1 //===------- VectorCombine.cpp - Optimize partial vector operations -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass optimizes scalar/vector interactions using target cost models. The 10 // transforms implemented here may not fit in traditional loop-based or SLP 11 // vectorization passes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Vectorize/VectorCombine.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/BasicAliasAnalysis.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/Analysis/VectorUtils.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/InitializePasses.h" 28 #include "llvm/Pass.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Transforms/Utils/Local.h" 31 #include "llvm/Transforms/Vectorize.h" 32 33 using namespace llvm; 34 using namespace llvm::PatternMatch; 35 36 #define DEBUG_TYPE "vector-combine" 37 STATISTIC(NumVecLoad, "Number of vector loads formed"); 38 STATISTIC(NumVecCmp, "Number of vector compares formed"); 39 STATISTIC(NumVecBO, "Number of vector binops formed"); 40 STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed"); 41 STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast"); 42 STATISTIC(NumScalarBO, "Number of scalar binops formed"); 43 STATISTIC(NumScalarCmp, "Number of scalar compares formed"); 44 45 static cl::opt<bool> DisableVectorCombine( 46 "disable-vector-combine", cl::init(false), cl::Hidden, 47 cl::desc("Disable all vector combine transforms")); 48 49 static cl::opt<bool> DisableBinopExtractShuffle( 50 "disable-binop-extract-shuffle", cl::init(false), cl::Hidden, 51 cl::desc("Disable binop extract to shuffle transforms")); 52 53 static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max(); 54 55 namespace { 56 class VectorCombine { 57 public: 58 VectorCombine(Function &F, const TargetTransformInfo &TTI, 59 const DominatorTree &DT) 60 : F(F), Builder(F.getContext()), TTI(TTI), DT(DT) {} 61 62 bool run(); 63 64 private: 65 Function &F; 66 IRBuilder<> Builder; 67 const TargetTransformInfo &TTI; 68 const DominatorTree &DT; 69 70 bool vectorizeLoadInsert(Instruction &I); 71 ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0, 72 ExtractElementInst *Ext1, 73 unsigned PreferredExtractIndex) const; 74 bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 75 unsigned Opcode, 76 ExtractElementInst *&ConvertToShuffle, 77 unsigned PreferredExtractIndex); 78 void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 79 Instruction &I); 80 void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 81 Instruction &I); 82 bool foldExtractExtract(Instruction &I); 83 bool foldBitcastShuf(Instruction &I); 84 bool scalarizeBinopOrCmp(Instruction &I); 85 bool foldExtractedCmps(Instruction &I); 86 }; 87 } // namespace 88 89 static void replaceValue(Value &Old, Value &New) { 90 Old.replaceAllUsesWith(&New); 91 New.takeName(&Old); 92 } 93 94 bool VectorCombine::vectorizeLoadInsert(Instruction &I) { 95 // Match insert into fixed vector of scalar value. 96 // TODO: Handle non-zero insert index. 97 auto *Ty = dyn_cast<FixedVectorType>(I.getType()); 98 Value *Scalar; 99 if (!Ty || !match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) || 100 !Scalar->hasOneUse()) 101 return false; 102 103 // Optionally match an extract from another vector. 104 Value *X; 105 bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt())); 106 if (!HasExtract) 107 X = Scalar; 108 109 // Match source value as load of scalar or vector. 110 // Do not vectorize scalar load (widening) if atomic/volatile or under 111 // asan/hwasan/memtag/tsan. The widened load may load data from dirty regions 112 // or create data races non-existent in the source. 113 auto *Load = dyn_cast<LoadInst>(X); 114 if (!Load || !Load->isSimple() || !Load->hasOneUse() || 115 Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) || 116 mustSuppressSpeculation(*Load)) 117 return false; 118 119 const DataLayout &DL = I.getModule()->getDataLayout(); 120 Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts(); 121 assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type"); 122 123 // If original AS != Load's AS, we can't bitcast the original pointer and have 124 // to use Load's operand instead. Ideally we would want to strip pointer casts 125 // without changing AS, but there's no API to do that ATM. 126 unsigned AS = Load->getPointerAddressSpace(); 127 if (AS != SrcPtr->getType()->getPointerAddressSpace()) 128 SrcPtr = Load->getPointerOperand(); 129 130 // We are potentially transforming byte-sized (8-bit) memory accesses, so make 131 // sure we have all of our type-based constraints in place for this target. 132 Type *ScalarTy = Scalar->getType(); 133 uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits(); 134 unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth(); 135 if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 || 136 ScalarSize % 8 != 0) 137 return false; 138 139 // Check safety of replacing the scalar load with a larger vector load. 140 // We use minimal alignment (maximum flexibility) because we only care about 141 // the dereferenceable region. When calculating cost and creating a new op, 142 // we may use a larger value based on alignment attributes. 143 unsigned MinVecNumElts = MinVectorSize / ScalarSize; 144 auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false); 145 unsigned OffsetEltIndex = 0; 146 Align Alignment = Load->getAlign(); 147 if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) { 148 // It is not safe to load directly from the pointer, but we can still peek 149 // through gep offsets and check if it safe to load from a base address with 150 // updated alignment. If it is, we can shuffle the element(s) into place 151 // after loading. 152 unsigned OffsetBitWidth = DL.getIndexTypeSizeInBits(SrcPtr->getType()); 153 APInt Offset(OffsetBitWidth, 0); 154 SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); 155 156 // We want to shuffle the result down from a high element of a vector, so 157 // the offset must be positive. 158 if (Offset.isNegative()) 159 return false; 160 161 // The offset must be a multiple of the scalar element to shuffle cleanly 162 // in the element's size. 163 uint64_t ScalarSizeInBytes = ScalarSize / 8; 164 if (Offset.urem(ScalarSizeInBytes) != 0) 165 return false; 166 167 // If we load MinVecNumElts, will our target element still be loaded? 168 OffsetEltIndex = Offset.udiv(ScalarSizeInBytes).getZExtValue(); 169 if (OffsetEltIndex >= MinVecNumElts) 170 return false; 171 172 if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) 173 return false; 174 175 // Update alignment with offset value. Note that the offset could be negated 176 // to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but 177 // negation does not change the result of the alignment calculation. 178 Alignment = commonAlignment(Alignment, Offset.getZExtValue()); 179 } 180 181 // Original pattern: insertelt undef, load [free casts of] PtrOp, 0 182 // Use the greater of the alignment on the load or its source pointer. 183 Alignment = std::max(SrcPtr->getPointerAlignment(DL), Alignment); 184 Type *LoadTy = Load->getType(); 185 InstructionCost OldCost = 186 TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS); 187 APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0); 188 OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts, 189 /* Insert */ true, HasExtract); 190 191 // New pattern: load VecPtr 192 InstructionCost NewCost = 193 TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS); 194 // Optionally, we are shuffling the loaded vector element(s) into place. 195 // For the mask set everything but element 0 to undef to prevent poison from 196 // propagating from the extra loaded memory. This will also optionally 197 // shrink/grow the vector from the loaded size to the output size. 198 // We assume this operation has no cost in codegen if there was no offset. 199 // Note that we could use freeze to avoid poison problems, but then we might 200 // still need a shuffle to change the vector size. 201 unsigned OutputNumElts = Ty->getNumElements(); 202 SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem); 203 assert(OffsetEltIndex < MinVecNumElts && "Address offset too big"); 204 Mask[0] = OffsetEltIndex; 205 if (OffsetEltIndex) 206 NewCost += TTI.getShuffleCost(TTI::SK_PermuteSingleSrc, MinVecTy, Mask); 207 208 // We can aggressively convert to the vector form because the backend can 209 // invert this transform if it does not result in a performance win. 210 if (OldCost < NewCost || !NewCost.isValid()) 211 return false; 212 213 // It is safe and potentially profitable to load a vector directly: 214 // inselt undef, load Scalar, 0 --> load VecPtr 215 IRBuilder<> Builder(Load); 216 Value *CastedPtr = Builder.CreateBitCast(SrcPtr, MinVecTy->getPointerTo(AS)); 217 Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment); 218 VecLd = Builder.CreateShuffleVector(VecLd, Mask); 219 220 replaceValue(I, *VecLd); 221 ++NumVecLoad; 222 return true; 223 } 224 225 /// Determine which, if any, of the inputs should be replaced by a shuffle 226 /// followed by extract from a different index. 227 ExtractElementInst *VectorCombine::getShuffleExtract( 228 ExtractElementInst *Ext0, ExtractElementInst *Ext1, 229 unsigned PreferredExtractIndex = InvalidIndex) const { 230 assert(isa<ConstantInt>(Ext0->getIndexOperand()) && 231 isa<ConstantInt>(Ext1->getIndexOperand()) && 232 "Expected constant extract indexes"); 233 234 unsigned Index0 = cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue(); 235 unsigned Index1 = cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue(); 236 237 // If the extract indexes are identical, no shuffle is needed. 238 if (Index0 == Index1) 239 return nullptr; 240 241 Type *VecTy = Ext0->getVectorOperand()->getType(); 242 assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types"); 243 InstructionCost Cost0 = 244 TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 245 InstructionCost Cost1 = 246 TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 247 248 // If both costs are invalid no shuffle is needed 249 if (!Cost0.isValid() && !Cost1.isValid()) 250 return nullptr; 251 252 // We are extracting from 2 different indexes, so one operand must be shuffled 253 // before performing a vector operation and/or extract. The more expensive 254 // extract will be replaced by a shuffle. 255 if (Cost0 > Cost1) 256 return Ext0; 257 if (Cost1 > Cost0) 258 return Ext1; 259 260 // If the costs are equal and there is a preferred extract index, shuffle the 261 // opposite operand. 262 if (PreferredExtractIndex == Index0) 263 return Ext1; 264 if (PreferredExtractIndex == Index1) 265 return Ext0; 266 267 // Otherwise, replace the extract with the higher index. 268 return Index0 > Index1 ? Ext0 : Ext1; 269 } 270 271 /// Compare the relative costs of 2 extracts followed by scalar operation vs. 272 /// vector operation(s) followed by extract. Return true if the existing 273 /// instructions are cheaper than a vector alternative. Otherwise, return false 274 /// and if one of the extracts should be transformed to a shufflevector, set 275 /// \p ConvertToShuffle to that extract instruction. 276 bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0, 277 ExtractElementInst *Ext1, 278 unsigned Opcode, 279 ExtractElementInst *&ConvertToShuffle, 280 unsigned PreferredExtractIndex) { 281 assert(isa<ConstantInt>(Ext0->getOperand(1)) && 282 isa<ConstantInt>(Ext1->getOperand(1)) && 283 "Expected constant extract indexes"); 284 Type *ScalarTy = Ext0->getType(); 285 auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType()); 286 InstructionCost ScalarOpCost, VectorOpCost; 287 288 // Get cost estimates for scalar and vector versions of the operation. 289 bool IsBinOp = Instruction::isBinaryOp(Opcode); 290 if (IsBinOp) { 291 ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 292 VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 293 } else { 294 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 295 "Expected a compare"); 296 ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy, 297 CmpInst::makeCmpResultType(ScalarTy)); 298 VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy, 299 CmpInst::makeCmpResultType(VecTy)); 300 } 301 302 // Get cost estimates for the extract elements. These costs will factor into 303 // both sequences. 304 unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue(); 305 unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue(); 306 307 InstructionCost Extract0Cost = 308 TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index); 309 InstructionCost Extract1Cost = 310 TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index); 311 312 // A more expensive extract will always be replaced by a splat shuffle. 313 // For example, if Ext0 is more expensive: 314 // opcode (extelt V0, Ext0), (ext V1, Ext1) --> 315 // extelt (opcode (splat V0, Ext0), V1), Ext1 316 // TODO: Evaluate whether that always results in lowest cost. Alternatively, 317 // check the cost of creating a broadcast shuffle and shuffling both 318 // operands to element 0. 319 InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost); 320 321 // Extra uses of the extracts mean that we include those costs in the 322 // vector total because those instructions will not be eliminated. 323 InstructionCost OldCost, NewCost; 324 if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) { 325 // Handle a special case. If the 2 extracts are identical, adjust the 326 // formulas to account for that. The extra use charge allows for either the 327 // CSE'd pattern or an unoptimized form with identical values: 328 // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C 329 bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2) 330 : !Ext0->hasOneUse() || !Ext1->hasOneUse(); 331 OldCost = CheapExtractCost + ScalarOpCost; 332 NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost; 333 } else { 334 // Handle the general case. Each extract is actually a different value: 335 // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C 336 OldCost = Extract0Cost + Extract1Cost + ScalarOpCost; 337 NewCost = VectorOpCost + CheapExtractCost + 338 !Ext0->hasOneUse() * Extract0Cost + 339 !Ext1->hasOneUse() * Extract1Cost; 340 } 341 342 ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex); 343 if (ConvertToShuffle) { 344 if (IsBinOp && DisableBinopExtractShuffle) 345 return true; 346 347 // If we are extracting from 2 different indexes, then one operand must be 348 // shuffled before performing the vector operation. The shuffle mask is 349 // undefined except for 1 lane that is being translated to the remaining 350 // extraction lane. Therefore, it is a splat shuffle. Ex: 351 // ShufMask = { undef, undef, 0, undef } 352 // TODO: The cost model has an option for a "broadcast" shuffle 353 // (splat-from-element-0), but no option for a more general splat. 354 NewCost += 355 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 356 } 357 358 // Aggressively form a vector op if the cost is equal because the transform 359 // may enable further optimization. 360 // Codegen can reverse this transform (scalarize) if it was not profitable. 361 return OldCost < NewCost; 362 } 363 364 /// Create a shuffle that translates (shifts) 1 element from the input vector 365 /// to a new element location. 366 static Value *createShiftShuffle(Value *Vec, unsigned OldIndex, 367 unsigned NewIndex, IRBuilder<> &Builder) { 368 // The shuffle mask is undefined except for 1 lane that is being translated 369 // to the new element index. Example for OldIndex == 2 and NewIndex == 0: 370 // ShufMask = { 2, undef, undef, undef } 371 auto *VecTy = cast<FixedVectorType>(Vec->getType()); 372 SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem); 373 ShufMask[NewIndex] = OldIndex; 374 return Builder.CreateShuffleVector(Vec, ShufMask, "shift"); 375 } 376 377 /// Given an extract element instruction with constant index operand, shuffle 378 /// the source vector (shift the scalar element) to a NewIndex for extraction. 379 /// Return null if the input can be constant folded, so that we are not creating 380 /// unnecessary instructions. 381 static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt, 382 unsigned NewIndex, 383 IRBuilder<> &Builder) { 384 // If the extract can be constant-folded, this code is unsimplified. Defer 385 // to other passes to handle that. 386 Value *X = ExtElt->getVectorOperand(); 387 Value *C = ExtElt->getIndexOperand(); 388 assert(isa<ConstantInt>(C) && "Expected a constant index operand"); 389 if (isa<Constant>(X)) 390 return nullptr; 391 392 Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(), 393 NewIndex, Builder); 394 return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex)); 395 } 396 397 /// Try to reduce extract element costs by converting scalar compares to vector 398 /// compares followed by extract. 399 /// cmp (ext0 V0, C), (ext1 V1, C) 400 void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0, 401 ExtractElementInst *Ext1, Instruction &I) { 402 assert(isa<CmpInst>(&I) && "Expected a compare"); 403 assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 404 cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 405 "Expected matching constant extract indexes"); 406 407 // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C 408 ++NumVecCmp; 409 CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate(); 410 Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 411 Value *VecCmp = Builder.CreateCmp(Pred, V0, V1); 412 Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand()); 413 replaceValue(I, *NewExt); 414 } 415 416 /// Try to reduce extract element costs by converting scalar binops to vector 417 /// binops followed by extract. 418 /// bo (ext0 V0, C), (ext1 V1, C) 419 void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0, 420 ExtractElementInst *Ext1, Instruction &I) { 421 assert(isa<BinaryOperator>(&I) && "Expected a binary operator"); 422 assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 423 cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 424 "Expected matching constant extract indexes"); 425 426 // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C 427 ++NumVecBO; 428 Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 429 Value *VecBO = 430 Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1); 431 432 // All IR flags are safe to back-propagate because any potential poison 433 // created in unused vector elements is discarded by the extract. 434 if (auto *VecBOInst = dyn_cast<Instruction>(VecBO)) 435 VecBOInst->copyIRFlags(&I); 436 437 Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand()); 438 replaceValue(I, *NewExt); 439 } 440 441 /// Match an instruction with extracted vector operands. 442 bool VectorCombine::foldExtractExtract(Instruction &I) { 443 // It is not safe to transform things like div, urem, etc. because we may 444 // create undefined behavior when executing those on unknown vector elements. 445 if (!isSafeToSpeculativelyExecute(&I)) 446 return false; 447 448 Instruction *I0, *I1; 449 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 450 if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) && 451 !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1)))) 452 return false; 453 454 Value *V0, *V1; 455 uint64_t C0, C1; 456 if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) || 457 !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) || 458 V0->getType() != V1->getType()) 459 return false; 460 461 // If the scalar value 'I' is going to be re-inserted into a vector, then try 462 // to create an extract to that same element. The extract/insert can be 463 // reduced to a "select shuffle". 464 // TODO: If we add a larger pattern match that starts from an insert, this 465 // probably becomes unnecessary. 466 auto *Ext0 = cast<ExtractElementInst>(I0); 467 auto *Ext1 = cast<ExtractElementInst>(I1); 468 uint64_t InsertIndex = InvalidIndex; 469 if (I.hasOneUse()) 470 match(I.user_back(), 471 m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex))); 472 473 ExtractElementInst *ExtractToChange; 474 if (isExtractExtractCheap(Ext0, Ext1, I.getOpcode(), ExtractToChange, 475 InsertIndex)) 476 return false; 477 478 if (ExtractToChange) { 479 unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0; 480 ExtractElementInst *NewExtract = 481 translateExtract(ExtractToChange, CheapExtractIdx, Builder); 482 if (!NewExtract) 483 return false; 484 if (ExtractToChange == Ext0) 485 Ext0 = NewExtract; 486 else 487 Ext1 = NewExtract; 488 } 489 490 if (Pred != CmpInst::BAD_ICMP_PREDICATE) 491 foldExtExtCmp(Ext0, Ext1, I); 492 else 493 foldExtExtBinop(Ext0, Ext1, I); 494 495 return true; 496 } 497 498 /// If this is a bitcast of a shuffle, try to bitcast the source vector to the 499 /// destination type followed by shuffle. This can enable further transforms by 500 /// moving bitcasts or shuffles together. 501 bool VectorCombine::foldBitcastShuf(Instruction &I) { 502 Value *V; 503 ArrayRef<int> Mask; 504 if (!match(&I, m_BitCast( 505 m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask)))))) 506 return false; 507 508 // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for 509 // scalable type is unknown; Second, we cannot reason if the narrowed shuffle 510 // mask for scalable type is a splat or not. 511 // 2) Disallow non-vector casts and length-changing shuffles. 512 // TODO: We could allow any shuffle. 513 auto *DestTy = dyn_cast<FixedVectorType>(I.getType()); 514 auto *SrcTy = dyn_cast<FixedVectorType>(V->getType()); 515 if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy) 516 return false; 517 518 unsigned DestNumElts = DestTy->getNumElements(); 519 unsigned SrcNumElts = SrcTy->getNumElements(); 520 SmallVector<int, 16> NewMask; 521 if (SrcNumElts <= DestNumElts) { 522 // The bitcast is from wide to narrow/equal elements. The shuffle mask can 523 // always be expanded to the equivalent form choosing narrower elements. 524 assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask"); 525 unsigned ScaleFactor = DestNumElts / SrcNumElts; 526 narrowShuffleMaskElts(ScaleFactor, Mask, NewMask); 527 } else { 528 // The bitcast is from narrow elements to wide elements. The shuffle mask 529 // must choose consecutive elements to allow casting first. 530 assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask"); 531 unsigned ScaleFactor = SrcNumElts / DestNumElts; 532 if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask)) 533 return false; 534 } 535 536 // The new shuffle must not cost more than the old shuffle. The bitcast is 537 // moved ahead of the shuffle, so assume that it has the same cost as before. 538 InstructionCost DestCost = TTI.getShuffleCost( 539 TargetTransformInfo::SK_PermuteSingleSrc, DestTy, NewMask); 540 InstructionCost SrcCost = 541 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy, Mask); 542 if (DestCost > SrcCost || !DestCost.isValid()) 543 return false; 544 545 // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC' 546 ++NumShufOfBitcast; 547 Value *CastV = Builder.CreateBitCast(V, DestTy); 548 Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask); 549 replaceValue(I, *Shuf); 550 return true; 551 } 552 553 /// Match a vector binop or compare instruction with at least one inserted 554 /// scalar operand and convert to scalar binop/cmp followed by insertelement. 555 bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) { 556 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 557 Value *Ins0, *Ins1; 558 if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) && 559 !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1)))) 560 return false; 561 562 // Do not convert the vector condition of a vector select into a scalar 563 // condition. That may cause problems for codegen because of differences in 564 // boolean formats and register-file transfers. 565 // TODO: Can we account for that in the cost model? 566 bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE; 567 if (IsCmp) 568 for (User *U : I.users()) 569 if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value()))) 570 return false; 571 572 // Match against one or both scalar values being inserted into constant 573 // vectors: 574 // vec_op VecC0, (inselt VecC1, V1, Index) 575 // vec_op (inselt VecC0, V0, Index), VecC1 576 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) 577 // TODO: Deal with mismatched index constants and variable indexes? 578 Constant *VecC0 = nullptr, *VecC1 = nullptr; 579 Value *V0 = nullptr, *V1 = nullptr; 580 uint64_t Index0 = 0, Index1 = 0; 581 if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0), 582 m_ConstantInt(Index0))) && 583 !match(Ins0, m_Constant(VecC0))) 584 return false; 585 if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1), 586 m_ConstantInt(Index1))) && 587 !match(Ins1, m_Constant(VecC1))) 588 return false; 589 590 bool IsConst0 = !V0; 591 bool IsConst1 = !V1; 592 if (IsConst0 && IsConst1) 593 return false; 594 if (!IsConst0 && !IsConst1 && Index0 != Index1) 595 return false; 596 597 // Bail for single insertion if it is a load. 598 // TODO: Handle this once getVectorInstrCost can cost for load/stores. 599 auto *I0 = dyn_cast_or_null<Instruction>(V0); 600 auto *I1 = dyn_cast_or_null<Instruction>(V1); 601 if ((IsConst0 && I1 && I1->mayReadFromMemory()) || 602 (IsConst1 && I0 && I0->mayReadFromMemory())) 603 return false; 604 605 uint64_t Index = IsConst0 ? Index1 : Index0; 606 Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType(); 607 Type *VecTy = I.getType(); 608 assert(VecTy->isVectorTy() && 609 (IsConst0 || IsConst1 || V0->getType() == V1->getType()) && 610 (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() || 611 ScalarTy->isPointerTy()) && 612 "Unexpected types for insert element into binop or cmp"); 613 614 unsigned Opcode = I.getOpcode(); 615 InstructionCost ScalarOpCost, VectorOpCost; 616 if (IsCmp) { 617 ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy); 618 VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy); 619 } else { 620 ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 621 VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 622 } 623 624 // Get cost estimate for the insert element. This cost will factor into 625 // both sequences. 626 InstructionCost InsertCost = 627 TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index); 628 InstructionCost OldCost = 629 (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + VectorOpCost; 630 InstructionCost NewCost = ScalarOpCost + InsertCost + 631 (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) + 632 (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost); 633 634 // We want to scalarize unless the vector variant actually has lower cost. 635 if (OldCost < NewCost || !NewCost.isValid()) 636 return false; 637 638 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) --> 639 // inselt NewVecC, (scalar_op V0, V1), Index 640 if (IsCmp) 641 ++NumScalarCmp; 642 else 643 ++NumScalarBO; 644 645 // For constant cases, extract the scalar element, this should constant fold. 646 if (IsConst0) 647 V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index)); 648 if (IsConst1) 649 V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index)); 650 651 Value *Scalar = 652 IsCmp ? Builder.CreateCmp(Pred, V0, V1) 653 : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1); 654 655 Scalar->setName(I.getName() + ".scalar"); 656 657 // All IR flags are safe to back-propagate. There is no potential for extra 658 // poison to be created by the scalar instruction. 659 if (auto *ScalarInst = dyn_cast<Instruction>(Scalar)) 660 ScalarInst->copyIRFlags(&I); 661 662 // Fold the vector constants in the original vectors into a new base vector. 663 Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1) 664 : ConstantExpr::get(Opcode, VecC0, VecC1); 665 Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index); 666 replaceValue(I, *Insert); 667 return true; 668 } 669 670 /// Try to combine a scalar binop + 2 scalar compares of extracted elements of 671 /// a vector into vector operations followed by extract. Note: The SLP pass 672 /// may miss this pattern because of implementation problems. 673 bool VectorCombine::foldExtractedCmps(Instruction &I) { 674 // We are looking for a scalar binop of booleans. 675 // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1) 676 if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1)) 677 return false; 678 679 // The compare predicates should match, and each compare should have a 680 // constant operand. 681 // TODO: Relax the one-use constraints. 682 Value *B0 = I.getOperand(0), *B1 = I.getOperand(1); 683 Instruction *I0, *I1; 684 Constant *C0, *C1; 685 CmpInst::Predicate P0, P1; 686 if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) || 687 !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) || 688 P0 != P1) 689 return false; 690 691 // The compare operands must be extracts of the same vector with constant 692 // extract indexes. 693 // TODO: Relax the one-use constraints. 694 Value *X; 695 uint64_t Index0, Index1; 696 if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) || 697 !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1))))) 698 return false; 699 700 auto *Ext0 = cast<ExtractElementInst>(I0); 701 auto *Ext1 = cast<ExtractElementInst>(I1); 702 ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1); 703 if (!ConvertToShuf) 704 return false; 705 706 // The original scalar pattern is: 707 // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1) 708 CmpInst::Predicate Pred = P0; 709 unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp 710 : Instruction::ICmp; 711 auto *VecTy = dyn_cast<FixedVectorType>(X->getType()); 712 if (!VecTy) 713 return false; 714 715 InstructionCost OldCost = 716 TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 717 OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 718 OldCost += TTI.getCmpSelInstrCost(CmpOpcode, I0->getType()) * 2; 719 OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType()); 720 721 // The proposed vector pattern is: 722 // vcmp = cmp Pred X, VecC 723 // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0 724 int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0; 725 int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1; 726 auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType())); 727 InstructionCost NewCost = TTI.getCmpSelInstrCost(CmpOpcode, X->getType()); 728 SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem); 729 ShufMask[CheapIndex] = ExpensiveIndex; 730 NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy, 731 ShufMask); 732 NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy); 733 NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex); 734 735 // Aggressively form vector ops if the cost is equal because the transform 736 // may enable further optimization. 737 // Codegen can reverse this transform (scalarize) if it was not profitable. 738 if (OldCost < NewCost || !NewCost.isValid()) 739 return false; 740 741 // Create a vector constant from the 2 scalar constants. 742 SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(), 743 UndefValue::get(VecTy->getElementType())); 744 CmpC[Index0] = C0; 745 CmpC[Index1] = C1; 746 Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC)); 747 748 Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder); 749 Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(), 750 VCmp, Shuf); 751 Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex); 752 replaceValue(I, *NewExt); 753 ++NumVecCmpBO; 754 return true; 755 } 756 757 /// This is the entry point for all transforms. Pass manager differences are 758 /// handled in the callers of this function. 759 bool VectorCombine::run() { 760 if (DisableVectorCombine) 761 return false; 762 763 // Don't attempt vectorization if the target does not support vectors. 764 if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true))) 765 return false; 766 767 bool MadeChange = false; 768 for (BasicBlock &BB : F) { 769 // Ignore unreachable basic blocks. 770 if (!DT.isReachableFromEntry(&BB)) 771 continue; 772 // Do not delete instructions under here and invalidate the iterator. 773 // Walk the block forwards to enable simple iterative chains of transforms. 774 // TODO: It could be more efficient to remove dead instructions 775 // iteratively in this loop rather than waiting until the end. 776 for (Instruction &I : BB) { 777 if (isa<DbgInfoIntrinsic>(I)) 778 continue; 779 Builder.SetInsertPoint(&I); 780 MadeChange |= vectorizeLoadInsert(I); 781 MadeChange |= foldExtractExtract(I); 782 MadeChange |= foldBitcastShuf(I); 783 MadeChange |= scalarizeBinopOrCmp(I); 784 MadeChange |= foldExtractedCmps(I); 785 } 786 } 787 788 // We're done with transforms, so remove dead instructions. 789 if (MadeChange) 790 for (BasicBlock &BB : F) 791 SimplifyInstructionsInBlock(&BB); 792 793 return MadeChange; 794 } 795 796 // Pass manager boilerplate below here. 797 798 namespace { 799 class VectorCombineLegacyPass : public FunctionPass { 800 public: 801 static char ID; 802 VectorCombineLegacyPass() : FunctionPass(ID) { 803 initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry()); 804 } 805 806 void getAnalysisUsage(AnalysisUsage &AU) const override { 807 AU.addRequired<DominatorTreeWrapperPass>(); 808 AU.addRequired<TargetTransformInfoWrapperPass>(); 809 AU.setPreservesCFG(); 810 AU.addPreserved<DominatorTreeWrapperPass>(); 811 AU.addPreserved<GlobalsAAWrapperPass>(); 812 AU.addPreserved<AAResultsWrapperPass>(); 813 AU.addPreserved<BasicAAWrapperPass>(); 814 FunctionPass::getAnalysisUsage(AU); 815 } 816 817 bool runOnFunction(Function &F) override { 818 if (skipFunction(F)) 819 return false; 820 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 821 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 822 VectorCombine Combiner(F, TTI, DT); 823 return Combiner.run(); 824 } 825 }; 826 } // namespace 827 828 char VectorCombineLegacyPass::ID = 0; 829 INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine", 830 "Optimize scalar/vector ops", false, 831 false) 832 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 833 INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine", 834 "Optimize scalar/vector ops", false, false) 835 Pass *llvm::createVectorCombinePass() { 836 return new VectorCombineLegacyPass(); 837 } 838 839 PreservedAnalyses VectorCombinePass::run(Function &F, 840 FunctionAnalysisManager &FAM) { 841 TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); 842 DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); 843 VectorCombine Combiner(F, TTI, DT); 844 if (!Combiner.run()) 845 return PreservedAnalyses::all(); 846 PreservedAnalyses PA; 847 PA.preserveSet<CFGAnalyses>(); 848 PA.preserve<GlobalsAA>(); 849 PA.preserve<AAManager>(); 850 PA.preserve<BasicAA>(); 851 return PA; 852 } 853