1 //===------- VectorCombine.cpp - Optimize partial vector operations -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass optimizes scalar/vector interactions using target cost models. The
10 // transforms implemented here may not fit in traditional loop-based or SLP
11 // vectorization passes.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Vectorize/VectorCombine.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/BasicAliasAnalysis.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/TargetTransformInfo.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/Analysis/VectorUtils.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/InitializePasses.h"
27 #include "llvm/Pass.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 #include "llvm/Transforms/Vectorize.h"
31 
32 using namespace llvm;
33 using namespace llvm::PatternMatch;
34 
35 #define DEBUG_TYPE "vector-combine"
36 STATISTIC(NumVecCmp, "Number of vector compares formed");
37 STATISTIC(NumVecBO, "Number of vector binops formed");
38 STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast");
39 STATISTIC(NumScalarBO, "Number of scalar binops formed");
40 
41 static cl::opt<bool> DisableVectorCombine(
42     "disable-vector-combine", cl::init(false), cl::Hidden,
43     cl::desc("Disable all vector combine transforms"));
44 
45 static cl::opt<bool> DisableBinopExtractShuffle(
46     "disable-binop-extract-shuffle", cl::init(false), cl::Hidden,
47     cl::desc("Disable binop extract to shuffle transforms"));
48 
49 
50 /// Compare the relative costs of 2 extracts followed by scalar operation vs.
51 /// vector operation(s) followed by extract. Return true if the existing
52 /// instructions are cheaper than a vector alternative. Otherwise, return false
53 /// and if one of the extracts should be transformed to a shufflevector, set
54 /// \p ConvertToShuffle to that extract instruction.
55 static bool isExtractExtractCheap(Instruction *Ext0, Instruction *Ext1,
56                                   unsigned Opcode,
57                                   const TargetTransformInfo &TTI,
58                                   Instruction *&ConvertToShuffle,
59                                   unsigned PreferredExtractIndex) {
60   assert(isa<ConstantInt>(Ext0->getOperand(1)) &&
61          isa<ConstantInt>(Ext1->getOperand(1)) &&
62          "Expected constant extract indexes");
63   Type *ScalarTy = Ext0->getType();
64   auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType());
65   int ScalarOpCost, VectorOpCost;
66 
67   // Get cost estimates for scalar and vector versions of the operation.
68   bool IsBinOp = Instruction::isBinaryOp(Opcode);
69   if (IsBinOp) {
70     ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
71     VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
72   } else {
73     assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
74            "Expected a compare");
75     ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy,
76                                           CmpInst::makeCmpResultType(ScalarTy));
77     VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy,
78                                           CmpInst::makeCmpResultType(VecTy));
79   }
80 
81   // Get cost estimates for the extract elements. These costs will factor into
82   // both sequences.
83   unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue();
84   unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue();
85 
86   int Extract0Cost = TTI.getVectorInstrCost(Instruction::ExtractElement,
87                                             VecTy, Ext0Index);
88   int Extract1Cost = TTI.getVectorInstrCost(Instruction::ExtractElement,
89                                             VecTy, Ext1Index);
90 
91   // A more expensive extract will always be replaced by a splat shuffle.
92   // For example, if Ext0 is more expensive:
93   // opcode (extelt V0, Ext0), (ext V1, Ext1) -->
94   // extelt (opcode (splat V0, Ext0), V1), Ext1
95   // TODO: Evaluate whether that always results in lowest cost. Alternatively,
96   //       check the cost of creating a broadcast shuffle and shuffling both
97   //       operands to element 0.
98   int CheapExtractCost = std::min(Extract0Cost, Extract1Cost);
99 
100   // Extra uses of the extracts mean that we include those costs in the
101   // vector total because those instructions will not be eliminated.
102   int OldCost, NewCost;
103   if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) {
104     // Handle a special case. If the 2 extracts are identical, adjust the
105     // formulas to account for that. The extra use charge allows for either the
106     // CSE'd pattern or an unoptimized form with identical values:
107     // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C
108     bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2)
109                                   : !Ext0->hasOneUse() || !Ext1->hasOneUse();
110     OldCost = CheapExtractCost + ScalarOpCost;
111     NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost;
112   } else {
113     // Handle the general case. Each extract is actually a different value:
114     // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C
115     OldCost = Extract0Cost + Extract1Cost + ScalarOpCost;
116     NewCost = VectorOpCost + CheapExtractCost +
117               !Ext0->hasOneUse() * Extract0Cost +
118               !Ext1->hasOneUse() * Extract1Cost;
119   }
120 
121   if (Ext0Index == Ext1Index) {
122     // If the extract indexes are identical, no shuffle is needed.
123     ConvertToShuffle = nullptr;
124   } else {
125     if (IsBinOp && DisableBinopExtractShuffle)
126       return true;
127 
128     // If we are extracting from 2 different indexes, then one operand must be
129     // shuffled before performing the vector operation. The shuffle mask is
130     // undefined except for 1 lane that is being translated to the remaining
131     // extraction lane. Therefore, it is a splat shuffle. Ex:
132     // ShufMask = { undef, undef, 0, undef }
133     // TODO: The cost model has an option for a "broadcast" shuffle
134     //       (splat-from-element-0), but no option for a more general splat.
135     NewCost +=
136         TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
137 
138     // The more expensive extract will be replaced by a shuffle. If the costs
139     // are equal and there is a preferred extract index, shuffle the opposite
140     // operand. Otherwise, replace the extract with the higher index.
141     if (Extract0Cost > Extract1Cost)
142       ConvertToShuffle = Ext0;
143     else if (Extract1Cost > Extract0Cost)
144       ConvertToShuffle = Ext1;
145     else if (PreferredExtractIndex == Ext0Index)
146       ConvertToShuffle = Ext1;
147     else if (PreferredExtractIndex == Ext1Index)
148       ConvertToShuffle = Ext0;
149     else
150       ConvertToShuffle = Ext0Index > Ext1Index ? Ext0 : Ext1;
151   }
152 
153   // Aggressively form a vector op if the cost is equal because the transform
154   // may enable further optimization.
155   // Codegen can reverse this transform (scalarize) if it was not profitable.
156   return OldCost < NewCost;
157 }
158 
159 /// Try to reduce extract element costs by converting scalar compares to vector
160 /// compares followed by extract.
161 /// cmp (ext0 V0, C), (ext1 V1, C)
162 static void foldExtExtCmp(Instruction *Ext0, Instruction *Ext1,
163                           Instruction &I) {
164   assert(isa<CmpInst>(&I) && "Expected a compare");
165 
166   // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C
167   ++NumVecCmp;
168   IRBuilder<> Builder(&I);
169   CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate();
170   Value *V0 = Ext0->getOperand(0), *V1 = Ext1->getOperand(0);
171   Value *VecCmp =
172       Ext0->getType()->isFloatingPointTy() ? Builder.CreateFCmp(Pred, V0, V1)
173                                            : Builder.CreateICmp(Pred, V0, V1);
174   Value *Extract = Builder.CreateExtractElement(VecCmp, Ext0->getOperand(1));
175   I.replaceAllUsesWith(Extract);
176 }
177 
178 /// Try to reduce extract element costs by converting scalar binops to vector
179 /// binops followed by extract.
180 /// bo (ext0 V0, C), (ext1 V1, C)
181 static void foldExtExtBinop(Instruction *Ext0, Instruction *Ext1,
182                             Instruction &I) {
183   assert(isa<BinaryOperator>(&I) && "Expected a binary operator");
184 
185   // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C
186   ++NumVecBO;
187   IRBuilder<> Builder(&I);
188   Value *V0 = Ext0->getOperand(0), *V1 = Ext1->getOperand(0);
189   Value *VecBO =
190       Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1);
191 
192   // All IR flags are safe to back-propagate because any potential poison
193   // created in unused vector elements is discarded by the extract.
194   if (auto *VecBOInst = dyn_cast<Instruction>(VecBO))
195     VecBOInst->copyIRFlags(&I);
196 
197   Value *Extract = Builder.CreateExtractElement(VecBO, Ext0->getOperand(1));
198   I.replaceAllUsesWith(Extract);
199 }
200 
201 /// Match an instruction with extracted vector operands.
202 static bool foldExtractExtract(Instruction &I, const TargetTransformInfo &TTI) {
203   // It is not safe to transform things like div, urem, etc. because we may
204   // create undefined behavior when executing those on unknown vector elements.
205   if (!isSafeToSpeculativelyExecute(&I))
206     return false;
207 
208   Instruction *Ext0, *Ext1;
209   CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
210   if (!match(&I, m_Cmp(Pred, m_Instruction(Ext0), m_Instruction(Ext1))) &&
211       !match(&I, m_BinOp(m_Instruction(Ext0), m_Instruction(Ext1))))
212     return false;
213 
214   Value *V0, *V1;
215   uint64_t C0, C1;
216   if (!match(Ext0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) ||
217       !match(Ext1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) ||
218       V0->getType() != V1->getType())
219     return false;
220 
221   // If the scalar value 'I' is going to be re-inserted into a vector, then try
222   // to create an extract to that same element. The extract/insert can be
223   // reduced to a "select shuffle".
224   // TODO: If we add a larger pattern match that starts from an insert, this
225   //       probably becomes unnecessary.
226   uint64_t InsertIndex = std::numeric_limits<uint64_t>::max();
227   if (I.hasOneUse())
228     match(I.user_back(),
229           m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex)));
230 
231   Instruction *ConvertToShuffle;
232   if (isExtractExtractCheap(Ext0, Ext1, I.getOpcode(), TTI, ConvertToShuffle,
233                             InsertIndex))
234     return false;
235 
236   if (ConvertToShuffle) {
237     // The shuffle mask is undefined except for 1 lane that is being translated
238     // to the cheap extraction lane. Example:
239     // ShufMask = { 2, undef, undef, undef }
240     uint64_t SplatIndex = ConvertToShuffle == Ext0 ? C0 : C1;
241     uint64_t CheapExtIndex = ConvertToShuffle == Ext0 ? C1 : C0;
242     auto *VecTy = cast<VectorType>(V0->getType());
243     SmallVector<int, 32> ShufMask(VecTy->getNumElements(), -1);
244     ShufMask[CheapExtIndex] = SplatIndex;
245     IRBuilder<> Builder(ConvertToShuffle);
246 
247     // extelt X, C --> extelt (splat X), C'
248     Value *Shuf = Builder.CreateShuffleVector(ConvertToShuffle->getOperand(0),
249                                               UndefValue::get(VecTy), ShufMask);
250     Value *NewExt = Builder.CreateExtractElement(Shuf, CheapExtIndex);
251     if (ConvertToShuffle == Ext0)
252       Ext0 = cast<Instruction>(NewExt);
253     else
254       Ext1 = cast<Instruction>(NewExt);
255   }
256 
257   if (Pred != CmpInst::BAD_ICMP_PREDICATE)
258     foldExtExtCmp(Ext0, Ext1, I);
259   else
260     foldExtExtBinop(Ext0, Ext1, I);
261 
262   return true;
263 }
264 
265 /// If this is a bitcast of a shuffle, try to bitcast the source vector to the
266 /// destination type followed by shuffle. This can enable further transforms by
267 /// moving bitcasts or shuffles together.
268 static bool foldBitcastShuf(Instruction &I, const TargetTransformInfo &TTI) {
269   Value *V;
270   ArrayRef<int> Mask;
271   if (!match(&I, m_BitCast(
272                      m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))))))
273     return false;
274 
275   // Disallow non-vector casts and length-changing shuffles.
276   // TODO: We could allow any shuffle.
277   auto *DestTy = dyn_cast<VectorType>(I.getType());
278   auto *SrcTy = cast<VectorType>(V->getType());
279   if (!DestTy || I.getOperand(0)->getType() != SrcTy)
280     return false;
281 
282   // The new shuffle must not cost more than the old shuffle. The bitcast is
283   // moved ahead of the shuffle, so assume that it has the same cost as before.
284   if (TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, DestTy) >
285       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy))
286     return false;
287 
288   unsigned DestNumElts = DestTy->getNumElements();
289   unsigned SrcNumElts = SrcTy->getNumElements();
290   SmallVector<int, 16> NewMask;
291   if (SrcNumElts <= DestNumElts) {
292     // The bitcast is from wide to narrow/equal elements. The shuffle mask can
293     // always be expanded to the equivalent form choosing narrower elements.
294     assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask");
295     unsigned ScaleFactor = DestNumElts / SrcNumElts;
296     narrowShuffleMaskElts(ScaleFactor, Mask, NewMask);
297   } else {
298     // The bitcast is from narrow elements to wide elements. The shuffle mask
299     // must choose consecutive elements to allow casting first.
300     assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask");
301     unsigned ScaleFactor = SrcNumElts / DestNumElts;
302     if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask))
303       return false;
304   }
305   // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC'
306   ++NumShufOfBitcast;
307   IRBuilder<> Builder(&I);
308   Value *CastV = Builder.CreateBitCast(V, DestTy);
309   Value *Shuf =
310       Builder.CreateShuffleVector(CastV, UndefValue::get(DestTy), NewMask);
311   I.replaceAllUsesWith(Shuf);
312   return true;
313 }
314 
315 /// Match a vector binop instruction with inserted scalar operands and convert
316 /// to scalar binop followed by insertelement.
317 static bool scalarizeBinop(Instruction &I, const TargetTransformInfo &TTI) {
318   Value *Ins0, *Ins1;
319   if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))))
320     return false;
321 
322   // Match against one or both scalar values being inserted into constant
323   // vectors:
324   // vec_bo VecC0, (inselt VecC1, V1, Index)
325   // vec_bo (inselt VecC0, V0, Index), VecC1
326   // vec_bo (inselt VecC0, V0, Index), (inselt VecC1, V1, Index)
327   // TODO: Deal with mismatched index constants and variable indexes?
328   Constant *VecC0 = nullptr, *VecC1 = nullptr;
329   Value *V0 = nullptr, *V1 = nullptr;
330   uint64_t Index0 = 0, Index1 = 0;
331   if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0),
332                                m_ConstantInt(Index0))) &&
333       !match(Ins0, m_Constant(VecC0)))
334     return false;
335   if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1),
336                                m_ConstantInt(Index1))) &&
337       !match(Ins1, m_Constant(VecC1)))
338     return false;
339 
340   bool IsConst0 = !V0;
341   bool IsConst1 = !V1;
342   if (IsConst0 && IsConst1)
343     return false;
344   if (!IsConst0 && !IsConst1 && Index0 != Index1)
345     return false;
346 
347   // Bail for single insertion if it is a load.
348   // TODO: Handle this once getVectorInstrCost can cost for load/stores.
349   auto *I0 = dyn_cast_or_null<Instruction>(V0);
350   auto *I1 = dyn_cast_or_null<Instruction>(V1);
351   if ((IsConst0 && I1 && I1->mayReadFromMemory()) ||
352       (IsConst1 && I0 && I0->mayReadFromMemory()))
353     return false;
354 
355   uint64_t Index = IsConst0 ? Index1 : Index0;
356   Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType();
357   Type *VecTy = I.getType();
358   assert(VecTy->isVectorTy() &&
359          (IsConst0 || IsConst1 || V0->getType() == V1->getType()) &&
360          (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy()) &&
361          "Unexpected types for insert into binop");
362 
363   Instruction::BinaryOps Opcode = cast<BinaryOperator>(&I)->getOpcode();
364   int ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
365   int VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
366 
367   // Get cost estimate for the insert element. This cost will factor into
368   // both sequences.
369   int InsertCost =
370       TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index);
371   int OldCost = (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) +
372                 VectorOpCost;
373   int NewCost = ScalarOpCost + InsertCost +
374                 (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) +
375                 (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost);
376 
377   // We want to scalarize unless the vector variant actually has lower cost.
378   if (OldCost < NewCost)
379     return false;
380 
381   // vec_bo (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) -->
382   // inselt NewVecC, (scalar_bo V0, V1), Index
383   ++NumScalarBO;
384   IRBuilder<> Builder(&I);
385 
386   // For constant cases, extract the scalar element, this should constant fold.
387   if (IsConst0)
388     V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index));
389   if (IsConst1)
390     V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index));
391 
392   Value *Scalar = Builder.CreateBinOp(Opcode, V0, V1, I.getName() + ".scalar");
393 
394   // All IR flags are safe to back-propagate. There is no potential for extra
395   // poison to be created by the scalar instruction.
396   if (auto *ScalarInst = dyn_cast<Instruction>(Scalar))
397     ScalarInst->copyIRFlags(&I);
398 
399   // Fold the vector constants in the original vectors into a new base vector.
400   Constant *NewVecC = ConstantExpr::get(Opcode, VecC0, VecC1);
401   Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index);
402   I.replaceAllUsesWith(Insert);
403   Insert->takeName(&I);
404   return true;
405 }
406 
407 /// This is the entry point for all transforms. Pass manager differences are
408 /// handled in the callers of this function.
409 static bool runImpl(Function &F, const TargetTransformInfo &TTI,
410                     const DominatorTree &DT) {
411   if (DisableVectorCombine)
412     return false;
413 
414   bool MadeChange = false;
415   for (BasicBlock &BB : F) {
416     // Ignore unreachable basic blocks.
417     if (!DT.isReachableFromEntry(&BB))
418       continue;
419     // Do not delete instructions under here and invalidate the iterator.
420     // Walk the block forwards to enable simple iterative chains of transforms.
421     // TODO: It could be more efficient to remove dead instructions
422     //       iteratively in this loop rather than waiting until the end.
423     for (Instruction &I : BB) {
424       if (isa<DbgInfoIntrinsic>(I))
425         continue;
426       MadeChange |= foldExtractExtract(I, TTI);
427       MadeChange |= foldBitcastShuf(I, TTI);
428       MadeChange |= scalarizeBinop(I, TTI);
429     }
430   }
431 
432   // We're done with transforms, so remove dead instructions.
433   if (MadeChange)
434     for (BasicBlock &BB : F)
435       SimplifyInstructionsInBlock(&BB);
436 
437   return MadeChange;
438 }
439 
440 // Pass manager boilerplate below here.
441 
442 namespace {
443 class VectorCombineLegacyPass : public FunctionPass {
444 public:
445   static char ID;
446   VectorCombineLegacyPass() : FunctionPass(ID) {
447     initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry());
448   }
449 
450   void getAnalysisUsage(AnalysisUsage &AU) const override {
451     AU.addRequired<DominatorTreeWrapperPass>();
452     AU.addRequired<TargetTransformInfoWrapperPass>();
453     AU.setPreservesCFG();
454     AU.addPreserved<DominatorTreeWrapperPass>();
455     AU.addPreserved<GlobalsAAWrapperPass>();
456     AU.addPreserved<AAResultsWrapperPass>();
457     AU.addPreserved<BasicAAWrapperPass>();
458     FunctionPass::getAnalysisUsage(AU);
459   }
460 
461   bool runOnFunction(Function &F) override {
462     if (skipFunction(F))
463       return false;
464     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
465     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
466     return runImpl(F, TTI, DT);
467   }
468 };
469 } // namespace
470 
471 char VectorCombineLegacyPass::ID = 0;
472 INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine",
473                       "Optimize scalar/vector ops", false,
474                       false)
475 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
476 INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine",
477                     "Optimize scalar/vector ops", false, false)
478 Pass *llvm::createVectorCombinePass() {
479   return new VectorCombineLegacyPass();
480 }
481 
482 PreservedAnalyses VectorCombinePass::run(Function &F,
483                                          FunctionAnalysisManager &FAM) {
484   TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
485   DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
486   if (!runImpl(F, TTI, DT))
487     return PreservedAnalyses::all();
488   PreservedAnalyses PA;
489   PA.preserveSet<CFGAnalyses>();
490   PA.preserve<GlobalsAA>();
491   PA.preserve<AAManager>();
492   PA.preserve<BasicAA>();
493   return PA;
494 }
495