1 //===------- VectorCombine.cpp - Optimize partial vector operations -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass optimizes scalar/vector interactions using target cost models. The
10 // transforms implemented here may not fit in traditional loop-based or SLP
11 // vectorization passes.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Vectorize/VectorCombine.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/BasicAliasAnalysis.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/Analysis/VectorUtils.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/InitializePasses.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 #include "llvm/Transforms/Vectorize.h"
32 
33 using namespace llvm;
34 using namespace llvm::PatternMatch;
35 
36 #define DEBUG_TYPE "vector-combine"
37 STATISTIC(NumVecLoad, "Number of vector loads formed");
38 STATISTIC(NumVecCmp, "Number of vector compares formed");
39 STATISTIC(NumVecBO, "Number of vector binops formed");
40 STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed");
41 STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast");
42 STATISTIC(NumScalarBO, "Number of scalar binops formed");
43 STATISTIC(NumScalarCmp, "Number of scalar compares formed");
44 
45 static cl::opt<bool> DisableVectorCombine(
46     "disable-vector-combine", cl::init(false), cl::Hidden,
47     cl::desc("Disable all vector combine transforms"));
48 
49 static cl::opt<bool> DisableBinopExtractShuffle(
50     "disable-binop-extract-shuffle", cl::init(false), cl::Hidden,
51     cl::desc("Disable binop extract to shuffle transforms"));
52 
53 static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max();
54 
55 namespace {
56 class VectorCombine {
57 public:
58   VectorCombine(Function &F, const TargetTransformInfo &TTI,
59                 const DominatorTree &DT)
60       : F(F), Builder(F.getContext()), TTI(TTI), DT(DT) {}
61 
62   bool run();
63 
64 private:
65   Function &F;
66   IRBuilder<> Builder;
67   const TargetTransformInfo &TTI;
68   const DominatorTree &DT;
69 
70   bool vectorizeLoadInsert(Instruction &I);
71   ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0,
72                                         ExtractElementInst *Ext1,
73                                         unsigned PreferredExtractIndex) const;
74   bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
75                              unsigned Opcode,
76                              ExtractElementInst *&ConvertToShuffle,
77                              unsigned PreferredExtractIndex);
78   void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
79                      Instruction &I);
80   void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
81                        Instruction &I);
82   bool foldExtractExtract(Instruction &I);
83   bool foldBitcastShuf(Instruction &I);
84   bool scalarizeBinopOrCmp(Instruction &I);
85   bool foldExtractedCmps(Instruction &I);
86 };
87 } // namespace
88 
89 static void replaceValue(Value &Old, Value &New) {
90   Old.replaceAllUsesWith(&New);
91   New.takeName(&Old);
92 }
93 
94 bool VectorCombine::vectorizeLoadInsert(Instruction &I) {
95   // Match insert into fixed vector of scalar value.
96   auto *Ty = dyn_cast<FixedVectorType>(I.getType());
97   Value *Scalar;
98   if (!Ty || !match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) ||
99       !Scalar->hasOneUse())
100     return false;
101 
102   // Optionally match an extract from another vector.
103   Value *X;
104   bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt()));
105   if (!HasExtract)
106     X = Scalar;
107 
108   // Match source value as load of scalar or vector.
109   // Do not vectorize scalar load (widening) if atomic/volatile or under
110   // asan/hwasan/memtag/tsan. The widened load may load data from dirty regions
111   // or create data races non-existent in the source.
112   auto *Load = dyn_cast<LoadInst>(X);
113   if (!Load || !Load->isSimple() || !Load->hasOneUse() ||
114       Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) ||
115       mustSuppressSpeculation(*Load))
116     return false;
117 
118   // TODO: Extend this to match GEP with constant offsets.
119   const DataLayout &DL = I.getModule()->getDataLayout();
120   Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts();
121   assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type");
122 
123   // If original AS != Load's AS, we can't bitcast the original pointer and have
124   // to use Load's operand instead. Ideally we would want to strip pointer casts
125   // without changing AS, but there's no API to do that ATM.
126   unsigned AS = Load->getPointerAddressSpace();
127   if (AS != SrcPtr->getType()->getPointerAddressSpace())
128     SrcPtr = Load->getPointerOperand();
129 
130   Type *ScalarTy = Scalar->getType();
131   uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
132   unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
133   if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0)
134     return false;
135 
136   // Check safety of replacing the scalar load with a larger vector load.
137   // We use minimal alignment (maximum flexibility) because we only care about
138   // the dereferenceable region. When calculating cost and creating a new op,
139   // we may use a larger value based on alignment attributes.
140   unsigned MinVecNumElts = MinVectorSize / ScalarSize;
141   auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false);
142   if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT))
143     return false;
144 
145   // Original pattern: insertelt undef, load [free casts of] PtrOp, 0
146   // Use the greater of the alignment on the load or its source pointer.
147   Align Alignment = std::max(SrcPtr->getPointerAlignment(DL), Load->getAlign());
148   Type *LoadTy = Load->getType();
149   int OldCost = TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS);
150   APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0);
151   OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts,
152                                           /* Insert */ true, HasExtract);
153 
154   // New pattern: load VecPtr
155   int NewCost = TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS);
156 
157   // We can aggressively convert to the vector form because the backend can
158   // invert this transform if it does not result in a performance win.
159   if (OldCost < NewCost)
160     return false;
161 
162   // It is safe and potentially profitable to load a vector directly:
163   // inselt undef, load Scalar, 0 --> load VecPtr
164   IRBuilder<> Builder(Load);
165   Value *CastedPtr = Builder.CreateBitCast(SrcPtr, MinVecTy->getPointerTo(AS));
166   Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment);
167 
168   // Set everything but element 0 to undef to prevent poison from propagating
169   // from the extra loaded memory. This will also optionally shrink/grow the
170   // vector from the loaded size to the output size.
171   // We assume this operation has no cost in codegen.
172   // Note that we could use freeze to avoid poison problems, but then we might
173   // still need a shuffle to change the vector size.
174   unsigned OutputNumElts = Ty->getNumElements();
175   SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem);
176   Mask[0] = 0;
177   VecLd = Builder.CreateShuffleVector(VecLd, Mask);
178 
179   replaceValue(I, *VecLd);
180   ++NumVecLoad;
181   return true;
182 }
183 
184 /// Determine which, if any, of the inputs should be replaced by a shuffle
185 /// followed by extract from a different index.
186 ExtractElementInst *VectorCombine::getShuffleExtract(
187     ExtractElementInst *Ext0, ExtractElementInst *Ext1,
188     unsigned PreferredExtractIndex = InvalidIndex) const {
189   assert(isa<ConstantInt>(Ext0->getIndexOperand()) &&
190          isa<ConstantInt>(Ext1->getIndexOperand()) &&
191          "Expected constant extract indexes");
192 
193   unsigned Index0 = cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue();
194   unsigned Index1 = cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue();
195 
196   // If the extract indexes are identical, no shuffle is needed.
197   if (Index0 == Index1)
198     return nullptr;
199 
200   Type *VecTy = Ext0->getVectorOperand()->getType();
201   assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types");
202   int Cost0 = TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
203   int Cost1 = TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);
204 
205   // We are extracting from 2 different indexes, so one operand must be shuffled
206   // before performing a vector operation and/or extract. The more expensive
207   // extract will be replaced by a shuffle.
208   if (Cost0 > Cost1)
209     return Ext0;
210   if (Cost1 > Cost0)
211     return Ext1;
212 
213   // If the costs are equal and there is a preferred extract index, shuffle the
214   // opposite operand.
215   if (PreferredExtractIndex == Index0)
216     return Ext1;
217   if (PreferredExtractIndex == Index1)
218     return Ext0;
219 
220   // Otherwise, replace the extract with the higher index.
221   return Index0 > Index1 ? Ext0 : Ext1;
222 }
223 
224 /// Compare the relative costs of 2 extracts followed by scalar operation vs.
225 /// vector operation(s) followed by extract. Return true if the existing
226 /// instructions are cheaper than a vector alternative. Otherwise, return false
227 /// and if one of the extracts should be transformed to a shufflevector, set
228 /// \p ConvertToShuffle to that extract instruction.
229 bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0,
230                                           ExtractElementInst *Ext1,
231                                           unsigned Opcode,
232                                           ExtractElementInst *&ConvertToShuffle,
233                                           unsigned PreferredExtractIndex) {
234   assert(isa<ConstantInt>(Ext0->getOperand(1)) &&
235          isa<ConstantInt>(Ext1->getOperand(1)) &&
236          "Expected constant extract indexes");
237   Type *ScalarTy = Ext0->getType();
238   auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType());
239   int ScalarOpCost, VectorOpCost;
240 
241   // Get cost estimates for scalar and vector versions of the operation.
242   bool IsBinOp = Instruction::isBinaryOp(Opcode);
243   if (IsBinOp) {
244     ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
245     VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
246   } else {
247     assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
248            "Expected a compare");
249     ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy,
250                                           CmpInst::makeCmpResultType(ScalarTy));
251     VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy,
252                                           CmpInst::makeCmpResultType(VecTy));
253   }
254 
255   // Get cost estimates for the extract elements. These costs will factor into
256   // both sequences.
257   unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue();
258   unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue();
259 
260   int Extract0Cost =
261       TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index);
262   int Extract1Cost =
263       TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index);
264 
265   // A more expensive extract will always be replaced by a splat shuffle.
266   // For example, if Ext0 is more expensive:
267   // opcode (extelt V0, Ext0), (ext V1, Ext1) -->
268   // extelt (opcode (splat V0, Ext0), V1), Ext1
269   // TODO: Evaluate whether that always results in lowest cost. Alternatively,
270   //       check the cost of creating a broadcast shuffle and shuffling both
271   //       operands to element 0.
272   int CheapExtractCost = std::min(Extract0Cost, Extract1Cost);
273 
274   // Extra uses of the extracts mean that we include those costs in the
275   // vector total because those instructions will not be eliminated.
276   int OldCost, NewCost;
277   if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) {
278     // Handle a special case. If the 2 extracts are identical, adjust the
279     // formulas to account for that. The extra use charge allows for either the
280     // CSE'd pattern or an unoptimized form with identical values:
281     // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C
282     bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2)
283                                   : !Ext0->hasOneUse() || !Ext1->hasOneUse();
284     OldCost = CheapExtractCost + ScalarOpCost;
285     NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost;
286   } else {
287     // Handle the general case. Each extract is actually a different value:
288     // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C
289     OldCost = Extract0Cost + Extract1Cost + ScalarOpCost;
290     NewCost = VectorOpCost + CheapExtractCost +
291               !Ext0->hasOneUse() * Extract0Cost +
292               !Ext1->hasOneUse() * Extract1Cost;
293   }
294 
295   ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex);
296   if (ConvertToShuffle) {
297     if (IsBinOp && DisableBinopExtractShuffle)
298       return true;
299 
300     // If we are extracting from 2 different indexes, then one operand must be
301     // shuffled before performing the vector operation. The shuffle mask is
302     // undefined except for 1 lane that is being translated to the remaining
303     // extraction lane. Therefore, it is a splat shuffle. Ex:
304     // ShufMask = { undef, undef, 0, undef }
305     // TODO: The cost model has an option for a "broadcast" shuffle
306     //       (splat-from-element-0), but no option for a more general splat.
307     NewCost +=
308         TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
309   }
310 
311   // Aggressively form a vector op if the cost is equal because the transform
312   // may enable further optimization.
313   // Codegen can reverse this transform (scalarize) if it was not profitable.
314   return OldCost < NewCost;
315 }
316 
317 /// Create a shuffle that translates (shifts) 1 element from the input vector
318 /// to a new element location.
319 static Value *createShiftShuffle(Value *Vec, unsigned OldIndex,
320                                  unsigned NewIndex, IRBuilder<> &Builder) {
321   // The shuffle mask is undefined except for 1 lane that is being translated
322   // to the new element index. Example for OldIndex == 2 and NewIndex == 0:
323   // ShufMask = { 2, undef, undef, undef }
324   auto *VecTy = cast<FixedVectorType>(Vec->getType());
325   SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem);
326   ShufMask[NewIndex] = OldIndex;
327   return Builder.CreateShuffleVector(Vec, ShufMask, "shift");
328 }
329 
330 /// Given an extract element instruction with constant index operand, shuffle
331 /// the source vector (shift the scalar element) to a NewIndex for extraction.
332 /// Return null if the input can be constant folded, so that we are not creating
333 /// unnecessary instructions.
334 static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt,
335                                             unsigned NewIndex,
336                                             IRBuilder<> &Builder) {
337   // If the extract can be constant-folded, this code is unsimplified. Defer
338   // to other passes to handle that.
339   Value *X = ExtElt->getVectorOperand();
340   Value *C = ExtElt->getIndexOperand();
341   assert(isa<ConstantInt>(C) && "Expected a constant index operand");
342   if (isa<Constant>(X))
343     return nullptr;
344 
345   Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(),
346                                    NewIndex, Builder);
347   return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex));
348 }
349 
350 /// Try to reduce extract element costs by converting scalar compares to vector
351 /// compares followed by extract.
352 /// cmp (ext0 V0, C), (ext1 V1, C)
353 void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0,
354                                   ExtractElementInst *Ext1, Instruction &I) {
355   assert(isa<CmpInst>(&I) && "Expected a compare");
356   assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
357              cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
358          "Expected matching constant extract indexes");
359 
360   // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C
361   ++NumVecCmp;
362   CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate();
363   Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
364   Value *VecCmp = Builder.CreateCmp(Pred, V0, V1);
365   Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand());
366   replaceValue(I, *NewExt);
367 }
368 
369 /// Try to reduce extract element costs by converting scalar binops to vector
370 /// binops followed by extract.
371 /// bo (ext0 V0, C), (ext1 V1, C)
372 void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0,
373                                     ExtractElementInst *Ext1, Instruction &I) {
374   assert(isa<BinaryOperator>(&I) && "Expected a binary operator");
375   assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
376              cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
377          "Expected matching constant extract indexes");
378 
379   // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C
380   ++NumVecBO;
381   Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
382   Value *VecBO =
383       Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1);
384 
385   // All IR flags are safe to back-propagate because any potential poison
386   // created in unused vector elements is discarded by the extract.
387   if (auto *VecBOInst = dyn_cast<Instruction>(VecBO))
388     VecBOInst->copyIRFlags(&I);
389 
390   Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand());
391   replaceValue(I, *NewExt);
392 }
393 
394 /// Match an instruction with extracted vector operands.
395 bool VectorCombine::foldExtractExtract(Instruction &I) {
396   // It is not safe to transform things like div, urem, etc. because we may
397   // create undefined behavior when executing those on unknown vector elements.
398   if (!isSafeToSpeculativelyExecute(&I))
399     return false;
400 
401   Instruction *I0, *I1;
402   CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
403   if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) &&
404       !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1))))
405     return false;
406 
407   Value *V0, *V1;
408   uint64_t C0, C1;
409   if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) ||
410       !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) ||
411       V0->getType() != V1->getType())
412     return false;
413 
414   // If the scalar value 'I' is going to be re-inserted into a vector, then try
415   // to create an extract to that same element. The extract/insert can be
416   // reduced to a "select shuffle".
417   // TODO: If we add a larger pattern match that starts from an insert, this
418   //       probably becomes unnecessary.
419   auto *Ext0 = cast<ExtractElementInst>(I0);
420   auto *Ext1 = cast<ExtractElementInst>(I1);
421   uint64_t InsertIndex = InvalidIndex;
422   if (I.hasOneUse())
423     match(I.user_back(),
424           m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex)));
425 
426   ExtractElementInst *ExtractToChange;
427   if (isExtractExtractCheap(Ext0, Ext1, I.getOpcode(), ExtractToChange,
428                             InsertIndex))
429     return false;
430 
431   if (ExtractToChange) {
432     unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0;
433     ExtractElementInst *NewExtract =
434         translateExtract(ExtractToChange, CheapExtractIdx, Builder);
435     if (!NewExtract)
436       return false;
437     if (ExtractToChange == Ext0)
438       Ext0 = NewExtract;
439     else
440       Ext1 = NewExtract;
441   }
442 
443   if (Pred != CmpInst::BAD_ICMP_PREDICATE)
444     foldExtExtCmp(Ext0, Ext1, I);
445   else
446     foldExtExtBinop(Ext0, Ext1, I);
447 
448   return true;
449 }
450 
451 /// If this is a bitcast of a shuffle, try to bitcast the source vector to the
452 /// destination type followed by shuffle. This can enable further transforms by
453 /// moving bitcasts or shuffles together.
454 bool VectorCombine::foldBitcastShuf(Instruction &I) {
455   Value *V;
456   ArrayRef<int> Mask;
457   if (!match(&I, m_BitCast(
458                      m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))))))
459     return false;
460 
461   // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for
462   // scalable type is unknown; Second, we cannot reason if the narrowed shuffle
463   // mask for scalable type is a splat or not.
464   // 2) Disallow non-vector casts and length-changing shuffles.
465   // TODO: We could allow any shuffle.
466   auto *DestTy = dyn_cast<FixedVectorType>(I.getType());
467   auto *SrcTy = dyn_cast<FixedVectorType>(V->getType());
468   if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy)
469     return false;
470 
471   // The new shuffle must not cost more than the old shuffle. The bitcast is
472   // moved ahead of the shuffle, so assume that it has the same cost as before.
473   if (TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, DestTy) >
474       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy))
475     return false;
476 
477   unsigned DestNumElts = DestTy->getNumElements();
478   unsigned SrcNumElts = SrcTy->getNumElements();
479   SmallVector<int, 16> NewMask;
480   if (SrcNumElts <= DestNumElts) {
481     // The bitcast is from wide to narrow/equal elements. The shuffle mask can
482     // always be expanded to the equivalent form choosing narrower elements.
483     assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask");
484     unsigned ScaleFactor = DestNumElts / SrcNumElts;
485     narrowShuffleMaskElts(ScaleFactor, Mask, NewMask);
486   } else {
487     // The bitcast is from narrow elements to wide elements. The shuffle mask
488     // must choose consecutive elements to allow casting first.
489     assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask");
490     unsigned ScaleFactor = SrcNumElts / DestNumElts;
491     if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask))
492       return false;
493   }
494   // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC'
495   ++NumShufOfBitcast;
496   Value *CastV = Builder.CreateBitCast(V, DestTy);
497   Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask);
498   replaceValue(I, *Shuf);
499   return true;
500 }
501 
502 /// Match a vector binop or compare instruction with at least one inserted
503 /// scalar operand and convert to scalar binop/cmp followed by insertelement.
504 bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) {
505   CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
506   Value *Ins0, *Ins1;
507   if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) &&
508       !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1))))
509     return false;
510 
511   // Do not convert the vector condition of a vector select into a scalar
512   // condition. That may cause problems for codegen because of differences in
513   // boolean formats and register-file transfers.
514   // TODO: Can we account for that in the cost model?
515   bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE;
516   if (IsCmp)
517     for (User *U : I.users())
518       if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value())))
519         return false;
520 
521   // Match against one or both scalar values being inserted into constant
522   // vectors:
523   // vec_op VecC0, (inselt VecC1, V1, Index)
524   // vec_op (inselt VecC0, V0, Index), VecC1
525   // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index)
526   // TODO: Deal with mismatched index constants and variable indexes?
527   Constant *VecC0 = nullptr, *VecC1 = nullptr;
528   Value *V0 = nullptr, *V1 = nullptr;
529   uint64_t Index0 = 0, Index1 = 0;
530   if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0),
531                                m_ConstantInt(Index0))) &&
532       !match(Ins0, m_Constant(VecC0)))
533     return false;
534   if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1),
535                                m_ConstantInt(Index1))) &&
536       !match(Ins1, m_Constant(VecC1)))
537     return false;
538 
539   bool IsConst0 = !V0;
540   bool IsConst1 = !V1;
541   if (IsConst0 && IsConst1)
542     return false;
543   if (!IsConst0 && !IsConst1 && Index0 != Index1)
544     return false;
545 
546   // Bail for single insertion if it is a load.
547   // TODO: Handle this once getVectorInstrCost can cost for load/stores.
548   auto *I0 = dyn_cast_or_null<Instruction>(V0);
549   auto *I1 = dyn_cast_or_null<Instruction>(V1);
550   if ((IsConst0 && I1 && I1->mayReadFromMemory()) ||
551       (IsConst1 && I0 && I0->mayReadFromMemory()))
552     return false;
553 
554   uint64_t Index = IsConst0 ? Index1 : Index0;
555   Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType();
556   Type *VecTy = I.getType();
557   assert(VecTy->isVectorTy() &&
558          (IsConst0 || IsConst1 || V0->getType() == V1->getType()) &&
559          (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() ||
560           ScalarTy->isPointerTy()) &&
561          "Unexpected types for insert element into binop or cmp");
562 
563   unsigned Opcode = I.getOpcode();
564   int ScalarOpCost, VectorOpCost;
565   if (IsCmp) {
566     ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy);
567     VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy);
568   } else {
569     ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
570     VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
571   }
572 
573   // Get cost estimate for the insert element. This cost will factor into
574   // both sequences.
575   int InsertCost =
576       TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index);
577   int OldCost = (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) +
578                 VectorOpCost;
579   int NewCost = ScalarOpCost + InsertCost +
580                 (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) +
581                 (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost);
582 
583   // We want to scalarize unless the vector variant actually has lower cost.
584   if (OldCost < NewCost)
585     return false;
586 
587   // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) -->
588   // inselt NewVecC, (scalar_op V0, V1), Index
589   if (IsCmp)
590     ++NumScalarCmp;
591   else
592     ++NumScalarBO;
593 
594   // For constant cases, extract the scalar element, this should constant fold.
595   if (IsConst0)
596     V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index));
597   if (IsConst1)
598     V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index));
599 
600   Value *Scalar =
601       IsCmp ? Builder.CreateCmp(Pred, V0, V1)
602             : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1);
603 
604   Scalar->setName(I.getName() + ".scalar");
605 
606   // All IR flags are safe to back-propagate. There is no potential for extra
607   // poison to be created by the scalar instruction.
608   if (auto *ScalarInst = dyn_cast<Instruction>(Scalar))
609     ScalarInst->copyIRFlags(&I);
610 
611   // Fold the vector constants in the original vectors into a new base vector.
612   Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1)
613                             : ConstantExpr::get(Opcode, VecC0, VecC1);
614   Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index);
615   replaceValue(I, *Insert);
616   return true;
617 }
618 
619 /// Try to combine a scalar binop + 2 scalar compares of extracted elements of
620 /// a vector into vector operations followed by extract. Note: The SLP pass
621 /// may miss this pattern because of implementation problems.
622 bool VectorCombine::foldExtractedCmps(Instruction &I) {
623   // We are looking for a scalar binop of booleans.
624   // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1)
625   if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1))
626     return false;
627 
628   // The compare predicates should match, and each compare should have a
629   // constant operand.
630   // TODO: Relax the one-use constraints.
631   Value *B0 = I.getOperand(0), *B1 = I.getOperand(1);
632   Instruction *I0, *I1;
633   Constant *C0, *C1;
634   CmpInst::Predicate P0, P1;
635   if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) ||
636       !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) ||
637       P0 != P1)
638     return false;
639 
640   // The compare operands must be extracts of the same vector with constant
641   // extract indexes.
642   // TODO: Relax the one-use constraints.
643   Value *X;
644   uint64_t Index0, Index1;
645   if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) ||
646       !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1)))))
647     return false;
648 
649   auto *Ext0 = cast<ExtractElementInst>(I0);
650   auto *Ext1 = cast<ExtractElementInst>(I1);
651   ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1);
652   if (!ConvertToShuf)
653     return false;
654 
655   // The original scalar pattern is:
656   // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1)
657   CmpInst::Predicate Pred = P0;
658   unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp
659                                                     : Instruction::ICmp;
660   auto *VecTy = dyn_cast<FixedVectorType>(X->getType());
661   if (!VecTy)
662     return false;
663 
664   int OldCost = TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
665   OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);
666   OldCost += TTI.getCmpSelInstrCost(CmpOpcode, I0->getType()) * 2;
667   OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType());
668 
669   // The proposed vector pattern is:
670   // vcmp = cmp Pred X, VecC
671   // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0
672   int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0;
673   int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1;
674   auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType()));
675   int NewCost = TTI.getCmpSelInstrCost(CmpOpcode, X->getType());
676   NewCost +=
677       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy);
678   NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy);
679   NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex);
680 
681   // Aggressively form vector ops if the cost is equal because the transform
682   // may enable further optimization.
683   // Codegen can reverse this transform (scalarize) if it was not profitable.
684   if (OldCost < NewCost)
685     return false;
686 
687   // Create a vector constant from the 2 scalar constants.
688   SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(),
689                                    UndefValue::get(VecTy->getElementType()));
690   CmpC[Index0] = C0;
691   CmpC[Index1] = C1;
692   Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC));
693 
694   Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder);
695   Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
696                                         VCmp, Shuf);
697   Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex);
698   replaceValue(I, *NewExt);
699   ++NumVecCmpBO;
700   return true;
701 }
702 
703 /// This is the entry point for all transforms. Pass manager differences are
704 /// handled in the callers of this function.
705 bool VectorCombine::run() {
706   if (DisableVectorCombine)
707     return false;
708 
709   // Don't attempt vectorization if the target does not support vectors.
710   if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true)))
711     return false;
712 
713   bool MadeChange = false;
714   for (BasicBlock &BB : F) {
715     // Ignore unreachable basic blocks.
716     if (!DT.isReachableFromEntry(&BB))
717       continue;
718     // Do not delete instructions under here and invalidate the iterator.
719     // Walk the block forwards to enable simple iterative chains of transforms.
720     // TODO: It could be more efficient to remove dead instructions
721     //       iteratively in this loop rather than waiting until the end.
722     for (Instruction &I : BB) {
723       if (isa<DbgInfoIntrinsic>(I))
724         continue;
725       Builder.SetInsertPoint(&I);
726       MadeChange |= vectorizeLoadInsert(I);
727       MadeChange |= foldExtractExtract(I);
728       MadeChange |= foldBitcastShuf(I);
729       MadeChange |= scalarizeBinopOrCmp(I);
730       MadeChange |= foldExtractedCmps(I);
731     }
732   }
733 
734   // We're done with transforms, so remove dead instructions.
735   if (MadeChange)
736     for (BasicBlock &BB : F)
737       SimplifyInstructionsInBlock(&BB);
738 
739   return MadeChange;
740 }
741 
742 // Pass manager boilerplate below here.
743 
744 namespace {
745 class VectorCombineLegacyPass : public FunctionPass {
746 public:
747   static char ID;
748   VectorCombineLegacyPass() : FunctionPass(ID) {
749     initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry());
750   }
751 
752   void getAnalysisUsage(AnalysisUsage &AU) const override {
753     AU.addRequired<DominatorTreeWrapperPass>();
754     AU.addRequired<TargetTransformInfoWrapperPass>();
755     AU.setPreservesCFG();
756     AU.addPreserved<DominatorTreeWrapperPass>();
757     AU.addPreserved<GlobalsAAWrapperPass>();
758     AU.addPreserved<AAResultsWrapperPass>();
759     AU.addPreserved<BasicAAWrapperPass>();
760     FunctionPass::getAnalysisUsage(AU);
761   }
762 
763   bool runOnFunction(Function &F) override {
764     if (skipFunction(F))
765       return false;
766     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
767     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
768     VectorCombine Combiner(F, TTI, DT);
769     return Combiner.run();
770   }
771 };
772 } // namespace
773 
774 char VectorCombineLegacyPass::ID = 0;
775 INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine",
776                       "Optimize scalar/vector ops", false,
777                       false)
778 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
779 INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine",
780                     "Optimize scalar/vector ops", false, false)
781 Pass *llvm::createVectorCombinePass() {
782   return new VectorCombineLegacyPass();
783 }
784 
785 PreservedAnalyses VectorCombinePass::run(Function &F,
786                                          FunctionAnalysisManager &FAM) {
787   TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
788   DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
789   VectorCombine Combiner(F, TTI, DT);
790   if (!Combiner.run())
791     return PreservedAnalyses::all();
792   PreservedAnalyses PA;
793   PA.preserveSet<CFGAnalyses>();
794   PA.preserve<GlobalsAA>();
795   PA.preserve<AAManager>();
796   PA.preserve<BasicAA>();
797   return PA;
798 }
799