1 //===------- VectorCombine.cpp - Optimize partial vector operations -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass optimizes scalar/vector interactions using target cost models. The
10 // transforms implemented here may not fit in traditional loop-based or SLP
11 // vectorization passes.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Vectorize/VectorCombine.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/BasicAliasAnalysis.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/Analysis/VectorUtils.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/InitializePasses.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 #include "llvm/Transforms/Vectorize.h"
32 
33 using namespace llvm;
34 using namespace llvm::PatternMatch;
35 
36 #define DEBUG_TYPE "vector-combine"
37 STATISTIC(NumVecLoad, "Number of vector loads formed");
38 STATISTIC(NumVecCmp, "Number of vector compares formed");
39 STATISTIC(NumVecBO, "Number of vector binops formed");
40 STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed");
41 STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast");
42 STATISTIC(NumScalarBO, "Number of scalar binops formed");
43 STATISTIC(NumScalarCmp, "Number of scalar compares formed");
44 
45 static cl::opt<bool> DisableVectorCombine(
46     "disable-vector-combine", cl::init(false), cl::Hidden,
47     cl::desc("Disable all vector combine transforms"));
48 
49 static cl::opt<bool> DisableBinopExtractShuffle(
50     "disable-binop-extract-shuffle", cl::init(false), cl::Hidden,
51     cl::desc("Disable binop extract to shuffle transforms"));
52 
53 static cl::opt<unsigned> MaxInstrsToScan(
54     "vector-combine-max-scan-instrs", cl::init(30), cl::Hidden,
55     cl::desc("Max number of instructions to scan for vector combining."));
56 
57 static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max();
58 
59 namespace {
60 class VectorCombine {
61 public:
62   VectorCombine(Function &F, const TargetTransformInfo &TTI,
63                 const DominatorTree &DT, AAResults &AA)
64       : F(F), Builder(F.getContext()), TTI(TTI), DT(DT), AA(AA) {}
65 
66   bool run();
67 
68 private:
69   Function &F;
70   IRBuilder<> Builder;
71   const TargetTransformInfo &TTI;
72   const DominatorTree &DT;
73   AAResults &AA;
74 
75   bool vectorizeLoadInsert(Instruction &I);
76   ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0,
77                                         ExtractElementInst *Ext1,
78                                         unsigned PreferredExtractIndex) const;
79   bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
80                              unsigned Opcode,
81                              ExtractElementInst *&ConvertToShuffle,
82                              unsigned PreferredExtractIndex);
83   void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
84                      Instruction &I);
85   void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
86                        Instruction &I);
87   bool foldExtractExtract(Instruction &I);
88   bool foldBitcastShuf(Instruction &I);
89   bool scalarizeBinopOrCmp(Instruction &I);
90   bool foldExtractedCmps(Instruction &I);
91   bool foldSingleElementStore(Instruction &I);
92   bool scalarizeLoadExtract(Instruction &I);
93 };
94 } // namespace
95 
96 static void replaceValue(Value &Old, Value &New) {
97   Old.replaceAllUsesWith(&New);
98   New.takeName(&Old);
99 }
100 
101 bool VectorCombine::vectorizeLoadInsert(Instruction &I) {
102   // Match insert into fixed vector of scalar value.
103   // TODO: Handle non-zero insert index.
104   auto *Ty = dyn_cast<FixedVectorType>(I.getType());
105   Value *Scalar;
106   if (!Ty || !match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) ||
107       !Scalar->hasOneUse())
108     return false;
109 
110   // Optionally match an extract from another vector.
111   Value *X;
112   bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt()));
113   if (!HasExtract)
114     X = Scalar;
115 
116   // Match source value as load of scalar or vector.
117   // Do not vectorize scalar load (widening) if atomic/volatile or under
118   // asan/hwasan/memtag/tsan. The widened load may load data from dirty regions
119   // or create data races non-existent in the source.
120   auto *Load = dyn_cast<LoadInst>(X);
121   if (!Load || !Load->isSimple() || !Load->hasOneUse() ||
122       Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) ||
123       mustSuppressSpeculation(*Load))
124     return false;
125 
126   const DataLayout &DL = I.getModule()->getDataLayout();
127   Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts();
128   assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type");
129 
130   // If original AS != Load's AS, we can't bitcast the original pointer and have
131   // to use Load's operand instead. Ideally we would want to strip pointer casts
132   // without changing AS, but there's no API to do that ATM.
133   unsigned AS = Load->getPointerAddressSpace();
134   if (AS != SrcPtr->getType()->getPointerAddressSpace())
135     SrcPtr = Load->getPointerOperand();
136 
137   // We are potentially transforming byte-sized (8-bit) memory accesses, so make
138   // sure we have all of our type-based constraints in place for this target.
139   Type *ScalarTy = Scalar->getType();
140   uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
141   unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
142   if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 ||
143       ScalarSize % 8 != 0)
144     return false;
145 
146   // Check safety of replacing the scalar load with a larger vector load.
147   // We use minimal alignment (maximum flexibility) because we only care about
148   // the dereferenceable region. When calculating cost and creating a new op,
149   // we may use a larger value based on alignment attributes.
150   unsigned MinVecNumElts = MinVectorSize / ScalarSize;
151   auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false);
152   unsigned OffsetEltIndex = 0;
153   Align Alignment = Load->getAlign();
154   if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) {
155     // It is not safe to load directly from the pointer, but we can still peek
156     // through gep offsets and check if it safe to load from a base address with
157     // updated alignment. If it is, we can shuffle the element(s) into place
158     // after loading.
159     unsigned OffsetBitWidth = DL.getIndexTypeSizeInBits(SrcPtr->getType());
160     APInt Offset(OffsetBitWidth, 0);
161     SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
162 
163     // We want to shuffle the result down from a high element of a vector, so
164     // the offset must be positive.
165     if (Offset.isNegative())
166       return false;
167 
168     // The offset must be a multiple of the scalar element to shuffle cleanly
169     // in the element's size.
170     uint64_t ScalarSizeInBytes = ScalarSize / 8;
171     if (Offset.urem(ScalarSizeInBytes) != 0)
172       return false;
173 
174     // If we load MinVecNumElts, will our target element still be loaded?
175     OffsetEltIndex = Offset.udiv(ScalarSizeInBytes).getZExtValue();
176     if (OffsetEltIndex >= MinVecNumElts)
177       return false;
178 
179     if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT))
180       return false;
181 
182     // Update alignment with offset value. Note that the offset could be negated
183     // to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but
184     // negation does not change the result of the alignment calculation.
185     Alignment = commonAlignment(Alignment, Offset.getZExtValue());
186   }
187 
188   // Original pattern: insertelt undef, load [free casts of] PtrOp, 0
189   // Use the greater of the alignment on the load or its source pointer.
190   Alignment = std::max(SrcPtr->getPointerAlignment(DL), Alignment);
191   Type *LoadTy = Load->getType();
192   InstructionCost OldCost =
193       TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS);
194   APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0);
195   OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts,
196                                           /* Insert */ true, HasExtract);
197 
198   // New pattern: load VecPtr
199   InstructionCost NewCost =
200       TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS);
201   // Optionally, we are shuffling the loaded vector element(s) into place.
202   // For the mask set everything but element 0 to undef to prevent poison from
203   // propagating from the extra loaded memory. This will also optionally
204   // shrink/grow the vector from the loaded size to the output size.
205   // We assume this operation has no cost in codegen if there was no offset.
206   // Note that we could use freeze to avoid poison problems, but then we might
207   // still need a shuffle to change the vector size.
208   unsigned OutputNumElts = Ty->getNumElements();
209   SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem);
210   assert(OffsetEltIndex < MinVecNumElts && "Address offset too big");
211   Mask[0] = OffsetEltIndex;
212   if (OffsetEltIndex)
213     NewCost += TTI.getShuffleCost(TTI::SK_PermuteSingleSrc, MinVecTy, Mask);
214 
215   // We can aggressively convert to the vector form because the backend can
216   // invert this transform if it does not result in a performance win.
217   if (OldCost < NewCost || !NewCost.isValid())
218     return false;
219 
220   // It is safe and potentially profitable to load a vector directly:
221   // inselt undef, load Scalar, 0 --> load VecPtr
222   IRBuilder<> Builder(Load);
223   Value *CastedPtr = Builder.CreateBitCast(SrcPtr, MinVecTy->getPointerTo(AS));
224   Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment);
225   VecLd = Builder.CreateShuffleVector(VecLd, Mask);
226 
227   replaceValue(I, *VecLd);
228   ++NumVecLoad;
229   return true;
230 }
231 
232 /// Determine which, if any, of the inputs should be replaced by a shuffle
233 /// followed by extract from a different index.
234 ExtractElementInst *VectorCombine::getShuffleExtract(
235     ExtractElementInst *Ext0, ExtractElementInst *Ext1,
236     unsigned PreferredExtractIndex = InvalidIndex) const {
237   assert(isa<ConstantInt>(Ext0->getIndexOperand()) &&
238          isa<ConstantInt>(Ext1->getIndexOperand()) &&
239          "Expected constant extract indexes");
240 
241   unsigned Index0 = cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue();
242   unsigned Index1 = cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue();
243 
244   // If the extract indexes are identical, no shuffle is needed.
245   if (Index0 == Index1)
246     return nullptr;
247 
248   Type *VecTy = Ext0->getVectorOperand()->getType();
249   assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types");
250   InstructionCost Cost0 =
251       TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
252   InstructionCost Cost1 =
253       TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);
254 
255   // If both costs are invalid no shuffle is needed
256   if (!Cost0.isValid() && !Cost1.isValid())
257     return nullptr;
258 
259   // We are extracting from 2 different indexes, so one operand must be shuffled
260   // before performing a vector operation and/or extract. The more expensive
261   // extract will be replaced by a shuffle.
262   if (Cost0 > Cost1)
263     return Ext0;
264   if (Cost1 > Cost0)
265     return Ext1;
266 
267   // If the costs are equal and there is a preferred extract index, shuffle the
268   // opposite operand.
269   if (PreferredExtractIndex == Index0)
270     return Ext1;
271   if (PreferredExtractIndex == Index1)
272     return Ext0;
273 
274   // Otherwise, replace the extract with the higher index.
275   return Index0 > Index1 ? Ext0 : Ext1;
276 }
277 
278 /// Compare the relative costs of 2 extracts followed by scalar operation vs.
279 /// vector operation(s) followed by extract. Return true if the existing
280 /// instructions are cheaper than a vector alternative. Otherwise, return false
281 /// and if one of the extracts should be transformed to a shufflevector, set
282 /// \p ConvertToShuffle to that extract instruction.
283 bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0,
284                                           ExtractElementInst *Ext1,
285                                           unsigned Opcode,
286                                           ExtractElementInst *&ConvertToShuffle,
287                                           unsigned PreferredExtractIndex) {
288   assert(isa<ConstantInt>(Ext0->getOperand(1)) &&
289          isa<ConstantInt>(Ext1->getOperand(1)) &&
290          "Expected constant extract indexes");
291   Type *ScalarTy = Ext0->getType();
292   auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType());
293   InstructionCost ScalarOpCost, VectorOpCost;
294 
295   // Get cost estimates for scalar and vector versions of the operation.
296   bool IsBinOp = Instruction::isBinaryOp(Opcode);
297   if (IsBinOp) {
298     ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
299     VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
300   } else {
301     assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
302            "Expected a compare");
303     ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy,
304                                           CmpInst::makeCmpResultType(ScalarTy));
305     VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy,
306                                           CmpInst::makeCmpResultType(VecTy));
307   }
308 
309   // Get cost estimates for the extract elements. These costs will factor into
310   // both sequences.
311   unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue();
312   unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue();
313 
314   InstructionCost Extract0Cost =
315       TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index);
316   InstructionCost Extract1Cost =
317       TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index);
318 
319   // A more expensive extract will always be replaced by a splat shuffle.
320   // For example, if Ext0 is more expensive:
321   // opcode (extelt V0, Ext0), (ext V1, Ext1) -->
322   // extelt (opcode (splat V0, Ext0), V1), Ext1
323   // TODO: Evaluate whether that always results in lowest cost. Alternatively,
324   //       check the cost of creating a broadcast shuffle and shuffling both
325   //       operands to element 0.
326   InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost);
327 
328   // Extra uses of the extracts mean that we include those costs in the
329   // vector total because those instructions will not be eliminated.
330   InstructionCost OldCost, NewCost;
331   if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) {
332     // Handle a special case. If the 2 extracts are identical, adjust the
333     // formulas to account for that. The extra use charge allows for either the
334     // CSE'd pattern or an unoptimized form with identical values:
335     // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C
336     bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2)
337                                   : !Ext0->hasOneUse() || !Ext1->hasOneUse();
338     OldCost = CheapExtractCost + ScalarOpCost;
339     NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost;
340   } else {
341     // Handle the general case. Each extract is actually a different value:
342     // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C
343     OldCost = Extract0Cost + Extract1Cost + ScalarOpCost;
344     NewCost = VectorOpCost + CheapExtractCost +
345               !Ext0->hasOneUse() * Extract0Cost +
346               !Ext1->hasOneUse() * Extract1Cost;
347   }
348 
349   ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex);
350   if (ConvertToShuffle) {
351     if (IsBinOp && DisableBinopExtractShuffle)
352       return true;
353 
354     // If we are extracting from 2 different indexes, then one operand must be
355     // shuffled before performing the vector operation. The shuffle mask is
356     // undefined except for 1 lane that is being translated to the remaining
357     // extraction lane. Therefore, it is a splat shuffle. Ex:
358     // ShufMask = { undef, undef, 0, undef }
359     // TODO: The cost model has an option for a "broadcast" shuffle
360     //       (splat-from-element-0), but no option for a more general splat.
361     NewCost +=
362         TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
363   }
364 
365   // Aggressively form a vector op if the cost is equal because the transform
366   // may enable further optimization.
367   // Codegen can reverse this transform (scalarize) if it was not profitable.
368   return OldCost < NewCost;
369 }
370 
371 /// Create a shuffle that translates (shifts) 1 element from the input vector
372 /// to a new element location.
373 static Value *createShiftShuffle(Value *Vec, unsigned OldIndex,
374                                  unsigned NewIndex, IRBuilder<> &Builder) {
375   // The shuffle mask is undefined except for 1 lane that is being translated
376   // to the new element index. Example for OldIndex == 2 and NewIndex == 0:
377   // ShufMask = { 2, undef, undef, undef }
378   auto *VecTy = cast<FixedVectorType>(Vec->getType());
379   SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem);
380   ShufMask[NewIndex] = OldIndex;
381   return Builder.CreateShuffleVector(Vec, ShufMask, "shift");
382 }
383 
384 /// Given an extract element instruction with constant index operand, shuffle
385 /// the source vector (shift the scalar element) to a NewIndex for extraction.
386 /// Return null if the input can be constant folded, so that we are not creating
387 /// unnecessary instructions.
388 static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt,
389                                             unsigned NewIndex,
390                                             IRBuilder<> &Builder) {
391   // If the extract can be constant-folded, this code is unsimplified. Defer
392   // to other passes to handle that.
393   Value *X = ExtElt->getVectorOperand();
394   Value *C = ExtElt->getIndexOperand();
395   assert(isa<ConstantInt>(C) && "Expected a constant index operand");
396   if (isa<Constant>(X))
397     return nullptr;
398 
399   Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(),
400                                    NewIndex, Builder);
401   return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex));
402 }
403 
404 /// Try to reduce extract element costs by converting scalar compares to vector
405 /// compares followed by extract.
406 /// cmp (ext0 V0, C), (ext1 V1, C)
407 void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0,
408                                   ExtractElementInst *Ext1, Instruction &I) {
409   assert(isa<CmpInst>(&I) && "Expected a compare");
410   assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
411              cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
412          "Expected matching constant extract indexes");
413 
414   // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C
415   ++NumVecCmp;
416   CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate();
417   Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
418   Value *VecCmp = Builder.CreateCmp(Pred, V0, V1);
419   Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand());
420   replaceValue(I, *NewExt);
421 }
422 
423 /// Try to reduce extract element costs by converting scalar binops to vector
424 /// binops followed by extract.
425 /// bo (ext0 V0, C), (ext1 V1, C)
426 void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0,
427                                     ExtractElementInst *Ext1, Instruction &I) {
428   assert(isa<BinaryOperator>(&I) && "Expected a binary operator");
429   assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
430              cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
431          "Expected matching constant extract indexes");
432 
433   // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C
434   ++NumVecBO;
435   Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
436   Value *VecBO =
437       Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1);
438 
439   // All IR flags are safe to back-propagate because any potential poison
440   // created in unused vector elements is discarded by the extract.
441   if (auto *VecBOInst = dyn_cast<Instruction>(VecBO))
442     VecBOInst->copyIRFlags(&I);
443 
444   Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand());
445   replaceValue(I, *NewExt);
446 }
447 
448 /// Match an instruction with extracted vector operands.
449 bool VectorCombine::foldExtractExtract(Instruction &I) {
450   // It is not safe to transform things like div, urem, etc. because we may
451   // create undefined behavior when executing those on unknown vector elements.
452   if (!isSafeToSpeculativelyExecute(&I))
453     return false;
454 
455   Instruction *I0, *I1;
456   CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
457   if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) &&
458       !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1))))
459     return false;
460 
461   Value *V0, *V1;
462   uint64_t C0, C1;
463   if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) ||
464       !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) ||
465       V0->getType() != V1->getType())
466     return false;
467 
468   // If the scalar value 'I' is going to be re-inserted into a vector, then try
469   // to create an extract to that same element. The extract/insert can be
470   // reduced to a "select shuffle".
471   // TODO: If we add a larger pattern match that starts from an insert, this
472   //       probably becomes unnecessary.
473   auto *Ext0 = cast<ExtractElementInst>(I0);
474   auto *Ext1 = cast<ExtractElementInst>(I1);
475   uint64_t InsertIndex = InvalidIndex;
476   if (I.hasOneUse())
477     match(I.user_back(),
478           m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex)));
479 
480   ExtractElementInst *ExtractToChange;
481   if (isExtractExtractCheap(Ext0, Ext1, I.getOpcode(), ExtractToChange,
482                             InsertIndex))
483     return false;
484 
485   if (ExtractToChange) {
486     unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0;
487     ExtractElementInst *NewExtract =
488         translateExtract(ExtractToChange, CheapExtractIdx, Builder);
489     if (!NewExtract)
490       return false;
491     if (ExtractToChange == Ext0)
492       Ext0 = NewExtract;
493     else
494       Ext1 = NewExtract;
495   }
496 
497   if (Pred != CmpInst::BAD_ICMP_PREDICATE)
498     foldExtExtCmp(Ext0, Ext1, I);
499   else
500     foldExtExtBinop(Ext0, Ext1, I);
501 
502   return true;
503 }
504 
505 /// If this is a bitcast of a shuffle, try to bitcast the source vector to the
506 /// destination type followed by shuffle. This can enable further transforms by
507 /// moving bitcasts or shuffles together.
508 bool VectorCombine::foldBitcastShuf(Instruction &I) {
509   Value *V;
510   ArrayRef<int> Mask;
511   if (!match(&I, m_BitCast(
512                      m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))))))
513     return false;
514 
515   // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for
516   // scalable type is unknown; Second, we cannot reason if the narrowed shuffle
517   // mask for scalable type is a splat or not.
518   // 2) Disallow non-vector casts and length-changing shuffles.
519   // TODO: We could allow any shuffle.
520   auto *DestTy = dyn_cast<FixedVectorType>(I.getType());
521   auto *SrcTy = dyn_cast<FixedVectorType>(V->getType());
522   if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy)
523     return false;
524 
525   unsigned DestNumElts = DestTy->getNumElements();
526   unsigned SrcNumElts = SrcTy->getNumElements();
527   SmallVector<int, 16> NewMask;
528   if (SrcNumElts <= DestNumElts) {
529     // The bitcast is from wide to narrow/equal elements. The shuffle mask can
530     // always be expanded to the equivalent form choosing narrower elements.
531     assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask");
532     unsigned ScaleFactor = DestNumElts / SrcNumElts;
533     narrowShuffleMaskElts(ScaleFactor, Mask, NewMask);
534   } else {
535     // The bitcast is from narrow elements to wide elements. The shuffle mask
536     // must choose consecutive elements to allow casting first.
537     assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask");
538     unsigned ScaleFactor = SrcNumElts / DestNumElts;
539     if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask))
540       return false;
541   }
542 
543   // The new shuffle must not cost more than the old shuffle. The bitcast is
544   // moved ahead of the shuffle, so assume that it has the same cost as before.
545   InstructionCost DestCost = TTI.getShuffleCost(
546       TargetTransformInfo::SK_PermuteSingleSrc, DestTy, NewMask);
547   InstructionCost SrcCost =
548       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy, Mask);
549   if (DestCost > SrcCost || !DestCost.isValid())
550     return false;
551 
552   // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC'
553   ++NumShufOfBitcast;
554   Value *CastV = Builder.CreateBitCast(V, DestTy);
555   Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask);
556   replaceValue(I, *Shuf);
557   return true;
558 }
559 
560 /// Match a vector binop or compare instruction with at least one inserted
561 /// scalar operand and convert to scalar binop/cmp followed by insertelement.
562 bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) {
563   CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
564   Value *Ins0, *Ins1;
565   if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) &&
566       !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1))))
567     return false;
568 
569   // Do not convert the vector condition of a vector select into a scalar
570   // condition. That may cause problems for codegen because of differences in
571   // boolean formats and register-file transfers.
572   // TODO: Can we account for that in the cost model?
573   bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE;
574   if (IsCmp)
575     for (User *U : I.users())
576       if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value())))
577         return false;
578 
579   // Match against one or both scalar values being inserted into constant
580   // vectors:
581   // vec_op VecC0, (inselt VecC1, V1, Index)
582   // vec_op (inselt VecC0, V0, Index), VecC1
583   // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index)
584   // TODO: Deal with mismatched index constants and variable indexes?
585   Constant *VecC0 = nullptr, *VecC1 = nullptr;
586   Value *V0 = nullptr, *V1 = nullptr;
587   uint64_t Index0 = 0, Index1 = 0;
588   if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0),
589                                m_ConstantInt(Index0))) &&
590       !match(Ins0, m_Constant(VecC0)))
591     return false;
592   if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1),
593                                m_ConstantInt(Index1))) &&
594       !match(Ins1, m_Constant(VecC1)))
595     return false;
596 
597   bool IsConst0 = !V0;
598   bool IsConst1 = !V1;
599   if (IsConst0 && IsConst1)
600     return false;
601   if (!IsConst0 && !IsConst1 && Index0 != Index1)
602     return false;
603 
604   // Bail for single insertion if it is a load.
605   // TODO: Handle this once getVectorInstrCost can cost for load/stores.
606   auto *I0 = dyn_cast_or_null<Instruction>(V0);
607   auto *I1 = dyn_cast_or_null<Instruction>(V1);
608   if ((IsConst0 && I1 && I1->mayReadFromMemory()) ||
609       (IsConst1 && I0 && I0->mayReadFromMemory()))
610     return false;
611 
612   uint64_t Index = IsConst0 ? Index1 : Index0;
613   Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType();
614   Type *VecTy = I.getType();
615   assert(VecTy->isVectorTy() &&
616          (IsConst0 || IsConst1 || V0->getType() == V1->getType()) &&
617          (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() ||
618           ScalarTy->isPointerTy()) &&
619          "Unexpected types for insert element into binop or cmp");
620 
621   unsigned Opcode = I.getOpcode();
622   InstructionCost ScalarOpCost, VectorOpCost;
623   if (IsCmp) {
624     ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy);
625     VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy);
626   } else {
627     ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
628     VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
629   }
630 
631   // Get cost estimate for the insert element. This cost will factor into
632   // both sequences.
633   InstructionCost InsertCost =
634       TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index);
635   InstructionCost OldCost =
636       (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + VectorOpCost;
637   InstructionCost NewCost = ScalarOpCost + InsertCost +
638                             (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) +
639                             (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost);
640 
641   // We want to scalarize unless the vector variant actually has lower cost.
642   if (OldCost < NewCost || !NewCost.isValid())
643     return false;
644 
645   // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) -->
646   // inselt NewVecC, (scalar_op V0, V1), Index
647   if (IsCmp)
648     ++NumScalarCmp;
649   else
650     ++NumScalarBO;
651 
652   // For constant cases, extract the scalar element, this should constant fold.
653   if (IsConst0)
654     V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index));
655   if (IsConst1)
656     V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index));
657 
658   Value *Scalar =
659       IsCmp ? Builder.CreateCmp(Pred, V0, V1)
660             : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1);
661 
662   Scalar->setName(I.getName() + ".scalar");
663 
664   // All IR flags are safe to back-propagate. There is no potential for extra
665   // poison to be created by the scalar instruction.
666   if (auto *ScalarInst = dyn_cast<Instruction>(Scalar))
667     ScalarInst->copyIRFlags(&I);
668 
669   // Fold the vector constants in the original vectors into a new base vector.
670   Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1)
671                             : ConstantExpr::get(Opcode, VecC0, VecC1);
672   Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index);
673   replaceValue(I, *Insert);
674   return true;
675 }
676 
677 /// Try to combine a scalar binop + 2 scalar compares of extracted elements of
678 /// a vector into vector operations followed by extract. Note: The SLP pass
679 /// may miss this pattern because of implementation problems.
680 bool VectorCombine::foldExtractedCmps(Instruction &I) {
681   // We are looking for a scalar binop of booleans.
682   // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1)
683   if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1))
684     return false;
685 
686   // The compare predicates should match, and each compare should have a
687   // constant operand.
688   // TODO: Relax the one-use constraints.
689   Value *B0 = I.getOperand(0), *B1 = I.getOperand(1);
690   Instruction *I0, *I1;
691   Constant *C0, *C1;
692   CmpInst::Predicate P0, P1;
693   if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) ||
694       !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) ||
695       P0 != P1)
696     return false;
697 
698   // The compare operands must be extracts of the same vector with constant
699   // extract indexes.
700   // TODO: Relax the one-use constraints.
701   Value *X;
702   uint64_t Index0, Index1;
703   if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) ||
704       !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1)))))
705     return false;
706 
707   auto *Ext0 = cast<ExtractElementInst>(I0);
708   auto *Ext1 = cast<ExtractElementInst>(I1);
709   ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1);
710   if (!ConvertToShuf)
711     return false;
712 
713   // The original scalar pattern is:
714   // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1)
715   CmpInst::Predicate Pred = P0;
716   unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp
717                                                     : Instruction::ICmp;
718   auto *VecTy = dyn_cast<FixedVectorType>(X->getType());
719   if (!VecTy)
720     return false;
721 
722   InstructionCost OldCost =
723       TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
724   OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);
725   OldCost += TTI.getCmpSelInstrCost(CmpOpcode, I0->getType()) * 2;
726   OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType());
727 
728   // The proposed vector pattern is:
729   // vcmp = cmp Pred X, VecC
730   // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0
731   int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0;
732   int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1;
733   auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType()));
734   InstructionCost NewCost = TTI.getCmpSelInstrCost(CmpOpcode, X->getType());
735   SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem);
736   ShufMask[CheapIndex] = ExpensiveIndex;
737   NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy,
738                                 ShufMask);
739   NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy);
740   NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex);
741 
742   // Aggressively form vector ops if the cost is equal because the transform
743   // may enable further optimization.
744   // Codegen can reverse this transform (scalarize) if it was not profitable.
745   if (OldCost < NewCost || !NewCost.isValid())
746     return false;
747 
748   // Create a vector constant from the 2 scalar constants.
749   SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(),
750                                    UndefValue::get(VecTy->getElementType()));
751   CmpC[Index0] = C0;
752   CmpC[Index1] = C1;
753   Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC));
754 
755   Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder);
756   Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
757                                         VCmp, Shuf);
758   Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex);
759   replaceValue(I, *NewExt);
760   ++NumVecCmpBO;
761   return true;
762 }
763 
764 // Check if memory loc modified between two instrs in the same BB
765 static bool isMemModifiedBetween(BasicBlock::iterator Begin,
766                                  BasicBlock::iterator End,
767                                  const MemoryLocation &Loc, AAResults &AA) {
768   unsigned NumScanned = 0;
769   return std::any_of(Begin, End, [&](const Instruction &Instr) {
770     return isModSet(AA.getModRefInfo(&Instr, Loc)) ||
771            ++NumScanned > MaxInstrsToScan;
772   });
773 }
774 
775 /// Check if it is legal to scalarize a memory access to \p VecTy at index \p
776 /// Idx. \p Idx must access a valid vector element.
777 static bool canScalarizeAccess(FixedVectorType *VecTy, ConstantInt *Idx) {
778   return Idx->getValue().ult(VecTy->getNumElements());
779 }
780 
781 // Combine patterns like:
782 //   %0 = load <4 x i32>, <4 x i32>* %a
783 //   %1 = insertelement <4 x i32> %0, i32 %b, i32 1
784 //   store <4 x i32> %1, <4 x i32>* %a
785 // to:
786 //   %0 = bitcast <4 x i32>* %a to i32*
787 //   %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1
788 //   store i32 %b, i32* %1
789 bool VectorCombine::foldSingleElementStore(Instruction &I) {
790   StoreInst *SI = dyn_cast<StoreInst>(&I);
791   if (!SI || !SI->isSimple() ||
792       !isa<FixedVectorType>(SI->getValueOperand()->getType()))
793     return false;
794 
795   // TODO: Combine more complicated patterns (multiple insert) by referencing
796   // TargetTransformInfo.
797   Instruction *Source;
798   Value *NewElement;
799   ConstantInt *Idx;
800   if (!match(SI->getValueOperand(),
801              m_InsertElt(m_Instruction(Source), m_Value(NewElement),
802                          m_ConstantInt(Idx))))
803     return false;
804 
805   if (auto *Load = dyn_cast<LoadInst>(Source)) {
806     auto VecTy = cast<FixedVectorType>(SI->getValueOperand()->getType());
807     const DataLayout &DL = I.getModule()->getDataLayout();
808     Value *SrcAddr = Load->getPointerOperand()->stripPointerCasts();
809     // Don't optimize for atomic/volatile load or store. Ensure memory is not
810     // modified between, vector type matches store size, and index is inbounds.
811     if (!Load->isSimple() || Load->getParent() != SI->getParent() ||
812         !DL.typeSizeEqualsStoreSize(Load->getType()) ||
813         !canScalarizeAccess(VecTy, Idx) ||
814         SrcAddr != SI->getPointerOperand()->stripPointerCasts() ||
815         isMemModifiedBetween(Load->getIterator(), SI->getIterator(),
816                              MemoryLocation::get(SI), AA))
817       return false;
818 
819     Value *GEP = GetElementPtrInst::CreateInBounds(
820         SI->getPointerOperand(), {ConstantInt::get(Idx->getType(), 0), Idx});
821     Builder.Insert(GEP);
822     StoreInst *NSI = Builder.CreateStore(NewElement, GEP);
823     NSI->copyMetadata(*SI);
824     if (SI->getAlign() < NSI->getAlign())
825       NSI->setAlignment(SI->getAlign());
826     replaceValue(I, *NSI);
827     // Need erasing the store manually.
828     I.eraseFromParent();
829     return true;
830   }
831 
832   return false;
833 }
834 
835 /// Try to scalarize vector loads feeding extractelement instructions.
836 bool VectorCombine::scalarizeLoadExtract(Instruction &I) {
837   Value *Ptr;
838   ConstantInt *Idx;
839   if (!match(&I, m_ExtractElt(m_Load(m_Value(Ptr)), m_ConstantInt(Idx))))
840     return false;
841 
842   auto *LI = cast<LoadInst>(I.getOperand(0));
843   const DataLayout &DL = I.getModule()->getDataLayout();
844   if (LI->isVolatile() || !DL.typeSizeEqualsStoreSize(LI->getType()))
845     return false;
846 
847   auto *FixedVT = dyn_cast<FixedVectorType>(LI->getType());
848   if (!FixedVT)
849     return false;
850 
851   if (!canScalarizeAccess(FixedVT, Idx))
852     return false;
853 
854   InstructionCost OriginalCost = TTI.getMemoryOpCost(
855       Instruction::Load, LI->getType(), Align(LI->getAlignment()),
856       LI->getPointerAddressSpace());
857   InstructionCost ScalarizedCost = 0;
858 
859   Instruction *LastCheckedInst = LI;
860   unsigned NumInstChecked = 0;
861   // Check if all users of the load are extracts with no memory modifications
862   // between the load and the extract. Compute the cost of both the original
863   // code and the scalarized version.
864   for (User *U : LI->users()) {
865     auto *UI = dyn_cast<ExtractElementInst>(U);
866     if (!UI || UI->getParent() != LI->getParent())
867       return false;
868 
869     // Check if any instruction between the load and the extract may modify
870     // memory.
871     if (LastCheckedInst->comesBefore(UI)) {
872       for (Instruction &I :
873            make_range(std::next(LI->getIterator()), UI->getIterator())) {
874         // Bail out if we reached the check limit or the instruction may write
875         // to memory.
876         if (NumInstChecked == MaxInstrsToScan || I.mayWriteToMemory())
877           return false;
878         NumInstChecked++;
879       }
880     }
881 
882     if (!LastCheckedInst)
883       LastCheckedInst = UI;
884     else if (LastCheckedInst->comesBefore(UI))
885       LastCheckedInst = UI;
886 
887     auto *Index = dyn_cast<ConstantInt>(UI->getOperand(1));
888     OriginalCost +=
889         TTI.getVectorInstrCost(Instruction::ExtractElement, LI->getType(),
890                                Index ? Index->getZExtValue() : -1);
891     ScalarizedCost +=
892         TTI.getMemoryOpCost(Instruction::Load, FixedVT->getElementType(),
893                             Align(1), LI->getPointerAddressSpace());
894     ScalarizedCost += TTI.getAddressComputationCost(FixedVT->getElementType());
895   }
896 
897   if (ScalarizedCost >= OriginalCost)
898     return false;
899 
900   // Replace extracts with narrow scalar loads.
901   for (User *U : LI->users()) {
902     auto *EI = cast<ExtractElementInst>(U);
903     IRBuilder<>::InsertPointGuard Guard(Builder);
904     Builder.SetInsertPoint(EI);
905     Value *GEP = Builder.CreateInBoundsGEP(
906         FixedVT, Ptr, {Builder.getInt32(0), EI->getOperand(1)});
907     auto *NewLoad = cast<LoadInst>(Builder.CreateLoad(
908         FixedVT->getElementType(), GEP, EI->getName() + ".scalar"));
909 
910     // Set the alignment for the new load. For index 0, we can use the original
911     // alignment. Otherwise choose the common alignment of the load's align and
912     // the alignment for the scalar type.
913     auto *ConstIdx = dyn_cast<ConstantInt>(EI->getOperand(1));
914     if (ConstIdx && ConstIdx->isNullValue())
915       NewLoad->setAlignment(LI->getAlign());
916     else
917       NewLoad->setAlignment(commonAlignment(
918           DL.getABITypeAlign(NewLoad->getType()), LI->getAlign()));
919     replaceValue(*EI, *NewLoad);
920   }
921 
922   return true;
923 }
924 
925 /// This is the entry point for all transforms. Pass manager differences are
926 /// handled in the callers of this function.
927 bool VectorCombine::run() {
928   if (DisableVectorCombine)
929     return false;
930 
931   // Don't attempt vectorization if the target does not support vectors.
932   if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true)))
933     return false;
934 
935   bool MadeChange = false;
936   for (BasicBlock &BB : F) {
937     // Ignore unreachable basic blocks.
938     if (!DT.isReachableFromEntry(&BB))
939       continue;
940     // Use early increment range so that we can erase instructions in loop.
941     for (Instruction &I : make_early_inc_range(BB)) {
942       if (isa<DbgInfoIntrinsic>(I))
943         continue;
944       Builder.SetInsertPoint(&I);
945       MadeChange |= vectorizeLoadInsert(I);
946       MadeChange |= foldExtractExtract(I);
947       MadeChange |= foldBitcastShuf(I);
948       MadeChange |= scalarizeBinopOrCmp(I);
949       MadeChange |= foldExtractedCmps(I);
950       MadeChange |= scalarizeLoadExtract(I);
951       MadeChange |= foldSingleElementStore(I);
952     }
953   }
954 
955   // We're done with transforms, so remove dead instructions.
956   if (MadeChange)
957     for (BasicBlock &BB : F)
958       SimplifyInstructionsInBlock(&BB);
959 
960   return MadeChange;
961 }
962 
963 // Pass manager boilerplate below here.
964 
965 namespace {
966 class VectorCombineLegacyPass : public FunctionPass {
967 public:
968   static char ID;
969   VectorCombineLegacyPass() : FunctionPass(ID) {
970     initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry());
971   }
972 
973   void getAnalysisUsage(AnalysisUsage &AU) const override {
974     AU.addRequired<DominatorTreeWrapperPass>();
975     AU.addRequired<TargetTransformInfoWrapperPass>();
976     AU.addRequired<AAResultsWrapperPass>();
977     AU.setPreservesCFG();
978     AU.addPreserved<DominatorTreeWrapperPass>();
979     AU.addPreserved<GlobalsAAWrapperPass>();
980     AU.addPreserved<AAResultsWrapperPass>();
981     AU.addPreserved<BasicAAWrapperPass>();
982     FunctionPass::getAnalysisUsage(AU);
983   }
984 
985   bool runOnFunction(Function &F) override {
986     if (skipFunction(F))
987       return false;
988     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
989     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
990     auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
991     VectorCombine Combiner(F, TTI, DT, AA);
992     return Combiner.run();
993   }
994 };
995 } // namespace
996 
997 char VectorCombineLegacyPass::ID = 0;
998 INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine",
999                       "Optimize scalar/vector ops", false,
1000                       false)
1001 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1002 INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine",
1003                     "Optimize scalar/vector ops", false, false)
1004 Pass *llvm::createVectorCombinePass() {
1005   return new VectorCombineLegacyPass();
1006 }
1007 
1008 PreservedAnalyses VectorCombinePass::run(Function &F,
1009                                          FunctionAnalysisManager &FAM) {
1010   TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
1011   DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
1012   AAResults &AA = FAM.getResult<AAManager>(F);
1013   VectorCombine Combiner(F, TTI, DT, AA);
1014   if (!Combiner.run())
1015     return PreservedAnalyses::all();
1016   PreservedAnalyses PA;
1017   PA.preserveSet<CFGAnalyses>();
1018   return PA;
1019 }
1020