1 //===------- VectorCombine.cpp - Optimize partial vector operations -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass optimizes scalar/vector interactions using target cost models. The 10 // transforms implemented here may not fit in traditional loop-based or SLP 11 // vectorization passes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Vectorize/VectorCombine.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/BasicAliasAnalysis.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/TargetTransformInfo.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/Analysis/VectorUtils.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/InitializePasses.h" 27 #include "llvm/Pass.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Transforms/Utils/Local.h" 30 #include "llvm/Transforms/Vectorize.h" 31 32 using namespace llvm; 33 using namespace llvm::PatternMatch; 34 35 #define DEBUG_TYPE "vector-combine" 36 STATISTIC(NumVecCmp, "Number of vector compares formed"); 37 STATISTIC(NumVecBO, "Number of vector binops formed"); 38 STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast"); 39 STATISTIC(NumScalarBO, "Number of scalar binops formed"); 40 STATISTIC(NumScalarCmp, "Number of scalar compares formed"); 41 42 static cl::opt<bool> DisableVectorCombine( 43 "disable-vector-combine", cl::init(false), cl::Hidden, 44 cl::desc("Disable all vector combine transforms")); 45 46 static cl::opt<bool> DisableBinopExtractShuffle( 47 "disable-binop-extract-shuffle", cl::init(false), cl::Hidden, 48 cl::desc("Disable binop extract to shuffle transforms")); 49 50 51 /// Compare the relative costs of 2 extracts followed by scalar operation vs. 52 /// vector operation(s) followed by extract. Return true if the existing 53 /// instructions are cheaper than a vector alternative. Otherwise, return false 54 /// and if one of the extracts should be transformed to a shufflevector, set 55 /// \p ConvertToShuffle to that extract instruction. 56 static bool isExtractExtractCheap(Instruction *Ext0, Instruction *Ext1, 57 unsigned Opcode, 58 const TargetTransformInfo &TTI, 59 Instruction *&ConvertToShuffle, 60 unsigned PreferredExtractIndex) { 61 assert(isa<ConstantInt>(Ext0->getOperand(1)) && 62 isa<ConstantInt>(Ext1->getOperand(1)) && 63 "Expected constant extract indexes"); 64 Type *ScalarTy = Ext0->getType(); 65 auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType()); 66 int ScalarOpCost, VectorOpCost; 67 68 // Get cost estimates for scalar and vector versions of the operation. 69 bool IsBinOp = Instruction::isBinaryOp(Opcode); 70 if (IsBinOp) { 71 ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 72 VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 73 } else { 74 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 75 "Expected a compare"); 76 ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy, 77 CmpInst::makeCmpResultType(ScalarTy)); 78 VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy, 79 CmpInst::makeCmpResultType(VecTy)); 80 } 81 82 // Get cost estimates for the extract elements. These costs will factor into 83 // both sequences. 84 unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue(); 85 unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue(); 86 87 int Extract0Cost = TTI.getVectorInstrCost(Instruction::ExtractElement, 88 VecTy, Ext0Index); 89 int Extract1Cost = TTI.getVectorInstrCost(Instruction::ExtractElement, 90 VecTy, Ext1Index); 91 92 // A more expensive extract will always be replaced by a splat shuffle. 93 // For example, if Ext0 is more expensive: 94 // opcode (extelt V0, Ext0), (ext V1, Ext1) --> 95 // extelt (opcode (splat V0, Ext0), V1), Ext1 96 // TODO: Evaluate whether that always results in lowest cost. Alternatively, 97 // check the cost of creating a broadcast shuffle and shuffling both 98 // operands to element 0. 99 int CheapExtractCost = std::min(Extract0Cost, Extract1Cost); 100 101 // Extra uses of the extracts mean that we include those costs in the 102 // vector total because those instructions will not be eliminated. 103 int OldCost, NewCost; 104 if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) { 105 // Handle a special case. If the 2 extracts are identical, adjust the 106 // formulas to account for that. The extra use charge allows for either the 107 // CSE'd pattern or an unoptimized form with identical values: 108 // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C 109 bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2) 110 : !Ext0->hasOneUse() || !Ext1->hasOneUse(); 111 OldCost = CheapExtractCost + ScalarOpCost; 112 NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost; 113 } else { 114 // Handle the general case. Each extract is actually a different value: 115 // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C 116 OldCost = Extract0Cost + Extract1Cost + ScalarOpCost; 117 NewCost = VectorOpCost + CheapExtractCost + 118 !Ext0->hasOneUse() * Extract0Cost + 119 !Ext1->hasOneUse() * Extract1Cost; 120 } 121 122 if (Ext0Index == Ext1Index) { 123 // If the extract indexes are identical, no shuffle is needed. 124 ConvertToShuffle = nullptr; 125 } else { 126 if (IsBinOp && DisableBinopExtractShuffle) 127 return true; 128 129 // If we are extracting from 2 different indexes, then one operand must be 130 // shuffled before performing the vector operation. The shuffle mask is 131 // undefined except for 1 lane that is being translated to the remaining 132 // extraction lane. Therefore, it is a splat shuffle. Ex: 133 // ShufMask = { undef, undef, 0, undef } 134 // TODO: The cost model has an option for a "broadcast" shuffle 135 // (splat-from-element-0), but no option for a more general splat. 136 NewCost += 137 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 138 139 // The more expensive extract will be replaced by a shuffle. If the costs 140 // are equal and there is a preferred extract index, shuffle the opposite 141 // operand. Otherwise, replace the extract with the higher index. 142 if (Extract0Cost > Extract1Cost) 143 ConvertToShuffle = Ext0; 144 else if (Extract1Cost > Extract0Cost) 145 ConvertToShuffle = Ext1; 146 else if (PreferredExtractIndex == Ext0Index) 147 ConvertToShuffle = Ext1; 148 else if (PreferredExtractIndex == Ext1Index) 149 ConvertToShuffle = Ext0; 150 else 151 ConvertToShuffle = Ext0Index > Ext1Index ? Ext0 : Ext1; 152 } 153 154 // Aggressively form a vector op if the cost is equal because the transform 155 // may enable further optimization. 156 // Codegen can reverse this transform (scalarize) if it was not profitable. 157 return OldCost < NewCost; 158 } 159 160 /// Try to reduce extract element costs by converting scalar compares to vector 161 /// compares followed by extract. 162 /// cmp (ext0 V0, C), (ext1 V1, C) 163 static void foldExtExtCmp(Instruction *Ext0, Instruction *Ext1, 164 Instruction &I) { 165 assert(isa<CmpInst>(&I) && "Expected a compare"); 166 167 // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C 168 ++NumVecCmp; 169 IRBuilder<> Builder(&I); 170 CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate(); 171 Value *V0 = Ext0->getOperand(0), *V1 = Ext1->getOperand(0); 172 Value *VecCmp = 173 Ext0->getType()->isFloatingPointTy() ? Builder.CreateFCmp(Pred, V0, V1) 174 : Builder.CreateICmp(Pred, V0, V1); 175 Value *Extract = Builder.CreateExtractElement(VecCmp, Ext0->getOperand(1)); 176 I.replaceAllUsesWith(Extract); 177 } 178 179 /// Try to reduce extract element costs by converting scalar binops to vector 180 /// binops followed by extract. 181 /// bo (ext0 V0, C), (ext1 V1, C) 182 static void foldExtExtBinop(Instruction *Ext0, Instruction *Ext1, 183 Instruction &I) { 184 assert(isa<BinaryOperator>(&I) && "Expected a binary operator"); 185 186 // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C 187 ++NumVecBO; 188 IRBuilder<> Builder(&I); 189 Value *V0 = Ext0->getOperand(0), *V1 = Ext1->getOperand(0); 190 Value *VecBO = 191 Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1); 192 193 // All IR flags are safe to back-propagate because any potential poison 194 // created in unused vector elements is discarded by the extract. 195 if (auto *VecBOInst = dyn_cast<Instruction>(VecBO)) 196 VecBOInst->copyIRFlags(&I); 197 198 Value *Extract = Builder.CreateExtractElement(VecBO, Ext0->getOperand(1)); 199 I.replaceAllUsesWith(Extract); 200 } 201 202 /// Match an instruction with extracted vector operands. 203 static bool foldExtractExtract(Instruction &I, const TargetTransformInfo &TTI) { 204 // It is not safe to transform things like div, urem, etc. because we may 205 // create undefined behavior when executing those on unknown vector elements. 206 if (!isSafeToSpeculativelyExecute(&I)) 207 return false; 208 209 Instruction *Ext0, *Ext1; 210 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 211 if (!match(&I, m_Cmp(Pred, m_Instruction(Ext0), m_Instruction(Ext1))) && 212 !match(&I, m_BinOp(m_Instruction(Ext0), m_Instruction(Ext1)))) 213 return false; 214 215 Value *V0, *V1; 216 uint64_t C0, C1; 217 if (!match(Ext0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) || 218 !match(Ext1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) || 219 V0->getType() != V1->getType()) 220 return false; 221 222 // If the scalar value 'I' is going to be re-inserted into a vector, then try 223 // to create an extract to that same element. The extract/insert can be 224 // reduced to a "select shuffle". 225 // TODO: If we add a larger pattern match that starts from an insert, this 226 // probably becomes unnecessary. 227 uint64_t InsertIndex = std::numeric_limits<uint64_t>::max(); 228 if (I.hasOneUse()) 229 match(I.user_back(), 230 m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex))); 231 232 Instruction *ConvertToShuffle; 233 if (isExtractExtractCheap(Ext0, Ext1, I.getOpcode(), TTI, ConvertToShuffle, 234 InsertIndex)) 235 return false; 236 237 if (ConvertToShuffle) { 238 // The shuffle mask is undefined except for 1 lane that is being translated 239 // to the cheap extraction lane. Example: 240 // ShufMask = { 2, undef, undef, undef } 241 uint64_t SplatIndex = ConvertToShuffle == Ext0 ? C0 : C1; 242 uint64_t CheapExtIndex = ConvertToShuffle == Ext0 ? C1 : C0; 243 auto *VecTy = cast<VectorType>(V0->getType()); 244 SmallVector<int, 32> ShufMask(VecTy->getNumElements(), -1); 245 ShufMask[CheapExtIndex] = SplatIndex; 246 IRBuilder<> Builder(ConvertToShuffle); 247 248 // extelt X, C --> extelt (splat X), C' 249 Value *Shuf = Builder.CreateShuffleVector(ConvertToShuffle->getOperand(0), 250 UndefValue::get(VecTy), ShufMask); 251 Value *NewExt = Builder.CreateExtractElement(Shuf, CheapExtIndex); 252 if (ConvertToShuffle == Ext0) 253 Ext0 = cast<Instruction>(NewExt); 254 else 255 Ext1 = cast<Instruction>(NewExt); 256 } 257 258 if (Pred != CmpInst::BAD_ICMP_PREDICATE) 259 foldExtExtCmp(Ext0, Ext1, I); 260 else 261 foldExtExtBinop(Ext0, Ext1, I); 262 263 return true; 264 } 265 266 /// If this is a bitcast of a shuffle, try to bitcast the source vector to the 267 /// destination type followed by shuffle. This can enable further transforms by 268 /// moving bitcasts or shuffles together. 269 static bool foldBitcastShuf(Instruction &I, const TargetTransformInfo &TTI) { 270 Value *V; 271 ArrayRef<int> Mask; 272 if (!match(&I, m_BitCast( 273 m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask)))))) 274 return false; 275 276 // Disallow non-vector casts and length-changing shuffles. 277 // TODO: We could allow any shuffle. 278 auto *DestTy = dyn_cast<VectorType>(I.getType()); 279 auto *SrcTy = cast<VectorType>(V->getType()); 280 if (!DestTy || I.getOperand(0)->getType() != SrcTy) 281 return false; 282 283 // The new shuffle must not cost more than the old shuffle. The bitcast is 284 // moved ahead of the shuffle, so assume that it has the same cost as before. 285 if (TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, DestTy) > 286 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy)) 287 return false; 288 289 unsigned DestNumElts = DestTy->getNumElements(); 290 unsigned SrcNumElts = SrcTy->getNumElements(); 291 SmallVector<int, 16> NewMask; 292 if (SrcNumElts <= DestNumElts) { 293 // The bitcast is from wide to narrow/equal elements. The shuffle mask can 294 // always be expanded to the equivalent form choosing narrower elements. 295 assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask"); 296 unsigned ScaleFactor = DestNumElts / SrcNumElts; 297 narrowShuffleMaskElts(ScaleFactor, Mask, NewMask); 298 } else { 299 // The bitcast is from narrow elements to wide elements. The shuffle mask 300 // must choose consecutive elements to allow casting first. 301 assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask"); 302 unsigned ScaleFactor = SrcNumElts / DestNumElts; 303 if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask)) 304 return false; 305 } 306 // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC' 307 ++NumShufOfBitcast; 308 IRBuilder<> Builder(&I); 309 Value *CastV = Builder.CreateBitCast(V, DestTy); 310 Value *Shuf = 311 Builder.CreateShuffleVector(CastV, UndefValue::get(DestTy), NewMask); 312 I.replaceAllUsesWith(Shuf); 313 return true; 314 } 315 316 /// Match a vector binop or compare instruction with at least one inserted 317 /// scalar operand and convert to scalar binop/cmp followed by insertelement. 318 static bool scalarizeBinopOrCmp(Instruction &I, 319 const TargetTransformInfo &TTI) { 320 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 321 Value *Ins0, *Ins1; 322 if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) && 323 !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1)))) 324 return false; 325 326 // Do not convert the vector condition of a vector select into a scalar 327 // condition. That may cause problems for codegen because of differences in 328 // boolean formats and register-file transfers. 329 // TODO: Can we account for that in the cost model? 330 bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE; 331 if (IsCmp) 332 for (User *U : I.users()) 333 if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value()))) 334 return false; 335 336 // Match against one or both scalar values being inserted into constant 337 // vectors: 338 // vec_op VecC0, (inselt VecC1, V1, Index) 339 // vec_op (inselt VecC0, V0, Index), VecC1 340 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) 341 // TODO: Deal with mismatched index constants and variable indexes? 342 Constant *VecC0 = nullptr, *VecC1 = nullptr; 343 Value *V0 = nullptr, *V1 = nullptr; 344 uint64_t Index0 = 0, Index1 = 0; 345 if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0), 346 m_ConstantInt(Index0))) && 347 !match(Ins0, m_Constant(VecC0))) 348 return false; 349 if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1), 350 m_ConstantInt(Index1))) && 351 !match(Ins1, m_Constant(VecC1))) 352 return false; 353 354 bool IsConst0 = !V0; 355 bool IsConst1 = !V1; 356 if (IsConst0 && IsConst1) 357 return false; 358 if (!IsConst0 && !IsConst1 && Index0 != Index1) 359 return false; 360 361 // Bail for single insertion if it is a load. 362 // TODO: Handle this once getVectorInstrCost can cost for load/stores. 363 auto *I0 = dyn_cast_or_null<Instruction>(V0); 364 auto *I1 = dyn_cast_or_null<Instruction>(V1); 365 if ((IsConst0 && I1 && I1->mayReadFromMemory()) || 366 (IsConst1 && I0 && I0->mayReadFromMemory())) 367 return false; 368 369 uint64_t Index = IsConst0 ? Index1 : Index0; 370 Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType(); 371 Type *VecTy = I.getType(); 372 assert(VecTy->isVectorTy() && 373 (IsConst0 || IsConst1 || V0->getType() == V1->getType()) && 374 (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy()) && 375 "Unexpected types for insert into binop"); 376 377 unsigned Opcode = I.getOpcode(); 378 int ScalarOpCost, VectorOpCost; 379 if (IsCmp) { 380 ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy); 381 VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy); 382 } else { 383 ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 384 VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 385 } 386 387 // Get cost estimate for the insert element. This cost will factor into 388 // both sequences. 389 int InsertCost = 390 TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index); 391 int OldCost = (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + 392 VectorOpCost; 393 int NewCost = ScalarOpCost + InsertCost + 394 (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) + 395 (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost); 396 397 // We want to scalarize unless the vector variant actually has lower cost. 398 if (OldCost < NewCost) 399 return false; 400 401 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) --> 402 // inselt NewVecC, (scalar_op V0, V1), Index 403 if (IsCmp) 404 ++NumScalarCmp; 405 else 406 ++NumScalarBO; 407 408 // For constant cases, extract the scalar element, this should constant fold. 409 IRBuilder<> Builder(&I); 410 if (IsConst0) 411 V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index)); 412 if (IsConst1) 413 V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index)); 414 415 Value *Scalar = 416 IsCmp ? Opcode == Instruction::FCmp ? Builder.CreateFCmp(Pred, V0, V1) 417 : Builder.CreateICmp(Pred, V0, V1) 418 : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1); 419 420 Scalar->setName(I.getName() + ".scalar"); 421 422 // All IR flags are safe to back-propagate. There is no potential for extra 423 // poison to be created by the scalar instruction. 424 if (auto *ScalarInst = dyn_cast<Instruction>(Scalar)) 425 ScalarInst->copyIRFlags(&I); 426 427 // Fold the vector constants in the original vectors into a new base vector. 428 Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1) 429 : ConstantExpr::get(Opcode, VecC0, VecC1); 430 Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index); 431 I.replaceAllUsesWith(Insert); 432 Insert->takeName(&I); 433 return true; 434 } 435 436 /// This is the entry point for all transforms. Pass manager differences are 437 /// handled in the callers of this function. 438 static bool runImpl(Function &F, const TargetTransformInfo &TTI, 439 const DominatorTree &DT) { 440 if (DisableVectorCombine) 441 return false; 442 443 bool MadeChange = false; 444 for (BasicBlock &BB : F) { 445 // Ignore unreachable basic blocks. 446 if (!DT.isReachableFromEntry(&BB)) 447 continue; 448 // Do not delete instructions under here and invalidate the iterator. 449 // Walk the block forwards to enable simple iterative chains of transforms. 450 // TODO: It could be more efficient to remove dead instructions 451 // iteratively in this loop rather than waiting until the end. 452 for (Instruction &I : BB) { 453 if (isa<DbgInfoIntrinsic>(I)) 454 continue; 455 MadeChange |= foldExtractExtract(I, TTI); 456 MadeChange |= foldBitcastShuf(I, TTI); 457 MadeChange |= scalarizeBinopOrCmp(I, TTI); 458 } 459 } 460 461 // We're done with transforms, so remove dead instructions. 462 if (MadeChange) 463 for (BasicBlock &BB : F) 464 SimplifyInstructionsInBlock(&BB); 465 466 return MadeChange; 467 } 468 469 // Pass manager boilerplate below here. 470 471 namespace { 472 class VectorCombineLegacyPass : public FunctionPass { 473 public: 474 static char ID; 475 VectorCombineLegacyPass() : FunctionPass(ID) { 476 initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry()); 477 } 478 479 void getAnalysisUsage(AnalysisUsage &AU) const override { 480 AU.addRequired<DominatorTreeWrapperPass>(); 481 AU.addRequired<TargetTransformInfoWrapperPass>(); 482 AU.setPreservesCFG(); 483 AU.addPreserved<DominatorTreeWrapperPass>(); 484 AU.addPreserved<GlobalsAAWrapperPass>(); 485 AU.addPreserved<AAResultsWrapperPass>(); 486 AU.addPreserved<BasicAAWrapperPass>(); 487 FunctionPass::getAnalysisUsage(AU); 488 } 489 490 bool runOnFunction(Function &F) override { 491 if (skipFunction(F)) 492 return false; 493 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 494 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 495 return runImpl(F, TTI, DT); 496 } 497 }; 498 } // namespace 499 500 char VectorCombineLegacyPass::ID = 0; 501 INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine", 502 "Optimize scalar/vector ops", false, 503 false) 504 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 505 INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine", 506 "Optimize scalar/vector ops", false, false) 507 Pass *llvm::createVectorCombinePass() { 508 return new VectorCombineLegacyPass(); 509 } 510 511 PreservedAnalyses VectorCombinePass::run(Function &F, 512 FunctionAnalysisManager &FAM) { 513 TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); 514 DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); 515 if (!runImpl(F, TTI, DT)) 516 return PreservedAnalyses::all(); 517 PreservedAnalyses PA; 518 PA.preserveSet<CFGAnalyses>(); 519 PA.preserve<GlobalsAA>(); 520 PA.preserve<AAManager>(); 521 PA.preserve<BasicAA>(); 522 return PA; 523 } 524