1 //===------- VectorCombine.cpp - Optimize partial vector operations -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass optimizes scalar/vector interactions using target cost models. The
10 // transforms implemented here may not fit in traditional loop-based or SLP
11 // vectorization passes.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Vectorize/VectorCombine.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/BasicAliasAnalysis.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/Analysis/VectorUtils.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/InitializePasses.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 #include "llvm/Transforms/Vectorize.h"
32 
33 using namespace llvm;
34 using namespace llvm::PatternMatch;
35 
36 #define DEBUG_TYPE "vector-combine"
37 STATISTIC(NumVecLoad, "Number of vector loads formed");
38 STATISTIC(NumVecCmp, "Number of vector compares formed");
39 STATISTIC(NumVecBO, "Number of vector binops formed");
40 STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed");
41 STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast");
42 STATISTIC(NumScalarBO, "Number of scalar binops formed");
43 STATISTIC(NumScalarCmp, "Number of scalar compares formed");
44 
45 static cl::opt<bool> DisableVectorCombine(
46     "disable-vector-combine", cl::init(false), cl::Hidden,
47     cl::desc("Disable all vector combine transforms"));
48 
49 static cl::opt<bool> DisableBinopExtractShuffle(
50     "disable-binop-extract-shuffle", cl::init(false), cl::Hidden,
51     cl::desc("Disable binop extract to shuffle transforms"));
52 
53 static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max();
54 
55 namespace {
56 class VectorCombine {
57 public:
58   VectorCombine(Function &F, const TargetTransformInfo &TTI,
59                 const DominatorTree &DT)
60       : F(F), Builder(F.getContext()), TTI(TTI), DT(DT) {}
61 
62   bool run();
63 
64 private:
65   Function &F;
66   IRBuilder<> Builder;
67   const TargetTransformInfo &TTI;
68   const DominatorTree &DT;
69 
70   bool vectorizeLoadInsert(Instruction &I);
71   ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0,
72                                         ExtractElementInst *Ext1,
73                                         unsigned PreferredExtractIndex) const;
74   bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
75                              unsigned Opcode,
76                              ExtractElementInst *&ConvertToShuffle,
77                              unsigned PreferredExtractIndex);
78   void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
79                      Instruction &I);
80   void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
81                        Instruction &I);
82   bool foldExtractExtract(Instruction &I);
83   bool foldBitcastShuf(Instruction &I);
84   bool scalarizeBinopOrCmp(Instruction &I);
85   bool foldExtractedCmps(Instruction &I);
86 };
87 } // namespace
88 
89 static void replaceValue(Value &Old, Value &New) {
90   Old.replaceAllUsesWith(&New);
91   New.takeName(&Old);
92 }
93 
94 bool VectorCombine::vectorizeLoadInsert(Instruction &I) {
95   // Match insert into fixed vector of scalar value.
96   // TODO: Handle non-zero insert index.
97   auto *Ty = dyn_cast<FixedVectorType>(I.getType());
98   Value *Scalar;
99   if (!Ty || !match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) ||
100       !Scalar->hasOneUse())
101     return false;
102 
103   // Optionally match an extract from another vector.
104   Value *X;
105   bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt()));
106   if (!HasExtract)
107     X = Scalar;
108 
109   // Match source value as load of scalar or vector.
110   // Do not vectorize scalar load (widening) if atomic/volatile or under
111   // asan/hwasan/memtag/tsan. The widened load may load data from dirty regions
112   // or create data races non-existent in the source.
113   auto *Load = dyn_cast<LoadInst>(X);
114   if (!Load || !Load->isSimple() || !Load->hasOneUse() ||
115       Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) ||
116       mustSuppressSpeculation(*Load))
117     return false;
118 
119   const DataLayout &DL = I.getModule()->getDataLayout();
120   Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts();
121   assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type");
122 
123   // If original AS != Load's AS, we can't bitcast the original pointer and have
124   // to use Load's operand instead. Ideally we would want to strip pointer casts
125   // without changing AS, but there's no API to do that ATM.
126   unsigned AS = Load->getPointerAddressSpace();
127   if (AS != SrcPtr->getType()->getPointerAddressSpace())
128     SrcPtr = Load->getPointerOperand();
129 
130   // We are potentially transforming byte-sized (8-bit) memory accesses, so make
131   // sure we have all of our type-based constraints in place for this target.
132   Type *ScalarTy = Scalar->getType();
133   uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
134   unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
135   if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 ||
136       ScalarSize % 8 != 0)
137     return false;
138 
139   // Check safety of replacing the scalar load with a larger vector load.
140   // We use minimal alignment (maximum flexibility) because we only care about
141   // the dereferenceable region. When calculating cost and creating a new op,
142   // we may use a larger value based on alignment attributes.
143   unsigned MinVecNumElts = MinVectorSize / ScalarSize;
144   auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false);
145   unsigned OffsetEltIndex = 0;
146   Align Alignment = Load->getAlign();
147   if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) {
148     // It is not safe to load directly from the pointer, but we can still peek
149     // through gep offsets and check if it safe to load from a base address with
150     // updated alignment. If it is, we can shuffle the element(s) into place
151     // after loading.
152     unsigned OffsetBitWidth = DL.getIndexTypeSizeInBits(SrcPtr->getType());
153     APInt Offset(OffsetBitWidth, 0);
154     SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
155 
156     // We want to shuffle the result down from a high element of a vector, so
157     // the offset must be positive.
158     if (Offset.isNegative())
159       return false;
160 
161     // The offset must be a multiple of the scalar element to shuffle cleanly
162     // in the element's size.
163     uint64_t ScalarSizeInBytes = ScalarSize / 8;
164     if (Offset.urem(ScalarSizeInBytes) != 0)
165       return false;
166 
167     // If we load MinVecNumElts, will our target element still be loaded?
168     OffsetEltIndex = Offset.udiv(ScalarSizeInBytes).getZExtValue();
169     if (OffsetEltIndex >= MinVecNumElts)
170       return false;
171 
172     if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT))
173       return false;
174 
175     // Update alignment with offset value. Note that the offset could be negated
176     // to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but
177     // negation does not change the result of the alignment calculation.
178     Alignment = commonAlignment(Alignment, Offset.getZExtValue());
179   }
180 
181   // Original pattern: insertelt undef, load [free casts of] PtrOp, 0
182   // Use the greater of the alignment on the load or its source pointer.
183   Alignment = std::max(SrcPtr->getPointerAlignment(DL), Alignment);
184   Type *LoadTy = Load->getType();
185   int OldCost = TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS);
186   APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0);
187   OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts,
188                                           /* Insert */ true, HasExtract);
189 
190   // New pattern: load VecPtr
191   int NewCost = TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS);
192   // Optionally, we are shuffling the loaded vector element(s) into place.
193   if (OffsetEltIndex)
194     NewCost += TTI.getShuffleCost(TTI::SK_PermuteSingleSrc, MinVecTy);
195 
196   // We can aggressively convert to the vector form because the backend can
197   // invert this transform if it does not result in a performance win.
198   if (OldCost < NewCost)
199     return false;
200 
201   // It is safe and potentially profitable to load a vector directly:
202   // inselt undef, load Scalar, 0 --> load VecPtr
203   IRBuilder<> Builder(Load);
204   Value *CastedPtr = Builder.CreateBitCast(SrcPtr, MinVecTy->getPointerTo(AS));
205   Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment);
206 
207   // Set everything but element 0 to undef to prevent poison from propagating
208   // from the extra loaded memory. This will also optionally shrink/grow the
209   // vector from the loaded size to the output size.
210   // We assume this operation has no cost in codegen if there was no offset.
211   // Note that we could use freeze to avoid poison problems, but then we might
212   // still need a shuffle to change the vector size.
213   unsigned OutputNumElts = Ty->getNumElements();
214   SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem);
215   assert(OffsetEltIndex < MinVecNumElts && "Address offset too big");
216   Mask[0] = OffsetEltIndex;
217   VecLd = Builder.CreateShuffleVector(VecLd, Mask);
218 
219   replaceValue(I, *VecLd);
220   ++NumVecLoad;
221   return true;
222 }
223 
224 /// Determine which, if any, of the inputs should be replaced by a shuffle
225 /// followed by extract from a different index.
226 ExtractElementInst *VectorCombine::getShuffleExtract(
227     ExtractElementInst *Ext0, ExtractElementInst *Ext1,
228     unsigned PreferredExtractIndex = InvalidIndex) const {
229   assert(isa<ConstantInt>(Ext0->getIndexOperand()) &&
230          isa<ConstantInt>(Ext1->getIndexOperand()) &&
231          "Expected constant extract indexes");
232 
233   unsigned Index0 = cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue();
234   unsigned Index1 = cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue();
235 
236   // If the extract indexes are identical, no shuffle is needed.
237   if (Index0 == Index1)
238     return nullptr;
239 
240   Type *VecTy = Ext0->getVectorOperand()->getType();
241   assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types");
242   int Cost0 = TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
243   int Cost1 = TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);
244 
245   // We are extracting from 2 different indexes, so one operand must be shuffled
246   // before performing a vector operation and/or extract. The more expensive
247   // extract will be replaced by a shuffle.
248   if (Cost0 > Cost1)
249     return Ext0;
250   if (Cost1 > Cost0)
251     return Ext1;
252 
253   // If the costs are equal and there is a preferred extract index, shuffle the
254   // opposite operand.
255   if (PreferredExtractIndex == Index0)
256     return Ext1;
257   if (PreferredExtractIndex == Index1)
258     return Ext0;
259 
260   // Otherwise, replace the extract with the higher index.
261   return Index0 > Index1 ? Ext0 : Ext1;
262 }
263 
264 /// Compare the relative costs of 2 extracts followed by scalar operation vs.
265 /// vector operation(s) followed by extract. Return true if the existing
266 /// instructions are cheaper than a vector alternative. Otherwise, return false
267 /// and if one of the extracts should be transformed to a shufflevector, set
268 /// \p ConvertToShuffle to that extract instruction.
269 bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0,
270                                           ExtractElementInst *Ext1,
271                                           unsigned Opcode,
272                                           ExtractElementInst *&ConvertToShuffle,
273                                           unsigned PreferredExtractIndex) {
274   assert(isa<ConstantInt>(Ext0->getOperand(1)) &&
275          isa<ConstantInt>(Ext1->getOperand(1)) &&
276          "Expected constant extract indexes");
277   Type *ScalarTy = Ext0->getType();
278   auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType());
279   int ScalarOpCost, VectorOpCost;
280 
281   // Get cost estimates for scalar and vector versions of the operation.
282   bool IsBinOp = Instruction::isBinaryOp(Opcode);
283   if (IsBinOp) {
284     ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
285     VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
286   } else {
287     assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
288            "Expected a compare");
289     ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy,
290                                           CmpInst::makeCmpResultType(ScalarTy));
291     VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy,
292                                           CmpInst::makeCmpResultType(VecTy));
293   }
294 
295   // Get cost estimates for the extract elements. These costs will factor into
296   // both sequences.
297   unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue();
298   unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue();
299 
300   int Extract0Cost =
301       TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index);
302   int Extract1Cost =
303       TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index);
304 
305   // A more expensive extract will always be replaced by a splat shuffle.
306   // For example, if Ext0 is more expensive:
307   // opcode (extelt V0, Ext0), (ext V1, Ext1) -->
308   // extelt (opcode (splat V0, Ext0), V1), Ext1
309   // TODO: Evaluate whether that always results in lowest cost. Alternatively,
310   //       check the cost of creating a broadcast shuffle and shuffling both
311   //       operands to element 0.
312   int CheapExtractCost = std::min(Extract0Cost, Extract1Cost);
313 
314   // Extra uses of the extracts mean that we include those costs in the
315   // vector total because those instructions will not be eliminated.
316   int OldCost, NewCost;
317   if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) {
318     // Handle a special case. If the 2 extracts are identical, adjust the
319     // formulas to account for that. The extra use charge allows for either the
320     // CSE'd pattern or an unoptimized form with identical values:
321     // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C
322     bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2)
323                                   : !Ext0->hasOneUse() || !Ext1->hasOneUse();
324     OldCost = CheapExtractCost + ScalarOpCost;
325     NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost;
326   } else {
327     // Handle the general case. Each extract is actually a different value:
328     // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C
329     OldCost = Extract0Cost + Extract1Cost + ScalarOpCost;
330     NewCost = VectorOpCost + CheapExtractCost +
331               !Ext0->hasOneUse() * Extract0Cost +
332               !Ext1->hasOneUse() * Extract1Cost;
333   }
334 
335   ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex);
336   if (ConvertToShuffle) {
337     if (IsBinOp && DisableBinopExtractShuffle)
338       return true;
339 
340     // If we are extracting from 2 different indexes, then one operand must be
341     // shuffled before performing the vector operation. The shuffle mask is
342     // undefined except for 1 lane that is being translated to the remaining
343     // extraction lane. Therefore, it is a splat shuffle. Ex:
344     // ShufMask = { undef, undef, 0, undef }
345     // TODO: The cost model has an option for a "broadcast" shuffle
346     //       (splat-from-element-0), but no option for a more general splat.
347     NewCost +=
348         TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
349   }
350 
351   // Aggressively form a vector op if the cost is equal because the transform
352   // may enable further optimization.
353   // Codegen can reverse this transform (scalarize) if it was not profitable.
354   return OldCost < NewCost;
355 }
356 
357 /// Create a shuffle that translates (shifts) 1 element from the input vector
358 /// to a new element location.
359 static Value *createShiftShuffle(Value *Vec, unsigned OldIndex,
360                                  unsigned NewIndex, IRBuilder<> &Builder) {
361   // The shuffle mask is undefined except for 1 lane that is being translated
362   // to the new element index. Example for OldIndex == 2 and NewIndex == 0:
363   // ShufMask = { 2, undef, undef, undef }
364   auto *VecTy = cast<FixedVectorType>(Vec->getType());
365   SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem);
366   ShufMask[NewIndex] = OldIndex;
367   return Builder.CreateShuffleVector(Vec, ShufMask, "shift");
368 }
369 
370 /// Given an extract element instruction with constant index operand, shuffle
371 /// the source vector (shift the scalar element) to a NewIndex for extraction.
372 /// Return null if the input can be constant folded, so that we are not creating
373 /// unnecessary instructions.
374 static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt,
375                                             unsigned NewIndex,
376                                             IRBuilder<> &Builder) {
377   // If the extract can be constant-folded, this code is unsimplified. Defer
378   // to other passes to handle that.
379   Value *X = ExtElt->getVectorOperand();
380   Value *C = ExtElt->getIndexOperand();
381   assert(isa<ConstantInt>(C) && "Expected a constant index operand");
382   if (isa<Constant>(X))
383     return nullptr;
384 
385   Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(),
386                                    NewIndex, Builder);
387   return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex));
388 }
389 
390 /// Try to reduce extract element costs by converting scalar compares to vector
391 /// compares followed by extract.
392 /// cmp (ext0 V0, C), (ext1 V1, C)
393 void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0,
394                                   ExtractElementInst *Ext1, Instruction &I) {
395   assert(isa<CmpInst>(&I) && "Expected a compare");
396   assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
397              cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
398          "Expected matching constant extract indexes");
399 
400   // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C
401   ++NumVecCmp;
402   CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate();
403   Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
404   Value *VecCmp = Builder.CreateCmp(Pred, V0, V1);
405   Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand());
406   replaceValue(I, *NewExt);
407 }
408 
409 /// Try to reduce extract element costs by converting scalar binops to vector
410 /// binops followed by extract.
411 /// bo (ext0 V0, C), (ext1 V1, C)
412 void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0,
413                                     ExtractElementInst *Ext1, Instruction &I) {
414   assert(isa<BinaryOperator>(&I) && "Expected a binary operator");
415   assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
416              cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
417          "Expected matching constant extract indexes");
418 
419   // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C
420   ++NumVecBO;
421   Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
422   Value *VecBO =
423       Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1);
424 
425   // All IR flags are safe to back-propagate because any potential poison
426   // created in unused vector elements is discarded by the extract.
427   if (auto *VecBOInst = dyn_cast<Instruction>(VecBO))
428     VecBOInst->copyIRFlags(&I);
429 
430   Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand());
431   replaceValue(I, *NewExt);
432 }
433 
434 /// Match an instruction with extracted vector operands.
435 bool VectorCombine::foldExtractExtract(Instruction &I) {
436   // It is not safe to transform things like div, urem, etc. because we may
437   // create undefined behavior when executing those on unknown vector elements.
438   if (!isSafeToSpeculativelyExecute(&I))
439     return false;
440 
441   Instruction *I0, *I1;
442   CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
443   if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) &&
444       !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1))))
445     return false;
446 
447   Value *V0, *V1;
448   uint64_t C0, C1;
449   if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) ||
450       !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) ||
451       V0->getType() != V1->getType())
452     return false;
453 
454   // If the scalar value 'I' is going to be re-inserted into a vector, then try
455   // to create an extract to that same element. The extract/insert can be
456   // reduced to a "select shuffle".
457   // TODO: If we add a larger pattern match that starts from an insert, this
458   //       probably becomes unnecessary.
459   auto *Ext0 = cast<ExtractElementInst>(I0);
460   auto *Ext1 = cast<ExtractElementInst>(I1);
461   uint64_t InsertIndex = InvalidIndex;
462   if (I.hasOneUse())
463     match(I.user_back(),
464           m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex)));
465 
466   ExtractElementInst *ExtractToChange;
467   if (isExtractExtractCheap(Ext0, Ext1, I.getOpcode(), ExtractToChange,
468                             InsertIndex))
469     return false;
470 
471   if (ExtractToChange) {
472     unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0;
473     ExtractElementInst *NewExtract =
474         translateExtract(ExtractToChange, CheapExtractIdx, Builder);
475     if (!NewExtract)
476       return false;
477     if (ExtractToChange == Ext0)
478       Ext0 = NewExtract;
479     else
480       Ext1 = NewExtract;
481   }
482 
483   if (Pred != CmpInst::BAD_ICMP_PREDICATE)
484     foldExtExtCmp(Ext0, Ext1, I);
485   else
486     foldExtExtBinop(Ext0, Ext1, I);
487 
488   return true;
489 }
490 
491 /// If this is a bitcast of a shuffle, try to bitcast the source vector to the
492 /// destination type followed by shuffle. This can enable further transforms by
493 /// moving bitcasts or shuffles together.
494 bool VectorCombine::foldBitcastShuf(Instruction &I) {
495   Value *V;
496   ArrayRef<int> Mask;
497   if (!match(&I, m_BitCast(
498                      m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))))))
499     return false;
500 
501   // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for
502   // scalable type is unknown; Second, we cannot reason if the narrowed shuffle
503   // mask for scalable type is a splat or not.
504   // 2) Disallow non-vector casts and length-changing shuffles.
505   // TODO: We could allow any shuffle.
506   auto *DestTy = dyn_cast<FixedVectorType>(I.getType());
507   auto *SrcTy = dyn_cast<FixedVectorType>(V->getType());
508   if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy)
509     return false;
510 
511   // The new shuffle must not cost more than the old shuffle. The bitcast is
512   // moved ahead of the shuffle, so assume that it has the same cost as before.
513   if (TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, DestTy) >
514       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy))
515     return false;
516 
517   unsigned DestNumElts = DestTy->getNumElements();
518   unsigned SrcNumElts = SrcTy->getNumElements();
519   SmallVector<int, 16> NewMask;
520   if (SrcNumElts <= DestNumElts) {
521     // The bitcast is from wide to narrow/equal elements. The shuffle mask can
522     // always be expanded to the equivalent form choosing narrower elements.
523     assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask");
524     unsigned ScaleFactor = DestNumElts / SrcNumElts;
525     narrowShuffleMaskElts(ScaleFactor, Mask, NewMask);
526   } else {
527     // The bitcast is from narrow elements to wide elements. The shuffle mask
528     // must choose consecutive elements to allow casting first.
529     assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask");
530     unsigned ScaleFactor = SrcNumElts / DestNumElts;
531     if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask))
532       return false;
533   }
534   // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC'
535   ++NumShufOfBitcast;
536   Value *CastV = Builder.CreateBitCast(V, DestTy);
537   Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask);
538   replaceValue(I, *Shuf);
539   return true;
540 }
541 
542 /// Match a vector binop or compare instruction with at least one inserted
543 /// scalar operand and convert to scalar binop/cmp followed by insertelement.
544 bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) {
545   CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
546   Value *Ins0, *Ins1;
547   if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) &&
548       !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1))))
549     return false;
550 
551   // Do not convert the vector condition of a vector select into a scalar
552   // condition. That may cause problems for codegen because of differences in
553   // boolean formats and register-file transfers.
554   // TODO: Can we account for that in the cost model?
555   bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE;
556   if (IsCmp)
557     for (User *U : I.users())
558       if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value())))
559         return false;
560 
561   // Match against one or both scalar values being inserted into constant
562   // vectors:
563   // vec_op VecC0, (inselt VecC1, V1, Index)
564   // vec_op (inselt VecC0, V0, Index), VecC1
565   // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index)
566   // TODO: Deal with mismatched index constants and variable indexes?
567   Constant *VecC0 = nullptr, *VecC1 = nullptr;
568   Value *V0 = nullptr, *V1 = nullptr;
569   uint64_t Index0 = 0, Index1 = 0;
570   if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0),
571                                m_ConstantInt(Index0))) &&
572       !match(Ins0, m_Constant(VecC0)))
573     return false;
574   if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1),
575                                m_ConstantInt(Index1))) &&
576       !match(Ins1, m_Constant(VecC1)))
577     return false;
578 
579   bool IsConst0 = !V0;
580   bool IsConst1 = !V1;
581   if (IsConst0 && IsConst1)
582     return false;
583   if (!IsConst0 && !IsConst1 && Index0 != Index1)
584     return false;
585 
586   // Bail for single insertion if it is a load.
587   // TODO: Handle this once getVectorInstrCost can cost for load/stores.
588   auto *I0 = dyn_cast_or_null<Instruction>(V0);
589   auto *I1 = dyn_cast_or_null<Instruction>(V1);
590   if ((IsConst0 && I1 && I1->mayReadFromMemory()) ||
591       (IsConst1 && I0 && I0->mayReadFromMemory()))
592     return false;
593 
594   uint64_t Index = IsConst0 ? Index1 : Index0;
595   Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType();
596   Type *VecTy = I.getType();
597   assert(VecTy->isVectorTy() &&
598          (IsConst0 || IsConst1 || V0->getType() == V1->getType()) &&
599          (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() ||
600           ScalarTy->isPointerTy()) &&
601          "Unexpected types for insert element into binop or cmp");
602 
603   unsigned Opcode = I.getOpcode();
604   int ScalarOpCost, VectorOpCost;
605   if (IsCmp) {
606     ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy);
607     VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy);
608   } else {
609     ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
610     VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
611   }
612 
613   // Get cost estimate for the insert element. This cost will factor into
614   // both sequences.
615   int InsertCost =
616       TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index);
617   int OldCost = (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) +
618                 VectorOpCost;
619   int NewCost = ScalarOpCost + InsertCost +
620                 (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) +
621                 (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost);
622 
623   // We want to scalarize unless the vector variant actually has lower cost.
624   if (OldCost < NewCost)
625     return false;
626 
627   // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) -->
628   // inselt NewVecC, (scalar_op V0, V1), Index
629   if (IsCmp)
630     ++NumScalarCmp;
631   else
632     ++NumScalarBO;
633 
634   // For constant cases, extract the scalar element, this should constant fold.
635   if (IsConst0)
636     V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index));
637   if (IsConst1)
638     V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index));
639 
640   Value *Scalar =
641       IsCmp ? Builder.CreateCmp(Pred, V0, V1)
642             : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1);
643 
644   Scalar->setName(I.getName() + ".scalar");
645 
646   // All IR flags are safe to back-propagate. There is no potential for extra
647   // poison to be created by the scalar instruction.
648   if (auto *ScalarInst = dyn_cast<Instruction>(Scalar))
649     ScalarInst->copyIRFlags(&I);
650 
651   // Fold the vector constants in the original vectors into a new base vector.
652   Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1)
653                             : ConstantExpr::get(Opcode, VecC0, VecC1);
654   Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index);
655   replaceValue(I, *Insert);
656   return true;
657 }
658 
659 /// Try to combine a scalar binop + 2 scalar compares of extracted elements of
660 /// a vector into vector operations followed by extract. Note: The SLP pass
661 /// may miss this pattern because of implementation problems.
662 bool VectorCombine::foldExtractedCmps(Instruction &I) {
663   // We are looking for a scalar binop of booleans.
664   // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1)
665   if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1))
666     return false;
667 
668   // The compare predicates should match, and each compare should have a
669   // constant operand.
670   // TODO: Relax the one-use constraints.
671   Value *B0 = I.getOperand(0), *B1 = I.getOperand(1);
672   Instruction *I0, *I1;
673   Constant *C0, *C1;
674   CmpInst::Predicate P0, P1;
675   if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) ||
676       !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) ||
677       P0 != P1)
678     return false;
679 
680   // The compare operands must be extracts of the same vector with constant
681   // extract indexes.
682   // TODO: Relax the one-use constraints.
683   Value *X;
684   uint64_t Index0, Index1;
685   if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) ||
686       !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1)))))
687     return false;
688 
689   auto *Ext0 = cast<ExtractElementInst>(I0);
690   auto *Ext1 = cast<ExtractElementInst>(I1);
691   ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1);
692   if (!ConvertToShuf)
693     return false;
694 
695   // The original scalar pattern is:
696   // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1)
697   CmpInst::Predicate Pred = P0;
698   unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp
699                                                     : Instruction::ICmp;
700   auto *VecTy = dyn_cast<FixedVectorType>(X->getType());
701   if (!VecTy)
702     return false;
703 
704   int OldCost = TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
705   OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);
706   OldCost += TTI.getCmpSelInstrCost(CmpOpcode, I0->getType()) * 2;
707   OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType());
708 
709   // The proposed vector pattern is:
710   // vcmp = cmp Pred X, VecC
711   // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0
712   int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0;
713   int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1;
714   auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType()));
715   int NewCost = TTI.getCmpSelInstrCost(CmpOpcode, X->getType());
716   NewCost +=
717       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy);
718   NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy);
719   NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex);
720 
721   // Aggressively form vector ops if the cost is equal because the transform
722   // may enable further optimization.
723   // Codegen can reverse this transform (scalarize) if it was not profitable.
724   if (OldCost < NewCost)
725     return false;
726 
727   // Create a vector constant from the 2 scalar constants.
728   SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(),
729                                    UndefValue::get(VecTy->getElementType()));
730   CmpC[Index0] = C0;
731   CmpC[Index1] = C1;
732   Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC));
733 
734   Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder);
735   Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
736                                         VCmp, Shuf);
737   Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex);
738   replaceValue(I, *NewExt);
739   ++NumVecCmpBO;
740   return true;
741 }
742 
743 /// This is the entry point for all transforms. Pass manager differences are
744 /// handled in the callers of this function.
745 bool VectorCombine::run() {
746   if (DisableVectorCombine)
747     return false;
748 
749   // Don't attempt vectorization if the target does not support vectors.
750   if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true)))
751     return false;
752 
753   bool MadeChange = false;
754   for (BasicBlock &BB : F) {
755     // Ignore unreachable basic blocks.
756     if (!DT.isReachableFromEntry(&BB))
757       continue;
758     // Do not delete instructions under here and invalidate the iterator.
759     // Walk the block forwards to enable simple iterative chains of transforms.
760     // TODO: It could be more efficient to remove dead instructions
761     //       iteratively in this loop rather than waiting until the end.
762     for (Instruction &I : BB) {
763       if (isa<DbgInfoIntrinsic>(I))
764         continue;
765       Builder.SetInsertPoint(&I);
766       MadeChange |= vectorizeLoadInsert(I);
767       MadeChange |= foldExtractExtract(I);
768       MadeChange |= foldBitcastShuf(I);
769       MadeChange |= scalarizeBinopOrCmp(I);
770       MadeChange |= foldExtractedCmps(I);
771     }
772   }
773 
774   // We're done with transforms, so remove dead instructions.
775   if (MadeChange)
776     for (BasicBlock &BB : F)
777       SimplifyInstructionsInBlock(&BB);
778 
779   return MadeChange;
780 }
781 
782 // Pass manager boilerplate below here.
783 
784 namespace {
785 class VectorCombineLegacyPass : public FunctionPass {
786 public:
787   static char ID;
788   VectorCombineLegacyPass() : FunctionPass(ID) {
789     initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry());
790   }
791 
792   void getAnalysisUsage(AnalysisUsage &AU) const override {
793     AU.addRequired<DominatorTreeWrapperPass>();
794     AU.addRequired<TargetTransformInfoWrapperPass>();
795     AU.setPreservesCFG();
796     AU.addPreserved<DominatorTreeWrapperPass>();
797     AU.addPreserved<GlobalsAAWrapperPass>();
798     AU.addPreserved<AAResultsWrapperPass>();
799     AU.addPreserved<BasicAAWrapperPass>();
800     FunctionPass::getAnalysisUsage(AU);
801   }
802 
803   bool runOnFunction(Function &F) override {
804     if (skipFunction(F))
805       return false;
806     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
807     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
808     VectorCombine Combiner(F, TTI, DT);
809     return Combiner.run();
810   }
811 };
812 } // namespace
813 
814 char VectorCombineLegacyPass::ID = 0;
815 INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine",
816                       "Optimize scalar/vector ops", false,
817                       false)
818 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
819 INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine",
820                     "Optimize scalar/vector ops", false, false)
821 Pass *llvm::createVectorCombinePass() {
822   return new VectorCombineLegacyPass();
823 }
824 
825 PreservedAnalyses VectorCombinePass::run(Function &F,
826                                          FunctionAnalysisManager &FAM) {
827   TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
828   DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
829   VectorCombine Combiner(F, TTI, DT);
830   if (!Combiner.run())
831     return PreservedAnalyses::all();
832   PreservedAnalyses PA;
833   PA.preserveSet<CFGAnalyses>();
834   PA.preserve<GlobalsAA>();
835   PA.preserve<AAManager>();
836   PA.preserve<BasicAA>();
837   return PA;
838 }
839