1 //===------- VectorCombine.cpp - Optimize partial vector operations -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass optimizes scalar/vector interactions using target cost models. The 10 // transforms implemented here may not fit in traditional loop-based or SLP 11 // vectorization passes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Vectorize/VectorCombine.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/BasicAliasAnalysis.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/TargetTransformInfo.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/Analysis/VectorUtils.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/InitializePasses.h" 27 #include "llvm/Pass.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Transforms/Utils/Local.h" 30 #include "llvm/Transforms/Vectorize.h" 31 32 using namespace llvm; 33 using namespace llvm::PatternMatch; 34 35 #define DEBUG_TYPE "vector-combine" 36 STATISTIC(NumVecCmp, "Number of vector compares formed"); 37 STATISTIC(NumVecBO, "Number of vector binops formed"); 38 STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast"); 39 STATISTIC(NumScalarBO, "Number of scalar binops formed"); 40 STATISTIC(NumScalarCmp, "Number of scalar compares formed"); 41 42 static cl::opt<bool> DisableVectorCombine( 43 "disable-vector-combine", cl::init(false), cl::Hidden, 44 cl::desc("Disable all vector combine transforms")); 45 46 static cl::opt<bool> DisableBinopExtractShuffle( 47 "disable-binop-extract-shuffle", cl::init(false), cl::Hidden, 48 cl::desc("Disable binop extract to shuffle transforms")); 49 50 51 /// Compare the relative costs of 2 extracts followed by scalar operation vs. 52 /// vector operation(s) followed by extract. Return true if the existing 53 /// instructions are cheaper than a vector alternative. Otherwise, return false 54 /// and if one of the extracts should be transformed to a shufflevector, set 55 /// \p ConvertToShuffle to that extract instruction. 56 static bool isExtractExtractCheap(ExtractElementInst *Ext0, 57 ExtractElementInst *Ext1, unsigned Opcode, 58 const TargetTransformInfo &TTI, 59 ExtractElementInst *&ConvertToShuffle, 60 unsigned PreferredExtractIndex) { 61 assert(isa<ConstantInt>(Ext0->getOperand(1)) && 62 isa<ConstantInt>(Ext1->getOperand(1)) && 63 "Expected constant extract indexes"); 64 Type *ScalarTy = Ext0->getType(); 65 auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType()); 66 int ScalarOpCost, VectorOpCost; 67 68 // Get cost estimates for scalar and vector versions of the operation. 69 bool IsBinOp = Instruction::isBinaryOp(Opcode); 70 if (IsBinOp) { 71 ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 72 VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 73 } else { 74 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 75 "Expected a compare"); 76 ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy, 77 CmpInst::makeCmpResultType(ScalarTy)); 78 VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy, 79 CmpInst::makeCmpResultType(VecTy)); 80 } 81 82 // Get cost estimates for the extract elements. These costs will factor into 83 // both sequences. 84 unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue(); 85 unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue(); 86 87 int Extract0Cost = TTI.getVectorInstrCost(Instruction::ExtractElement, 88 VecTy, Ext0Index); 89 int Extract1Cost = TTI.getVectorInstrCost(Instruction::ExtractElement, 90 VecTy, Ext1Index); 91 92 // A more expensive extract will always be replaced by a splat shuffle. 93 // For example, if Ext0 is more expensive: 94 // opcode (extelt V0, Ext0), (ext V1, Ext1) --> 95 // extelt (opcode (splat V0, Ext0), V1), Ext1 96 // TODO: Evaluate whether that always results in lowest cost. Alternatively, 97 // check the cost of creating a broadcast shuffle and shuffling both 98 // operands to element 0. 99 int CheapExtractCost = std::min(Extract0Cost, Extract1Cost); 100 101 // Extra uses of the extracts mean that we include those costs in the 102 // vector total because those instructions will not be eliminated. 103 int OldCost, NewCost; 104 if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) { 105 // Handle a special case. If the 2 extracts are identical, adjust the 106 // formulas to account for that. The extra use charge allows for either the 107 // CSE'd pattern or an unoptimized form with identical values: 108 // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C 109 bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2) 110 : !Ext0->hasOneUse() || !Ext1->hasOneUse(); 111 OldCost = CheapExtractCost + ScalarOpCost; 112 NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost; 113 } else { 114 // Handle the general case. Each extract is actually a different value: 115 // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C 116 OldCost = Extract0Cost + Extract1Cost + ScalarOpCost; 117 NewCost = VectorOpCost + CheapExtractCost + 118 !Ext0->hasOneUse() * Extract0Cost + 119 !Ext1->hasOneUse() * Extract1Cost; 120 } 121 122 if (Ext0Index == Ext1Index) { 123 // If the extract indexes are identical, no shuffle is needed. 124 ConvertToShuffle = nullptr; 125 } else { 126 if (IsBinOp && DisableBinopExtractShuffle) 127 return true; 128 129 // If we are extracting from 2 different indexes, then one operand must be 130 // shuffled before performing the vector operation. The shuffle mask is 131 // undefined except for 1 lane that is being translated to the remaining 132 // extraction lane. Therefore, it is a splat shuffle. Ex: 133 // ShufMask = { undef, undef, 0, undef } 134 // TODO: The cost model has an option for a "broadcast" shuffle 135 // (splat-from-element-0), but no option for a more general splat. 136 NewCost += 137 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 138 139 // The more expensive extract will be replaced by a shuffle. If the costs 140 // are equal and there is a preferred extract index, shuffle the opposite 141 // operand. Otherwise, replace the extract with the higher index. 142 if (Extract0Cost > Extract1Cost) 143 ConvertToShuffle = Ext0; 144 else if (Extract1Cost > Extract0Cost) 145 ConvertToShuffle = Ext1; 146 else if (PreferredExtractIndex == Ext0Index) 147 ConvertToShuffle = Ext1; 148 else if (PreferredExtractIndex == Ext1Index) 149 ConvertToShuffle = Ext0; 150 else 151 ConvertToShuffle = Ext0Index > Ext1Index ? Ext0 : Ext1; 152 } 153 154 // Aggressively form a vector op if the cost is equal because the transform 155 // may enable further optimization. 156 // Codegen can reverse this transform (scalarize) if it was not profitable. 157 return OldCost < NewCost; 158 } 159 160 /// Given an extract element instruction with constant index operand, shuffle 161 /// the source vector (shift the scalar element) to a NewIndex for extraction. 162 /// Return null if the input can be constant folded, so that we are not creating 163 /// unnecessary instructions. 164 static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt, 165 unsigned NewIndex) { 166 // If the extract can be constant-folded, this code is unsimplified. Defer 167 // to other passes to handle that. 168 Value *X = ExtElt->getVectorOperand(); 169 Value *C = ExtElt->getIndexOperand(); 170 if (isa<Constant>(X)) 171 return nullptr; 172 173 // The shuffle mask is undefined except for 1 lane that is being translated 174 // to the cheap extraction lane. Example: 175 // ShufMask = { 2, undef, undef, undef } 176 auto *VecTy = cast<FixedVectorType>(X->getType()); 177 SmallVector<int, 32> Mask(VecTy->getNumElements(), -1); 178 assert(isa<ConstantInt>(C) && "Expected a constant index operand"); 179 Mask[NewIndex] = cast<ConstantInt>(C)->getZExtValue(); 180 181 // extelt X, C --> extelt (shuffle X), NewIndex 182 IRBuilder<> Builder(ExtElt); 183 Value *Shuf = Builder.CreateShuffleVector(X, UndefValue::get(VecTy), Mask); 184 return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex)); 185 } 186 187 /// Try to reduce extract element costs by converting scalar compares to vector 188 /// compares followed by extract. 189 /// cmp (ext0 V0, C), (ext1 V1, C) 190 static void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 191 Instruction &I) { 192 assert(isa<CmpInst>(&I) && "Expected a compare"); 193 assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 194 cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 195 "Expected matching constant extract indexes"); 196 197 // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C 198 ++NumVecCmp; 199 IRBuilder<> Builder(&I); 200 CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate(); 201 Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 202 Value *VecCmp = Builder.CreateCmp(Pred, V0, V1); 203 Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand()); 204 I.replaceAllUsesWith(NewExt); 205 } 206 207 /// Try to reduce extract element costs by converting scalar binops to vector 208 /// binops followed by extract. 209 /// bo (ext0 V0, C), (ext1 V1, C) 210 static void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 211 Instruction &I) { 212 assert(isa<BinaryOperator>(&I) && "Expected a binary operator"); 213 assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 214 cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 215 "Expected matching constant extract indexes"); 216 217 // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C 218 ++NumVecBO; 219 IRBuilder<> Builder(&I); 220 Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 221 Value *VecBO = 222 Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1); 223 224 // All IR flags are safe to back-propagate because any potential poison 225 // created in unused vector elements is discarded by the extract. 226 if (auto *VecBOInst = dyn_cast<Instruction>(VecBO)) 227 VecBOInst->copyIRFlags(&I); 228 229 Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand()); 230 I.replaceAllUsesWith(NewExt); 231 } 232 233 /// Match an instruction with extracted vector operands. 234 static bool foldExtractExtract(Instruction &I, const TargetTransformInfo &TTI) { 235 // It is not safe to transform things like div, urem, etc. because we may 236 // create undefined behavior when executing those on unknown vector elements. 237 if (!isSafeToSpeculativelyExecute(&I)) 238 return false; 239 240 Instruction *I0, *I1; 241 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 242 if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) && 243 !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1)))) 244 return false; 245 246 Value *V0, *V1; 247 uint64_t C0, C1; 248 if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) || 249 !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) || 250 V0->getType() != V1->getType()) 251 return false; 252 253 // If the scalar value 'I' is going to be re-inserted into a vector, then try 254 // to create an extract to that same element. The extract/insert can be 255 // reduced to a "select shuffle". 256 // TODO: If we add a larger pattern match that starts from an insert, this 257 // probably becomes unnecessary. 258 auto *Ext0 = cast<ExtractElementInst>(I0); 259 auto *Ext1 = cast<ExtractElementInst>(I1); 260 uint64_t InsertIndex = std::numeric_limits<uint64_t>::max(); 261 if (I.hasOneUse()) 262 match(I.user_back(), 263 m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex))); 264 265 ExtractElementInst *ExtractToChange; 266 if (isExtractExtractCheap(Ext0, Ext1, I.getOpcode(), TTI, ExtractToChange, 267 InsertIndex)) 268 return false; 269 270 if (ExtractToChange) { 271 unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0; 272 ExtractElementInst *NewExtract = 273 translateExtract(ExtractToChange, CheapExtractIdx); 274 if (!NewExtract) 275 return false; 276 if (ExtractToChange == Ext0) 277 Ext0 = NewExtract; 278 else 279 Ext1 = NewExtract; 280 } 281 282 if (Pred != CmpInst::BAD_ICMP_PREDICATE) 283 foldExtExtCmp(Ext0, Ext1, I); 284 else 285 foldExtExtBinop(Ext0, Ext1, I); 286 287 return true; 288 } 289 290 /// If this is a bitcast of a shuffle, try to bitcast the source vector to the 291 /// destination type followed by shuffle. This can enable further transforms by 292 /// moving bitcasts or shuffles together. 293 static bool foldBitcastShuf(Instruction &I, const TargetTransformInfo &TTI) { 294 Value *V; 295 ArrayRef<int> Mask; 296 if (!match(&I, m_BitCast( 297 m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask)))))) 298 return false; 299 300 // Disallow non-vector casts and length-changing shuffles. 301 // TODO: We could allow any shuffle. 302 auto *DestTy = dyn_cast<VectorType>(I.getType()); 303 auto *SrcTy = cast<VectorType>(V->getType()); 304 if (!DestTy || I.getOperand(0)->getType() != SrcTy) 305 return false; 306 307 // The new shuffle must not cost more than the old shuffle. The bitcast is 308 // moved ahead of the shuffle, so assume that it has the same cost as before. 309 if (TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, DestTy) > 310 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy)) 311 return false; 312 313 unsigned DestNumElts = DestTy->getNumElements(); 314 unsigned SrcNumElts = SrcTy->getNumElements(); 315 SmallVector<int, 16> NewMask; 316 if (SrcNumElts <= DestNumElts) { 317 // The bitcast is from wide to narrow/equal elements. The shuffle mask can 318 // always be expanded to the equivalent form choosing narrower elements. 319 assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask"); 320 unsigned ScaleFactor = DestNumElts / SrcNumElts; 321 narrowShuffleMaskElts(ScaleFactor, Mask, NewMask); 322 } else { 323 // The bitcast is from narrow elements to wide elements. The shuffle mask 324 // must choose consecutive elements to allow casting first. 325 assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask"); 326 unsigned ScaleFactor = SrcNumElts / DestNumElts; 327 if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask)) 328 return false; 329 } 330 // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC' 331 ++NumShufOfBitcast; 332 IRBuilder<> Builder(&I); 333 Value *CastV = Builder.CreateBitCast(V, DestTy); 334 Value *Shuf = 335 Builder.CreateShuffleVector(CastV, UndefValue::get(DestTy), NewMask); 336 I.replaceAllUsesWith(Shuf); 337 return true; 338 } 339 340 /// Match a vector binop or compare instruction with at least one inserted 341 /// scalar operand and convert to scalar binop/cmp followed by insertelement. 342 static bool scalarizeBinopOrCmp(Instruction &I, 343 const TargetTransformInfo &TTI) { 344 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 345 Value *Ins0, *Ins1; 346 if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) && 347 !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1)))) 348 return false; 349 350 // Do not convert the vector condition of a vector select into a scalar 351 // condition. That may cause problems for codegen because of differences in 352 // boolean formats and register-file transfers. 353 // TODO: Can we account for that in the cost model? 354 bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE; 355 if (IsCmp) 356 for (User *U : I.users()) 357 if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value()))) 358 return false; 359 360 // Match against one or both scalar values being inserted into constant 361 // vectors: 362 // vec_op VecC0, (inselt VecC1, V1, Index) 363 // vec_op (inselt VecC0, V0, Index), VecC1 364 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) 365 // TODO: Deal with mismatched index constants and variable indexes? 366 Constant *VecC0 = nullptr, *VecC1 = nullptr; 367 Value *V0 = nullptr, *V1 = nullptr; 368 uint64_t Index0 = 0, Index1 = 0; 369 if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0), 370 m_ConstantInt(Index0))) && 371 !match(Ins0, m_Constant(VecC0))) 372 return false; 373 if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1), 374 m_ConstantInt(Index1))) && 375 !match(Ins1, m_Constant(VecC1))) 376 return false; 377 378 bool IsConst0 = !V0; 379 bool IsConst1 = !V1; 380 if (IsConst0 && IsConst1) 381 return false; 382 if (!IsConst0 && !IsConst1 && Index0 != Index1) 383 return false; 384 385 // Bail for single insertion if it is a load. 386 // TODO: Handle this once getVectorInstrCost can cost for load/stores. 387 auto *I0 = dyn_cast_or_null<Instruction>(V0); 388 auto *I1 = dyn_cast_or_null<Instruction>(V1); 389 if ((IsConst0 && I1 && I1->mayReadFromMemory()) || 390 (IsConst1 && I0 && I0->mayReadFromMemory())) 391 return false; 392 393 uint64_t Index = IsConst0 ? Index1 : Index0; 394 Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType(); 395 Type *VecTy = I.getType(); 396 assert(VecTy->isVectorTy() && 397 (IsConst0 || IsConst1 || V0->getType() == V1->getType()) && 398 (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy()) && 399 "Unexpected types for insert into binop"); 400 401 unsigned Opcode = I.getOpcode(); 402 int ScalarOpCost, VectorOpCost; 403 if (IsCmp) { 404 ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy); 405 VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy); 406 } else { 407 ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 408 VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 409 } 410 411 // Get cost estimate for the insert element. This cost will factor into 412 // both sequences. 413 int InsertCost = 414 TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index); 415 int OldCost = (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + 416 VectorOpCost; 417 int NewCost = ScalarOpCost + InsertCost + 418 (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) + 419 (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost); 420 421 // We want to scalarize unless the vector variant actually has lower cost. 422 if (OldCost < NewCost) 423 return false; 424 425 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) --> 426 // inselt NewVecC, (scalar_op V0, V1), Index 427 if (IsCmp) 428 ++NumScalarCmp; 429 else 430 ++NumScalarBO; 431 432 // For constant cases, extract the scalar element, this should constant fold. 433 IRBuilder<> Builder(&I); 434 if (IsConst0) 435 V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index)); 436 if (IsConst1) 437 V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index)); 438 439 Value *Scalar = 440 IsCmp ? Builder.CreateCmp(Pred, V0, V1) 441 : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1); 442 443 Scalar->setName(I.getName() + ".scalar"); 444 445 // All IR flags are safe to back-propagate. There is no potential for extra 446 // poison to be created by the scalar instruction. 447 if (auto *ScalarInst = dyn_cast<Instruction>(Scalar)) 448 ScalarInst->copyIRFlags(&I); 449 450 // Fold the vector constants in the original vectors into a new base vector. 451 Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1) 452 : ConstantExpr::get(Opcode, VecC0, VecC1); 453 Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index); 454 I.replaceAllUsesWith(Insert); 455 Insert->takeName(&I); 456 return true; 457 } 458 459 /// This is the entry point for all transforms. Pass manager differences are 460 /// handled in the callers of this function. 461 static bool runImpl(Function &F, const TargetTransformInfo &TTI, 462 const DominatorTree &DT) { 463 if (DisableVectorCombine) 464 return false; 465 466 bool MadeChange = false; 467 for (BasicBlock &BB : F) { 468 // Ignore unreachable basic blocks. 469 if (!DT.isReachableFromEntry(&BB)) 470 continue; 471 // Do not delete instructions under here and invalidate the iterator. 472 // Walk the block forwards to enable simple iterative chains of transforms. 473 // TODO: It could be more efficient to remove dead instructions 474 // iteratively in this loop rather than waiting until the end. 475 for (Instruction &I : BB) { 476 if (isa<DbgInfoIntrinsic>(I)) 477 continue; 478 MadeChange |= foldExtractExtract(I, TTI); 479 MadeChange |= foldBitcastShuf(I, TTI); 480 MadeChange |= scalarizeBinopOrCmp(I, TTI); 481 } 482 } 483 484 // We're done with transforms, so remove dead instructions. 485 if (MadeChange) 486 for (BasicBlock &BB : F) 487 SimplifyInstructionsInBlock(&BB); 488 489 return MadeChange; 490 } 491 492 // Pass manager boilerplate below here. 493 494 namespace { 495 class VectorCombineLegacyPass : public FunctionPass { 496 public: 497 static char ID; 498 VectorCombineLegacyPass() : FunctionPass(ID) { 499 initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry()); 500 } 501 502 void getAnalysisUsage(AnalysisUsage &AU) const override { 503 AU.addRequired<DominatorTreeWrapperPass>(); 504 AU.addRequired<TargetTransformInfoWrapperPass>(); 505 AU.setPreservesCFG(); 506 AU.addPreserved<DominatorTreeWrapperPass>(); 507 AU.addPreserved<GlobalsAAWrapperPass>(); 508 AU.addPreserved<AAResultsWrapperPass>(); 509 AU.addPreserved<BasicAAWrapperPass>(); 510 FunctionPass::getAnalysisUsage(AU); 511 } 512 513 bool runOnFunction(Function &F) override { 514 if (skipFunction(F)) 515 return false; 516 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 517 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 518 return runImpl(F, TTI, DT); 519 } 520 }; 521 } // namespace 522 523 char VectorCombineLegacyPass::ID = 0; 524 INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine", 525 "Optimize scalar/vector ops", false, 526 false) 527 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 528 INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine", 529 "Optimize scalar/vector ops", false, false) 530 Pass *llvm::createVectorCombinePass() { 531 return new VectorCombineLegacyPass(); 532 } 533 534 PreservedAnalyses VectorCombinePass::run(Function &F, 535 FunctionAnalysisManager &FAM) { 536 TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); 537 DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); 538 if (!runImpl(F, TTI, DT)) 539 return PreservedAnalyses::all(); 540 PreservedAnalyses PA; 541 PA.preserveSet<CFGAnalyses>(); 542 PA.preserve<GlobalsAA>(); 543 PA.preserve<AAManager>(); 544 PA.preserve<BasicAA>(); 545 return PA; 546 } 547