1 //===------- VectorCombine.cpp - Optimize partial vector operations -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass optimizes scalar/vector interactions using target cost models. The 10 // transforms implemented here may not fit in traditional loop-based or SLP 11 // vectorization passes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Vectorize/VectorCombine.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/BasicAliasAnalysis.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/Analysis/VectorUtils.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/InitializePasses.h" 28 #include "llvm/Pass.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Transforms/Utils/Local.h" 31 #include "llvm/Transforms/Vectorize.h" 32 33 using namespace llvm; 34 using namespace llvm::PatternMatch; 35 36 #define DEBUG_TYPE "vector-combine" 37 STATISTIC(NumVecLoad, "Number of vector loads formed"); 38 STATISTIC(NumVecCmp, "Number of vector compares formed"); 39 STATISTIC(NumVecBO, "Number of vector binops formed"); 40 STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed"); 41 STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast"); 42 STATISTIC(NumScalarBO, "Number of scalar binops formed"); 43 STATISTIC(NumScalarCmp, "Number of scalar compares formed"); 44 45 static cl::opt<bool> DisableVectorCombine( 46 "disable-vector-combine", cl::init(false), cl::Hidden, 47 cl::desc("Disable all vector combine transforms")); 48 49 static cl::opt<bool> DisableBinopExtractShuffle( 50 "disable-binop-extract-shuffle", cl::init(false), cl::Hidden, 51 cl::desc("Disable binop extract to shuffle transforms")); 52 53 static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max(); 54 55 namespace { 56 class VectorCombine { 57 public: 58 VectorCombine(Function &F, const TargetTransformInfo &TTI, 59 const DominatorTree &DT) 60 : F(F), Builder(F.getContext()), TTI(TTI), DT(DT) {} 61 62 bool run(); 63 64 private: 65 Function &F; 66 IRBuilder<> Builder; 67 const TargetTransformInfo &TTI; 68 const DominatorTree &DT; 69 70 bool vectorizeLoadInsert(Instruction &I); 71 ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0, 72 ExtractElementInst *Ext1, 73 unsigned PreferredExtractIndex) const; 74 bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 75 unsigned Opcode, 76 ExtractElementInst *&ConvertToShuffle, 77 unsigned PreferredExtractIndex); 78 void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 79 Instruction &I); 80 void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 81 Instruction &I); 82 bool foldExtractExtract(Instruction &I); 83 bool foldBitcastShuf(Instruction &I); 84 bool scalarizeBinopOrCmp(Instruction &I); 85 bool foldExtractedCmps(Instruction &I); 86 }; 87 } // namespace 88 89 static void replaceValue(Value &Old, Value &New) { 90 Old.replaceAllUsesWith(&New); 91 New.takeName(&Old); 92 } 93 94 bool VectorCombine::vectorizeLoadInsert(Instruction &I) { 95 // Match insert into fixed vector of scalar value. 96 auto *Ty = dyn_cast<FixedVectorType>(I.getType()); 97 Value *Scalar; 98 if (!Ty || !match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) || 99 !Scalar->hasOneUse()) 100 return false; 101 102 // Optionally match an extract from another vector. 103 Value *X; 104 bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt())); 105 if (!HasExtract) 106 X = Scalar; 107 108 // Match source value as load of scalar or vector. 109 // Do not vectorize scalar load (widening) if atomic/volatile or under 110 // asan/hwasan/memtag/tsan. The widened load may load data from dirty regions 111 // or create data races non-existent in the source. 112 auto *Load = dyn_cast<LoadInst>(X); 113 if (!Load || !Load->isSimple() || !Load->hasOneUse() || 114 Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) || 115 mustSuppressSpeculation(*Load)) 116 return false; 117 118 // TODO: Extend this to match GEP with constant offsets. 119 const DataLayout &DL = I.getModule()->getDataLayout(); 120 Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts(); 121 assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type"); 122 123 // If original AS != Load's AS, we can't bitcast the original pointer and have 124 // to use Load's operand instead. Ideally we would want to strip pointer casts 125 // without changing AS, but there's no API to do that ATM. 126 unsigned AS = Load->getPointerAddressSpace(); 127 if (AS != SrcPtr->getType()->getPointerAddressSpace()) 128 SrcPtr = Load->getPointerOperand(); 129 130 Type *ScalarTy = Scalar->getType(); 131 uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits(); 132 unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth(); 133 if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0) 134 return false; 135 136 // Check safety of replacing the scalar load with a larger vector load. 137 unsigned MinVecNumElts = MinVectorSize / ScalarSize; 138 auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false); 139 Align Alignment = Load->getAlign(); 140 if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Alignment, DL, Load, &DT)) 141 return false; 142 143 // Original pattern: insertelt undef, load [free casts of] PtrOp, 0 144 Type *LoadTy = Load->getType(); 145 int OldCost = TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS); 146 APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0); 147 OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts, 148 /* Insert */ true, HasExtract); 149 150 // New pattern: load VecPtr 151 int NewCost = TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS); 152 153 // We can aggressively convert to the vector form because the backend can 154 // invert this transform if it does not result in a performance win. 155 if (OldCost < NewCost) 156 return false; 157 158 // It is safe and potentially profitable to load a vector directly: 159 // inselt undef, load Scalar, 0 --> load VecPtr 160 IRBuilder<> Builder(Load); 161 Value *CastedPtr = Builder.CreateBitCast(SrcPtr, MinVecTy->getPointerTo(AS)); 162 Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment); 163 164 // If the insert type does not match the target's minimum vector type, 165 // use an identity shuffle to shrink/grow the vector. 166 if (Ty != MinVecTy) { 167 unsigned OutputNumElts = Ty->getNumElements(); 168 SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem); 169 for (unsigned i = 0; i < OutputNumElts && i < MinVecNumElts; ++i) 170 Mask[i] = i; 171 VecLd = Builder.CreateShuffleVector(VecLd, Mask); 172 } 173 replaceValue(I, *VecLd); 174 ++NumVecLoad; 175 return true; 176 } 177 178 /// Determine which, if any, of the inputs should be replaced by a shuffle 179 /// followed by extract from a different index. 180 ExtractElementInst *VectorCombine::getShuffleExtract( 181 ExtractElementInst *Ext0, ExtractElementInst *Ext1, 182 unsigned PreferredExtractIndex = InvalidIndex) const { 183 assert(isa<ConstantInt>(Ext0->getIndexOperand()) && 184 isa<ConstantInt>(Ext1->getIndexOperand()) && 185 "Expected constant extract indexes"); 186 187 unsigned Index0 = cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue(); 188 unsigned Index1 = cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue(); 189 190 // If the extract indexes are identical, no shuffle is needed. 191 if (Index0 == Index1) 192 return nullptr; 193 194 Type *VecTy = Ext0->getVectorOperand()->getType(); 195 assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types"); 196 int Cost0 = TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 197 int Cost1 = TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 198 199 // We are extracting from 2 different indexes, so one operand must be shuffled 200 // before performing a vector operation and/or extract. The more expensive 201 // extract will be replaced by a shuffle. 202 if (Cost0 > Cost1) 203 return Ext0; 204 if (Cost1 > Cost0) 205 return Ext1; 206 207 // If the costs are equal and there is a preferred extract index, shuffle the 208 // opposite operand. 209 if (PreferredExtractIndex == Index0) 210 return Ext1; 211 if (PreferredExtractIndex == Index1) 212 return Ext0; 213 214 // Otherwise, replace the extract with the higher index. 215 return Index0 > Index1 ? Ext0 : Ext1; 216 } 217 218 /// Compare the relative costs of 2 extracts followed by scalar operation vs. 219 /// vector operation(s) followed by extract. Return true if the existing 220 /// instructions are cheaper than a vector alternative. Otherwise, return false 221 /// and if one of the extracts should be transformed to a shufflevector, set 222 /// \p ConvertToShuffle to that extract instruction. 223 bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0, 224 ExtractElementInst *Ext1, 225 unsigned Opcode, 226 ExtractElementInst *&ConvertToShuffle, 227 unsigned PreferredExtractIndex) { 228 assert(isa<ConstantInt>(Ext0->getOperand(1)) && 229 isa<ConstantInt>(Ext1->getOperand(1)) && 230 "Expected constant extract indexes"); 231 Type *ScalarTy = Ext0->getType(); 232 auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType()); 233 int ScalarOpCost, VectorOpCost; 234 235 // Get cost estimates for scalar and vector versions of the operation. 236 bool IsBinOp = Instruction::isBinaryOp(Opcode); 237 if (IsBinOp) { 238 ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 239 VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 240 } else { 241 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 242 "Expected a compare"); 243 ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy, 244 CmpInst::makeCmpResultType(ScalarTy)); 245 VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy, 246 CmpInst::makeCmpResultType(VecTy)); 247 } 248 249 // Get cost estimates for the extract elements. These costs will factor into 250 // both sequences. 251 unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue(); 252 unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue(); 253 254 int Extract0Cost = 255 TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index); 256 int Extract1Cost = 257 TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index); 258 259 // A more expensive extract will always be replaced by a splat shuffle. 260 // For example, if Ext0 is more expensive: 261 // opcode (extelt V0, Ext0), (ext V1, Ext1) --> 262 // extelt (opcode (splat V0, Ext0), V1), Ext1 263 // TODO: Evaluate whether that always results in lowest cost. Alternatively, 264 // check the cost of creating a broadcast shuffle and shuffling both 265 // operands to element 0. 266 int CheapExtractCost = std::min(Extract0Cost, Extract1Cost); 267 268 // Extra uses of the extracts mean that we include those costs in the 269 // vector total because those instructions will not be eliminated. 270 int OldCost, NewCost; 271 if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) { 272 // Handle a special case. If the 2 extracts are identical, adjust the 273 // formulas to account for that. The extra use charge allows for either the 274 // CSE'd pattern or an unoptimized form with identical values: 275 // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C 276 bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2) 277 : !Ext0->hasOneUse() || !Ext1->hasOneUse(); 278 OldCost = CheapExtractCost + ScalarOpCost; 279 NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost; 280 } else { 281 // Handle the general case. Each extract is actually a different value: 282 // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C 283 OldCost = Extract0Cost + Extract1Cost + ScalarOpCost; 284 NewCost = VectorOpCost + CheapExtractCost + 285 !Ext0->hasOneUse() * Extract0Cost + 286 !Ext1->hasOneUse() * Extract1Cost; 287 } 288 289 ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex); 290 if (ConvertToShuffle) { 291 if (IsBinOp && DisableBinopExtractShuffle) 292 return true; 293 294 // If we are extracting from 2 different indexes, then one operand must be 295 // shuffled before performing the vector operation. The shuffle mask is 296 // undefined except for 1 lane that is being translated to the remaining 297 // extraction lane. Therefore, it is a splat shuffle. Ex: 298 // ShufMask = { undef, undef, 0, undef } 299 // TODO: The cost model has an option for a "broadcast" shuffle 300 // (splat-from-element-0), but no option for a more general splat. 301 NewCost += 302 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 303 } 304 305 // Aggressively form a vector op if the cost is equal because the transform 306 // may enable further optimization. 307 // Codegen can reverse this transform (scalarize) if it was not profitable. 308 return OldCost < NewCost; 309 } 310 311 /// Create a shuffle that translates (shifts) 1 element from the input vector 312 /// to a new element location. 313 static Value *createShiftShuffle(Value *Vec, unsigned OldIndex, 314 unsigned NewIndex, IRBuilder<> &Builder) { 315 // The shuffle mask is undefined except for 1 lane that is being translated 316 // to the new element index. Example for OldIndex == 2 and NewIndex == 0: 317 // ShufMask = { 2, undef, undef, undef } 318 auto *VecTy = cast<FixedVectorType>(Vec->getType()); 319 SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem); 320 ShufMask[NewIndex] = OldIndex; 321 return Builder.CreateShuffleVector(Vec, ShufMask, "shift"); 322 } 323 324 /// Given an extract element instruction with constant index operand, shuffle 325 /// the source vector (shift the scalar element) to a NewIndex for extraction. 326 /// Return null if the input can be constant folded, so that we are not creating 327 /// unnecessary instructions. 328 static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt, 329 unsigned NewIndex, 330 IRBuilder<> &Builder) { 331 // If the extract can be constant-folded, this code is unsimplified. Defer 332 // to other passes to handle that. 333 Value *X = ExtElt->getVectorOperand(); 334 Value *C = ExtElt->getIndexOperand(); 335 assert(isa<ConstantInt>(C) && "Expected a constant index operand"); 336 if (isa<Constant>(X)) 337 return nullptr; 338 339 Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(), 340 NewIndex, Builder); 341 return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex)); 342 } 343 344 /// Try to reduce extract element costs by converting scalar compares to vector 345 /// compares followed by extract. 346 /// cmp (ext0 V0, C), (ext1 V1, C) 347 void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0, 348 ExtractElementInst *Ext1, Instruction &I) { 349 assert(isa<CmpInst>(&I) && "Expected a compare"); 350 assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 351 cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 352 "Expected matching constant extract indexes"); 353 354 // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C 355 ++NumVecCmp; 356 CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate(); 357 Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 358 Value *VecCmp = Builder.CreateCmp(Pred, V0, V1); 359 Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand()); 360 replaceValue(I, *NewExt); 361 } 362 363 /// Try to reduce extract element costs by converting scalar binops to vector 364 /// binops followed by extract. 365 /// bo (ext0 V0, C), (ext1 V1, C) 366 void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0, 367 ExtractElementInst *Ext1, Instruction &I) { 368 assert(isa<BinaryOperator>(&I) && "Expected a binary operator"); 369 assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 370 cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 371 "Expected matching constant extract indexes"); 372 373 // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C 374 ++NumVecBO; 375 Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 376 Value *VecBO = 377 Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1); 378 379 // All IR flags are safe to back-propagate because any potential poison 380 // created in unused vector elements is discarded by the extract. 381 if (auto *VecBOInst = dyn_cast<Instruction>(VecBO)) 382 VecBOInst->copyIRFlags(&I); 383 384 Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand()); 385 replaceValue(I, *NewExt); 386 } 387 388 /// Match an instruction with extracted vector operands. 389 bool VectorCombine::foldExtractExtract(Instruction &I) { 390 // It is not safe to transform things like div, urem, etc. because we may 391 // create undefined behavior when executing those on unknown vector elements. 392 if (!isSafeToSpeculativelyExecute(&I)) 393 return false; 394 395 Instruction *I0, *I1; 396 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 397 if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) && 398 !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1)))) 399 return false; 400 401 Value *V0, *V1; 402 uint64_t C0, C1; 403 if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) || 404 !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) || 405 V0->getType() != V1->getType()) 406 return false; 407 408 // If the scalar value 'I' is going to be re-inserted into a vector, then try 409 // to create an extract to that same element. The extract/insert can be 410 // reduced to a "select shuffle". 411 // TODO: If we add a larger pattern match that starts from an insert, this 412 // probably becomes unnecessary. 413 auto *Ext0 = cast<ExtractElementInst>(I0); 414 auto *Ext1 = cast<ExtractElementInst>(I1); 415 uint64_t InsertIndex = InvalidIndex; 416 if (I.hasOneUse()) 417 match(I.user_back(), 418 m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex))); 419 420 ExtractElementInst *ExtractToChange; 421 if (isExtractExtractCheap(Ext0, Ext1, I.getOpcode(), ExtractToChange, 422 InsertIndex)) 423 return false; 424 425 if (ExtractToChange) { 426 unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0; 427 ExtractElementInst *NewExtract = 428 translateExtract(ExtractToChange, CheapExtractIdx, Builder); 429 if (!NewExtract) 430 return false; 431 if (ExtractToChange == Ext0) 432 Ext0 = NewExtract; 433 else 434 Ext1 = NewExtract; 435 } 436 437 if (Pred != CmpInst::BAD_ICMP_PREDICATE) 438 foldExtExtCmp(Ext0, Ext1, I); 439 else 440 foldExtExtBinop(Ext0, Ext1, I); 441 442 return true; 443 } 444 445 /// If this is a bitcast of a shuffle, try to bitcast the source vector to the 446 /// destination type followed by shuffle. This can enable further transforms by 447 /// moving bitcasts or shuffles together. 448 bool VectorCombine::foldBitcastShuf(Instruction &I) { 449 Value *V; 450 ArrayRef<int> Mask; 451 if (!match(&I, m_BitCast( 452 m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask)))))) 453 return false; 454 455 // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for 456 // scalable type is unknown; Second, we cannot reason if the narrowed shuffle 457 // mask for scalable type is a splat or not. 458 // 2) Disallow non-vector casts and length-changing shuffles. 459 // TODO: We could allow any shuffle. 460 auto *DestTy = dyn_cast<FixedVectorType>(I.getType()); 461 auto *SrcTy = dyn_cast<FixedVectorType>(V->getType()); 462 if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy) 463 return false; 464 465 // The new shuffle must not cost more than the old shuffle. The bitcast is 466 // moved ahead of the shuffle, so assume that it has the same cost as before. 467 if (TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, DestTy) > 468 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy)) 469 return false; 470 471 unsigned DestNumElts = DestTy->getNumElements(); 472 unsigned SrcNumElts = SrcTy->getNumElements(); 473 SmallVector<int, 16> NewMask; 474 if (SrcNumElts <= DestNumElts) { 475 // The bitcast is from wide to narrow/equal elements. The shuffle mask can 476 // always be expanded to the equivalent form choosing narrower elements. 477 assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask"); 478 unsigned ScaleFactor = DestNumElts / SrcNumElts; 479 narrowShuffleMaskElts(ScaleFactor, Mask, NewMask); 480 } else { 481 // The bitcast is from narrow elements to wide elements. The shuffle mask 482 // must choose consecutive elements to allow casting first. 483 assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask"); 484 unsigned ScaleFactor = SrcNumElts / DestNumElts; 485 if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask)) 486 return false; 487 } 488 // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC' 489 ++NumShufOfBitcast; 490 Value *CastV = Builder.CreateBitCast(V, DestTy); 491 Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask); 492 replaceValue(I, *Shuf); 493 return true; 494 } 495 496 /// Match a vector binop or compare instruction with at least one inserted 497 /// scalar operand and convert to scalar binop/cmp followed by insertelement. 498 bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) { 499 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 500 Value *Ins0, *Ins1; 501 if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) && 502 !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1)))) 503 return false; 504 505 // Do not convert the vector condition of a vector select into a scalar 506 // condition. That may cause problems for codegen because of differences in 507 // boolean formats and register-file transfers. 508 // TODO: Can we account for that in the cost model? 509 bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE; 510 if (IsCmp) 511 for (User *U : I.users()) 512 if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value()))) 513 return false; 514 515 // Match against one or both scalar values being inserted into constant 516 // vectors: 517 // vec_op VecC0, (inselt VecC1, V1, Index) 518 // vec_op (inselt VecC0, V0, Index), VecC1 519 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) 520 // TODO: Deal with mismatched index constants and variable indexes? 521 Constant *VecC0 = nullptr, *VecC1 = nullptr; 522 Value *V0 = nullptr, *V1 = nullptr; 523 uint64_t Index0 = 0, Index1 = 0; 524 if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0), 525 m_ConstantInt(Index0))) && 526 !match(Ins0, m_Constant(VecC0))) 527 return false; 528 if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1), 529 m_ConstantInt(Index1))) && 530 !match(Ins1, m_Constant(VecC1))) 531 return false; 532 533 bool IsConst0 = !V0; 534 bool IsConst1 = !V1; 535 if (IsConst0 && IsConst1) 536 return false; 537 if (!IsConst0 && !IsConst1 && Index0 != Index1) 538 return false; 539 540 // Bail for single insertion if it is a load. 541 // TODO: Handle this once getVectorInstrCost can cost for load/stores. 542 auto *I0 = dyn_cast_or_null<Instruction>(V0); 543 auto *I1 = dyn_cast_or_null<Instruction>(V1); 544 if ((IsConst0 && I1 && I1->mayReadFromMemory()) || 545 (IsConst1 && I0 && I0->mayReadFromMemory())) 546 return false; 547 548 uint64_t Index = IsConst0 ? Index1 : Index0; 549 Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType(); 550 Type *VecTy = I.getType(); 551 assert(VecTy->isVectorTy() && 552 (IsConst0 || IsConst1 || V0->getType() == V1->getType()) && 553 (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() || 554 ScalarTy->isPointerTy()) && 555 "Unexpected types for insert element into binop or cmp"); 556 557 unsigned Opcode = I.getOpcode(); 558 int ScalarOpCost, VectorOpCost; 559 if (IsCmp) { 560 ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy); 561 VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy); 562 } else { 563 ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 564 VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 565 } 566 567 // Get cost estimate for the insert element. This cost will factor into 568 // both sequences. 569 int InsertCost = 570 TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index); 571 int OldCost = (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + 572 VectorOpCost; 573 int NewCost = ScalarOpCost + InsertCost + 574 (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) + 575 (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost); 576 577 // We want to scalarize unless the vector variant actually has lower cost. 578 if (OldCost < NewCost) 579 return false; 580 581 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) --> 582 // inselt NewVecC, (scalar_op V0, V1), Index 583 if (IsCmp) 584 ++NumScalarCmp; 585 else 586 ++NumScalarBO; 587 588 // For constant cases, extract the scalar element, this should constant fold. 589 if (IsConst0) 590 V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index)); 591 if (IsConst1) 592 V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index)); 593 594 Value *Scalar = 595 IsCmp ? Builder.CreateCmp(Pred, V0, V1) 596 : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1); 597 598 Scalar->setName(I.getName() + ".scalar"); 599 600 // All IR flags are safe to back-propagate. There is no potential for extra 601 // poison to be created by the scalar instruction. 602 if (auto *ScalarInst = dyn_cast<Instruction>(Scalar)) 603 ScalarInst->copyIRFlags(&I); 604 605 // Fold the vector constants in the original vectors into a new base vector. 606 Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1) 607 : ConstantExpr::get(Opcode, VecC0, VecC1); 608 Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index); 609 replaceValue(I, *Insert); 610 return true; 611 } 612 613 /// Try to combine a scalar binop + 2 scalar compares of extracted elements of 614 /// a vector into vector operations followed by extract. Note: The SLP pass 615 /// may miss this pattern because of implementation problems. 616 bool VectorCombine::foldExtractedCmps(Instruction &I) { 617 // We are looking for a scalar binop of booleans. 618 // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1) 619 if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1)) 620 return false; 621 622 // The compare predicates should match, and each compare should have a 623 // constant operand. 624 // TODO: Relax the one-use constraints. 625 Value *B0 = I.getOperand(0), *B1 = I.getOperand(1); 626 Instruction *I0, *I1; 627 Constant *C0, *C1; 628 CmpInst::Predicate P0, P1; 629 if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) || 630 !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) || 631 P0 != P1) 632 return false; 633 634 // The compare operands must be extracts of the same vector with constant 635 // extract indexes. 636 // TODO: Relax the one-use constraints. 637 Value *X; 638 uint64_t Index0, Index1; 639 if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) || 640 !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1))))) 641 return false; 642 643 auto *Ext0 = cast<ExtractElementInst>(I0); 644 auto *Ext1 = cast<ExtractElementInst>(I1); 645 ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1); 646 if (!ConvertToShuf) 647 return false; 648 649 // The original scalar pattern is: 650 // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1) 651 CmpInst::Predicate Pred = P0; 652 unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp 653 : Instruction::ICmp; 654 auto *VecTy = dyn_cast<FixedVectorType>(X->getType()); 655 if (!VecTy) 656 return false; 657 658 int OldCost = TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 659 OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 660 OldCost += TTI.getCmpSelInstrCost(CmpOpcode, I0->getType()) * 2; 661 OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType()); 662 663 // The proposed vector pattern is: 664 // vcmp = cmp Pred X, VecC 665 // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0 666 int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0; 667 int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1; 668 auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType())); 669 int NewCost = TTI.getCmpSelInstrCost(CmpOpcode, X->getType()); 670 NewCost += 671 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy); 672 NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy); 673 NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex); 674 675 // Aggressively form vector ops if the cost is equal because the transform 676 // may enable further optimization. 677 // Codegen can reverse this transform (scalarize) if it was not profitable. 678 if (OldCost < NewCost) 679 return false; 680 681 // Create a vector constant from the 2 scalar constants. 682 SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(), 683 UndefValue::get(VecTy->getElementType())); 684 CmpC[Index0] = C0; 685 CmpC[Index1] = C1; 686 Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC)); 687 688 Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder); 689 Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(), 690 VCmp, Shuf); 691 Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex); 692 replaceValue(I, *NewExt); 693 ++NumVecCmpBO; 694 return true; 695 } 696 697 /// This is the entry point for all transforms. Pass manager differences are 698 /// handled in the callers of this function. 699 bool VectorCombine::run() { 700 if (DisableVectorCombine) 701 return false; 702 703 // Don't attempt vectorization if the target does not support vectors. 704 if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true))) 705 return false; 706 707 bool MadeChange = false; 708 for (BasicBlock &BB : F) { 709 // Ignore unreachable basic blocks. 710 if (!DT.isReachableFromEntry(&BB)) 711 continue; 712 // Do not delete instructions under here and invalidate the iterator. 713 // Walk the block forwards to enable simple iterative chains of transforms. 714 // TODO: It could be more efficient to remove dead instructions 715 // iteratively in this loop rather than waiting until the end. 716 for (Instruction &I : BB) { 717 if (isa<DbgInfoIntrinsic>(I)) 718 continue; 719 Builder.SetInsertPoint(&I); 720 MadeChange |= vectorizeLoadInsert(I); 721 MadeChange |= foldExtractExtract(I); 722 MadeChange |= foldBitcastShuf(I); 723 MadeChange |= scalarizeBinopOrCmp(I); 724 MadeChange |= foldExtractedCmps(I); 725 } 726 } 727 728 // We're done with transforms, so remove dead instructions. 729 if (MadeChange) 730 for (BasicBlock &BB : F) 731 SimplifyInstructionsInBlock(&BB); 732 733 return MadeChange; 734 } 735 736 // Pass manager boilerplate below here. 737 738 namespace { 739 class VectorCombineLegacyPass : public FunctionPass { 740 public: 741 static char ID; 742 VectorCombineLegacyPass() : FunctionPass(ID) { 743 initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry()); 744 } 745 746 void getAnalysisUsage(AnalysisUsage &AU) const override { 747 AU.addRequired<DominatorTreeWrapperPass>(); 748 AU.addRequired<TargetTransformInfoWrapperPass>(); 749 AU.setPreservesCFG(); 750 AU.addPreserved<DominatorTreeWrapperPass>(); 751 AU.addPreserved<GlobalsAAWrapperPass>(); 752 AU.addPreserved<AAResultsWrapperPass>(); 753 AU.addPreserved<BasicAAWrapperPass>(); 754 FunctionPass::getAnalysisUsage(AU); 755 } 756 757 bool runOnFunction(Function &F) override { 758 if (skipFunction(F)) 759 return false; 760 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 761 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 762 VectorCombine Combiner(F, TTI, DT); 763 return Combiner.run(); 764 } 765 }; 766 } // namespace 767 768 char VectorCombineLegacyPass::ID = 0; 769 INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine", 770 "Optimize scalar/vector ops", false, 771 false) 772 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 773 INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine", 774 "Optimize scalar/vector ops", false, false) 775 Pass *llvm::createVectorCombinePass() { 776 return new VectorCombineLegacyPass(); 777 } 778 779 PreservedAnalyses VectorCombinePass::run(Function &F, 780 FunctionAnalysisManager &FAM) { 781 TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); 782 DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); 783 VectorCombine Combiner(F, TTI, DT); 784 if (!Combiner.run()) 785 return PreservedAnalyses::all(); 786 PreservedAnalyses PA; 787 PA.preserveSet<CFGAnalyses>(); 788 PA.preserve<GlobalsAA>(); 789 PA.preserve<AAManager>(); 790 PA.preserve<BasicAA>(); 791 return PA; 792 } 793