1 //===------- VectorCombine.cpp - Optimize partial vector operations -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass optimizes scalar/vector interactions using target cost models. The 10 // transforms implemented here may not fit in traditional loop-based or SLP 11 // vectorization passes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Vectorize/VectorCombine.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/BasicAliasAnalysis.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/Analysis/VectorUtils.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/InitializePasses.h" 28 #include "llvm/Pass.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Transforms/Utils/Local.h" 31 #include "llvm/Transforms/Vectorize.h" 32 33 using namespace llvm; 34 using namespace llvm::PatternMatch; 35 36 #define DEBUG_TYPE "vector-combine" 37 STATISTIC(NumVecLoad, "Number of vector loads formed"); 38 STATISTIC(NumVecCmp, "Number of vector compares formed"); 39 STATISTIC(NumVecBO, "Number of vector binops formed"); 40 STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed"); 41 STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast"); 42 STATISTIC(NumScalarBO, "Number of scalar binops formed"); 43 STATISTIC(NumScalarCmp, "Number of scalar compares formed"); 44 45 static cl::opt<bool> DisableVectorCombine( 46 "disable-vector-combine", cl::init(false), cl::Hidden, 47 cl::desc("Disable all vector combine transforms")); 48 49 static cl::opt<bool> DisableBinopExtractShuffle( 50 "disable-binop-extract-shuffle", cl::init(false), cl::Hidden, 51 cl::desc("Disable binop extract to shuffle transforms")); 52 53 static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max(); 54 55 namespace { 56 class VectorCombine { 57 public: 58 VectorCombine(Function &F, const TargetTransformInfo &TTI, 59 const DominatorTree &DT) 60 : F(F), Builder(F.getContext()), TTI(TTI), DT(DT) {} 61 62 bool run(); 63 64 private: 65 Function &F; 66 IRBuilder<> Builder; 67 const TargetTransformInfo &TTI; 68 const DominatorTree &DT; 69 70 bool vectorizeLoadInsert(Instruction &I); 71 ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0, 72 ExtractElementInst *Ext1, 73 unsigned PreferredExtractIndex) const; 74 bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 75 unsigned Opcode, 76 ExtractElementInst *&ConvertToShuffle, 77 unsigned PreferredExtractIndex); 78 void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 79 Instruction &I); 80 void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 81 Instruction &I); 82 bool foldExtractExtract(Instruction &I); 83 bool foldBitcastShuf(Instruction &I); 84 bool scalarizeBinopOrCmp(Instruction &I); 85 bool foldExtractedCmps(Instruction &I); 86 }; 87 } // namespace 88 89 static void replaceValue(Value &Old, Value &New) { 90 Old.replaceAllUsesWith(&New); 91 New.takeName(&Old); 92 } 93 94 bool VectorCombine::vectorizeLoadInsert(Instruction &I) { 95 // Match insert of scalar load. 96 Value *Scalar; 97 if (!match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt()))) 98 return false; 99 auto *Load = dyn_cast<LoadInst>(Scalar); 100 Type *ScalarTy = Scalar->getType(); 101 if (!Load || !Load->isSimple()) 102 return false; 103 104 // TODO: Extend this to match GEP with constant offsets. 105 Value *PtrOp = Load->getPointerOperand()->stripPointerCasts(); 106 assert(isa<PointerType>(PtrOp->getType()) && "Expected a pointer type"); 107 108 unsigned VectorSize = TTI.getMinVectorRegisterBitWidth(); 109 uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits(); 110 if (!ScalarSize || !VectorSize || VectorSize % ScalarSize != 0) 111 return false; 112 113 // Check safety of replacing the scalar load with a larger vector load. 114 unsigned VecNumElts = VectorSize / ScalarSize; 115 auto *VectorTy = VectorType::get(ScalarTy, VecNumElts, false); 116 // TODO: Allow insert/extract subvector if the type does not match. 117 if (VectorTy != I.getType()) 118 return false; 119 Align Alignment = Load->getAlign(); 120 const DataLayout &DL = I.getModule()->getDataLayout(); 121 if (!isSafeToLoadUnconditionally(PtrOp, VectorTy, Alignment, DL, Load, &DT)) 122 return false; 123 124 unsigned AS = Load->getPointerAddressSpace(); 125 126 // Original pattern: insertelt undef, load [free casts of] ScalarPtr, 0 127 int OldCost = TTI.getMemoryOpCost(Instruction::Load, ScalarTy, Alignment, AS); 128 APInt DemandedElts = APInt::getOneBitSet(VecNumElts, 0); 129 OldCost += TTI.getScalarizationOverhead(VectorTy, DemandedElts, true, false); 130 131 // New pattern: load VecPtr 132 int NewCost = TTI.getMemoryOpCost(Instruction::Load, VectorTy, Alignment, AS); 133 134 // We can aggressively convert to the vector form because the backend can 135 // invert this transform if it does not result in a performance win. 136 if (OldCost < NewCost) 137 return false; 138 139 // It is safe and potentially profitable to load a vector directly: 140 // inselt undef, load Scalar, 0 --> load VecPtr 141 IRBuilder<> Builder(Load); 142 Value *CastedPtr = Builder.CreateBitCast(PtrOp, VectorTy->getPointerTo(AS)); 143 LoadInst *VecLd = Builder.CreateAlignedLoad(VectorTy, CastedPtr, Alignment); 144 replaceValue(I, *VecLd); 145 ++NumVecLoad; 146 return true; 147 } 148 149 /// Determine which, if any, of the inputs should be replaced by a shuffle 150 /// followed by extract from a different index. 151 ExtractElementInst *VectorCombine::getShuffleExtract( 152 ExtractElementInst *Ext0, ExtractElementInst *Ext1, 153 unsigned PreferredExtractIndex = InvalidIndex) const { 154 assert(isa<ConstantInt>(Ext0->getIndexOperand()) && 155 isa<ConstantInt>(Ext1->getIndexOperand()) && 156 "Expected constant extract indexes"); 157 158 unsigned Index0 = cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue(); 159 unsigned Index1 = cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue(); 160 161 // If the extract indexes are identical, no shuffle is needed. 162 if (Index0 == Index1) 163 return nullptr; 164 165 Type *VecTy = Ext0->getVectorOperand()->getType(); 166 assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types"); 167 int Cost0 = TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 168 int Cost1 = TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 169 170 // We are extracting from 2 different indexes, so one operand must be shuffled 171 // before performing a vector operation and/or extract. The more expensive 172 // extract will be replaced by a shuffle. 173 if (Cost0 > Cost1) 174 return Ext0; 175 if (Cost1 > Cost0) 176 return Ext1; 177 178 // If the costs are equal and there is a preferred extract index, shuffle the 179 // opposite operand. 180 if (PreferredExtractIndex == Index0) 181 return Ext1; 182 if (PreferredExtractIndex == Index1) 183 return Ext0; 184 185 // Otherwise, replace the extract with the higher index. 186 return Index0 > Index1 ? Ext0 : Ext1; 187 } 188 189 /// Compare the relative costs of 2 extracts followed by scalar operation vs. 190 /// vector operation(s) followed by extract. Return true if the existing 191 /// instructions are cheaper than a vector alternative. Otherwise, return false 192 /// and if one of the extracts should be transformed to a shufflevector, set 193 /// \p ConvertToShuffle to that extract instruction. 194 bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0, 195 ExtractElementInst *Ext1, 196 unsigned Opcode, 197 ExtractElementInst *&ConvertToShuffle, 198 unsigned PreferredExtractIndex) { 199 assert(isa<ConstantInt>(Ext0->getOperand(1)) && 200 isa<ConstantInt>(Ext1->getOperand(1)) && 201 "Expected constant extract indexes"); 202 Type *ScalarTy = Ext0->getType(); 203 auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType()); 204 int ScalarOpCost, VectorOpCost; 205 206 // Get cost estimates for scalar and vector versions of the operation. 207 bool IsBinOp = Instruction::isBinaryOp(Opcode); 208 if (IsBinOp) { 209 ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 210 VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 211 } else { 212 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 213 "Expected a compare"); 214 ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy, 215 CmpInst::makeCmpResultType(ScalarTy)); 216 VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy, 217 CmpInst::makeCmpResultType(VecTy)); 218 } 219 220 // Get cost estimates for the extract elements. These costs will factor into 221 // both sequences. 222 unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue(); 223 unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue(); 224 225 int Extract0Cost = 226 TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index); 227 int Extract1Cost = 228 TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index); 229 230 // A more expensive extract will always be replaced by a splat shuffle. 231 // For example, if Ext0 is more expensive: 232 // opcode (extelt V0, Ext0), (ext V1, Ext1) --> 233 // extelt (opcode (splat V0, Ext0), V1), Ext1 234 // TODO: Evaluate whether that always results in lowest cost. Alternatively, 235 // check the cost of creating a broadcast shuffle and shuffling both 236 // operands to element 0. 237 int CheapExtractCost = std::min(Extract0Cost, Extract1Cost); 238 239 // Extra uses of the extracts mean that we include those costs in the 240 // vector total because those instructions will not be eliminated. 241 int OldCost, NewCost; 242 if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) { 243 // Handle a special case. If the 2 extracts are identical, adjust the 244 // formulas to account for that. The extra use charge allows for either the 245 // CSE'd pattern or an unoptimized form with identical values: 246 // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C 247 bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2) 248 : !Ext0->hasOneUse() || !Ext1->hasOneUse(); 249 OldCost = CheapExtractCost + ScalarOpCost; 250 NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost; 251 } else { 252 // Handle the general case. Each extract is actually a different value: 253 // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C 254 OldCost = Extract0Cost + Extract1Cost + ScalarOpCost; 255 NewCost = VectorOpCost + CheapExtractCost + 256 !Ext0->hasOneUse() * Extract0Cost + 257 !Ext1->hasOneUse() * Extract1Cost; 258 } 259 260 ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex); 261 if (ConvertToShuffle) { 262 if (IsBinOp && DisableBinopExtractShuffle) 263 return true; 264 265 // If we are extracting from 2 different indexes, then one operand must be 266 // shuffled before performing the vector operation. The shuffle mask is 267 // undefined except for 1 lane that is being translated to the remaining 268 // extraction lane. Therefore, it is a splat shuffle. Ex: 269 // ShufMask = { undef, undef, 0, undef } 270 // TODO: The cost model has an option for a "broadcast" shuffle 271 // (splat-from-element-0), but no option for a more general splat. 272 NewCost += 273 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 274 } 275 276 // Aggressively form a vector op if the cost is equal because the transform 277 // may enable further optimization. 278 // Codegen can reverse this transform (scalarize) if it was not profitable. 279 return OldCost < NewCost; 280 } 281 282 /// Create a shuffle that translates (shifts) 1 element from the input vector 283 /// to a new element location. 284 static Value *createShiftShuffle(Value *Vec, unsigned OldIndex, 285 unsigned NewIndex, IRBuilder<> &Builder) { 286 // The shuffle mask is undefined except for 1 lane that is being translated 287 // to the new element index. Example for OldIndex == 2 and NewIndex == 0: 288 // ShufMask = { 2, undef, undef, undef } 289 auto *VecTy = cast<FixedVectorType>(Vec->getType()); 290 SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem); 291 ShufMask[NewIndex] = OldIndex; 292 Value *Undef = UndefValue::get(VecTy); 293 return Builder.CreateShuffleVector(Vec, Undef, ShufMask, "shift"); 294 } 295 296 /// Given an extract element instruction with constant index operand, shuffle 297 /// the source vector (shift the scalar element) to a NewIndex for extraction. 298 /// Return null if the input can be constant folded, so that we are not creating 299 /// unnecessary instructions. 300 static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt, 301 unsigned NewIndex, 302 IRBuilder<> &Builder) { 303 // If the extract can be constant-folded, this code is unsimplified. Defer 304 // to other passes to handle that. 305 Value *X = ExtElt->getVectorOperand(); 306 Value *C = ExtElt->getIndexOperand(); 307 assert(isa<ConstantInt>(C) && "Expected a constant index operand"); 308 if (isa<Constant>(X)) 309 return nullptr; 310 311 Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(), 312 NewIndex, Builder); 313 return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex)); 314 } 315 316 /// Try to reduce extract element costs by converting scalar compares to vector 317 /// compares followed by extract. 318 /// cmp (ext0 V0, C), (ext1 V1, C) 319 void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0, 320 ExtractElementInst *Ext1, Instruction &I) { 321 assert(isa<CmpInst>(&I) && "Expected a compare"); 322 assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 323 cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 324 "Expected matching constant extract indexes"); 325 326 // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C 327 ++NumVecCmp; 328 CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate(); 329 Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 330 Value *VecCmp = Builder.CreateCmp(Pred, V0, V1); 331 Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand()); 332 replaceValue(I, *NewExt); 333 } 334 335 /// Try to reduce extract element costs by converting scalar binops to vector 336 /// binops followed by extract. 337 /// bo (ext0 V0, C), (ext1 V1, C) 338 void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0, 339 ExtractElementInst *Ext1, Instruction &I) { 340 assert(isa<BinaryOperator>(&I) && "Expected a binary operator"); 341 assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 342 cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 343 "Expected matching constant extract indexes"); 344 345 // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C 346 ++NumVecBO; 347 Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 348 Value *VecBO = 349 Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1); 350 351 // All IR flags are safe to back-propagate because any potential poison 352 // created in unused vector elements is discarded by the extract. 353 if (auto *VecBOInst = dyn_cast<Instruction>(VecBO)) 354 VecBOInst->copyIRFlags(&I); 355 356 Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand()); 357 replaceValue(I, *NewExt); 358 } 359 360 /// Match an instruction with extracted vector operands. 361 bool VectorCombine::foldExtractExtract(Instruction &I) { 362 // It is not safe to transform things like div, urem, etc. because we may 363 // create undefined behavior when executing those on unknown vector elements. 364 if (!isSafeToSpeculativelyExecute(&I)) 365 return false; 366 367 Instruction *I0, *I1; 368 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 369 if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) && 370 !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1)))) 371 return false; 372 373 Value *V0, *V1; 374 uint64_t C0, C1; 375 if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) || 376 !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) || 377 V0->getType() != V1->getType()) 378 return false; 379 380 // If the scalar value 'I' is going to be re-inserted into a vector, then try 381 // to create an extract to that same element. The extract/insert can be 382 // reduced to a "select shuffle". 383 // TODO: If we add a larger pattern match that starts from an insert, this 384 // probably becomes unnecessary. 385 auto *Ext0 = cast<ExtractElementInst>(I0); 386 auto *Ext1 = cast<ExtractElementInst>(I1); 387 uint64_t InsertIndex = InvalidIndex; 388 if (I.hasOneUse()) 389 match(I.user_back(), 390 m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex))); 391 392 ExtractElementInst *ExtractToChange; 393 if (isExtractExtractCheap(Ext0, Ext1, I.getOpcode(), ExtractToChange, 394 InsertIndex)) 395 return false; 396 397 if (ExtractToChange) { 398 unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0; 399 ExtractElementInst *NewExtract = 400 translateExtract(ExtractToChange, CheapExtractIdx, Builder); 401 if (!NewExtract) 402 return false; 403 if (ExtractToChange == Ext0) 404 Ext0 = NewExtract; 405 else 406 Ext1 = NewExtract; 407 } 408 409 if (Pred != CmpInst::BAD_ICMP_PREDICATE) 410 foldExtExtCmp(Ext0, Ext1, I); 411 else 412 foldExtExtBinop(Ext0, Ext1, I); 413 414 return true; 415 } 416 417 /// If this is a bitcast of a shuffle, try to bitcast the source vector to the 418 /// destination type followed by shuffle. This can enable further transforms by 419 /// moving bitcasts or shuffles together. 420 bool VectorCombine::foldBitcastShuf(Instruction &I) { 421 Value *V; 422 ArrayRef<int> Mask; 423 if (!match(&I, m_BitCast( 424 m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask)))))) 425 return false; 426 427 // Disallow non-vector casts and length-changing shuffles. 428 // TODO: We could allow any shuffle. 429 auto *DestTy = dyn_cast<VectorType>(I.getType()); 430 auto *SrcTy = cast<VectorType>(V->getType()); 431 if (!DestTy || I.getOperand(0)->getType() != SrcTy) 432 return false; 433 434 // The new shuffle must not cost more than the old shuffle. The bitcast is 435 // moved ahead of the shuffle, so assume that it has the same cost as before. 436 if (TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, DestTy) > 437 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy)) 438 return false; 439 440 unsigned DestNumElts = DestTy->getNumElements(); 441 unsigned SrcNumElts = SrcTy->getNumElements(); 442 SmallVector<int, 16> NewMask; 443 if (SrcNumElts <= DestNumElts) { 444 // The bitcast is from wide to narrow/equal elements. The shuffle mask can 445 // always be expanded to the equivalent form choosing narrower elements. 446 assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask"); 447 unsigned ScaleFactor = DestNumElts / SrcNumElts; 448 narrowShuffleMaskElts(ScaleFactor, Mask, NewMask); 449 } else { 450 // The bitcast is from narrow elements to wide elements. The shuffle mask 451 // must choose consecutive elements to allow casting first. 452 assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask"); 453 unsigned ScaleFactor = SrcNumElts / DestNumElts; 454 if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask)) 455 return false; 456 } 457 // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC' 458 ++NumShufOfBitcast; 459 Value *CastV = Builder.CreateBitCast(V, DestTy); 460 Value *Shuf = 461 Builder.CreateShuffleVector(CastV, UndefValue::get(DestTy), NewMask); 462 replaceValue(I, *Shuf); 463 return true; 464 } 465 466 /// Match a vector binop or compare instruction with at least one inserted 467 /// scalar operand and convert to scalar binop/cmp followed by insertelement. 468 bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) { 469 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 470 Value *Ins0, *Ins1; 471 if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) && 472 !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1)))) 473 return false; 474 475 // Do not convert the vector condition of a vector select into a scalar 476 // condition. That may cause problems for codegen because of differences in 477 // boolean formats and register-file transfers. 478 // TODO: Can we account for that in the cost model? 479 bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE; 480 if (IsCmp) 481 for (User *U : I.users()) 482 if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value()))) 483 return false; 484 485 // Match against one or both scalar values being inserted into constant 486 // vectors: 487 // vec_op VecC0, (inselt VecC1, V1, Index) 488 // vec_op (inselt VecC0, V0, Index), VecC1 489 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) 490 // TODO: Deal with mismatched index constants and variable indexes? 491 Constant *VecC0 = nullptr, *VecC1 = nullptr; 492 Value *V0 = nullptr, *V1 = nullptr; 493 uint64_t Index0 = 0, Index1 = 0; 494 if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0), 495 m_ConstantInt(Index0))) && 496 !match(Ins0, m_Constant(VecC0))) 497 return false; 498 if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1), 499 m_ConstantInt(Index1))) && 500 !match(Ins1, m_Constant(VecC1))) 501 return false; 502 503 bool IsConst0 = !V0; 504 bool IsConst1 = !V1; 505 if (IsConst0 && IsConst1) 506 return false; 507 if (!IsConst0 && !IsConst1 && Index0 != Index1) 508 return false; 509 510 // Bail for single insertion if it is a load. 511 // TODO: Handle this once getVectorInstrCost can cost for load/stores. 512 auto *I0 = dyn_cast_or_null<Instruction>(V0); 513 auto *I1 = dyn_cast_or_null<Instruction>(V1); 514 if ((IsConst0 && I1 && I1->mayReadFromMemory()) || 515 (IsConst1 && I0 && I0->mayReadFromMemory())) 516 return false; 517 518 uint64_t Index = IsConst0 ? Index1 : Index0; 519 Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType(); 520 Type *VecTy = I.getType(); 521 assert(VecTy->isVectorTy() && 522 (IsConst0 || IsConst1 || V0->getType() == V1->getType()) && 523 (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() || 524 ScalarTy->isPointerTy()) && 525 "Unexpected types for insert element into binop or cmp"); 526 527 unsigned Opcode = I.getOpcode(); 528 int ScalarOpCost, VectorOpCost; 529 if (IsCmp) { 530 ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy); 531 VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy); 532 } else { 533 ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 534 VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 535 } 536 537 // Get cost estimate for the insert element. This cost will factor into 538 // both sequences. 539 int InsertCost = 540 TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index); 541 int OldCost = (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + 542 VectorOpCost; 543 int NewCost = ScalarOpCost + InsertCost + 544 (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) + 545 (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost); 546 547 // We want to scalarize unless the vector variant actually has lower cost. 548 if (OldCost < NewCost) 549 return false; 550 551 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) --> 552 // inselt NewVecC, (scalar_op V0, V1), Index 553 if (IsCmp) 554 ++NumScalarCmp; 555 else 556 ++NumScalarBO; 557 558 // For constant cases, extract the scalar element, this should constant fold. 559 if (IsConst0) 560 V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index)); 561 if (IsConst1) 562 V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index)); 563 564 Value *Scalar = 565 IsCmp ? Builder.CreateCmp(Pred, V0, V1) 566 : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1); 567 568 Scalar->setName(I.getName() + ".scalar"); 569 570 // All IR flags are safe to back-propagate. There is no potential for extra 571 // poison to be created by the scalar instruction. 572 if (auto *ScalarInst = dyn_cast<Instruction>(Scalar)) 573 ScalarInst->copyIRFlags(&I); 574 575 // Fold the vector constants in the original vectors into a new base vector. 576 Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1) 577 : ConstantExpr::get(Opcode, VecC0, VecC1); 578 Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index); 579 replaceValue(I, *Insert); 580 return true; 581 } 582 583 /// Try to combine a scalar binop + 2 scalar compares of extracted elements of 584 /// a vector into vector operations followed by extract. Note: The SLP pass 585 /// may miss this pattern because of implementation problems. 586 bool VectorCombine::foldExtractedCmps(Instruction &I) { 587 // We are looking for a scalar binop of booleans. 588 // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1) 589 if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1)) 590 return false; 591 592 // The compare predicates should match, and each compare should have a 593 // constant operand. 594 // TODO: Relax the one-use constraints. 595 Value *B0 = I.getOperand(0), *B1 = I.getOperand(1); 596 Instruction *I0, *I1; 597 Constant *C0, *C1; 598 CmpInst::Predicate P0, P1; 599 if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) || 600 !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) || 601 P0 != P1) 602 return false; 603 604 // The compare operands must be extracts of the same vector with constant 605 // extract indexes. 606 // TODO: Relax the one-use constraints. 607 Value *X; 608 uint64_t Index0, Index1; 609 if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) || 610 !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1))))) 611 return false; 612 613 auto *Ext0 = cast<ExtractElementInst>(I0); 614 auto *Ext1 = cast<ExtractElementInst>(I1); 615 ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1); 616 if (!ConvertToShuf) 617 return false; 618 619 // The original scalar pattern is: 620 // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1) 621 CmpInst::Predicate Pred = P0; 622 unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp 623 : Instruction::ICmp; 624 auto *VecTy = dyn_cast<FixedVectorType>(X->getType()); 625 if (!VecTy) 626 return false; 627 628 int OldCost = TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 629 OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 630 OldCost += TTI.getCmpSelInstrCost(CmpOpcode, I0->getType()) * 2; 631 OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType()); 632 633 // The proposed vector pattern is: 634 // vcmp = cmp Pred X, VecC 635 // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0 636 int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0; 637 int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1; 638 auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType())); 639 int NewCost = TTI.getCmpSelInstrCost(CmpOpcode, X->getType()); 640 NewCost += 641 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy); 642 NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy); 643 NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex); 644 645 // Aggressively form vector ops if the cost is equal because the transform 646 // may enable further optimization. 647 // Codegen can reverse this transform (scalarize) if it was not profitable. 648 if (OldCost < NewCost) 649 return false; 650 651 // Create a vector constant from the 2 scalar constants. 652 SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(), 653 UndefValue::get(VecTy->getElementType())); 654 CmpC[Index0] = C0; 655 CmpC[Index1] = C1; 656 Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC)); 657 658 Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder); 659 Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(), 660 VCmp, Shuf); 661 Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex); 662 replaceValue(I, *NewExt); 663 ++NumVecCmpBO; 664 return true; 665 } 666 667 /// This is the entry point for all transforms. Pass manager differences are 668 /// handled in the callers of this function. 669 bool VectorCombine::run() { 670 if (DisableVectorCombine) 671 return false; 672 673 // Don't attempt vectorization if the target does not support vectors. 674 if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true))) 675 return false; 676 677 bool MadeChange = false; 678 for (BasicBlock &BB : F) { 679 // Ignore unreachable basic blocks. 680 if (!DT.isReachableFromEntry(&BB)) 681 continue; 682 // Do not delete instructions under here and invalidate the iterator. 683 // Walk the block forwards to enable simple iterative chains of transforms. 684 // TODO: It could be more efficient to remove dead instructions 685 // iteratively in this loop rather than waiting until the end. 686 for (Instruction &I : BB) { 687 if (isa<DbgInfoIntrinsic>(I)) 688 continue; 689 Builder.SetInsertPoint(&I); 690 MadeChange |= vectorizeLoadInsert(I); 691 MadeChange |= foldExtractExtract(I); 692 MadeChange |= foldBitcastShuf(I); 693 MadeChange |= scalarizeBinopOrCmp(I); 694 MadeChange |= foldExtractedCmps(I); 695 } 696 } 697 698 // We're done with transforms, so remove dead instructions. 699 if (MadeChange) 700 for (BasicBlock &BB : F) 701 SimplifyInstructionsInBlock(&BB); 702 703 return MadeChange; 704 } 705 706 // Pass manager boilerplate below here. 707 708 namespace { 709 class VectorCombineLegacyPass : public FunctionPass { 710 public: 711 static char ID; 712 VectorCombineLegacyPass() : FunctionPass(ID) { 713 initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry()); 714 } 715 716 void getAnalysisUsage(AnalysisUsage &AU) const override { 717 AU.addRequired<DominatorTreeWrapperPass>(); 718 AU.addRequired<TargetTransformInfoWrapperPass>(); 719 AU.setPreservesCFG(); 720 AU.addPreserved<DominatorTreeWrapperPass>(); 721 AU.addPreserved<GlobalsAAWrapperPass>(); 722 AU.addPreserved<AAResultsWrapperPass>(); 723 AU.addPreserved<BasicAAWrapperPass>(); 724 FunctionPass::getAnalysisUsage(AU); 725 } 726 727 bool runOnFunction(Function &F) override { 728 if (skipFunction(F)) 729 return false; 730 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 731 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 732 VectorCombine Combiner(F, TTI, DT); 733 return Combiner.run(); 734 } 735 }; 736 } // namespace 737 738 char VectorCombineLegacyPass::ID = 0; 739 INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine", 740 "Optimize scalar/vector ops", false, 741 false) 742 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 743 INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine", 744 "Optimize scalar/vector ops", false, false) 745 Pass *llvm::createVectorCombinePass() { 746 return new VectorCombineLegacyPass(); 747 } 748 749 PreservedAnalyses VectorCombinePass::run(Function &F, 750 FunctionAnalysisManager &FAM) { 751 TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); 752 DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); 753 VectorCombine Combiner(F, TTI, DT); 754 if (!Combiner.run()) 755 return PreservedAnalyses::all(); 756 PreservedAnalyses PA; 757 PA.preserveSet<CFGAnalyses>(); 758 PA.preserve<GlobalsAA>(); 759 PA.preserve<AAManager>(); 760 PA.preserve<BasicAA>(); 761 return PA; 762 } 763