1 //===------- VectorCombine.cpp - Optimize partial vector operations -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass optimizes scalar/vector interactions using target cost models. The 10 // transforms implemented here may not fit in traditional loop-based or SLP 11 // vectorization passes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Vectorize/VectorCombine.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/BasicAliasAnalysis.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/TargetTransformInfo.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/Analysis/VectorUtils.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/InitializePasses.h" 27 #include "llvm/Pass.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Transforms/Utils/Local.h" 30 #include "llvm/Transforms/Vectorize.h" 31 32 using namespace llvm; 33 using namespace llvm::PatternMatch; 34 35 #define DEBUG_TYPE "vector-combine" 36 STATISTIC(NumVecCmp, "Number of vector compares formed"); 37 STATISTIC(NumVecBO, "Number of vector binops formed"); 38 STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast"); 39 STATISTIC(NumScalarBO, "Number of scalar binops formed"); 40 STATISTIC(NumScalarCmp, "Number of scalar compares formed"); 41 42 static cl::opt<bool> DisableVectorCombine( 43 "disable-vector-combine", cl::init(false), cl::Hidden, 44 cl::desc("Disable all vector combine transforms")); 45 46 static cl::opt<bool> DisableBinopExtractShuffle( 47 "disable-binop-extract-shuffle", cl::init(false), cl::Hidden, 48 cl::desc("Disable binop extract to shuffle transforms")); 49 50 51 /// Compare the relative costs of 2 extracts followed by scalar operation vs. 52 /// vector operation(s) followed by extract. Return true if the existing 53 /// instructions are cheaper than a vector alternative. Otherwise, return false 54 /// and if one of the extracts should be transformed to a shufflevector, set 55 /// \p ConvertToShuffle to that extract instruction. 56 static bool isExtractExtractCheap(Instruction *Ext0, Instruction *Ext1, 57 unsigned Opcode, 58 const TargetTransformInfo &TTI, 59 Instruction *&ConvertToShuffle, 60 unsigned PreferredExtractIndex) { 61 assert(isa<ConstantInt>(Ext0->getOperand(1)) && 62 isa<ConstantInt>(Ext1->getOperand(1)) && 63 "Expected constant extract indexes"); 64 Type *ScalarTy = Ext0->getType(); 65 auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType()); 66 int ScalarOpCost, VectorOpCost; 67 68 // Get cost estimates for scalar and vector versions of the operation. 69 bool IsBinOp = Instruction::isBinaryOp(Opcode); 70 if (IsBinOp) { 71 ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 72 VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 73 } else { 74 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 75 "Expected a compare"); 76 ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy, 77 CmpInst::makeCmpResultType(ScalarTy)); 78 VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy, 79 CmpInst::makeCmpResultType(VecTy)); 80 } 81 82 // Get cost estimates for the extract elements. These costs will factor into 83 // both sequences. 84 unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue(); 85 unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue(); 86 87 int Extract0Cost = TTI.getVectorInstrCost(Instruction::ExtractElement, 88 VecTy, Ext0Index); 89 int Extract1Cost = TTI.getVectorInstrCost(Instruction::ExtractElement, 90 VecTy, Ext1Index); 91 92 // A more expensive extract will always be replaced by a splat shuffle. 93 // For example, if Ext0 is more expensive: 94 // opcode (extelt V0, Ext0), (ext V1, Ext1) --> 95 // extelt (opcode (splat V0, Ext0), V1), Ext1 96 // TODO: Evaluate whether that always results in lowest cost. Alternatively, 97 // check the cost of creating a broadcast shuffle and shuffling both 98 // operands to element 0. 99 int CheapExtractCost = std::min(Extract0Cost, Extract1Cost); 100 101 // Extra uses of the extracts mean that we include those costs in the 102 // vector total because those instructions will not be eliminated. 103 int OldCost, NewCost; 104 if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) { 105 // Handle a special case. If the 2 extracts are identical, adjust the 106 // formulas to account for that. The extra use charge allows for either the 107 // CSE'd pattern or an unoptimized form with identical values: 108 // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C 109 bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2) 110 : !Ext0->hasOneUse() || !Ext1->hasOneUse(); 111 OldCost = CheapExtractCost + ScalarOpCost; 112 NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost; 113 } else { 114 // Handle the general case. Each extract is actually a different value: 115 // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C 116 OldCost = Extract0Cost + Extract1Cost + ScalarOpCost; 117 NewCost = VectorOpCost + CheapExtractCost + 118 !Ext0->hasOneUse() * Extract0Cost + 119 !Ext1->hasOneUse() * Extract1Cost; 120 } 121 122 if (Ext0Index == Ext1Index) { 123 // If the extract indexes are identical, no shuffle is needed. 124 ConvertToShuffle = nullptr; 125 } else { 126 if (IsBinOp && DisableBinopExtractShuffle) 127 return true; 128 129 // If we are extracting from 2 different indexes, then one operand must be 130 // shuffled before performing the vector operation. The shuffle mask is 131 // undefined except for 1 lane that is being translated to the remaining 132 // extraction lane. Therefore, it is a splat shuffle. Ex: 133 // ShufMask = { undef, undef, 0, undef } 134 // TODO: The cost model has an option for a "broadcast" shuffle 135 // (splat-from-element-0), but no option for a more general splat. 136 NewCost += 137 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 138 139 // The more expensive extract will be replaced by a shuffle. If the costs 140 // are equal and there is a preferred extract index, shuffle the opposite 141 // operand. Otherwise, replace the extract with the higher index. 142 if (Extract0Cost > Extract1Cost) 143 ConvertToShuffle = Ext0; 144 else if (Extract1Cost > Extract0Cost) 145 ConvertToShuffle = Ext1; 146 else if (PreferredExtractIndex == Ext0Index) 147 ConvertToShuffle = Ext1; 148 else if (PreferredExtractIndex == Ext1Index) 149 ConvertToShuffle = Ext0; 150 else 151 ConvertToShuffle = Ext0Index > Ext1Index ? Ext0 : Ext1; 152 } 153 154 // Aggressively form a vector op if the cost is equal because the transform 155 // may enable further optimization. 156 // Codegen can reverse this transform (scalarize) if it was not profitable. 157 return OldCost < NewCost; 158 } 159 160 /// Try to reduce extract element costs by converting scalar compares to vector 161 /// compares followed by extract. 162 /// cmp (ext0 V0, C), (ext1 V1, C) 163 static void foldExtExtCmp(Instruction *Ext0, Instruction *Ext1, 164 Instruction &I) { 165 assert(isa<CmpInst>(&I) && "Expected a compare"); 166 167 // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C 168 ++NumVecCmp; 169 IRBuilder<> Builder(&I); 170 CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate(); 171 Value *V0 = Ext0->getOperand(0), *V1 = Ext1->getOperand(0); 172 Value *VecCmp = Builder.CreateCmp(Pred, V0, V1); 173 Value *Extract = Builder.CreateExtractElement(VecCmp, Ext0->getOperand(1)); 174 I.replaceAllUsesWith(Extract); 175 } 176 177 /// Try to reduce extract element costs by converting scalar binops to vector 178 /// binops followed by extract. 179 /// bo (ext0 V0, C), (ext1 V1, C) 180 static void foldExtExtBinop(Instruction *Ext0, Instruction *Ext1, 181 Instruction &I) { 182 assert(isa<BinaryOperator>(&I) && "Expected a binary operator"); 183 184 // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C 185 ++NumVecBO; 186 IRBuilder<> Builder(&I); 187 Value *V0 = Ext0->getOperand(0), *V1 = Ext1->getOperand(0); 188 Value *VecBO = 189 Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1); 190 191 // All IR flags are safe to back-propagate because any potential poison 192 // created in unused vector elements is discarded by the extract. 193 if (auto *VecBOInst = dyn_cast<Instruction>(VecBO)) 194 VecBOInst->copyIRFlags(&I); 195 196 Value *Extract = Builder.CreateExtractElement(VecBO, Ext0->getOperand(1)); 197 I.replaceAllUsesWith(Extract); 198 } 199 200 /// Match an instruction with extracted vector operands. 201 static bool foldExtractExtract(Instruction &I, const TargetTransformInfo &TTI) { 202 // It is not safe to transform things like div, urem, etc. because we may 203 // create undefined behavior when executing those on unknown vector elements. 204 if (!isSafeToSpeculativelyExecute(&I)) 205 return false; 206 207 Instruction *Ext0, *Ext1; 208 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 209 if (!match(&I, m_Cmp(Pred, m_Instruction(Ext0), m_Instruction(Ext1))) && 210 !match(&I, m_BinOp(m_Instruction(Ext0), m_Instruction(Ext1)))) 211 return false; 212 213 Value *V0, *V1; 214 uint64_t C0, C1; 215 if (!match(Ext0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) || 216 !match(Ext1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) || 217 V0->getType() != V1->getType()) 218 return false; 219 220 // If the scalar value 'I' is going to be re-inserted into a vector, then try 221 // to create an extract to that same element. The extract/insert can be 222 // reduced to a "select shuffle". 223 // TODO: If we add a larger pattern match that starts from an insert, this 224 // probably becomes unnecessary. 225 uint64_t InsertIndex = std::numeric_limits<uint64_t>::max(); 226 if (I.hasOneUse()) 227 match(I.user_back(), 228 m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex))); 229 230 Instruction *ConvertToShuffle; 231 if (isExtractExtractCheap(Ext0, Ext1, I.getOpcode(), TTI, ConvertToShuffle, 232 InsertIndex)) 233 return false; 234 235 if (ConvertToShuffle) { 236 // The shuffle mask is undefined except for 1 lane that is being translated 237 // to the cheap extraction lane. Example: 238 // ShufMask = { 2, undef, undef, undef } 239 uint64_t SplatIndex = ConvertToShuffle == Ext0 ? C0 : C1; 240 uint64_t CheapExtIndex = ConvertToShuffle == Ext0 ? C1 : C0; 241 auto *VecTy = cast<VectorType>(V0->getType()); 242 SmallVector<int, 32> ShufMask(VecTy->getNumElements(), -1); 243 ShufMask[CheapExtIndex] = SplatIndex; 244 IRBuilder<> Builder(ConvertToShuffle); 245 246 // extelt X, C --> extelt (splat X), C' 247 Value *Shuf = Builder.CreateShuffleVector(ConvertToShuffle->getOperand(0), 248 UndefValue::get(VecTy), ShufMask); 249 Value *NewExt = Builder.CreateExtractElement(Shuf, CheapExtIndex); 250 if (ConvertToShuffle == Ext0) 251 Ext0 = cast<Instruction>(NewExt); 252 else 253 Ext1 = cast<Instruction>(NewExt); 254 } 255 256 if (Pred != CmpInst::BAD_ICMP_PREDICATE) 257 foldExtExtCmp(Ext0, Ext1, I); 258 else 259 foldExtExtBinop(Ext0, Ext1, I); 260 261 return true; 262 } 263 264 /// If this is a bitcast of a shuffle, try to bitcast the source vector to the 265 /// destination type followed by shuffle. This can enable further transforms by 266 /// moving bitcasts or shuffles together. 267 static bool foldBitcastShuf(Instruction &I, const TargetTransformInfo &TTI) { 268 Value *V; 269 ArrayRef<int> Mask; 270 if (!match(&I, m_BitCast( 271 m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask)))))) 272 return false; 273 274 // Disallow non-vector casts and length-changing shuffles. 275 // TODO: We could allow any shuffle. 276 auto *DestTy = dyn_cast<VectorType>(I.getType()); 277 auto *SrcTy = cast<VectorType>(V->getType()); 278 if (!DestTy || I.getOperand(0)->getType() != SrcTy) 279 return false; 280 281 // The new shuffle must not cost more than the old shuffle. The bitcast is 282 // moved ahead of the shuffle, so assume that it has the same cost as before. 283 if (TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, DestTy) > 284 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy)) 285 return false; 286 287 unsigned DestNumElts = DestTy->getNumElements(); 288 unsigned SrcNumElts = SrcTy->getNumElements(); 289 SmallVector<int, 16> NewMask; 290 if (SrcNumElts <= DestNumElts) { 291 // The bitcast is from wide to narrow/equal elements. The shuffle mask can 292 // always be expanded to the equivalent form choosing narrower elements. 293 assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask"); 294 unsigned ScaleFactor = DestNumElts / SrcNumElts; 295 narrowShuffleMaskElts(ScaleFactor, Mask, NewMask); 296 } else { 297 // The bitcast is from narrow elements to wide elements. The shuffle mask 298 // must choose consecutive elements to allow casting first. 299 assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask"); 300 unsigned ScaleFactor = SrcNumElts / DestNumElts; 301 if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask)) 302 return false; 303 } 304 // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC' 305 ++NumShufOfBitcast; 306 IRBuilder<> Builder(&I); 307 Value *CastV = Builder.CreateBitCast(V, DestTy); 308 Value *Shuf = 309 Builder.CreateShuffleVector(CastV, UndefValue::get(DestTy), NewMask); 310 I.replaceAllUsesWith(Shuf); 311 return true; 312 } 313 314 /// Match a vector binop or compare instruction with at least one inserted 315 /// scalar operand and convert to scalar binop/cmp followed by insertelement. 316 static bool scalarizeBinopOrCmp(Instruction &I, 317 const TargetTransformInfo &TTI) { 318 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 319 Value *Ins0, *Ins1; 320 if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) && 321 !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1)))) 322 return false; 323 324 // Do not convert the vector condition of a vector select into a scalar 325 // condition. That may cause problems for codegen because of differences in 326 // boolean formats and register-file transfers. 327 // TODO: Can we account for that in the cost model? 328 bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE; 329 if (IsCmp) 330 for (User *U : I.users()) 331 if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value()))) 332 return false; 333 334 // Match against one or both scalar values being inserted into constant 335 // vectors: 336 // vec_op VecC0, (inselt VecC1, V1, Index) 337 // vec_op (inselt VecC0, V0, Index), VecC1 338 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) 339 // TODO: Deal with mismatched index constants and variable indexes? 340 Constant *VecC0 = nullptr, *VecC1 = nullptr; 341 Value *V0 = nullptr, *V1 = nullptr; 342 uint64_t Index0 = 0, Index1 = 0; 343 if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0), 344 m_ConstantInt(Index0))) && 345 !match(Ins0, m_Constant(VecC0))) 346 return false; 347 if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1), 348 m_ConstantInt(Index1))) && 349 !match(Ins1, m_Constant(VecC1))) 350 return false; 351 352 bool IsConst0 = !V0; 353 bool IsConst1 = !V1; 354 if (IsConst0 && IsConst1) 355 return false; 356 if (!IsConst0 && !IsConst1 && Index0 != Index1) 357 return false; 358 359 // Bail for single insertion if it is a load. 360 // TODO: Handle this once getVectorInstrCost can cost for load/stores. 361 auto *I0 = dyn_cast_or_null<Instruction>(V0); 362 auto *I1 = dyn_cast_or_null<Instruction>(V1); 363 if ((IsConst0 && I1 && I1->mayReadFromMemory()) || 364 (IsConst1 && I0 && I0->mayReadFromMemory())) 365 return false; 366 367 uint64_t Index = IsConst0 ? Index1 : Index0; 368 Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType(); 369 Type *VecTy = I.getType(); 370 assert(VecTy->isVectorTy() && 371 (IsConst0 || IsConst1 || V0->getType() == V1->getType()) && 372 (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy()) && 373 "Unexpected types for insert into binop"); 374 375 unsigned Opcode = I.getOpcode(); 376 int ScalarOpCost, VectorOpCost; 377 if (IsCmp) { 378 ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy); 379 VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy); 380 } else { 381 ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 382 VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 383 } 384 385 // Get cost estimate for the insert element. This cost will factor into 386 // both sequences. 387 int InsertCost = 388 TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index); 389 int OldCost = (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + 390 VectorOpCost; 391 int NewCost = ScalarOpCost + InsertCost + 392 (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) + 393 (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost); 394 395 // We want to scalarize unless the vector variant actually has lower cost. 396 if (OldCost < NewCost) 397 return false; 398 399 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) --> 400 // inselt NewVecC, (scalar_op V0, V1), Index 401 if (IsCmp) 402 ++NumScalarCmp; 403 else 404 ++NumScalarBO; 405 406 // For constant cases, extract the scalar element, this should constant fold. 407 IRBuilder<> Builder(&I); 408 if (IsConst0) 409 V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index)); 410 if (IsConst1) 411 V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index)); 412 413 Value *Scalar = 414 IsCmp ? Builder.CreateCmp(Pred, V0, V1) 415 : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1); 416 417 Scalar->setName(I.getName() + ".scalar"); 418 419 // All IR flags are safe to back-propagate. There is no potential for extra 420 // poison to be created by the scalar instruction. 421 if (auto *ScalarInst = dyn_cast<Instruction>(Scalar)) 422 ScalarInst->copyIRFlags(&I); 423 424 // Fold the vector constants in the original vectors into a new base vector. 425 Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1) 426 : ConstantExpr::get(Opcode, VecC0, VecC1); 427 Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index); 428 I.replaceAllUsesWith(Insert); 429 Insert->takeName(&I); 430 return true; 431 } 432 433 /// This is the entry point for all transforms. Pass manager differences are 434 /// handled in the callers of this function. 435 static bool runImpl(Function &F, const TargetTransformInfo &TTI, 436 const DominatorTree &DT) { 437 if (DisableVectorCombine) 438 return false; 439 440 bool MadeChange = false; 441 for (BasicBlock &BB : F) { 442 // Ignore unreachable basic blocks. 443 if (!DT.isReachableFromEntry(&BB)) 444 continue; 445 // Do not delete instructions under here and invalidate the iterator. 446 // Walk the block forwards to enable simple iterative chains of transforms. 447 // TODO: It could be more efficient to remove dead instructions 448 // iteratively in this loop rather than waiting until the end. 449 for (Instruction &I : BB) { 450 if (isa<DbgInfoIntrinsic>(I)) 451 continue; 452 MadeChange |= foldExtractExtract(I, TTI); 453 MadeChange |= foldBitcastShuf(I, TTI); 454 MadeChange |= scalarizeBinopOrCmp(I, TTI); 455 } 456 } 457 458 // We're done with transforms, so remove dead instructions. 459 if (MadeChange) 460 for (BasicBlock &BB : F) 461 SimplifyInstructionsInBlock(&BB); 462 463 return MadeChange; 464 } 465 466 // Pass manager boilerplate below here. 467 468 namespace { 469 class VectorCombineLegacyPass : public FunctionPass { 470 public: 471 static char ID; 472 VectorCombineLegacyPass() : FunctionPass(ID) { 473 initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry()); 474 } 475 476 void getAnalysisUsage(AnalysisUsage &AU) const override { 477 AU.addRequired<DominatorTreeWrapperPass>(); 478 AU.addRequired<TargetTransformInfoWrapperPass>(); 479 AU.setPreservesCFG(); 480 AU.addPreserved<DominatorTreeWrapperPass>(); 481 AU.addPreserved<GlobalsAAWrapperPass>(); 482 AU.addPreserved<AAResultsWrapperPass>(); 483 AU.addPreserved<BasicAAWrapperPass>(); 484 FunctionPass::getAnalysisUsage(AU); 485 } 486 487 bool runOnFunction(Function &F) override { 488 if (skipFunction(F)) 489 return false; 490 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 491 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 492 return runImpl(F, TTI, DT); 493 } 494 }; 495 } // namespace 496 497 char VectorCombineLegacyPass::ID = 0; 498 INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine", 499 "Optimize scalar/vector ops", false, 500 false) 501 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 502 INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine", 503 "Optimize scalar/vector ops", false, false) 504 Pass *llvm::createVectorCombinePass() { 505 return new VectorCombineLegacyPass(); 506 } 507 508 PreservedAnalyses VectorCombinePass::run(Function &F, 509 FunctionAnalysisManager &FAM) { 510 TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); 511 DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); 512 if (!runImpl(F, TTI, DT)) 513 return PreservedAnalyses::all(); 514 PreservedAnalyses PA; 515 PA.preserveSet<CFGAnalyses>(); 516 PA.preserve<GlobalsAA>(); 517 PA.preserve<AAManager>(); 518 PA.preserve<BasicAA>(); 519 return PA; 520 } 521