (ConvertToShuffle) { 377 if (IsBinOp && DisableBinopExtractShuffle) 378 return true; 379 380 // If we are extracting from 2 different indexes, then one operand must be 381 // shuffled before performing the vector operation. The shuffle mask is 382 // undefined except for 1 lane that is being translated to the remaining 383 // extraction lane. Therefore, it is a splat shuffle. Ex: 384 // ShufMask = { undef, undef, 0, undef } 385 // TODO: The cost model has an option for a "broadcast" shuffle 386 // (splat-from-element-0), but no option for a more general splat. 387 NewCost += 388 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 389 } 390 391 // Aggressively form a vector op if the cost is equal because the transform 392 // may enable further optimization. 393 // Codegen can reverse this transform (scalarize) if it was not profitable. 394 return OldCost < NewCost; 395 } 396 397 /// Create a shuffle that translates (shifts) 1 element from the input vector 398 /// to a new element location. 399 static Value *createShiftShuffle(Value *Vec, unsigned OldIndex, 400 unsigned NewIndex, IRBuilder<> &Builder) { 401 // The shuffle mask is undefined except for 1 lane that is being translated 402 // to the new element index. Example for OldIndex == 2 and NewIndex == 0: 403 // ShufMask = { 2, undef, undef, undef } 404 auto *VecTy = cast<FixedVectorType>(Vec->getType()); 405 SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem); 406 ShufMask[NewIndex] = OldIndex; 407 return Builder.CreateShuffleVector(Vec, ShufMask, "shift"); 408 } 409 410 /// Given an extract element instruction with constant index operand, shuffle 411 /// the source vector (shift the scalar element) to a NewIndex for extraction. 412 /// Return null if the input can be constant folded, so that we are not creating 413 /// unnecessary instructions. 414 static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt, 415 unsigned NewIndex, 416 IRBuilder<> &Builder) { 417 // If the extract can be constant-folded, this code is unsimplified. Defer 418 // to other passes to handle that. 419 Value *X = ExtElt->getVectorOperand(); 420 Value *C = ExtElt->getIndexOperand(); 421 assert(isa<ConstantInt>(C) && "Expected a constant index operand"); 422 if (isa<Constant>(X)) 423 return nullptr; 424 425 Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(), 426 NewIndex, Builder); 427 return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex)); 428 } 429 430 /// Try to reduce extract element costs by converting scalar compares to vector 431 /// compares followed by extract. 432 /// cmp (ext0 V0, C), (ext1 V1, C) 433 void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0, 434 ExtractElementInst *Ext1, Instruction &I) { 435 assert(isa<CmpInst>(&I) && "Expected a compare"); 436 assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 437 cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 438 "Expected matching constant extract indexes"); 439 440 // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C 441 ++NumVecCmp; 442 CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate(); 443 Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 444 Value *VecCmp = Builder.CreateCmp(Pred, V0, V1); 445 Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand()); 446 replaceValue(I, *NewExt); 447 } 448 449 /// Try to reduce extract element costs by converting scalar binops to vector 450 /// binops followed by extract. 451 /// bo (ext0 V0, C), (ext1 V1, C) 452 void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0, 453 ExtractElementInst *Ext1, Instruction &I) { 454 assert(isa<BinaryOperator>(&I) && "Expected a binary operator"); 455 assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 456 cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 457 "Expected matching constant extract indexes"); 458 459 // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C 460 ++NumVecBO; 461 Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 462 Value *VecBO = 463 Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1); 464 465 // All IR flags are safe to back-propagate because any potential poison 466 // created in unused vector elements is discarded by the extract. 467 if (auto *VecBOInst = dyn_cast<Instruction>(VecBO)) 468 VecBOInst->copyIRFlags(&I); 469 470 Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand()); 471 replaceValue(I, *NewExt); 472 } 473 474 /// Match an instruction with extracted vector operands. 475 bool VectorCombine::foldExtractExtract(Instruction &I) { 476 // It is not safe to transform things like div, urem, etc. because we may 477 // create undefined behavior when executing those on unknown vector elements. 478 if (!isSafeToSpeculativelyExecute(&I)) 479 return false; 480 481 Instruction *I0, *I1; 482 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 483 if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) && 484 !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1)))) 485 return false; 486 487 Value *V0, *V1; 488 uint64_t C0, C1; 489 if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) || 490 !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) || 491 V0->getType() != V1->getType()) 492 return false; 493 494 // If the scalar value 'I' is going to be re-inserted into a vector, then try 495 // to create an extract to that same element. The extract/insert can be 496 // reduced to a "select shuffle". 497 // TODO: If we add a larger pattern match that starts from an insert, this 498 // probably becomes unnecessary. 499 auto *Ext0 = cast<ExtractElementInst>(I0); 500 auto *Ext1 = cast<ExtractElementInst>(I1); 501 uint64_t InsertIndex = InvalidIndex; 502 if (I.hasOneUse()) 503 match(I.user_back(), 504 m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex))); 505 506 ExtractElementInst *ExtractToChange; 507 if (isExtractExtractCheap(Ext0, Ext1, I, ExtractToChange, InsertIndex)) 508 return false; 509 510 if (ExtractToChange) { 511 unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0; 512 ExtractElementInst *NewExtract = 513 translateExtract(ExtractToChange, CheapExtractIdx, Builder); 514 if (!NewExtract) 515 return false; 516 if (ExtractToChange == Ext0) 517 Ext0 = NewExtract; 518 else 519 Ext1 = NewExtract; 520 } 521 522 if (Pred != CmpInst::BAD_ICMP_PREDICATE) 523 foldExtExtCmp(Ext0, Ext1, I); 524 else 525 foldExtExtBinop(Ext0, Ext1, I); 526 527 Worklist.push(Ext0); 528 Worklist.push(Ext1); 529 return true; 530 } 531 532 /// If this is a bitcast of a shuffle, try to bitcast the source vector to the 533 /// destination type followed by shuffle. This can enable further transforms by 534 /// moving bitcasts or shuffles together. 535 bool VectorCombine::foldBitcastShuf(Instruction &I) { 536 Value *V; 537 ArrayRef<int> Mask; 538 if (!match(&I, m_BitCast( 539 m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask)))))) 540 return false; 541 542 // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for 543 // scalable type is unknown; Second, we cannot reason if the narrowed shuffle 544 // mask for scalable type is a splat or not. 545 // 2) Disallow non-vector casts and length-changing shuffles. 546 // TODO: We could allow any shuffle. 547 auto *DestTy = dyn_cast<FixedVectorType>(I.getType()); 548 auto *SrcTy = dyn_cast<FixedVectorType>(V->getType()); 549 if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy) 550 return false; 551 552 unsigned DestNumElts = DestTy->getNumElements(); 553 unsigned SrcNumElts = SrcTy->getNumElements(); 554 SmallVector<int, 16> NewMask; 555 if (SrcNumElts <= DestNumElts) { 556 // The bitcast is from wide to narrow/equal elements. The shuffle mask can 557 // always be expanded to the equivalent form choosing narrower elements. 558 assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask"); 559 unsigned ScaleFactor = DestNumElts / SrcNumElts; 560 narrowShuffleMaskElts(ScaleFactor, Mask, NewMask); 561 } else { 562 // The bitcast is from narrow elements to wide elements. The shuffle mask 563 // must choose consecutive elements to allow casting first. 564 assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask"); 565 unsigned ScaleFactor = SrcNumElts / DestNumElts; 566 if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask)) 567 return false; 568 } 569 570 // The new shuffle must not cost more than the old shuffle. The bitcast is 571 // moved ahead of the shuffle, so assume that it has the same cost as before. 572 InstructionCost DestCost = TTI.getShuffleCost( 573 TargetTransformInfo::SK_PermuteSingleSrc, DestTy, NewMask); 574 InstructionCost SrcCost = 575 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy, Mask); 576 if (DestCost > SrcCost || !DestCost.isValid()) 577 return false; 578 579 // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC' 580 ++NumShufOfBitcast; 581 Value *CastV = Builder.CreateBitCast(V, DestTy); 582 Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask); 583 replaceValue(I, *Shuf); 584 return true; 585 } 586 587 /// Match a vector binop or compare instruction with at least one inserted 588 /// scalar operand and convert to scalar binop/cmp followed by insertelement. 589 bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) { 590 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 591 Value *Ins0, *Ins1; 592 if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) && 593 !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1)))) 594 return false; 595 596 // Do not convert the vector condition of a vector select into a scalar 597 // condition. That may cause problems for codegen because of differences in 598 // boolean formats and register-file transfers. 599 // TODO: Can we account for that in the cost model? 600 bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE; 601 if (IsCmp) 602 for (User *U : I.users()) 603 if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value()))) 604 return false; 605 606 // Match against one or both scalar values being inserted into constant 607 // vectors: 608 // vec_op VecC0, (inselt VecC1, V1, Index) 609 // vec_op (inselt VecC0, V0, Index), VecC1 610 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) 611 // TODO: Deal with mismatched index constants and variable indexes? 612 Constant *VecC0 = nullptr, *VecC1 = nullptr; 613 Value *V0 = nullptr, *V1 = nullptr; 614 uint64_t Index0 = 0, Index1 = 0; 615 if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0), 616 m_ConstantInt(Index0))) && 617 !match(Ins0, m_Constant(VecC0))) 618 return false; 619 if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1), 620 m_ConstantInt(Index1))) && 621 !match(Ins1, m_Constant(VecC1))) 622 return false; 623 624 bool IsConst0 = !V0; 625 bool IsConst1 = !V1; 626 if (IsConst0 && IsConst1) 627 return false; 628 if (!IsConst0 && !IsConst1 && Index0 != Index1) 629 return false; 630 631 // Bail for single insertion if it is a load. 632 // TODO: Handle this once getVectorInstrCost can cost for load/stores. 633 auto *I0 = dyn_cast_or_null<Instruction>(V0); 634 auto *I1 = dyn_cast_or_null<Instruction>(V1); 635 if ((IsConst0 && I1 && I1->mayReadFromMemory()) || 636 (IsConst1 && I0 && I0->mayReadFromMemory())) 637 return false; 638 639 uint64_t Index = IsConst0 ? Index1 : Index0; 640 Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType(); 641 Type *VecTy = I.getType(); 642 assert(VecTy->isVectorTy() && 643 (IsConst0 || IsConst1 || V0->getType() == V1->getType()) && 644 (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() || 645 ScalarTy->isPointerTy()) && 646 "Unexpected types for insert element into binop or cmp"); 647 648 unsigned Opcode = I.getOpcode(); 649 InstructionCost ScalarOpCost, VectorOpCost; 650 if (IsCmp) { 651 CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate(); 652 ScalarOpCost = TTI.getCmpSelInstrCost( 653 Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred); 654 VectorOpCost = TTI.getCmpSelInstrCost( 655 Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred); 656 } else { 657 ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 658 VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 659 } 660 661 // Get cost estimate for the insert element. This cost will factor into 662 // both sequences. 663 InstructionCost InsertCost = 664 TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index); 665 InstructionCost OldCost = 666 (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + VectorOpCost; 667 InstructionCost NewCost = ScalarOpCost + InsertCost + 668 (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) + 669 (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost); 670 671 // We want to scalarize unless the vector variant actually has lower cost. 672 if (OldCost < NewCost || !NewCost.isValid()) 673 return false; 674 675 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) --> 676 // inselt NewVecC, (scalar_op V0, V1), Index 677 if (IsCmp) 678 ++NumScalarCmp; 679 else 680 ++NumScalarBO; 681 682 // For constant cases, extract the scalar element, this should constant fold. 683 if (IsConst0) 684 V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index)); 685 if (IsConst1) 686 V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index)); 687 688 Value *Scalar = 689 IsCmp ? Builder.CreateCmp(Pred, V0, V1) 690 : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1); 691 692 Scalar->setName(I.getName() + ".scalar"); 693 694 // All IR flags are safe to back-propagate. There is no potential for extra 695 // poison to be created by the scalar instruction. 696 if (auto *ScalarInst = dyn_cast<Instruction>(Scalar)) 697 ScalarInst->copyIRFlags(&I); 698 699 // Fold the vector constants in the original vectors into a new base vector. 700 Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1) 701 : ConstantExpr::get(Opcode, VecC0, VecC1); 702 Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index); 703 replaceValue(I, *Insert); 704 return true; 705 } 706 707 /// Try to combine a scalar binop + 2 scalar compares of extracted elements of 708 /// a vector into vector operations followed by extract. Note: The SLP pass 709 /// may miss this pattern because of implementation problems. 710 bool VectorCombine::foldExtractedCmps(Instruction &I) { 711 // We are looking for a scalar binop of booleans. 712 // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1) 713 if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1)) 714 return false; 715 716 // The compare predicates should match, and each compare should have a 717 // constant operand. 718 // TODO: Relax the one-use constraints. 719 Value *B0 = I.getOperand(0), *B1 = I.getOperand(1); 720 Instruction *I0, *I1; 721 Constant *C0, *C1; 722 CmpInst::Predicate P0, P1; 723 if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) || 724 !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) || 725 P0 != P1) 726 return false; 727 728 // The compare operands must be extracts of the same vector with constant 729 // extract indexes. 730 // TODO: Relax the one-use constraints. 731 Value *X; 732 uint64_t Index0, Index1; 733 if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) || 734 !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1))))) 735 return false; 736 737 auto *Ext0 = cast<ExtractElementInst>(I0); 738 auto *Ext1 = cast<ExtractElementInst>(I1); 739 ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1); 740 if (!ConvertToShuf) 741 return false; 742 743 // The original scalar pattern is: 744 // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1) 745 CmpInst::Predicate Pred = P0; 746 unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp 747 : Instruction::ICmp; 748 auto *VecTy = dyn_cast<FixedVectorType>(X->getType()); 749 if (!VecTy) 750 return false; 751 752 InstructionCost OldCost = 753 TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 754 OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 755 OldCost += 756 TTI.getCmpSelInstrCost(CmpOpcode, I0->getType(), 757 CmpInst::makeCmpResultType(I0->getType()), Pred) * 758 2; 759 OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType()); 760 761 // The proposed vector pattern is: 762 // vcmp = cmp Pred X, VecC 763 // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0 764 int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0; 765 int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1; 766 auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType())); 767 InstructionCost NewCost = TTI.getCmpSelInstrCost( 768 CmpOpcode, X->getType(), CmpInst::makeCmpResultType(X->getType()), Pred); 769 SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem); 770 ShufMask[CheapIndex] = ExpensiveIndex; 771 NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy, 772 ShufMask); 773 NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy); 774 NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex); 775 776 // Aggressively form vector ops if the cost is equal because the transform 777 // may enable further optimization. 778 // Codegen can reverse this transform (scalarize) if it was not profitable. 779 if (OldCost < NewCost || !NewCost.isValid()) 780 return false; 781 782 // Create a vector constant from the 2 scalar constants. 783 SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(), 784 UndefValue::get(VecTy->getElementType())); 785 CmpC[Index0] = C0; 786 CmpC[Index1] = C1; 787 Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC)); 788 789 Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder); 790 Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(), 791 VCmp, Shuf); 792 Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex); 793 replaceValue(I, *NewExt); 794 ++NumVecCmpBO; 795 return true; 796 } 797 798 // Check if memory loc modified between two instrs in the same BB 799 static bool isMemModifiedBetween(BasicBlock::iterator Begin, 800 BasicBlock::iterator End, 801 const MemoryLocation &Loc, AAResults &AA) { 802 unsigned NumScanned = 0; 803 return std::any_of(Begin, End, [&](const Instruction &Instr) { 804 return isModSet(AA.getModRefInfo(&Instr, Loc)) || 805 ++NumScanned > MaxInstrsToScan; 806 }); 807 } 808 809 /// Helper class to indicate whether a vector index can be safely scalarized and 810 /// if a freeze needs to be inserted. 811 class ScalarizationResult { 812 enum class StatusTy { Unsafe, Safe, SafeWithFreeze }; 813 814 StatusTy Status; 815 Value *ToFreeze; 816 817 ScalarizationResult(StatusTy Status, Value *ToFreeze = nullptr) 818 : Status(Status), ToFreeze(ToFreeze) {} 819 820 public: 821 ScalarizationResult(const ScalarizationResult &Other) = default; 822 ~ScalarizationResult() { 823 assert(!ToFreeze && "freeze() not called with ToFreeze being set"); 824 } 825 826 static ScalarizationResult unsafe() { return {StatusTy::Unsafe}; } 827 static ScalarizationResult safe() { return {StatusTy::Safe}; } 828 static ScalarizationResult safeWithFreeze(Value *ToFreeze) { 829 return {StatusTy::SafeWithFreeze, ToFreeze}; 830 } 831 832 /// Returns true if the index can be scalarize without requiring a freeze. 833 bool isSafe() const { return Status == StatusTy::Safe; } 834 /// Returns true if the index cannot be scalarized. 835 bool isUnsafe() const { return Status == StatusTy::Unsafe; } 836 /// Returns true if the index can be scalarize, but requires inserting a 837 /// freeze. 838 bool isSafeWithFreeze() const { return Status == StatusTy::SafeWithFreeze; } 839 840 /// Reset the state of Unsafe and clear ToFreze if set. 841 void discard() { 842 ToFreeze = nullptr; 843 Status = StatusTy::Unsafe; 844 } 845 846 /// Freeze the ToFreeze and update the use in \p User to use it. 847 void freeze(IRBuilder<> &Builder, Instruction &UserI) { 848 assert(isSafeWithFreeze() && 849 "should only be used when freezing is required"); 850 assert(is_contained(ToFreeze->users(), &UserI) && 851 "UserI must be a user of ToFreeze"); 852 IRBuilder<>::InsertPointGuard Guard(Builder); 853 Builder.SetInsertPoint(cast<Instruction>(&UserI)); 854 Value *Frozen = 855 Builder.CreateFreeze(ToFreeze, ToFreeze->getName() + ".frozen"); 856 for (Use &U : make_early_inc_range((UserI.operands()))) 857 if (U.get() == ToFreeze) 858 U.set(Frozen); 859 860 ToFreeze = nullptr; 861 } 862 }; 863 864 /// Check if it is legal to scalarize a memory access to \p VecTy at index \p 865 /// Idx. \p Idx must access a valid vector element. 866 static ScalarizationResult canScalarizeAccess(FixedVectorType *VecTy, 867 Value *Idx, Instruction *CtxI, 868 AssumptionCache &AC, 869 const DominatorTree &DT) { 870 if (auto *C = dyn_cast<ConstantInt>(Idx)) { 871 if (C->getValue().ult(VecTy->getNumElements())) 872 return ScalarizationResult::safe(); 873 return ScalarizationResult::unsafe(); 874 } 875 876 unsigned IntWidth = Idx->getType()->getScalarSizeInBits(); 877 APInt Zero(IntWidth, 0); 878 APInt MaxElts(IntWidth, VecTy->getNumElements()); 879 ConstantRange ValidIndices(Zero, MaxElts); 880 ConstantRange IdxRange(IntWidth, true); 881 882 if (isGuaranteedNotToBePoison(Idx, &AC)) { 883 if (ValidIndices.contains(computeConstantRange(Idx, /* ForSigned */ false, 884 true, &AC, CtxI, &DT))) 885 return ScalarizationResult::safe(); 886 return ScalarizationResult::unsafe(); 887 } 888 889 // If the index may be poison, check if we can insert a freeze before the 890 // range of the index is restricted. 891 Value *IdxBase; 892 ConstantInt *CI; 893 if (match(Idx, m_And(m_Value(IdxBase), m_ConstantInt(CI)))) { 894 IdxRange = IdxRange.binaryAnd(CI->getValue()); 895 } else if (match(Idx, m_URem(m_Value(IdxBase), m_ConstantInt(CI)))) { 896 IdxRange = IdxRange.urem(CI->getValue()); 897 } 898 899 if (ValidIndices.contains(IdxRange)) 900 return ScalarizationResult::safeWithFreeze(IdxBase); 901 return ScalarizationResult::unsafe(); 902 } 903 904 /// The memory operation on a vector of \p ScalarType had alignment of 905 /// \p VectorAlignment. Compute the maximal, but conservatively correct, 906 /// alignment that will be valid for the memory operation on a single scalar 907 /// element of the same type with index \p Idx. 908 static Align computeAlignmentAfterScalarization(Align VectorAlignment, 909 Type *ScalarType, Value *Idx, 910 const DataLayout &DL) { 911 if (auto *C = dyn_cast<ConstantInt>(Idx)) 912 return commonAlignment(VectorAlignment, 913 C->getZExtValue() * DL.getTypeStoreSize(ScalarType)); 914 return commonAlignment(VectorAlignment, DL.getTypeStoreSize(ScalarType)); 915 } 916 917 // Combine patterns like: 918 // %0 = load <4 x i32>, <4 x i32>* %a 919 // %1 = insertelement <4 x i32> %0, i32 %b, i32 1 920 // store <4 x i32> %1, <4 x i32>* %a 921 // to: 922 // %0 = bitcast <4 x i32>* %a to i32* 923 // %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1 924 // store i32 %b, i32* %1 925 bool VectorCombine::foldSingleElementStore(Instruction &I) { 926 StoreInst *SI = dyn_cast<StoreInst>(&I); 927 if (!SI || !SI->isSimple() || 928 !isa<FixedVectorType>(SI->getValueOperand()->getType())) 929 return false; 930 931 // TODO: Combine more complicated patterns (multiple insert) by referencing 932 // TargetTransformInfo. 933 Instruction *Source; 934 Value *NewElement; 935 Value *Idx; 936 if (!match(SI->getValueOperand(), 937 m_InsertElt(m_Instruction(Source), m_Value(NewElement), 938 m_Value(Idx)))) 939 return false; 940 941 if (auto *Load = dyn_cast<LoadInst>(Source)) { 942 auto VecTy = cast<FixedVectorType>(SI->getValueOperand()->getType()); 943 const DataLayout &DL = I.getModule()->getDataLayout(); 944 Value *SrcAddr = Load->getPointerOperand()->stripPointerCasts(); 945 // Don't optimize for atomic/volatile load or store. Ensure memory is not 946 // modified between, vector type matches store size, and index is inbounds. 947 if (!Load->isSimple() || Load->getParent() != SI->getParent() || 948 !DL.typeSizeEqualsStoreSize(Load->getType()) || 949 SrcAddr != SI->getPointerOperand()->stripPointerCasts()) 950 return false; 951 952 auto ScalarizableIdx = canScalarizeAccess(VecTy, Idx, Load, AC, DT); 953 if (ScalarizableIdx.isUnsafe() || 954 isMemModifiedBetween(Load->getIterator(), SI->getIterator(), 955 MemoryLocation::get(SI), AA)) 956 return false; 957 958 if (ScalarizableIdx.isSafeWithFreeze()) 959 ScalarizableIdx.freeze(Builder, *cast<Instruction>(Idx)); 960 Value *GEP = Builder.CreateInBoundsGEP( 961 SI->getValueOperand()->getType(), SI->getPointerOperand(), 962 {ConstantInt::get(Idx->getType(), 0), Idx}); 963 StoreInst *NSI = Builder.CreateStore(NewElement, GEP); 964 NSI->copyMetadata(*SI); 965 Align ScalarOpAlignment = computeAlignmentAfterScalarization( 966 std::max(SI->getAlign(), Load->getAlign()), NewElement->getType(), Idx, 967 DL); 968 NSI->setAlignment(ScalarOpAlignment); 969 replaceValue(I, *NSI); 970 eraseInstruction(I); 971 return true; 972 } 973 974 return false; 975 } 976 977 /// Try to scalarize vector loads feeding extractelement instructions. 978 bool VectorCombine::scalarizeLoadExtract(Instruction &I) { 979 Value *Ptr; 980 if (!match(&I, m_Load(m_Value(Ptr)))) 981 return false; 982 983 auto *LI = cast<LoadInst>(&I); 984 const DataLayout &DL = I.getModule()->getDataLayout(); 985 if (LI->isVolatile() || !DL.typeSizeEqualsStoreSize(LI->getType())) 986 return false; 987 988 auto *FixedVT = dyn_cast<FixedVectorType>(LI->getType()); 989 if (!FixedVT) 990 return false; 991 992 InstructionCost OriginalCost = 993 TTI.getMemoryOpCost(Instruction::Load, LI->getType(), LI->getAlign(), 994 LI->getPointerAddressSpace()); 995 InstructionCost ScalarizedCost = 0; 996 997 Instruction *LastCheckedInst = LI; 998 unsigned NumInstChecked = 0; 999 // Check if all users of the load are extracts with no memory modifications 1000 // between the load and the extract. Compute the cost of both the original 1001 // code and the scalarized version. 1002 for (User *U : LI->users()) { 1003 auto *UI = dyn_cast<ExtractElementInst>(U); 1004 if (!UI || UI->getParent() != LI->getParent()) 1005 return false; 1006 1007 if (!isGuaranteedNotToBePoison(UI->getOperand(1), &AC, LI, &DT)) 1008 return false; 1009 1010 // Check if any instruction between the load and the extract may modify 1011 // memory. 1012 if (LastCheckedInst->comesBefore(UI)) { 1013 for (Instruction &I : 1014 make_range(std::next(LI->getIterator()), UI->getIterator())) { 1015 // Bail out if we reached the check limit or the instruction may write 1016 // to memory. 1017 if (NumInstChecked == MaxInstrsToScan || I.mayWriteToMemory()) 1018 return false; 1019 NumInstChecked++; 1020 } 1021 LastCheckedInst = UI; 1022 } 1023 1024 auto ScalarIdx = canScalarizeAccess(FixedVT, UI->getOperand(1), &I, AC, DT); 1025 if (!ScalarIdx.isSafe()) { 1026 // TODO: Freeze index if it is safe to do so. 1027 ScalarIdx.discard(); 1028 return false; 1029 } 1030 1031 auto *Index = dyn_cast<ConstantInt>(UI->getOperand(1)); 1032 OriginalCost += 1033 TTI.getVectorInstrCost(Instruction::ExtractElement, LI->getType(), 1034 Index ? Index->getZExtValue() : -1); 1035 ScalarizedCost += 1036 TTI.getMemoryOpCost(Instruction::Load, FixedVT->getElementType(), 1037 Align(1), LI->getPointerAddressSpace()); 1038 ScalarizedCost += TTI.getAddressComputationCost(FixedVT->getElementType()); 1039 } 1040 1041 if (ScalarizedCost >= OriginalCost) 1042 return false; 1043 1044 // Replace extracts with narrow scalar loads. 1045 for (User *U : LI->users()) { 1046 auto *EI = cast<ExtractElementInst>(U); 1047 Builder.SetInsertPoint(EI); 1048 1049 Value *Idx = EI->getOperand(1); 1050 Value *GEP = 1051 Builder.CreateInBoundsGEP(FixedVT, Ptr, {Builder.getInt32(0), Idx}); 1052 auto *NewLoad = cast<LoadInst>(Builder.CreateLoad( 1053 FixedVT->getElementType(), GEP, EI->getName() + ".scalar")); 1054 1055 Align ScalarOpAlignment = computeAlignmentAfterScalarization( 1056 LI->getAlign(), FixedVT->getElementType(), Idx, DL); 1057 NewLoad->setAlignment(ScalarOpAlignment); 1058 1059 replaceValue(*EI, *NewLoad); 1060 } 1061 1062 return true; 1063 } 1064 1065 /// Try to convert "shuffle (binop), (binop)" with a shared binop operand into 1066 /// "binop (shuffle), (shuffle)". 1067 bool VectorCombine::foldShuffleOfBinops(Instruction &I) { 1068 auto *VecTy = dyn_cast<FixedVectorType>(I.getType()); 1069 if (!VecTy) 1070 return false; 1071 1072 BinaryOperator *B0, *B1; 1073 ArrayRef<int> Mask; 1074 if (!match(&I, m_Shuffle(m_OneUse(m_BinOp(B0)), m_OneUse(m_BinOp(B1)), 1075 m_Mask(Mask))) || 1076 B0->getOpcode() != B1->getOpcode() || B0->getType() != VecTy) 1077 return false; 1078 1079 // Try to replace a binop with a shuffle if the shuffle is not costly. 1080 // The new shuffle will choose from a single, common operand, so it may be 1081 // cheaper than the existing two-operand shuffle. 1082 SmallVector<int> UnaryMask = createUnaryMask(Mask, Mask.size()); 1083 Instruction::BinaryOps Opcode = B0->getOpcode(); 1084 InstructionCost BinopCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 1085 InstructionCost ShufCost = TTI.getShuffleCost( 1086 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, UnaryMask); 1087 if (ShufCost > BinopCost) 1088 return false; 1089 1090 // If we have something like "add X, Y" and "add Z, X", swap ops to match. 1091 Value *X = B0->getOperand(0), *Y = B0->getOperand(1); 1092 Value *Z = B1->getOperand(0), *W = B1->getOperand(1); 1093 if (BinaryOperator::isCommutative(Opcode) && X != Z && Y != W) 1094 std::swap(X, Y); 1095 1096 Value *Shuf0, *Shuf1; 1097 if (X == Z) { 1098 // shuf (bo X, Y), (bo X, W) --> bo (shuf X), (shuf Y, W) 1099 Shuf0 = Builder.CreateShuffleVector(X, UnaryMask); 1100 Shuf1 = Builder.CreateShuffleVector(Y, W, Mask); 1101 } else if (Y == W) { 1102 // shuf (bo X, Y), (bo Z, Y) --> bo (shuf X, Z), (shuf Y) 1103 Shuf0 = Builder.CreateShuffleVector(X, Z, Mask); 1104 Shuf1 = Builder.CreateShuffleVector(Y, UnaryMask); 1105 } else { 1106 return false; 1107 } 1108 1109 Value *NewBO = Builder.CreateBinOp(Opcode, Shuf0, Shuf1); 1110 // Intersect flags from the old binops. 1111 if (auto *NewInst = dyn_cast<Instruction>(NewBO)) { 1112 NewInst->copyIRFlags(B0); 1113 NewInst->andIRFlags(B1); 1114 } 1115 replaceValue(I, *NewBO); 1116 return true; 1117 } 1118 1119 /// Given a commutative reduction, the order of the input lanes does not alter 1120 /// the results. We can use this to remove certain shuffles feeding the 1121 /// reduction, removing the need to shuffle at all. 1122 bool VectorCombine::foldShuffleFromReductions(Instruction &I) { 1123 auto *II = dyn_cast<IntrinsicInst>(&I); 1124 if (!II) 1125 return false; 1126 switch (II->getIntrinsicID()) { 1127 case Intrinsic::vector_reduce_add: 1128 case Intrinsic::vector_reduce_mul: 1129 case Intrinsic::vector_reduce_and: 1130 case Intrinsic::vector_reduce_or: 1131 case Intrinsic::vector_reduce_xor: 1132 case Intrinsic::vector_reduce_smin: 1133 case Intrinsic::vector_reduce_smax: 1134 case Intrinsic::vector_reduce_umin: 1135 case Intrinsic::vector_reduce_umax: 1136 break; 1137 default: 1138 return false; 1139 } 1140 1141 // Find all the inputs when looking through operations that do not alter the 1142 // lane order (binops, for example). Currently we look for a single shuffle, 1143 // and can ignore splat values. 1144 std::queue<Value *> Worklist; 1145 SmallPtrSet<Value *, 4> Visited; 1146 ShuffleVectorInst *Shuffle = nullptr; 1147 if (auto *Op = dyn_cast<Instruction>(I.getOperand(0))) 1148 Worklist.push(Op); 1149 1150 while (!Worklist.empty()) { 1151 Value *CV = Worklist.front(); 1152 Worklist.pop(); 1153 if (Visited.contains(CV)) 1154 continue; 1155 1156 // Splats don't change the order, so can be safely ignored. 1157 if (isSplatValue(CV)) 1158 continue; 1159 1160 Visited.insert(CV); 1161 1162 if (auto *CI = dyn_cast<Instruction>(CV)) { 1163 if (CI->isBinaryOp()) { 1164 for (auto *Op : CI->operand_values()) 1165 Worklist.push(Op); 1166 continue; 1167 } else if (auto *SV = dyn_cast<ShuffleVectorInst>(CI)) { 1168 if (Shuffle && Shuffle != SV) 1169 return false; 1170 Shuffle = SV; 1171 continue; 1172 } 1173 } 1174 1175 // Anything else is currently an unknown node. 1176 return false; 1177 } 1178 1179 if (!Shuffle) 1180 return false; 1181 1182 // Check all uses of the binary ops and shuffles are also included in the 1183 // lane-invariant operations (Visited should be the list of lanewise 1184 // instructions, including the shuffle that we found). 1185 for (auto *V : Visited) 1186 for (auto *U : V->users()) 1187 if (!Visited.contains(U) && U != &I) 1188 return false; 1189 1190 FixedVectorType *VecType = 1191 dyn_cast<FixedVectorType>(II->getOperand(0)->getType()); 1192 if (!VecType) 1193 return false; 1194 FixedVectorType *ShuffleInputType = 1195 dyn_cast<FixedVectorType>(Shuffle->getOperand(0)->getType()); 1196 if (!ShuffleInputType) 1197 return false; 1198 int NumInputElts = ShuffleInputType->getNumElements(); 1199 1200 // Find the mask from sorting the lanes into order. This is most likely to 1201 // become a identity or concat mask. Undef elements are pushed to the end. 1202 SmallVector<int> ConcatMask; 1203 Shuffle->getShuffleMask(ConcatMask); 1204 sort(ConcatMask, [](int X, int Y) { return (unsigned)X < (unsigned)Y; }); 1205 bool UsesSecondVec = 1206 any_of(ConcatMask, [&](int M) { return M >= NumInputElts; }); 1207 InstructionCost OldCost = TTI.getShuffleCost( 1208 UsesSecondVec ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc, VecType, 1209 Shuffle->getShuffleMask()); 1210 InstructionCost NewCost = TTI.getShuffleCost( 1211 UsesSecondVec ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc, VecType, 1212 ConcatMask); 1213 1214 LLVM_DEBUG(dbgs() << "Found a reduction feeding from a shuffle: " << *Shuffle 1215 << "\n"); 1216 LLVM_DEBUG(dbgs() << " OldCost: " << OldCost << " vs NewCost: " << NewCost 1217 << "\n"); 1218 if (NewCost < OldCost) { 1219 Builder.SetInsertPoint(Shuffle); 1220 Value *NewShuffle = Builder.CreateShuffleVector( 1221 Shuffle->getOperand(0), Shuffle->getOperand(1), ConcatMask); 1222 LLVM_DEBUG(dbgs() << "Created new shuffle: " << *NewShuffle << "\n"); 1223 replaceValue(*Shuffle, *NewShuffle); 1224 } 1225 1226 return false; 1227 } 1228 1229 /// This method looks for groups of shuffles acting on binops, of the form: 1230 /// %x = shuffle ... 1231 /// %y = shuffle ... 1232 /// %a = binop %x, %y 1233 /// %b = binop %x, %y 1234 /// shuffle %a, %b, selectmask 1235 /// We may, especially if the shuffle is wider than legal, be able to convert 1236 /// the shuffle to a form where only parts of a and b need to be computed. On 1237 /// architectures with no obvious "select" shuffle, this can reduce the total 1238 /// number of operations if the target reports them as cheaper. 1239 bool VectorCombine::foldSelectShuffle(Instruction &I) { 1240 auto *SVI = dyn_cast<ShuffleVectorInst>(&I); 1241 auto *VT = dyn_cast<FixedVectorType>(I.getType()); 1242 if (!SVI || !VT) 1243 return false; 1244 auto *Op0 = dyn_cast<Instruction>(SVI->getOperand(0)); 1245 auto *Op1 = dyn_cast<Instruction>(SVI->getOperand(1)); 1246 if (!Op0 || !Op1 || Op0 == Op1 || !Op0->isBinaryOp() || !Op1->isBinaryOp() || 1247 VT != Op0->getType()) 1248 return false; 1249 auto *SVI0A = dyn_cast<ShuffleVectorInst>(Op0->getOperand(0)); 1250 auto *SVI0B = dyn_cast<ShuffleVectorInst>(Op0->getOperand(1)); 1251 auto *SVI1A = dyn_cast<ShuffleVectorInst>(Op1->getOperand(0)); 1252 auto *SVI1B = dyn_cast<ShuffleVectorInst>(Op1->getOperand(1)); 1253 auto checkSVNonOpUses = [&](Instruction *I) { 1254 if (!I || I->getOperand(0)->getType() != VT) 1255 return true; 1256 return any_of(I->users(), [&](User *U) { return U != Op0 && U != Op1; }); 1257 }; 1258 if (checkSVNonOpUses(SVI0A) || checkSVNonOpUses(SVI0B) || 1259 checkSVNonOpUses(SVI1A) || checkSVNonOpUses(SVI1B)) 1260 return false; 1261 1262 // Collect all the uses that are shuffles that we can transform together. We 1263 // may not have a single shuffle, but a group that can all be transformed 1264 // together profitably. 1265 SmallVector<ShuffleVectorInst *> Shuffles; 1266 auto collectShuffles = [&](Instruction *I) { 1267 for (auto *U : I->users()) { 1268 auto *SV = dyn_cast<ShuffleVectorInst>(U); 1269 if (!SV || SV->getType() != VT) 1270 return false; 1271 if (find(Shuffles, SV) == Shuffles.end()) 1272 Shuffles.push_back(SV); 1273 } 1274 return true; 1275 }; 1276 if (!collectShuffles(Op0) || !collectShuffles(Op1)) 1277 return false; 1278 1279 // For each of the output shuffles, we try to sort all the first vector 1280 // elements to the beginning, followed by the second array elements at the 1281 // end. If the binops are legalized to smaller vectors, this may reduce total 1282 // number of binops. We compute the ReconstructMask mask needed to convert 1283 // back to the original lane order. 1284 SmallVector<int> V1, V2; 1285 SmallVector<SmallVector<int>> ReconstructMasks; 1286 int MaxV1Elt = 0, MaxV2Elt = 0; 1287 unsigned NumElts = VT->getNumElements(); 1288 for (ShuffleVectorInst *SVN : Shuffles) { 1289 SmallVector<int> Mask; 1290 SVN->getShuffleMask(Mask); 1291 1292 // Check the operands are the same as the original, or reversed (in which 1293 // case we need to commute the mask). 1294 Value *SVOp0 = SVN->getOperand(0); 1295 Value *SVOp1 = SVN->getOperand(1); 1296 if (SVOp0 == Op1 && SVOp1 == Op0) { 1297 std::swap(SVOp0, SVOp1); 1298 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); 1299 } 1300 if (SVOp0 != Op0 || SVOp1 != Op1) 1301 return false; 1302 1303 // Calculate the reconstruction mask for this shuffle, as the mask needed to 1304 // take the packed values from Op0/Op1 and reconstructing to the original 1305 // order. 1306 SmallVector<int> ReconstructMask; 1307 for (unsigned I = 0; I < Mask.size(); I++) { 1308 if (Mask[I] < 0) { 1309 ReconstructMask.push_back(-1); 1310 } else if (Mask[I] < static_cast<int>(NumElts)) { 1311 MaxV1Elt = std::max(MaxV1Elt, Mask[I]); 1312 auto It = find(V1, Mask[I]); 1313 if (It != V1.end()) 1314 ReconstructMask.push_back(It - V1.begin()); 1315 else { 1316 ReconstructMask.push_back(V1.size()); 1317 V1.push_back(Mask[I]); 1318 } 1319 } else { 1320 MaxV2Elt = std::max<int>(MaxV2Elt, Mask[I] - NumElts); 1321 auto It = find(V2, Mask[I] - NumElts); 1322 if (It != V2.end()) 1323 ReconstructMask.push_back(NumElts + It - V2.begin()); 1324 else { 1325 ReconstructMask.push_back(NumElts + V2.size()); 1326 V2.push_back(Mask[I] - NumElts); 1327 } 1328 } 1329 } 1330 1331 ReconstructMasks.push_back(ReconstructMask); 1332 } 1333 1334 // If the Maximum element used from V1 and V2 are not larger than the new 1335 // vectors, the vectors are already packes and performing the optimization 1336 // again will likely not help any further. This also prevents us from getting 1337 // stuck in a cycle in case the costs do not also rule it out. 1338 if (V1.empty() || V2.empty() || 1339 (MaxV1Elt == static_cast<int>(V1.size()) - 1 && 1340 MaxV2Elt == static_cast<int>(V2.size()) - 1)) 1341 return false; 1342 1343 // Calculate the masks needed for the new input shuffles, which get padded 1344 // with undef 1345 SmallVector<int> V1A, V1B, V2A, V2B; 1346 for (unsigned I = 0; I < V1.size(); I++) { 1347 V1A.push_back(SVI0A->getMaskValue(V1[I])); 1348 V1B.push_back(SVI0B->getMaskValue(V1[I])); 1349 } 1350 for (unsigned I = 0; I < V2.size(); I++) { 1351 V2A.push_back(SVI1A->getMaskValue(V2[I])); 1352 V2B.push_back(SVI1B->getMaskValue(V2[I])); 1353 } 1354 while (V1A.size() < NumElts) { 1355 V1A.push_back(UndefMaskElem); 1356 V1B.push_back(UndefMaskElem); 1357 } 1358 while (V2A.size() < NumElts) { 1359 V2A.push_back(UndefMaskElem); 1360 V2B.push_back(UndefMaskElem); 1361 } 1362 1363 auto AddShuffleCost = [&](InstructionCost C, ShuffleVectorInst *SV) { 1364 return C + 1365 TTI.getShuffleCost(TTI::SK_PermuteTwoSrc, VT, SV->getShuffleMask()); 1366 }; 1367 auto AddShuffleMaskCost = [&](InstructionCost C, ArrayRef<int> Mask) { 1368 return C + TTI.getShuffleCost(TTI::SK_PermuteTwoSrc, VT, Mask); 1369 }; 1370 1371 // Get the costs of the shuffles + binops before and after with the new 1372 // shuffle masks. 1373 InstructionCost CostBefore = 1374 TTI.getArithmeticInstrCost(Op0->getOpcode(), VT) + 1375 TTI.getArithmeticInstrCost(Op1->getOpcode(), VT); 1376 CostBefore += std::accumulate(Shuffles.begin(), Shuffles.end(), 1377 InstructionCost(0), AddShuffleCost); 1378 // This set helps us only cost each unique shuffle once. 1379 SmallPtrSet<ShuffleVectorInst *, 4> InputShuffles( 1380 {SVI0A, SVI0B, SVI1A, SVI1B}); 1381 CostBefore += std::accumulate(InputShuffles.begin(), InputShuffles.end(), 1382 InstructionCost(0), AddShuffleCost); 1383 1384 // The new binops will be unused for lanes past the used shuffle lengths. 1385 // These types attempt to get the correct cost for that from the target. 1386 FixedVectorType *Op0SmallVT = 1387 FixedVectorType::get(VT->getScalarType(), V1.size()); 1388 FixedVectorType *Op1SmallVT = 1389 FixedVectorType::get(VT->getScalarType(), V2.size()); 1390 InstructionCost CostAfter = 1391 TTI.getArithmeticInstrCost(Op0->getOpcode(), Op0SmallVT) + 1392 TTI.getArithmeticInstrCost(Op1->getOpcode(), Op1SmallVT); 1393 CostAfter += std::accumulate(ReconstructMasks.begin(), ReconstructMasks.end(), 1394 InstructionCost(0), AddShuffleMaskCost); 1395 std::set<SmallVector<int>> OutputShuffleMasks({V1A, V1B, V2A, V2B}); 1396 CostAfter += 1397 std::accumulate(OutputShuffleMasks.begin(), OutputShuffleMasks.end(), 1398 InstructionCost(0), AddShuffleMaskCost); 1399 1400 if (CostBefore <= CostAfter) 1401 return false; 1402 1403 // The cost model has passed, create the new instructions. 1404 Builder.SetInsertPoint(SVI0A); 1405 Value *NSV0A = Builder.CreateShuffleVector(SVI0A->getOperand(0), 1406 SVI0A->getOperand(1), V1A); 1407 Builder.SetInsertPoint(SVI0B); 1408 Value *NSV0B = Builder.CreateShuffleVector(SVI0B->getOperand(0), 1409 SVI0B->getOperand(1), V1B); 1410 Builder.SetInsertPoint(SVI1A); 1411 Value *NSV1A = Builder.CreateShuffleVector(SVI1A->getOperand(0), 1412 SVI1A->getOperand(1), V2A); 1413 Builder.SetInsertPoint(SVI1B); 1414 Value *NSV1B = Builder.CreateShuffleVector(SVI1B->getOperand(0), 1415 SVI1B->getOperand(1), V2B); 1416 Builder.SetInsertPoint(Op0); 1417 Value *NOp0 = Builder.CreateBinOp((Instruction::BinaryOps)Op0->getOpcode(), 1418 NSV0A, NSV0B); 1419 if (auto *I = dyn_cast<Instruction>(NOp0)) 1420 I->copyIRFlags(Op0, true); 1421 Builder.SetInsertPoint(Op1); 1422 Value *NOp1 = Builder.CreateBinOp((Instruction::BinaryOps)Op1->getOpcode(), 1423 NSV1A, NSV1B); 1424 if (auto *I = dyn_cast<Instruction>(NOp1)) 1425 I->copyIRFlags(Op1, true); 1426 1427 for (int S = 0, E = ReconstructMasks.size(); S != E; S++) { 1428 Builder.SetInsertPoint(Shuffles[S]); 1429 Value *NSV = Builder.CreateShuffleVector(NOp0, NOp1, ReconstructMasks[S]); 1430 replaceValue(*Shuffles[S], *NSV); 1431 } 1432 1433 Worklist.pushValue(NSV0A); 1434 Worklist.pushValue(NSV0B); 1435 Worklist.pushValue(NSV1A); 1436 Worklist.pushValue(NSV1B); 1437 for (auto *S : Shuffles) 1438 Worklist.add(S); 1439 return true; 1440 } 1441 1442 /// This is the entry point for all transforms. Pass manager differences are 1443 /// handled in the callers of this function. 1444 bool VectorCombine::run() { 1445 if (DisableVectorCombine) 1446 return false; 1447 1448 // Don't attempt vectorization if the target does not support vectors. 1449 if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true))) 1450 return false; 1451 1452 bool MadeChange = false; 1453 auto FoldInst = [this, &MadeChange](Instruction &I) { 1454 Builder.SetInsertPoint(&I); 1455 if (!ScalarizationOnly) { 1456 MadeChange |= vectorizeLoadInsert(I); 1457 MadeChange |= foldExtractExtract(I); 1458 MadeChange |= foldBitcastShuf(I); 1459 MadeChange |= foldExtractedCmps(I); 1460 MadeChange |= foldShuffleOfBinops(I); 1461 MadeChange |= foldShuffleFromReductions(I); 1462 MadeChange |= foldSelectShuffle(I); 1463 } 1464 MadeChange |= scalarizeBinopOrCmp(I); 1465 MadeChange |= scalarizeLoadExtract(I); 1466 MadeChange |= foldSingleElementStore(I); 1467 }; 1468 for (BasicBlock &BB : F) { 1469 // Ignore unreachable basic blocks. 1470 if (!DT.isReachableFromEntry(&BB)) 1471 continue; 1472 // Use early increment range so that we can erase instructions in loop. 1473 for (Instruction &I : make_early_inc_range(BB)) { 1474 if (I.isDebugOrPseudoInst()) 1475 continue; 1476 FoldInst(I); 1477 } 1478 } 1479 1480 while (!Worklist.isEmpty()) { 1481 Instruction *I = Worklist.removeOne(); 1482 if (!I) 1483 continue; 1484 1485 if (isInstructionTriviallyDead(I)) { 1486 eraseInstruction(*I); 1487 continue; 1488 } 1489 1490 FoldInst(*I); 1491 } 1492 1493 return MadeChange; 1494 } 1495 1496 // Pass manager boilerplate below here. 1497 1498 namespace { 1499 class VectorCombineLegacyPass : public FunctionPass { 1500 public: 1501 static char ID; 1502 VectorCombineLegacyPass() : FunctionPass(ID) { 1503 initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry()); 1504 } 1505 1506 void getAnalysisUsage(AnalysisUsage &AU) const override { 1507 AU.addRequired<AssumptionCacheTracker>(); 1508 AU.addRequired<DominatorTreeWrapperPass>(); 1509 AU.addRequired<TargetTransformInfoWrapperPass>(); 1510 AU.addRequired<AAResultsWrapperPass>(); 1511 AU.setPreservesCFG(); 1512 AU.addPreserved<DominatorTreeWrapperPass>(); 1513 AU.addPreserved<GlobalsAAWrapperPass>(); 1514 AU.addPreserved<AAResultsWrapperPass>(); 1515 AU.addPreserved<BasicAAWrapperPass>(); 1516 FunctionPass::getAnalysisUsage(AU); 1517 } 1518 1519 bool runOnFunction(Function &F) override { 1520 if (skipFunction(F)) 1521 return false; 1522 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1523 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1524 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1525 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 1526 VectorCombine Combiner(F, TTI, DT, AA, AC, false); 1527 return Combiner.run(); 1528 } 1529 }; 1530 } // namespace 1531 1532 char VectorCombineLegacyPass::ID = 0; 1533 INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine", 1534 "Optimize scalar/vector ops", false, 1535 false) 1536 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1537 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1538 INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine", 1539 "Optimize scalar/vector ops", false, false) 1540 Pass *llvm::createVectorCombinePass() { 1541 return new VectorCombineLegacyPass(); 1542 } 1543 1544 PreservedAnalyses VectorCombinePass::run(Function &F, 1545 FunctionAnalysisManager &FAM) { 1546 auto &AC = FAM.getResult<AssumptionAnalysis>(F); 1547 TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); 1548 DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); 1549 AAResults &AA = FAM.getResult<AAManager>(F); 1550 VectorCombine Combiner(F, TTI, DT, AA, AC, ScalarizationOnly); 1551 if (!Combiner.run()) 1552 return PreservedAnalyses::all(); 1553 PreservedAnalyses PA; 1554 PA.preserveSet<CFGAnalyses>(); 1555 return PA; 1556 } 1557