1 //===------- VectorCombine.cpp - Optimize partial vector operations -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass optimizes scalar/vector interactions using target cost models. The 10 // transforms implemented here may not fit in traditional loop-based or SLP 11 // vectorization passes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Vectorize/VectorCombine.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/BasicAliasAnalysis.h" 19 #include "llvm/Analysis/GlobalsModRef.h" 20 #include "llvm/Analysis/Loads.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/PatternMatch.h" 28 #include "llvm/InitializePasses.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "llvm/Transforms/Vectorize.h" 33 34 #define DEBUG_TYPE "vector-combine" 35 #include "llvm/Transforms/Utils/InstructionWorklist.h" 36 37 using namespace llvm; 38 using namespace llvm::PatternMatch; 39 40 STATISTIC(NumVecLoad, "Number of vector loads formed"); 41 STATISTIC(NumVecCmp, "Number of vector compares formed"); 42 STATISTIC(NumVecBO, "Number of vector binops formed"); 43 STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed"); 44 STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast"); 45 STATISTIC(NumScalarBO, "Number of scalar binops formed"); 46 STATISTIC(NumScalarCmp, "Number of scalar compares formed"); 47 48 static cl::opt<bool> DisableVectorCombine( 49 "disable-vector-combine", cl::init(false), cl::Hidden, 50 cl::desc("Disable all vector combine transforms")); 51 52 static cl::opt<bool> DisableBinopExtractShuffle( 53 "disable-binop-extract-shuffle", cl::init(false), cl::Hidden, 54 cl::desc("Disable binop extract to shuffle transforms")); 55 56 static cl::opt<unsigned> MaxInstrsToScan( 57 "vector-combine-max-scan-instrs", cl::init(30), cl::Hidden, 58 cl::desc("Max number of instructions to scan for vector combining.")); 59 60 static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max(); 61 62 namespace { 63 class VectorCombine { 64 public: 65 VectorCombine(Function &F, const TargetTransformInfo &TTI, 66 const DominatorTree &DT, AAResults &AA, AssumptionCache &AC, 67 bool ScalarizationOnly) 68 : F(F), Builder(F.getContext()), TTI(TTI), DT(DT), AA(AA), AC(AC), 69 ScalarizationOnly(ScalarizationOnly) {} 70 71 bool run(); 72 73 private: 74 Function &F; 75 IRBuilder<> Builder; 76 const TargetTransformInfo &TTI; 77 const DominatorTree &DT; 78 AAResults &AA; 79 AssumptionCache &AC; 80 81 /// If true only perform scalarization combines and do not introduce new 82 /// vector operations. 83 bool ScalarizationOnly; 84 85 InstructionWorklist Worklist; 86 87 bool vectorizeLoadInsert(Instruction &I); 88 ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0, 89 ExtractElementInst *Ext1, 90 unsigned PreferredExtractIndex) const; 91 bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 92 const Instruction &I, 93 ExtractElementInst *&ConvertToShuffle, 94 unsigned PreferredExtractIndex); 95 void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 96 Instruction &I); 97 void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 98 Instruction &I); 99 bool foldExtractExtract(Instruction &I); 100 bool foldBitcastShuf(Instruction &I); 101 bool scalarizeBinopOrCmp(Instruction &I); 102 bool foldExtractedCmps(Instruction &I); 103 bool foldSingleElementStore(Instruction &I); 104 bool scalarizeLoadExtract(Instruction &I); 105 106 void replaceValue(Value &Old, Value &New) { 107 Old.replaceAllUsesWith(&New); 108 New.takeName(&Old); 109 if (auto *NewI = dyn_cast<Instruction>(&New)) { 110 Worklist.pushUsersToWorkList(*NewI); 111 Worklist.pushValue(NewI); 112 } 113 Worklist.pushValue(&Old); 114 } 115 116 void eraseInstruction(Instruction &I) { 117 for (Value *Op : I.operands()) 118 Worklist.pushValue(Op); 119 Worklist.remove(&I); 120 I.eraseFromParent(); 121 } 122 }; 123 } // namespace 124 125 bool VectorCombine::vectorizeLoadInsert(Instruction &I) { 126 // Match insert into fixed vector of scalar value. 127 // TODO: Handle non-zero insert index. 128 auto *Ty = dyn_cast<FixedVectorType>(I.getType()); 129 Value *Scalar; 130 if (!Ty || !match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) || 131 !Scalar->hasOneUse()) 132 return false; 133 134 // Optionally match an extract from another vector. 135 Value *X; 136 bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt())); 137 if (!HasExtract) 138 X = Scalar; 139 140 // Match source value as load of scalar or vector. 141 // Do not vectorize scalar load (widening) if atomic/volatile or under 142 // asan/hwasan/memtag/tsan. The widened load may load data from dirty regions 143 // or create data races non-existent in the source. 144 auto *Load = dyn_cast<LoadInst>(X); 145 if (!Load || !Load->isSimple() || !Load->hasOneUse() || 146 Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) || 147 mustSuppressSpeculation(*Load)) 148 return false; 149 150 const DataLayout &DL = I.getModule()->getDataLayout(); 151 Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts(); 152 assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type"); 153 154 // If original AS != Load's AS, we can't bitcast the original pointer and have 155 // to use Load's operand instead. Ideally we would want to strip pointer casts 156 // without changing AS, but there's no API to do that ATM. 157 unsigned AS = Load->getPointerAddressSpace(); 158 if (AS != SrcPtr->getType()->getPointerAddressSpace()) 159 SrcPtr = Load->getPointerOperand(); 160 161 // We are potentially transforming byte-sized (8-bit) memory accesses, so make 162 // sure we have all of our type-based constraints in place for this target. 163 Type *ScalarTy = Scalar->getType(); 164 uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits(); 165 unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth(); 166 if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 || 167 ScalarSize % 8 != 0) 168 return false; 169 170 // Check safety of replacing the scalar load with a larger vector load. 171 // We use minimal alignment (maximum flexibility) because we only care about 172 // the dereferenceable region. When calculating cost and creating a new op, 173 // we may use a larger value based on alignment attributes. 174 unsigned MinVecNumElts = MinVectorSize / ScalarSize; 175 auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false); 176 unsigned OffsetEltIndex = 0; 177 Align Alignment = Load->getAlign(); 178 if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) { 179 // It is not safe to load directly from the pointer, but we can still peek 180 // through gep offsets and check if it safe to load from a base address with 181 // updated alignment. If it is, we can shuffle the element(s) into place 182 // after loading. 183 unsigned OffsetBitWidth = DL.getIndexTypeSizeInBits(SrcPtr->getType()); 184 APInt Offset(OffsetBitWidth, 0); 185 SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); 186 187 // We want to shuffle the result down from a high element of a vector, so 188 // the offset must be positive. 189 if (Offset.isNegative()) 190 return false; 191 192 // The offset must be a multiple of the scalar element to shuffle cleanly 193 // in the element's size. 194 uint64_t ScalarSizeInBytes = ScalarSize / 8; 195 if (Offset.urem(ScalarSizeInBytes) != 0) 196 return false; 197 198 // If we load MinVecNumElts, will our target element still be loaded? 199 OffsetEltIndex = Offset.udiv(ScalarSizeInBytes).getZExtValue(); 200 if (OffsetEltIndex >= MinVecNumElts) 201 return false; 202 203 if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) 204 return false; 205 206 // Update alignment with offset value. Note that the offset could be negated 207 // to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but 208 // negation does not change the result of the alignment calculation. 209 Alignment = commonAlignment(Alignment, Offset.getZExtValue()); 210 } 211 212 // Original pattern: insertelt undef, load [free casts of] PtrOp, 0 213 // Use the greater of the alignment on the load or its source pointer. 214 Alignment = std::max(SrcPtr->getPointerAlignment(DL), Alignment); 215 Type *LoadTy = Load->getType(); 216 InstructionCost OldCost = 217 TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS); 218 APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0); 219 OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts, 220 /* Insert */ true, HasExtract); 221 222 // New pattern: load VecPtr 223 InstructionCost NewCost = 224 TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS); 225 // Optionally, we are shuffling the loaded vector element(s) into place. 226 // For the mask set everything but element 0 to undef to prevent poison from 227 // propagating from the extra loaded memory. This will also optionally 228 // shrink/grow the vector from the loaded size to the output size. 229 // We assume this operation has no cost in codegen if there was no offset. 230 // Note that we could use freeze to avoid poison problems, but then we might 231 // still need a shuffle to change the vector size. 232 unsigned OutputNumElts = Ty->getNumElements(); 233 SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem); 234 assert(OffsetEltIndex < MinVecNumElts && "Address offset too big"); 235 Mask[0] = OffsetEltIndex; 236 if (OffsetEltIndex) 237 NewCost += TTI.getShuffleCost(TTI::SK_PermuteSingleSrc, MinVecTy, Mask); 238 239 // We can aggressively convert to the vector form because the backend can 240 // invert this transform if it does not result in a performance win. 241 if (OldCost < NewCost || !NewCost.isValid()) 242 return false; 243 244 // It is safe and potentially profitable to load a vector directly: 245 // inselt undef, load Scalar, 0 --> load VecPtr 246 IRBuilder<> Builder(Load); 247 Value *CastedPtr = Builder.CreateBitCast(SrcPtr, MinVecTy->getPointerTo(AS)); 248 Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment); 249 VecLd = Builder.CreateShuffleVector(VecLd, Mask); 250 251 replaceValue(I, *VecLd); 252 ++NumVecLoad; 253 return true; 254 } 255 256 /// Determine which, if any, of the inputs should be replaced by a shuffle 257 /// followed by extract from a different index. 258 ExtractElementInst *VectorCombine::getShuffleExtract( 259 ExtractElementInst *Ext0, ExtractElementInst *Ext1, 260 unsigned PreferredExtractIndex = InvalidIndex) const { 261 assert(isa<ConstantInt>(Ext0->getIndexOperand()) && 262 isa<ConstantInt>(Ext1->getIndexOperand()) && 263 "Expected constant extract indexes"); 264 265 unsigned Index0 = cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue(); 266 unsigned Index1 = cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue(); 267 268 // If the extract indexes are identical, no shuffle is needed. 269 if (Index0 == Index1) 270 return nullptr; 271 272 Type *VecTy = Ext0->getVectorOperand()->getType(); 273 assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types"); 274 InstructionCost Cost0 = 275 TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 276 InstructionCost Cost1 = 277 TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 278 279 // If both costs are invalid no shuffle is needed 280 if (!Cost0.isValid() && !Cost1.isValid()) 281 return nullptr; 282 283 // We are extracting from 2 different indexes, so one operand must be shuffled 284 // before performing a vector operation and/or extract. The more expensive 285 // extract will be replaced by a shuffle. 286 if (Cost0 > Cost1) 287 return Ext0; 288 if (Cost1 > Cost0) 289 return Ext1; 290 291 // If the costs are equal and there is a preferred extract index, shuffle the 292 // opposite operand. 293 if (PreferredExtractIndex == Index0) 294 return Ext1; 295 if (PreferredExtractIndex == Index1) 296 return Ext0; 297 298 // Otherwise, replace the extract with the higher index. 299 return Index0 > Index1 ? Ext0 : Ext1; 300 } 301 302 /// Compare the relative costs of 2 extracts followed by scalar operation vs. 303 /// vector operation(s) followed by extract. Return true if the existing 304 /// instructions are cheaper than a vector alternative. Otherwise, return false 305 /// and if one of the extracts should be transformed to a shufflevector, set 306 /// \p ConvertToShuffle to that extract instruction. 307 bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0, 308 ExtractElementInst *Ext1, 309 const Instruction &I, 310 ExtractElementInst *&ConvertToShuffle, 311 unsigned PreferredExtractIndex) { 312 assert(isa<ConstantInt>(Ext0->getOperand(1)) && 313 isa<ConstantInt>(Ext1->getOperand(1)) && 314 "Expected constant extract indexes"); 315 unsigned Opcode = I.getOpcode(); 316 Type *ScalarTy = Ext0->getType(); 317 auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType()); 318 InstructionCost ScalarOpCost, VectorOpCost; 319 320 // Get cost estimates for scalar and vector versions of the operation. 321 bool IsBinOp = Instruction::isBinaryOp(Opcode); 322 if (IsBinOp) { 323 ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 324 VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 325 } else { 326 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 327 "Expected a compare"); 328 CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate(); 329 ScalarOpCost = TTI.getCmpSelInstrCost( 330 Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred); 331 VectorOpCost = TTI.getCmpSelInstrCost( 332 Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred); 333 } 334 335 // Get cost estimates for the extract elements. These costs will factor into 336 // both sequences. 337 unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue(); 338 unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue(); 339 340 InstructionCost Extract0Cost = 341 TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index); 342 InstructionCost Extract1Cost = 343 TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index); 344 345 // A more expensive extract will always be replaced by a splat shuffle. 346 // For example, if Ext0 is more expensive: 347 // opcode (extelt V0, Ext0), (ext V1, Ext1) --> 348 // extelt (opcode (splat V0, Ext0), V1), Ext1 349 // TODO: Evaluate whether that always results in lowest cost. Alternatively, 350 // check the cost of creating a broadcast shuffle and shuffling both 351 // operands to element 0. 352 InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost); 353 354 // Extra uses of the extracts mean that we include those costs in the 355 // vector total because those instructions will not be eliminated. 356 InstructionCost OldCost, NewCost; 357 if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) { 358 // Handle a special case. If the 2 extracts are identical, adjust the 359 // formulas to account for that. The extra use charge allows for either the 360 // CSE'd pattern or an unoptimized form with identical values: 361 // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C 362 bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2) 363 : !Ext0->hasOneUse() || !Ext1->hasOneUse(); 364 OldCost = CheapExtractCost + ScalarOpCost; 365 NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost; 366 } else { 367 // Handle the general case. Each extract is actually a different value: 368 // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C 369 OldCost = Extract0Cost + Extract1Cost + ScalarOpCost; 370 NewCost = VectorOpCost + CheapExtractCost + 371 !Ext0->hasOneUse() * Extract0Cost + 372 !Ext1->hasOneUse() * Extract1Cost; 373 } 374 375 ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex); 376 if (ConvertToShuffle) { 377 if (IsBinOp && DisableBinopExtractShuffle) 378 return true; 379 380 // If we are extracting from 2 different indexes, then one operand must be 381 // shuffled before performing the vector operation. The shuffle mask is 382 // undefined except for 1 lane that is being translated to the remaining 383 // extraction lane. Therefore, it is a splat shuffle. Ex: 384 // ShufMask = { undef, undef, 0, undef } 385 // TODO: The cost model has an option for a "broadcast" shuffle 386 // (splat-from-element-0), but no option for a more general splat. 387 NewCost += 388 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 389 } 390 391 // Aggressively form a vector op if the cost is equal because the transform 392 // may enable further optimization. 393 // Codegen can reverse this transform (scalarize) if it was not profitable. 394 return OldCost < NewCost; 395 } 396 397 /// Create a shuffle that translates (shifts) 1 element from the input vector 398 /// to a new element location. 399 static Value *createShiftShuffle(Value *Vec, unsigned OldIndex, 400 unsigned NewIndex, IRBuilder<> &Builder) { 401 // The shuffle mask is undefined except for 1 lane that is being translated 402 // to the new element index. Example for OldIndex == 2 and NewIndex == 0: 403 // ShufMask = { 2, undef, undef, undef } 404 auto *VecTy = cast<FixedVectorType>(Vec->getType()); 405 SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem); 406 ShufMask[NewIndex] = OldIndex; 407 return Builder.CreateShuffleVector(Vec, ShufMask, "shift"); 408 } 409 410 /// Given an extract element instruction with constant index operand, shuffle 411 /// the source vector (shift the scalar element) to a NewIndex for extraction. 412 /// Return null if the input can be constant folded, so that we are not creating 413 /// unnecessary instructions. 414 static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt, 415 unsigned NewIndex, 416 IRBuilder<> &Builder) { 417 // If the extract can be constant-folded, this code is unsimplified. Defer 418 // to other passes to handle that. 419 Value *X = ExtElt->getVectorOperand(); 420 Value *C = ExtElt->getIndexOperand(); 421 assert(isa<ConstantInt>(C) && "Expected a constant index operand"); 422 if (isa<Constant>(X)) 423 return nullptr; 424 425 Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(), 426 NewIndex, Builder); 427 return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex)); 428 } 429 430 /// Try to reduce extract element costs by converting scalar compares to vector 431 /// compares followed by extract. 432 /// cmp (ext0 V0, C), (ext1 V1, C) 433 void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0, 434 ExtractElementInst *Ext1, Instruction &I) { 435 assert(isa<CmpInst>(&I) && "Expected a compare"); 436 assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 437 cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 438 "Expected matching constant extract indexes"); 439 440 // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C 441 ++NumVecCmp; 442 CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate(); 443 Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 444 Value *VecCmp = Builder.CreateCmp(Pred, V0, V1); 445 Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand()); 446 replaceValue(I, *NewExt); 447 } 448 449 /// Try to reduce extract element costs by converting scalar binops to vector 450 /// binops followed by extract. 451 /// bo (ext0 V0, C), (ext1 V1, C) 452 void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0, 453 ExtractElementInst *Ext1, Instruction &I) { 454 assert(isa<BinaryOperator>(&I) && "Expected a binary operator"); 455 assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 456 cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 457 "Expected matching constant extract indexes"); 458 459 // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C 460 ++NumVecBO; 461 Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 462 Value *VecBO = 463 Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1); 464 465 // All IR flags are safe to back-propagate because any potential poison 466 // created in unused vector elements is discarded by the extract. 467 if (auto *VecBOInst = dyn_cast<Instruction>(VecBO)) 468 VecBOInst->copyIRFlags(&I); 469 470 Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand()); 471 replaceValue(I, *NewExt); 472 } 473 474 /// Match an instruction with extracted vector operands. 475 bool VectorCombine::foldExtractExtract(Instruction &I) { 476 // It is not safe to transform things like div, urem, etc. because we may 477 // create undefined behavior when executing those on unknown vector elements. 478 if (!isSafeToSpeculativelyExecute(&I)) 479 return false; 480 481 Instruction *I0, *I1; 482 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 483 if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) && 484 !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1)))) 485 return false; 486 487 Value *V0, *V1; 488 uint64_t C0, C1; 489 if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) || 490 !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) || 491 V0->getType() != V1->getType()) 492 return false; 493 494 // If the scalar value 'I' is going to be re-inserted into a vector, then try 495 // to create an extract to that same element. The extract/insert can be 496 // reduced to a "select shuffle". 497 // TODO: If we add a larger pattern match that starts from an insert, this 498 // probably becomes unnecessary. 499 auto *Ext0 = cast<ExtractElementInst>(I0); 500 auto *Ext1 = cast<ExtractElementInst>(I1); 501 uint64_t InsertIndex = InvalidIndex; 502 if (I.hasOneUse()) 503 match(I.user_back(), 504 m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex))); 505 506 ExtractElementInst *ExtractToChange; 507 if (isExtractExtractCheap(Ext0, Ext1, I, ExtractToChange, InsertIndex)) 508 return false; 509 510 if (ExtractToChange) { 511 unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0; 512 ExtractElementInst *NewExtract = 513 translateExtract(ExtractToChange, CheapExtractIdx, Builder); 514 if (!NewExtract) 515 return false; 516 if (ExtractToChange == Ext0) 517 Ext0 = NewExtract; 518 else 519 Ext1 = NewExtract; 520 } 521 522 if (Pred != CmpInst::BAD_ICMP_PREDICATE) 523 foldExtExtCmp(Ext0, Ext1, I); 524 else 525 foldExtExtBinop(Ext0, Ext1, I); 526 527 Worklist.push(Ext0); 528 Worklist.push(Ext1); 529 return true; 530 } 531 532 /// If this is a bitcast of a shuffle, try to bitcast the source vector to the 533 /// destination type followed by shuffle. This can enable further transforms by 534 /// moving bitcasts or shuffles together. 535 bool VectorCombine::foldBitcastShuf(Instruction &I) { 536 Value *V; 537 ArrayRef<int> Mask; 538 if (!match(&I, m_BitCast( 539 m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask)))))) 540 return false; 541 542 // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for 543 // scalable type is unknown; Second, we cannot reason if the narrowed shuffle 544 // mask for scalable type is a splat or not. 545 // 2) Disallow non-vector casts and length-changing shuffles. 546 // TODO: We could allow any shuffle. 547 auto *DestTy = dyn_cast<FixedVectorType>(I.getType()); 548 auto *SrcTy = dyn_cast<FixedVectorType>(V->getType()); 549 if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy) 550 return false; 551 552 unsigned DestNumElts = DestTy->getNumElements(); 553 unsigned SrcNumElts = SrcTy->getNumElements(); 554 SmallVector<int, 16> NewMask; 555 if (SrcNumElts <= DestNumElts) { 556 // The bitcast is from wide to narrow/equal elements. The shuffle mask can 557 // always be expanded to the equivalent form choosing narrower elements. 558 assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask"); 559 unsigned ScaleFactor = DestNumElts / SrcNumElts; 560 narrowShuffleMaskElts(ScaleFactor, Mask, NewMask); 561 } else { 562 // The bitcast is from narrow elements to wide elements. The shuffle mask 563 // must choose consecutive elements to allow casting first. 564 assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask"); 565 unsigned ScaleFactor = SrcNumElts / DestNumElts; 566 if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask)) 567 return false; 568 } 569 570 // The new shuffle must not cost more than the old shuffle. The bitcast is 571 // moved ahead of the shuffle, so assume that it has the same cost as before. 572 InstructionCost DestCost = TTI.getShuffleCost( 573 TargetTransformInfo::SK_PermuteSingleSrc, DestTy, NewMask); 574 InstructionCost SrcCost = 575 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy, Mask); 576 if (DestCost > SrcCost || !DestCost.isValid()) 577 return false; 578 579 // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC' 580 ++NumShufOfBitcast; 581 Value *CastV = Builder.CreateBitCast(V, DestTy); 582 Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask); 583 replaceValue(I, *Shuf); 584 return true; 585 } 586 587 /// Match a vector binop or compare instruction with at least one inserted 588 /// scalar operand and convert to scalar binop/cmp followed by insertelement. 589 bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) { 590 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 591 Value *Ins0, *Ins1; 592 if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) && 593 !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1)))) 594 return false; 595 596 // Do not convert the vector condition of a vector select into a scalar 597 // condition. That may cause problems for codegen because of differences in 598 // boolean formats and register-file transfers. 599 // TODO: Can we account for that in the cost model? 600 bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE; 601 if (IsCmp) 602 for (User *U : I.users()) 603 if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value()))) 604 return false; 605 606 // Match against one or both scalar values being inserted into constant 607 // vectors: 608 // vec_op VecC0, (inselt VecC1, V1, Index) 609 // vec_op (inselt VecC0, V0, Index), VecC1 610 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) 611 // TODO: Deal with mismatched index constants and variable indexes? 612 Constant *VecC0 = nullptr, *VecC1 = nullptr; 613 Value *V0 = nullptr, *V1 = nullptr; 614 uint64_t Index0 = 0, Index1 = 0; 615 if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0), 616 m_ConstantInt(Index0))) && 617 !match(Ins0, m_Constant(VecC0))) 618 return false; 619 if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1), 620 m_ConstantInt(Index1))) && 621 !match(Ins1, m_Constant(VecC1))) 622 return false; 623 624 bool IsConst0 = !V0; 625 bool IsConst1 = !V1; 626 if (IsConst0 && IsConst1) 627 return false; 628 if (!IsConst0 && !IsConst1 && Index0 != Index1) 629 return false; 630 631 // Bail for single insertion if it is a load. 632 // TODO: Handle this once getVectorInstrCost can cost for load/stores. 633 auto *I0 = dyn_cast_or_null<Instruction>(V0); 634 auto *I1 = dyn_cast_or_null<Instruction>(V1); 635 if ((IsConst0 && I1 && I1->mayReadFromMemory()) || 636 (IsConst1 && I0 && I0->mayReadFromMemory())) 637 return false; 638 639 uint64_t Index = IsConst0 ? Index1 : Index0; 640 Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType(); 641 Type *VecTy = I.getType(); 642 assert(VecTy->isVectorTy() && 643 (IsConst0 || IsConst1 || V0->getType() == V1->getType()) && 644 (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() || 645 ScalarTy->isPointerTy()) && 646 "Unexpected types for insert element into binop or cmp"); 647 648 unsigned Opcode = I.getOpcode(); 649 InstructionCost ScalarOpCost, VectorOpCost; 650 if (IsCmp) { 651 CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate(); 652 ScalarOpCost = TTI.getCmpSelInstrCost( 653 Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred); 654 VectorOpCost = TTI.getCmpSelInstrCost( 655 Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred); 656 } else { 657 ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 658 VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 659 } 660 661 // Get cost estimate for the insert element. This cost will factor into 662 // both sequences. 663 InstructionCost InsertCost = 664 TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index); 665 InstructionCost OldCost = 666 (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + VectorOpCost; 667 InstructionCost NewCost = ScalarOpCost + InsertCost + 668 (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) + 669 (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost); 670 671 // We want to scalarize unless the vector variant actually has lower cost. 672 if (OldCost < NewCost || !NewCost.isValid()) 673 return false; 674 675 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) --> 676 // inselt NewVecC, (scalar_op V0, V1), Index 677 if (IsCmp) 678 ++NumScalarCmp; 679 else 680 ++NumScalarBO; 681 682 // For constant cases, extract the scalar element, this should constant fold. 683 if (IsConst0) 684 V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index)); 685 if (IsConst1) 686 V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index)); 687 688 Value *Scalar = 689 IsCmp ? Builder.CreateCmp(Pred, V0, V1) 690 : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1); 691 692 Scalar->setName(I.getName() + ".scalar"); 693 694 // All IR flags are safe to back-propagate. There is no potential for extra 695 // poison to be created by the scalar instruction. 696 if (auto *ScalarInst = dyn_cast<Instruction>(Scalar)) 697 ScalarInst->copyIRFlags(&I); 698 699 // Fold the vector constants in the original vectors into a new base vector. 700 Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1) 701 : ConstantExpr::get(Opcode, VecC0, VecC1); 702 Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index); 703 replaceValue(I, *Insert); 704 return true; 705 } 706 707 /// Try to combine a scalar binop + 2 scalar compares of extracted elements of 708 /// a vector into vector operations followed by extract. Note: The SLP pass 709 /// may miss this pattern because of implementation problems. 710 bool VectorCombine::foldExtractedCmps(Instruction &I) { 711 // We are looking for a scalar binop of booleans. 712 // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1) 713 if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1)) 714 return false; 715 716 // The compare predicates should match, and each compare should have a 717 // constant operand. 718 // TODO: Relax the one-use constraints. 719 Value *B0 = I.getOperand(0), *B1 = I.getOperand(1); 720 Instruction *I0, *I1; 721 Constant *C0, *C1; 722 CmpInst::Predicate P0, P1; 723 if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) || 724 !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) || 725 P0 != P1) 726 return false; 727 728 // The compare operands must be extracts of the same vector with constant 729 // extract indexes. 730 // TODO: Relax the one-use constraints. 731 Value *X; 732 uint64_t Index0, Index1; 733 if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) || 734 !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1))))) 735 return false; 736 737 auto *Ext0 = cast<ExtractElementInst>(I0); 738 auto *Ext1 = cast<ExtractElementInst>(I1); 739 ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1); 740 if (!ConvertToShuf) 741 return false; 742 743 // The original scalar pattern is: 744 // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1) 745 CmpInst::Predicate Pred = P0; 746 unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp 747 : Instruction::ICmp; 748 auto *VecTy = dyn_cast<FixedVectorType>(X->getType()); 749 if (!VecTy) 750 return false; 751 752 InstructionCost OldCost = 753 TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 754 OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 755 OldCost += 756 TTI.getCmpSelInstrCost(CmpOpcode, I0->getType(), 757 CmpInst::makeCmpResultType(I0->getType()), Pred) * 758 2; 759 OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType()); 760 761 // The proposed vector pattern is: 762 // vcmp = cmp Pred X, VecC 763 // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0 764 int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0; 765 int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1; 766 auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType())); 767 InstructionCost NewCost = TTI.getCmpSelInstrCost( 768 CmpOpcode, X->getType(), CmpInst::makeCmpResultType(X->getType()), Pred); 769 SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem); 770 ShufMask[CheapIndex] = ExpensiveIndex; 771 NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy, 772 ShufMask); 773 NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy); 774 NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex); 775 776 // Aggressively form vector ops if the cost is equal because the transform 777 // may enable further optimization. 778 // Codegen can reverse this transform (scalarize) if it was not profitable. 779 if (OldCost < NewCost || !NewCost.isValid()) 780 return false; 781 782 // Create a vector constant from the 2 scalar constants. 783 SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(), 784 UndefValue::get(VecTy->getElementType())); 785 CmpC[Index0] = C0; 786 CmpC[Index1] = C1; 787 Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC)); 788 789 Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder); 790 Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(), 791 VCmp, Shuf); 792 Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex); 793 replaceValue(I, *NewExt); 794 ++NumVecCmpBO; 795 return true; 796 } 797 798 // Check if memory loc modified between two instrs in the same BB 799 static bool isMemModifiedBetween(BasicBlock::iterator Begin, 800 BasicBlock::iterator End, 801 const MemoryLocation &Loc, AAResults &AA) { 802 unsigned NumScanned = 0; 803 return std::any_of(Begin, End, [&](const Instruction &Instr) { 804 return isModSet(AA.getModRefInfo(&Instr, Loc)) || 805 ++NumScanned > MaxInstrsToScan; 806 }); 807 } 808 809 /// Helper class to indicate whether a vector index can be safely scalarized and 810 /// if a freeze needs to be inserted. 811 class ScalarizationResult { 812 enum class StatusTy { Unsafe, Safe, SafeWithFreeze }; 813 814 StatusTy Status; 815 Value *ToFreeze; 816 817 ScalarizationResult(StatusTy Status, Value *ToFreeze = nullptr) 818 : Status(Status), ToFreeze(ToFreeze) {} 819 820 public: 821 ScalarizationResult(const ScalarizationResult &Other) = default; 822 ~ScalarizationResult() { 823 assert(!ToFreeze && "freeze() not called with ToFreeze being set"); 824 } 825 826 static ScalarizationResult unsafe() { return {StatusTy::Unsafe}; } 827 static ScalarizationResult safe() { return {StatusTy::Safe}; } 828 static ScalarizationResult safeWithFreeze(Value *ToFreeze) { 829 return {StatusTy::SafeWithFreeze, ToFreeze}; 830 } 831 832 /// Returns true if the index can be scalarize without requiring a freeze. 833 bool isSafe() const { return Status == StatusTy::Safe; } 834 /// Returns true if the index cannot be scalarized. 835 bool isUnsafe() const { return Status == StatusTy::Unsafe; } 836 /// Returns true if the index can be scalarize, but requires inserting a 837 /// freeze. 838 bool isSafeWithFreeze() const { return Status == StatusTy::SafeWithFreeze; } 839 840 /// Reset the state of Unsafe and clear ToFreze if set. 841 void discard() { 842 ToFreeze = nullptr; 843 Status = StatusTy::Unsafe; 844 } 845 846 /// Freeze the ToFreeze and update the use in \p User to use it. 847 void freeze(IRBuilder<> &Builder, Instruction &UserI) { 848 assert(isSafeWithFreeze() && 849 "should only be used when freezing is required"); 850 assert(is_contained(ToFreeze->users(), &UserI) && 851 "UserI must be a user of ToFreeze"); 852 IRBuilder<>::InsertPointGuard Guard(Builder); 853 Builder.SetInsertPoint(cast<Instruction>(&UserI)); 854 Value *Frozen = 855 Builder.CreateFreeze(ToFreeze, ToFreeze->getName() + ".frozen"); 856 for (Use &U : make_early_inc_range((UserI.operands()))) 857 if (U.get() == ToFreeze) 858 U.set(Frozen); 859 860 ToFreeze = nullptr; 861 } 862 }; 863 864 /// Check if it is legal to scalarize a memory access to \p VecTy at index \p 865 /// Idx. \p Idx must access a valid vector element. 866 static ScalarizationResult canScalarizeAccess(FixedVectorType *VecTy, 867 Value *Idx, Instruction *CtxI, 868 AssumptionCache &AC, 869 const DominatorTree &DT) { 870 if (auto *C = dyn_cast<ConstantInt>(Idx)) { 871 if (C->getValue().ult(VecTy->getNumElements())) 872 return ScalarizationResult::safe(); 873 return ScalarizationResult::unsafe(); 874 } 875 876 unsigned IntWidth = Idx->getType()->getScalarSizeInBits(); 877 APInt Zero(IntWidth, 0); 878 APInt MaxElts(IntWidth, VecTy->getNumElements()); 879 ConstantRange ValidIndices(Zero, MaxElts); 880 ConstantRange IdxRange(IntWidth, true); 881 882 if (isGuaranteedNotToBePoison(Idx, &AC)) { 883 if (ValidIndices.contains(computeConstantRange(Idx, true, &AC, CtxI, &DT))) 884 return ScalarizationResult::safe(); 885 return ScalarizationResult::unsafe(); 886 } 887 888 // If the index may be poison, check if we can insert a freeze before the 889 // range of the index is restricted. 890 Value *IdxBase; 891 ConstantInt *CI; 892 if (match(Idx, m_And(m_Value(IdxBase), m_ConstantInt(CI)))) { 893 IdxRange = IdxRange.binaryAnd(CI->getValue()); 894 } else if (match(Idx, m_URem(m_Value(IdxBase), m_ConstantInt(CI)))) { 895 IdxRange = IdxRange.urem(CI->getValue()); 896 } 897 898 if (ValidIndices.contains(IdxRange)) 899 return ScalarizationResult::safeWithFreeze(IdxBase); 900 return ScalarizationResult::unsafe(); 901 } 902 903 /// The memory operation on a vector of \p ScalarType had alignment of 904 /// \p VectorAlignment. Compute the maximal, but conservatively correct, 905 /// alignment that will be valid for the memory operation on a single scalar 906 /// element of the same type with index \p Idx. 907 static Align computeAlignmentAfterScalarization(Align VectorAlignment, 908 Type *ScalarType, Value *Idx, 909 const DataLayout &DL) { 910 if (auto *C = dyn_cast<ConstantInt>(Idx)) 911 return commonAlignment(VectorAlignment, 912 C->getZExtValue() * DL.getTypeStoreSize(ScalarType)); 913 return commonAlignment(VectorAlignment, DL.getTypeStoreSize(ScalarType)); 914 } 915 916 // Combine patterns like: 917 // %0 = load <4 x i32>, <4 x i32>* %a 918 // %1 = insertelement <4 x i32> %0, i32 %b, i32 1 919 // store <4 x i32> %1, <4 x i32>* %a 920 // to: 921 // %0 = bitcast <4 x i32>* %a to i32* 922 // %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1 923 // store i32 %b, i32* %1 924 bool VectorCombine::foldSingleElementStore(Instruction &I) { 925 StoreInst *SI = dyn_cast<StoreInst>(&I); 926 if (!SI || !SI->isSimple() || 927 !isa<FixedVectorType>(SI->getValueOperand()->getType())) 928 return false; 929 930 // TODO: Combine more complicated patterns (multiple insert) by referencing 931 // TargetTransformInfo. 932 Instruction *Source; 933 Value *NewElement; 934 Value *Idx; 935 if (!match(SI->getValueOperand(), 936 m_InsertElt(m_Instruction(Source), m_Value(NewElement), 937 m_Value(Idx)))) 938 return false; 939 940 if (auto *Load = dyn_cast<LoadInst>(Source)) { 941 auto VecTy = cast<FixedVectorType>(SI->getValueOperand()->getType()); 942 const DataLayout &DL = I.getModule()->getDataLayout(); 943 Value *SrcAddr = Load->getPointerOperand()->stripPointerCasts(); 944 // Don't optimize for atomic/volatile load or store. Ensure memory is not 945 // modified between, vector type matches store size, and index is inbounds. 946 if (!Load->isSimple() || Load->getParent() != SI->getParent() || 947 !DL.typeSizeEqualsStoreSize(Load->getType()) || 948 SrcAddr != SI->getPointerOperand()->stripPointerCasts()) 949 return false; 950 951 auto ScalarizableIdx = canScalarizeAccess(VecTy, Idx, Load, AC, DT); 952 if (ScalarizableIdx.isUnsafe() || 953 isMemModifiedBetween(Load->getIterator(), SI->getIterator(), 954 MemoryLocation::get(SI), AA)) 955 return false; 956 957 if (ScalarizableIdx.isSafeWithFreeze()) 958 ScalarizableIdx.freeze(Builder, *cast<Instruction>(Idx)); 959 Value *GEP = Builder.CreateInBoundsGEP( 960 SI->getValueOperand()->getType(), SI->getPointerOperand(), 961 {ConstantInt::get(Idx->getType(), 0), Idx}); 962 StoreInst *NSI = Builder.CreateStore(NewElement, GEP); 963 NSI->copyMetadata(*SI); 964 Align ScalarOpAlignment = computeAlignmentAfterScalarization( 965 std::max(SI->getAlign(), Load->getAlign()), NewElement->getType(), Idx, 966 DL); 967 NSI->setAlignment(ScalarOpAlignment); 968 replaceValue(I, *NSI); 969 eraseInstruction(I); 970 return true; 971 } 972 973 return false; 974 } 975 976 /// Try to scalarize vector loads feeding extractelement instructions. 977 bool VectorCombine::scalarizeLoadExtract(Instruction &I) { 978 Value *Ptr; 979 if (!match(&I, m_Load(m_Value(Ptr)))) 980 return false; 981 982 auto *LI = cast<LoadInst>(&I); 983 const DataLayout &DL = I.getModule()->getDataLayout(); 984 if (LI->isVolatile() || !DL.typeSizeEqualsStoreSize(LI->getType())) 985 return false; 986 987 auto *FixedVT = dyn_cast<FixedVectorType>(LI->getType()); 988 if (!FixedVT) 989 return false; 990 991 InstructionCost OriginalCost = TTI.getMemoryOpCost( 992 Instruction::Load, LI->getType(), Align(LI->getAlignment()), 993 LI->getPointerAddressSpace()); 994 InstructionCost ScalarizedCost = 0; 995 996 Instruction *LastCheckedInst = LI; 997 unsigned NumInstChecked = 0; 998 // Check if all users of the load are extracts with no memory modifications 999 // between the load and the extract. Compute the cost of both the original 1000 // code and the scalarized version. 1001 for (User *U : LI->users()) { 1002 auto *UI = dyn_cast<ExtractElementInst>(U); 1003 if (!UI || UI->getParent() != LI->getParent()) 1004 return false; 1005 1006 if (!isGuaranteedNotToBePoison(UI->getOperand(1), &AC, LI, &DT)) 1007 return false; 1008 1009 // Check if any instruction between the load and the extract may modify 1010 // memory. 1011 if (LastCheckedInst->comesBefore(UI)) { 1012 for (Instruction &I : 1013 make_range(std::next(LI->getIterator()), UI->getIterator())) { 1014 // Bail out if we reached the check limit or the instruction may write 1015 // to memory. 1016 if (NumInstChecked == MaxInstrsToScan || I.mayWriteToMemory()) 1017 return false; 1018 NumInstChecked++; 1019 } 1020 } 1021 1022 if (!LastCheckedInst) 1023 LastCheckedInst = UI; 1024 else if (LastCheckedInst->comesBefore(UI)) 1025 LastCheckedInst = UI; 1026 1027 auto ScalarIdx = canScalarizeAccess(FixedVT, UI->getOperand(1), &I, AC, DT); 1028 if (!ScalarIdx.isSafe()) { 1029 // TODO: Freeze index if it is safe to do so. 1030 ScalarIdx.discard(); 1031 return false; 1032 } 1033 1034 auto *Index = dyn_cast<ConstantInt>(UI->getOperand(1)); 1035 OriginalCost += 1036 TTI.getVectorInstrCost(Instruction::ExtractElement, LI->getType(), 1037 Index ? Index->getZExtValue() : -1); 1038 ScalarizedCost += 1039 TTI.getMemoryOpCost(Instruction::Load, FixedVT->getElementType(), 1040 Align(1), LI->getPointerAddressSpace()); 1041 ScalarizedCost += TTI.getAddressComputationCost(FixedVT->getElementType()); 1042 } 1043 1044 if (ScalarizedCost >= OriginalCost) 1045 return false; 1046 1047 // Replace extracts with narrow scalar loads. 1048 for (User *U : LI->users()) { 1049 auto *EI = cast<ExtractElementInst>(U); 1050 Builder.SetInsertPoint(EI); 1051 1052 Value *Idx = EI->getOperand(1); 1053 Value *GEP = 1054 Builder.CreateInBoundsGEP(FixedVT, Ptr, {Builder.getInt32(0), Idx}); 1055 auto *NewLoad = cast<LoadInst>(Builder.CreateLoad( 1056 FixedVT->getElementType(), GEP, EI->getName() + ".scalar")); 1057 1058 Align ScalarOpAlignment = computeAlignmentAfterScalarization( 1059 LI->getAlign(), FixedVT->getElementType(), Idx, DL); 1060 NewLoad->setAlignment(ScalarOpAlignment); 1061 1062 replaceValue(*EI, *NewLoad); 1063 } 1064 1065 return true; 1066 } 1067 1068 /// This is the entry point for all transforms. Pass manager differences are 1069 /// handled in the callers of this function. 1070 bool VectorCombine::run() { 1071 if (DisableVectorCombine) 1072 return false; 1073 1074 // Don't attempt vectorization if the target does not support vectors. 1075 if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true))) 1076 return false; 1077 1078 bool MadeChange = false; 1079 auto FoldInst = [this, &MadeChange](Instruction &I) { 1080 Builder.SetInsertPoint(&I); 1081 if (!ScalarizationOnly) { 1082 MadeChange |= vectorizeLoadInsert(I); 1083 MadeChange |= foldExtractExtract(I); 1084 MadeChange |= foldBitcastShuf(I); 1085 MadeChange |= foldExtractedCmps(I); 1086 } 1087 MadeChange |= scalarizeBinopOrCmp(I); 1088 MadeChange |= scalarizeLoadExtract(I); 1089 MadeChange |= foldSingleElementStore(I); 1090 }; 1091 for (BasicBlock &BB : F) { 1092 // Ignore unreachable basic blocks. 1093 if (!DT.isReachableFromEntry(&BB)) 1094 continue; 1095 // Use early increment range so that we can erase instructions in loop. 1096 for (Instruction &I : make_early_inc_range(BB)) { 1097 if (I.isDebugOrPseudoInst()) 1098 continue; 1099 FoldInst(I); 1100 } 1101 } 1102 1103 while (!Worklist.isEmpty()) { 1104 Instruction *I = Worklist.removeOne(); 1105 if (!I) 1106 continue; 1107 1108 if (isInstructionTriviallyDead(I)) { 1109 eraseInstruction(*I); 1110 continue; 1111 } 1112 1113 FoldInst(*I); 1114 } 1115 1116 return MadeChange; 1117 } 1118 1119 // Pass manager boilerplate below here. 1120 1121 namespace { 1122 class VectorCombineLegacyPass : public FunctionPass { 1123 public: 1124 static char ID; 1125 VectorCombineLegacyPass() : FunctionPass(ID) { 1126 initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry()); 1127 } 1128 1129 void getAnalysisUsage(AnalysisUsage &AU) const override { 1130 AU.addRequired<AssumptionCacheTracker>(); 1131 AU.addRequired<DominatorTreeWrapperPass>(); 1132 AU.addRequired<TargetTransformInfoWrapperPass>(); 1133 AU.addRequired<AAResultsWrapperPass>(); 1134 AU.setPreservesCFG(); 1135 AU.addPreserved<DominatorTreeWrapperPass>(); 1136 AU.addPreserved<GlobalsAAWrapperPass>(); 1137 AU.addPreserved<AAResultsWrapperPass>(); 1138 AU.addPreserved<BasicAAWrapperPass>(); 1139 FunctionPass::getAnalysisUsage(AU); 1140 } 1141 1142 bool runOnFunction(Function &F) override { 1143 if (skipFunction(F)) 1144 return false; 1145 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1146 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1147 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1148 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 1149 VectorCombine Combiner(F, TTI, DT, AA, AC, false); 1150 return Combiner.run(); 1151 } 1152 }; 1153 } // namespace 1154 1155 char VectorCombineLegacyPass::ID = 0; 1156 INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine", 1157 "Optimize scalar/vector ops", false, 1158 false) 1159 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1160 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1161 INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine", 1162 "Optimize scalar/vector ops", false, false) 1163 Pass *llvm::createVectorCombinePass() { 1164 return new VectorCombineLegacyPass(); 1165 } 1166 1167 PreservedAnalyses VectorCombinePass::run(Function &F, 1168 FunctionAnalysisManager &FAM) { 1169 auto &AC = FAM.getResult<AssumptionAnalysis>(F); 1170 TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); 1171 DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); 1172 AAResults &AA = FAM.getResult<AAManager>(F); 1173 VectorCombine Combiner(F, TTI, DT, AA, AC, ScalarizationOnly); 1174 if (!Combiner.run()) 1175 return PreservedAnalyses::all(); 1176 PreservedAnalyses PA; 1177 PA.preserveSet<CFGAnalyses>(); 1178 return PA; 1179 } 1180