1 //===------- VectorCombine.cpp - Optimize partial vector operations -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass optimizes scalar/vector interactions using target cost models. The
10 // transforms implemented here may not fit in traditional loop-based or SLP
11 // vectorization passes.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Vectorize/VectorCombine.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/GlobalsModRef.h"
18 #include "llvm/Analysis/TargetTransformInfo.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/Analysis/VectorUtils.h"
21 #include "llvm/IR/Dominators.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/IRBuilder.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/InitializePasses.h"
26 #include "llvm/Pass.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Transforms/Vectorize.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 
31 using namespace llvm;
32 using namespace llvm::PatternMatch;
33 
34 #define DEBUG_TYPE "vector-combine"
35 STATISTIC(NumVecCmp, "Number of vector compares formed");
36 STATISTIC(NumVecBO, "Number of vector binops formed");
37 STATISTIC(NumScalarBO, "Number of scalar binops formed");
38 
39 static cl::opt<bool> DisableVectorCombine(
40     "disable-vector-combine", cl::init(false), cl::Hidden,
41     cl::desc("Disable all vector combine transforms"));
42 
43 static cl::opt<bool> DisableBinopExtractShuffle(
44     "disable-binop-extract-shuffle", cl::init(false), cl::Hidden,
45     cl::desc("Disable binop extract to shuffle transforms"));
46 
47 
48 /// Compare the relative costs of 2 extracts followed by scalar operation vs.
49 /// vector operation(s) followed by extract. Return true if the existing
50 /// instructions are cheaper than a vector alternative. Otherwise, return false
51 /// and if one of the extracts should be transformed to a shufflevector, set
52 /// \p ConvertToShuffle to that extract instruction.
53 static bool isExtractExtractCheap(Instruction *Ext0, Instruction *Ext1,
54                                   unsigned Opcode,
55                                   const TargetTransformInfo &TTI,
56                                   Instruction *&ConvertToShuffle,
57                                   unsigned PreferredExtractIndex) {
58   assert(isa<ConstantInt>(Ext0->getOperand(1)) &&
59          isa<ConstantInt>(Ext1->getOperand(1)) &&
60          "Expected constant extract indexes");
61   Type *ScalarTy = Ext0->getType();
62   auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType());
63   int ScalarOpCost, VectorOpCost;
64 
65   // Get cost estimates for scalar and vector versions of the operation.
66   bool IsBinOp = Instruction::isBinaryOp(Opcode);
67   if (IsBinOp) {
68     ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
69     VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
70   } else {
71     assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
72            "Expected a compare");
73     ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy,
74                                           CmpInst::makeCmpResultType(ScalarTy));
75     VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy,
76                                           CmpInst::makeCmpResultType(VecTy));
77   }
78 
79   // Get cost estimates for the extract elements. These costs will factor into
80   // both sequences.
81   unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue();
82   unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue();
83 
84   int Extract0Cost = TTI.getVectorInstrCost(Instruction::ExtractElement,
85                                             VecTy, Ext0Index);
86   int Extract1Cost = TTI.getVectorInstrCost(Instruction::ExtractElement,
87                                             VecTy, Ext1Index);
88 
89   // A more expensive extract will always be replaced by a splat shuffle.
90   // For example, if Ext0 is more expensive:
91   // opcode (extelt V0, Ext0), (ext V1, Ext1) -->
92   // extelt (opcode (splat V0, Ext0), V1), Ext1
93   // TODO: Evaluate whether that always results in lowest cost. Alternatively,
94   //       check the cost of creating a broadcast shuffle and shuffling both
95   //       operands to element 0.
96   int CheapExtractCost = std::min(Extract0Cost, Extract1Cost);
97 
98   // Extra uses of the extracts mean that we include those costs in the
99   // vector total because those instructions will not be eliminated.
100   int OldCost, NewCost;
101   if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) {
102     // Handle a special case. If the 2 extracts are identical, adjust the
103     // formulas to account for that. The extra use charge allows for either the
104     // CSE'd pattern or an unoptimized form with identical values:
105     // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C
106     bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2)
107                                   : !Ext0->hasOneUse() || !Ext1->hasOneUse();
108     OldCost = CheapExtractCost + ScalarOpCost;
109     NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost;
110   } else {
111     // Handle the general case. Each extract is actually a different value:
112     // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C
113     OldCost = Extract0Cost + Extract1Cost + ScalarOpCost;
114     NewCost = VectorOpCost + CheapExtractCost +
115               !Ext0->hasOneUse() * Extract0Cost +
116               !Ext1->hasOneUse() * Extract1Cost;
117   }
118 
119   if (Ext0Index == Ext1Index) {
120     // If the extract indexes are identical, no shuffle is needed.
121     ConvertToShuffle = nullptr;
122   } else {
123     if (IsBinOp && DisableBinopExtractShuffle)
124       return true;
125 
126     // If we are extracting from 2 different indexes, then one operand must be
127     // shuffled before performing the vector operation. The shuffle mask is
128     // undefined except for 1 lane that is being translated to the remaining
129     // extraction lane. Therefore, it is a splat shuffle. Ex:
130     // ShufMask = { undef, undef, 0, undef }
131     // TODO: The cost model has an option for a "broadcast" shuffle
132     //       (splat-from-element-0), but no option for a more general splat.
133     NewCost +=
134         TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
135 
136     // The more expensive extract will be replaced by a shuffle. If the costs
137     // are equal and there is a preferred extract index, shuffle the opposite
138     // operand. Otherwise, replace the extract with the higher index.
139     if (Extract0Cost > Extract1Cost)
140       ConvertToShuffle = Ext0;
141     else if (Extract1Cost > Extract0Cost)
142       ConvertToShuffle = Ext1;
143     else if (PreferredExtractIndex == Ext0Index)
144       ConvertToShuffle = Ext1;
145     else if (PreferredExtractIndex == Ext1Index)
146       ConvertToShuffle = Ext0;
147     else
148       ConvertToShuffle = Ext0Index > Ext1Index ? Ext0 : Ext1;
149   }
150 
151   // Aggressively form a vector op if the cost is equal because the transform
152   // may enable further optimization.
153   // Codegen can reverse this transform (scalarize) if it was not profitable.
154   return OldCost < NewCost;
155 }
156 
157 /// Try to reduce extract element costs by converting scalar compares to vector
158 /// compares followed by extract.
159 /// cmp (ext0 V0, C), (ext1 V1, C)
160 static void foldExtExtCmp(Instruction *Ext0, Instruction *Ext1,
161                           Instruction &I, const TargetTransformInfo &TTI) {
162   assert(isa<CmpInst>(&I) && "Expected a compare");
163 
164   // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C
165   ++NumVecCmp;
166   IRBuilder<> Builder(&I);
167   CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate();
168   Value *V0 = Ext0->getOperand(0), *V1 = Ext1->getOperand(0);
169   Value *VecCmp =
170       Ext0->getType()->isFloatingPointTy() ? Builder.CreateFCmp(Pred, V0, V1)
171                                            : Builder.CreateICmp(Pred, V0, V1);
172   Value *Extract = Builder.CreateExtractElement(VecCmp, Ext0->getOperand(1));
173   I.replaceAllUsesWith(Extract);
174 }
175 
176 /// Try to reduce extract element costs by converting scalar binops to vector
177 /// binops followed by extract.
178 /// bo (ext0 V0, C), (ext1 V1, C)
179 static void foldExtExtBinop(Instruction *Ext0, Instruction *Ext1,
180                             Instruction &I, const TargetTransformInfo &TTI) {
181   assert(isa<BinaryOperator>(&I) && "Expected a binary operator");
182 
183   // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C
184   ++NumVecBO;
185   IRBuilder<> Builder(&I);
186   Value *V0 = Ext0->getOperand(0), *V1 = Ext1->getOperand(0);
187   Value *VecBO =
188       Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1);
189 
190   // All IR flags are safe to back-propagate because any potential poison
191   // created in unused vector elements is discarded by the extract.
192   if (auto *VecBOInst = dyn_cast<Instruction>(VecBO))
193     VecBOInst->copyIRFlags(&I);
194 
195   Value *Extract = Builder.CreateExtractElement(VecBO, Ext0->getOperand(1));
196   I.replaceAllUsesWith(Extract);
197 }
198 
199 /// Match an instruction with extracted vector operands.
200 static bool foldExtractExtract(Instruction &I, const TargetTransformInfo &TTI) {
201   // It is not safe to transform things like div, urem, etc. because we may
202   // create undefined behavior when executing those on unknown vector elements.
203   if (!isSafeToSpeculativelyExecute(&I))
204     return false;
205 
206   Instruction *Ext0, *Ext1;
207   CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
208   if (!match(&I, m_Cmp(Pred, m_Instruction(Ext0), m_Instruction(Ext1))) &&
209       !match(&I, m_BinOp(m_Instruction(Ext0), m_Instruction(Ext1))))
210     return false;
211 
212   Value *V0, *V1;
213   uint64_t C0, C1;
214   if (!match(Ext0, m_ExtractElement(m_Value(V0), m_ConstantInt(C0))) ||
215       !match(Ext1, m_ExtractElement(m_Value(V1), m_ConstantInt(C1))) ||
216       V0->getType() != V1->getType())
217     return false;
218 
219   // If the scalar value 'I' is going to be re-inserted into a vector, then try
220   // to create an extract to that same element. The extract/insert can be
221   // reduced to a "select shuffle".
222   // TODO: If we add a larger pattern match that starts from an insert, this
223   //       probably becomes unnecessary.
224   uint64_t InsertIndex = std::numeric_limits<uint64_t>::max();
225   if (I.hasOneUse())
226     match(I.user_back(), m_InsertElement(m_Value(), m_Value(),
227                                          m_ConstantInt(InsertIndex)));
228 
229   Instruction *ConvertToShuffle;
230   if (isExtractExtractCheap(Ext0, Ext1, I.getOpcode(), TTI, ConvertToShuffle,
231                             InsertIndex))
232     return false;
233 
234   if (ConvertToShuffle) {
235     // The shuffle mask is undefined except for 1 lane that is being translated
236     // to the cheap extraction lane. Example:
237     // ShufMask = { 2, undef, undef, undef }
238     uint64_t SplatIndex = ConvertToShuffle == Ext0 ? C0 : C1;
239     uint64_t CheapExtIndex = ConvertToShuffle == Ext0 ? C1 : C0;
240     auto *VecTy = cast<VectorType>(V0->getType());
241     SmallVector<int, 32> ShufMask(VecTy->getNumElements(), -1);
242     ShufMask[CheapExtIndex] = SplatIndex;
243     IRBuilder<> Builder(ConvertToShuffle);
244 
245     // extelt X, C --> extelt (splat X), C'
246     Value *Shuf = Builder.CreateShuffleVector(ConvertToShuffle->getOperand(0),
247                                               UndefValue::get(VecTy), ShufMask);
248     Value *NewExt = Builder.CreateExtractElement(Shuf, CheapExtIndex);
249     if (ConvertToShuffle == Ext0)
250       Ext0 = cast<Instruction>(NewExt);
251     else
252       Ext1 = cast<Instruction>(NewExt);
253   }
254 
255   if (Pred != CmpInst::BAD_ICMP_PREDICATE)
256     foldExtExtCmp(Ext0, Ext1, I, TTI);
257   else
258     foldExtExtBinop(Ext0, Ext1, I, TTI);
259 
260   return true;
261 }
262 
263 /// If this is a bitcast of a shuffle, try to bitcast the source vector to the
264 /// destination type followed by shuffle. This can enable further transforms by
265 /// moving bitcasts or shuffles together.
266 static bool foldBitcastShuf(Instruction &I, const TargetTransformInfo &TTI) {
267   Value *V;
268   ArrayRef<int> Mask;
269   if (!match(&I, m_BitCast(m_OneUse(m_ShuffleVector(m_Value(V), m_Undef(),
270                                                     m_Mask(Mask))))))
271     return false;
272 
273   // Disallow non-vector casts and length-changing shuffles.
274   // TODO: We could allow any shuffle.
275   auto *DestTy = dyn_cast<VectorType>(I.getType());
276   auto *SrcTy = cast<VectorType>(V->getType());
277   if (!DestTy || I.getOperand(0)->getType() != SrcTy)
278     return false;
279 
280   // The new shuffle must not cost more than the old shuffle. The bitcast is
281   // moved ahead of the shuffle, so assume that it has the same cost as before.
282   if (TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, DestTy) >
283       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy))
284     return false;
285 
286   unsigned DestNumElts = DestTy->getNumElements();
287   unsigned SrcNumElts = SrcTy->getNumElements();
288   SmallVector<int, 16> NewMask;
289   if (SrcNumElts <= DestNumElts) {
290     // The bitcast is from wide to narrow/equal elements. The shuffle mask can
291     // always be expanded to the equivalent form choosing narrower elements.
292     assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask");
293     unsigned ScaleFactor = DestNumElts / SrcNumElts;
294     narrowShuffleMaskElts(ScaleFactor, Mask, NewMask);
295   } else {
296     // The bitcast is from narrow elements to wide elements. The shuffle mask
297     // must choose consecutive elements to allow casting first.
298     assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask");
299     unsigned ScaleFactor = SrcNumElts / DestNumElts;
300     if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask))
301       return false;
302   }
303   // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC'
304   IRBuilder<> Builder(&I);
305   Value *CastV = Builder.CreateBitCast(V, DestTy);
306   Value *Shuf = Builder.CreateShuffleVector(CastV, UndefValue::get(DestTy),
307                                             NewMask);
308   I.replaceAllUsesWith(Shuf);
309   return true;
310 }
311 
312 /// Match a vector binop instruction with inserted scalar operands and convert
313 /// to scalar binop followed by insertelement.
314 static bool scalarizeBinop(Instruction &I, const TargetTransformInfo &TTI) {
315   Instruction *Ins0, *Ins1;
316   if (!match(&I, m_BinOp(m_Instruction(Ins0), m_Instruction(Ins1))))
317     return false;
318 
319   // TODO: Deal with mismatched index constants and variable indexes?
320   Constant *VecC0, *VecC1;
321   Value *V0, *V1;
322   uint64_t Index;
323   if (!match(Ins0, m_InsertElement(m_Constant(VecC0), m_Value(V0),
324                                    m_ConstantInt(Index))) ||
325       !match(Ins1, m_InsertElement(m_Constant(VecC1), m_Value(V1),
326                                    m_SpecificInt(Index))))
327     return false;
328 
329   Type *ScalarTy = V0->getType();
330   Type *VecTy = I.getType();
331   assert(VecTy->isVectorTy() && ScalarTy == V1->getType() &&
332          (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy()) &&
333          "Unexpected types for insert into binop");
334 
335   Instruction::BinaryOps Opcode = cast<BinaryOperator>(&I)->getOpcode();
336   int ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
337   int VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
338 
339   // Get cost estimate for the insert element. This cost will factor into
340   // both sequences.
341   int InsertCost =
342       TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index);
343   int OldCost = InsertCost + InsertCost + VectorOpCost;
344   int NewCost = ScalarOpCost + InsertCost +
345                 !Ins0->hasOneUse() * InsertCost +
346                 !Ins1->hasOneUse() * InsertCost;
347 
348   // We want to scalarize unless the vector variant actually has lower cost.
349   if (OldCost < NewCost)
350     return false;
351 
352   // vec_bo (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) -->
353   // inselt NewVecC, (scalar_bo V0, V1), Index
354   ++NumScalarBO;
355   IRBuilder<> Builder(&I);
356   Value *Scalar = Builder.CreateBinOp(Opcode, V0, V1, I.getName() + ".scalar");
357 
358   // All IR flags are safe to back-propagate. There is no potential for extra
359   // poison to be created by the scalar instruction.
360   if (auto *ScalarInst = dyn_cast<Instruction>(Scalar))
361     ScalarInst->copyIRFlags(&I);
362 
363   // Fold the vector constants in the original vectors into a new base vector.
364   Constant *NewVecC = ConstantExpr::get(Opcode, VecC0, VecC1);
365   Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index);
366   I.replaceAllUsesWith(Insert);
367   Insert->takeName(&I);
368   return true;
369 }
370 
371 /// This is the entry point for all transforms. Pass manager differences are
372 /// handled in the callers of this function.
373 static bool runImpl(Function &F, const TargetTransformInfo &TTI,
374                     const DominatorTree &DT) {
375   if (DisableVectorCombine)
376     return false;
377 
378   bool MadeChange = false;
379   for (BasicBlock &BB : F) {
380     // Ignore unreachable basic blocks.
381     if (!DT.isReachableFromEntry(&BB))
382       continue;
383     // Do not delete instructions under here and invalidate the iterator.
384     // Walk the block forwards to enable simple iterative chains of transforms.
385     // TODO: It could be more efficient to remove dead instructions
386     //       iteratively in this loop rather than waiting until the end.
387     for (Instruction &I : BB) {
388       if (isa<DbgInfoIntrinsic>(I))
389         continue;
390       MadeChange |= foldExtractExtract(I, TTI);
391       MadeChange |= foldBitcastShuf(I, TTI);
392       MadeChange |= scalarizeBinop(I, TTI);
393     }
394   }
395 
396   // We're done with transforms, so remove dead instructions.
397   if (MadeChange)
398     for (BasicBlock &BB : F)
399       SimplifyInstructionsInBlock(&BB);
400 
401   return MadeChange;
402 }
403 
404 // Pass manager boilerplate below here.
405 
406 namespace {
407 class VectorCombineLegacyPass : public FunctionPass {
408 public:
409   static char ID;
410   VectorCombineLegacyPass() : FunctionPass(ID) {
411     initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry());
412   }
413 
414   void getAnalysisUsage(AnalysisUsage &AU) const override {
415     AU.addRequired<DominatorTreeWrapperPass>();
416     AU.addRequired<TargetTransformInfoWrapperPass>();
417     AU.setPreservesCFG();
418     AU.addPreserved<DominatorTreeWrapperPass>();
419     AU.addPreserved<GlobalsAAWrapperPass>();
420     FunctionPass::getAnalysisUsage(AU);
421   }
422 
423   bool runOnFunction(Function &F) override {
424     if (skipFunction(F))
425       return false;
426     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
427     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
428     return runImpl(F, TTI, DT);
429   }
430 };
431 } // namespace
432 
433 char VectorCombineLegacyPass::ID = 0;
434 INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine",
435                       "Optimize scalar/vector ops", false,
436                       false)
437 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
438 INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine",
439                     "Optimize scalar/vector ops", false, false)
440 Pass *llvm::createVectorCombinePass() {
441   return new VectorCombineLegacyPass();
442 }
443 
444 PreservedAnalyses VectorCombinePass::run(Function &F,
445                                          FunctionAnalysisManager &FAM) {
446   TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
447   DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
448   if (!runImpl(F, TTI, DT))
449     return PreservedAnalyses::all();
450   PreservedAnalyses PA;
451   PA.preserveSet<CFGAnalyses>();
452   PA.preserve<GlobalsAA>();
453   return PA;
454 }
455