1 //===------- VectorCombine.cpp - Optimize partial vector operations -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass optimizes scalar/vector interactions using target cost models. The 10 // transforms implemented here may not fit in traditional loop-based or SLP 11 // vectorization passes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Vectorize/VectorCombine.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/BasicAliasAnalysis.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/Analysis/VectorUtils.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/InitializePasses.h" 28 #include "llvm/Pass.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Transforms/Utils/Local.h" 31 #include "llvm/Transforms/Vectorize.h" 32 33 using namespace llvm; 34 using namespace llvm::PatternMatch; 35 36 #define DEBUG_TYPE "vector-combine" 37 STATISTIC(NumVecLoad, "Number of vector loads formed"); 38 STATISTIC(NumVecCmp, "Number of vector compares formed"); 39 STATISTIC(NumVecBO, "Number of vector binops formed"); 40 STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed"); 41 STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast"); 42 STATISTIC(NumScalarBO, "Number of scalar binops formed"); 43 STATISTIC(NumScalarCmp, "Number of scalar compares formed"); 44 45 static cl::opt<bool> DisableVectorCombine( 46 "disable-vector-combine", cl::init(false), cl::Hidden, 47 cl::desc("Disable all vector combine transforms")); 48 49 static cl::opt<bool> DisableBinopExtractShuffle( 50 "disable-binop-extract-shuffle", cl::init(false), cl::Hidden, 51 cl::desc("Disable binop extract to shuffle transforms")); 52 53 static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max(); 54 55 namespace { 56 class VectorCombine { 57 public: 58 VectorCombine(Function &F, const TargetTransformInfo &TTI, 59 const DominatorTree &DT) 60 : F(F), Builder(F.getContext()), TTI(TTI), DT(DT) {} 61 62 bool run(); 63 64 private: 65 Function &F; 66 IRBuilder<> Builder; 67 const TargetTransformInfo &TTI; 68 const DominatorTree &DT; 69 70 bool vectorizeLoadInsert(Instruction &I); 71 ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0, 72 ExtractElementInst *Ext1, 73 unsigned PreferredExtractIndex) const; 74 bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 75 unsigned Opcode, 76 ExtractElementInst *&ConvertToShuffle, 77 unsigned PreferredExtractIndex); 78 void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 79 Instruction &I); 80 void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 81 Instruction &I); 82 bool foldExtractExtract(Instruction &I); 83 bool foldBitcastShuf(Instruction &I); 84 bool scalarizeBinopOrCmp(Instruction &I); 85 bool foldExtractedCmps(Instruction &I); 86 }; 87 } // namespace 88 89 static void replaceValue(Value &Old, Value &New) { 90 Old.replaceAllUsesWith(&New); 91 New.takeName(&Old); 92 } 93 94 bool VectorCombine::vectorizeLoadInsert(Instruction &I) { 95 // Match insert into fixed vector of scalar load. 96 auto *Ty = dyn_cast<FixedVectorType>(I.getType()); 97 Value *Scalar; 98 if (!Ty || !match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) || 99 !Scalar->hasOneUse()) 100 return false; 101 102 // Do not vectorize scalar load (widening) if atomic/volatile or under 103 // asan/hwasan/memtag/tsan. The widened load may load data from dirty regions 104 // or create data races non-existent in the source. 105 auto *Load = dyn_cast<LoadInst>(Scalar); 106 if (!Load || !Load->isSimple() || 107 Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) || 108 mustSuppressSpeculation(*Load)) 109 return false; 110 111 // TODO: Extend this to match GEP with constant offsets. 112 Value *PtrOp = Load->getPointerOperand()->stripPointerCasts(); 113 assert(isa<PointerType>(PtrOp->getType()) && "Expected a pointer type"); 114 unsigned AS = Load->getPointerAddressSpace(); 115 116 // If original AS != Load's AS, we can't bitcast the original pointer and have 117 // to use Load's operand instead. Ideally we would want to strip pointer casts 118 // without changing AS, but there's no API to do that ATM. 119 if (AS != PtrOp->getType()->getPointerAddressSpace()) 120 PtrOp = Load->getPointerOperand(); 121 122 Type *ScalarTy = Scalar->getType(); 123 uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits(); 124 unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth(); 125 if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0) 126 return false; 127 128 // Check safety of replacing the scalar load with a larger vector load. 129 unsigned MinVecNumElts = MinVectorSize / ScalarSize; 130 auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false); 131 Align Alignment = Load->getAlign(); 132 const DataLayout &DL = I.getModule()->getDataLayout(); 133 if (!isSafeToLoadUnconditionally(PtrOp, MinVecTy, Alignment, DL, Load, &DT)) 134 return false; 135 136 137 // Original pattern: insertelt undef, load [free casts of] ScalarPtr, 0 138 int OldCost = TTI.getMemoryOpCost(Instruction::Load, ScalarTy, Alignment, AS); 139 APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0); 140 OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts, true, false); 141 142 // New pattern: load VecPtr 143 int NewCost = TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS); 144 145 // We can aggressively convert to the vector form because the backend can 146 // invert this transform if it does not result in a performance win. 147 if (OldCost < NewCost) 148 return false; 149 150 // It is safe and potentially profitable to load a vector directly: 151 // inselt undef, load Scalar, 0 --> load VecPtr 152 IRBuilder<> Builder(Load); 153 Value *CastedPtr = Builder.CreateBitCast(PtrOp, MinVecTy->getPointerTo(AS)); 154 Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment); 155 156 // If the insert type does not match the target's minimum vector type, 157 // use an identity shuffle to shrink/grow the vector. 158 if (Ty != MinVecTy) { 159 unsigned OutputNumElts = Ty->getNumElements(); 160 SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem); 161 for (unsigned i = 0; i < OutputNumElts && i < MinVecNumElts; ++i) 162 Mask[i] = i; 163 VecLd = Builder.CreateShuffleVector(VecLd, Mask); 164 } 165 replaceValue(I, *VecLd); 166 ++NumVecLoad; 167 return true; 168 } 169 170 /// Determine which, if any, of the inputs should be replaced by a shuffle 171 /// followed by extract from a different index. 172 ExtractElementInst *VectorCombine::getShuffleExtract( 173 ExtractElementInst *Ext0, ExtractElementInst *Ext1, 174 unsigned PreferredExtractIndex = InvalidIndex) const { 175 assert(isa<ConstantInt>(Ext0->getIndexOperand()) && 176 isa<ConstantInt>(Ext1->getIndexOperand()) && 177 "Expected constant extract indexes"); 178 179 unsigned Index0 = cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue(); 180 unsigned Index1 = cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue(); 181 182 // If the extract indexes are identical, no shuffle is needed. 183 if (Index0 == Index1) 184 return nullptr; 185 186 Type *VecTy = Ext0->getVectorOperand()->getType(); 187 assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types"); 188 int Cost0 = TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 189 int Cost1 = TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 190 191 // We are extracting from 2 different indexes, so one operand must be shuffled 192 // before performing a vector operation and/or extract. The more expensive 193 // extract will be replaced by a shuffle. 194 if (Cost0 > Cost1) 195 return Ext0; 196 if (Cost1 > Cost0) 197 return Ext1; 198 199 // If the costs are equal and there is a preferred extract index, shuffle the 200 // opposite operand. 201 if (PreferredExtractIndex == Index0) 202 return Ext1; 203 if (PreferredExtractIndex == Index1) 204 return Ext0; 205 206 // Otherwise, replace the extract with the higher index. 207 return Index0 > Index1 ? Ext0 : Ext1; 208 } 209 210 /// Compare the relative costs of 2 extracts followed by scalar operation vs. 211 /// vector operation(s) followed by extract. Return true if the existing 212 /// instructions are cheaper than a vector alternative. Otherwise, return false 213 /// and if one of the extracts should be transformed to a shufflevector, set 214 /// \p ConvertToShuffle to that extract instruction. 215 bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0, 216 ExtractElementInst *Ext1, 217 unsigned Opcode, 218 ExtractElementInst *&ConvertToShuffle, 219 unsigned PreferredExtractIndex) { 220 assert(isa<ConstantInt>(Ext0->getOperand(1)) && 221 isa<ConstantInt>(Ext1->getOperand(1)) && 222 "Expected constant extract indexes"); 223 Type *ScalarTy = Ext0->getType(); 224 auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType()); 225 int ScalarOpCost, VectorOpCost; 226 227 // Get cost estimates for scalar and vector versions of the operation. 228 bool IsBinOp = Instruction::isBinaryOp(Opcode); 229 if (IsBinOp) { 230 ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 231 VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 232 } else { 233 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 234 "Expected a compare"); 235 ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy, 236 CmpInst::makeCmpResultType(ScalarTy)); 237 VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy, 238 CmpInst::makeCmpResultType(VecTy)); 239 } 240 241 // Get cost estimates for the extract elements. These costs will factor into 242 // both sequences. 243 unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue(); 244 unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue(); 245 246 int Extract0Cost = 247 TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index); 248 int Extract1Cost = 249 TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index); 250 251 // A more expensive extract will always be replaced by a splat shuffle. 252 // For example, if Ext0 is more expensive: 253 // opcode (extelt V0, Ext0), (ext V1, Ext1) --> 254 // extelt (opcode (splat V0, Ext0), V1), Ext1 255 // TODO: Evaluate whether that always results in lowest cost. Alternatively, 256 // check the cost of creating a broadcast shuffle and shuffling both 257 // operands to element 0. 258 int CheapExtractCost = std::min(Extract0Cost, Extract1Cost); 259 260 // Extra uses of the extracts mean that we include those costs in the 261 // vector total because those instructions will not be eliminated. 262 int OldCost, NewCost; 263 if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) { 264 // Handle a special case. If the 2 extracts are identical, adjust the 265 // formulas to account for that. The extra use charge allows for either the 266 // CSE'd pattern or an unoptimized form with identical values: 267 // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C 268 bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2) 269 : !Ext0->hasOneUse() || !Ext1->hasOneUse(); 270 OldCost = CheapExtractCost + ScalarOpCost; 271 NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost; 272 } else { 273 // Handle the general case. Each extract is actually a different value: 274 // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C 275 OldCost = Extract0Cost + Extract1Cost + ScalarOpCost; 276 NewCost = VectorOpCost + CheapExtractCost + 277 !Ext0->hasOneUse() * Extract0Cost + 278 !Ext1->hasOneUse() * Extract1Cost; 279 } 280 281 ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex); 282 if (ConvertToShuffle) { 283 if (IsBinOp && DisableBinopExtractShuffle) 284 return true; 285 286 // If we are extracting from 2 different indexes, then one operand must be 287 // shuffled before performing the vector operation. The shuffle mask is 288 // undefined except for 1 lane that is being translated to the remaining 289 // extraction lane. Therefore, it is a splat shuffle. Ex: 290 // ShufMask = { undef, undef, 0, undef } 291 // TODO: The cost model has an option for a "broadcast" shuffle 292 // (splat-from-element-0), but no option for a more general splat. 293 NewCost += 294 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 295 } 296 297 // Aggressively form a vector op if the cost is equal because the transform 298 // may enable further optimization. 299 // Codegen can reverse this transform (scalarize) if it was not profitable. 300 return OldCost < NewCost; 301 } 302 303 /// Create a shuffle that translates (shifts) 1 element from the input vector 304 /// to a new element location. 305 static Value *createShiftShuffle(Value *Vec, unsigned OldIndex, 306 unsigned NewIndex, IRBuilder<> &Builder) { 307 // The shuffle mask is undefined except for 1 lane that is being translated 308 // to the new element index. Example for OldIndex == 2 and NewIndex == 0: 309 // ShufMask = { 2, undef, undef, undef } 310 auto *VecTy = cast<FixedVectorType>(Vec->getType()); 311 SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem); 312 ShufMask[NewIndex] = OldIndex; 313 return Builder.CreateShuffleVector(Vec, ShufMask, "shift"); 314 } 315 316 /// Given an extract element instruction with constant index operand, shuffle 317 /// the source vector (shift the scalar element) to a NewIndex for extraction. 318 /// Return null if the input can be constant folded, so that we are not creating 319 /// unnecessary instructions. 320 static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt, 321 unsigned NewIndex, 322 IRBuilder<> &Builder) { 323 // If the extract can be constant-folded, this code is unsimplified. Defer 324 // to other passes to handle that. 325 Value *X = ExtElt->getVectorOperand(); 326 Value *C = ExtElt->getIndexOperand(); 327 assert(isa<ConstantInt>(C) && "Expected a constant index operand"); 328 if (isa<Constant>(X)) 329 return nullptr; 330 331 Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(), 332 NewIndex, Builder); 333 return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex)); 334 } 335 336 /// Try to reduce extract element costs by converting scalar compares to vector 337 /// compares followed by extract. 338 /// cmp (ext0 V0, C), (ext1 V1, C) 339 void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0, 340 ExtractElementInst *Ext1, Instruction &I) { 341 assert(isa<CmpInst>(&I) && "Expected a compare"); 342 assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 343 cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 344 "Expected matching constant extract indexes"); 345 346 // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C 347 ++NumVecCmp; 348 CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate(); 349 Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 350 Value *VecCmp = Builder.CreateCmp(Pred, V0, V1); 351 Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand()); 352 replaceValue(I, *NewExt); 353 } 354 355 /// Try to reduce extract element costs by converting scalar binops to vector 356 /// binops followed by extract. 357 /// bo (ext0 V0, C), (ext1 V1, C) 358 void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0, 359 ExtractElementInst *Ext1, Instruction &I) { 360 assert(isa<BinaryOperator>(&I) && "Expected a binary operator"); 361 assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 362 cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 363 "Expected matching constant extract indexes"); 364 365 // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C 366 ++NumVecBO; 367 Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 368 Value *VecBO = 369 Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1); 370 371 // All IR flags are safe to back-propagate because any potential poison 372 // created in unused vector elements is discarded by the extract. 373 if (auto *VecBOInst = dyn_cast<Instruction>(VecBO)) 374 VecBOInst->copyIRFlags(&I); 375 376 Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand()); 377 replaceValue(I, *NewExt); 378 } 379 380 /// Match an instruction with extracted vector operands. 381 bool VectorCombine::foldExtractExtract(Instruction &I) { 382 // It is not safe to transform things like div, urem, etc. because we may 383 // create undefined behavior when executing those on unknown vector elements. 384 if (!isSafeToSpeculativelyExecute(&I)) 385 return false; 386 387 Instruction *I0, *I1; 388 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 389 if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) && 390 !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1)))) 391 return false; 392 393 Value *V0, *V1; 394 uint64_t C0, C1; 395 if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) || 396 !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) || 397 V0->getType() != V1->getType()) 398 return false; 399 400 // If the scalar value 'I' is going to be re-inserted into a vector, then try 401 // to create an extract to that same element. The extract/insert can be 402 // reduced to a "select shuffle". 403 // TODO: If we add a larger pattern match that starts from an insert, this 404 // probably becomes unnecessary. 405 auto *Ext0 = cast<ExtractElementInst>(I0); 406 auto *Ext1 = cast<ExtractElementInst>(I1); 407 uint64_t InsertIndex = InvalidIndex; 408 if (I.hasOneUse()) 409 match(I.user_back(), 410 m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex))); 411 412 ExtractElementInst *ExtractToChange; 413 if (isExtractExtractCheap(Ext0, Ext1, I.getOpcode(), ExtractToChange, 414 InsertIndex)) 415 return false; 416 417 if (ExtractToChange) { 418 unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0; 419 ExtractElementInst *NewExtract = 420 translateExtract(ExtractToChange, CheapExtractIdx, Builder); 421 if (!NewExtract) 422 return false; 423 if (ExtractToChange == Ext0) 424 Ext0 = NewExtract; 425 else 426 Ext1 = NewExtract; 427 } 428 429 if (Pred != CmpInst::BAD_ICMP_PREDICATE) 430 foldExtExtCmp(Ext0, Ext1, I); 431 else 432 foldExtExtBinop(Ext0, Ext1, I); 433 434 return true; 435 } 436 437 /// If this is a bitcast of a shuffle, try to bitcast the source vector to the 438 /// destination type followed by shuffle. This can enable further transforms by 439 /// moving bitcasts or shuffles together. 440 bool VectorCombine::foldBitcastShuf(Instruction &I) { 441 Value *V; 442 ArrayRef<int> Mask; 443 if (!match(&I, m_BitCast( 444 m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask)))))) 445 return false; 446 447 // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for 448 // scalable type is unknown; Second, we cannot reason if the narrowed shuffle 449 // mask for scalable type is a splat or not. 450 // 2) Disallow non-vector casts and length-changing shuffles. 451 // TODO: We could allow any shuffle. 452 auto *DestTy = dyn_cast<FixedVectorType>(I.getType()); 453 auto *SrcTy = dyn_cast<FixedVectorType>(V->getType()); 454 if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy) 455 return false; 456 457 // The new shuffle must not cost more than the old shuffle. The bitcast is 458 // moved ahead of the shuffle, so assume that it has the same cost as before. 459 if (TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, DestTy) > 460 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy)) 461 return false; 462 463 unsigned DestNumElts = DestTy->getNumElements(); 464 unsigned SrcNumElts = SrcTy->getNumElements(); 465 SmallVector<int, 16> NewMask; 466 if (SrcNumElts <= DestNumElts) { 467 // The bitcast is from wide to narrow/equal elements. The shuffle mask can 468 // always be expanded to the equivalent form choosing narrower elements. 469 assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask"); 470 unsigned ScaleFactor = DestNumElts / SrcNumElts; 471 narrowShuffleMaskElts(ScaleFactor, Mask, NewMask); 472 } else { 473 // The bitcast is from narrow elements to wide elements. The shuffle mask 474 // must choose consecutive elements to allow casting first. 475 assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask"); 476 unsigned ScaleFactor = SrcNumElts / DestNumElts; 477 if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask)) 478 return false; 479 } 480 // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC' 481 ++NumShufOfBitcast; 482 Value *CastV = Builder.CreateBitCast(V, DestTy); 483 Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask); 484 replaceValue(I, *Shuf); 485 return true; 486 } 487 488 /// Match a vector binop or compare instruction with at least one inserted 489 /// scalar operand and convert to scalar binop/cmp followed by insertelement. 490 bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) { 491 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 492 Value *Ins0, *Ins1; 493 if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) && 494 !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1)))) 495 return false; 496 497 // Do not convert the vector condition of a vector select into a scalar 498 // condition. That may cause problems for codegen because of differences in 499 // boolean formats and register-file transfers. 500 // TODO: Can we account for that in the cost model? 501 bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE; 502 if (IsCmp) 503 for (User *U : I.users()) 504 if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value()))) 505 return false; 506 507 // Match against one or both scalar values being inserted into constant 508 // vectors: 509 // vec_op VecC0, (inselt VecC1, V1, Index) 510 // vec_op (inselt VecC0, V0, Index), VecC1 511 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) 512 // TODO: Deal with mismatched index constants and variable indexes? 513 Constant *VecC0 = nullptr, *VecC1 = nullptr; 514 Value *V0 = nullptr, *V1 = nullptr; 515 uint64_t Index0 = 0, Index1 = 0; 516 if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0), 517 m_ConstantInt(Index0))) && 518 !match(Ins0, m_Constant(VecC0))) 519 return false; 520 if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1), 521 m_ConstantInt(Index1))) && 522 !match(Ins1, m_Constant(VecC1))) 523 return false; 524 525 bool IsConst0 = !V0; 526 bool IsConst1 = !V1; 527 if (IsConst0 && IsConst1) 528 return false; 529 if (!IsConst0 && !IsConst1 && Index0 != Index1) 530 return false; 531 532 // Bail for single insertion if it is a load. 533 // TODO: Handle this once getVectorInstrCost can cost for load/stores. 534 auto *I0 = dyn_cast_or_null<Instruction>(V0); 535 auto *I1 = dyn_cast_or_null<Instruction>(V1); 536 if ((IsConst0 && I1 && I1->mayReadFromMemory()) || 537 (IsConst1 && I0 && I0->mayReadFromMemory())) 538 return false; 539 540 uint64_t Index = IsConst0 ? Index1 : Index0; 541 Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType(); 542 Type *VecTy = I.getType(); 543 assert(VecTy->isVectorTy() && 544 (IsConst0 || IsConst1 || V0->getType() == V1->getType()) && 545 (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() || 546 ScalarTy->isPointerTy()) && 547 "Unexpected types for insert element into binop or cmp"); 548 549 unsigned Opcode = I.getOpcode(); 550 int ScalarOpCost, VectorOpCost; 551 if (IsCmp) { 552 ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy); 553 VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy); 554 } else { 555 ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 556 VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 557 } 558 559 // Get cost estimate for the insert element. This cost will factor into 560 // both sequences. 561 int InsertCost = 562 TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index); 563 int OldCost = (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + 564 VectorOpCost; 565 int NewCost = ScalarOpCost + InsertCost + 566 (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) + 567 (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost); 568 569 // We want to scalarize unless the vector variant actually has lower cost. 570 if (OldCost < NewCost) 571 return false; 572 573 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) --> 574 // inselt NewVecC, (scalar_op V0, V1), Index 575 if (IsCmp) 576 ++NumScalarCmp; 577 else 578 ++NumScalarBO; 579 580 // For constant cases, extract the scalar element, this should constant fold. 581 if (IsConst0) 582 V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index)); 583 if (IsConst1) 584 V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index)); 585 586 Value *Scalar = 587 IsCmp ? Builder.CreateCmp(Pred, V0, V1) 588 : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1); 589 590 Scalar->setName(I.getName() + ".scalar"); 591 592 // All IR flags are safe to back-propagate. There is no potential for extra 593 // poison to be created by the scalar instruction. 594 if (auto *ScalarInst = dyn_cast<Instruction>(Scalar)) 595 ScalarInst->copyIRFlags(&I); 596 597 // Fold the vector constants in the original vectors into a new base vector. 598 Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1) 599 : ConstantExpr::get(Opcode, VecC0, VecC1); 600 Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index); 601 replaceValue(I, *Insert); 602 return true; 603 } 604 605 /// Try to combine a scalar binop + 2 scalar compares of extracted elements of 606 /// a vector into vector operations followed by extract. Note: The SLP pass 607 /// may miss this pattern because of implementation problems. 608 bool VectorCombine::foldExtractedCmps(Instruction &I) { 609 // We are looking for a scalar binop of booleans. 610 // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1) 611 if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1)) 612 return false; 613 614 // The compare predicates should match, and each compare should have a 615 // constant operand. 616 // TODO: Relax the one-use constraints. 617 Value *B0 = I.getOperand(0), *B1 = I.getOperand(1); 618 Instruction *I0, *I1; 619 Constant *C0, *C1; 620 CmpInst::Predicate P0, P1; 621 if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) || 622 !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) || 623 P0 != P1) 624 return false; 625 626 // The compare operands must be extracts of the same vector with constant 627 // extract indexes. 628 // TODO: Relax the one-use constraints. 629 Value *X; 630 uint64_t Index0, Index1; 631 if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) || 632 !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1))))) 633 return false; 634 635 auto *Ext0 = cast<ExtractElementInst>(I0); 636 auto *Ext1 = cast<ExtractElementInst>(I1); 637 ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1); 638 if (!ConvertToShuf) 639 return false; 640 641 // The original scalar pattern is: 642 // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1) 643 CmpInst::Predicate Pred = P0; 644 unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp 645 : Instruction::ICmp; 646 auto *VecTy = dyn_cast<FixedVectorType>(X->getType()); 647 if (!VecTy) 648 return false; 649 650 int OldCost = TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 651 OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 652 OldCost += TTI.getCmpSelInstrCost(CmpOpcode, I0->getType()) * 2; 653 OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType()); 654 655 // The proposed vector pattern is: 656 // vcmp = cmp Pred X, VecC 657 // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0 658 int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0; 659 int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1; 660 auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType())); 661 int NewCost = TTI.getCmpSelInstrCost(CmpOpcode, X->getType()); 662 NewCost += 663 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy); 664 NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy); 665 NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex); 666 667 // Aggressively form vector ops if the cost is equal because the transform 668 // may enable further optimization. 669 // Codegen can reverse this transform (scalarize) if it was not profitable. 670 if (OldCost < NewCost) 671 return false; 672 673 // Create a vector constant from the 2 scalar constants. 674 SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(), 675 UndefValue::get(VecTy->getElementType())); 676 CmpC[Index0] = C0; 677 CmpC[Index1] = C1; 678 Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC)); 679 680 Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder); 681 Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(), 682 VCmp, Shuf); 683 Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex); 684 replaceValue(I, *NewExt); 685 ++NumVecCmpBO; 686 return true; 687 } 688 689 /// This is the entry point for all transforms. Pass manager differences are 690 /// handled in the callers of this function. 691 bool VectorCombine::run() { 692 if (DisableVectorCombine) 693 return false; 694 695 // Don't attempt vectorization if the target does not support vectors. 696 if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true))) 697 return false; 698 699 bool MadeChange = false; 700 for (BasicBlock &BB : F) { 701 // Ignore unreachable basic blocks. 702 if (!DT.isReachableFromEntry(&BB)) 703 continue; 704 // Do not delete instructions under here and invalidate the iterator. 705 // Walk the block forwards to enable simple iterative chains of transforms. 706 // TODO: It could be more efficient to remove dead instructions 707 // iteratively in this loop rather than waiting until the end. 708 for (Instruction &I : BB) { 709 if (isa<DbgInfoIntrinsic>(I)) 710 continue; 711 Builder.SetInsertPoint(&I); 712 MadeChange |= vectorizeLoadInsert(I); 713 MadeChange |= foldExtractExtract(I); 714 MadeChange |= foldBitcastShuf(I); 715 MadeChange |= scalarizeBinopOrCmp(I); 716 MadeChange |= foldExtractedCmps(I); 717 } 718 } 719 720 // We're done with transforms, so remove dead instructions. 721 if (MadeChange) 722 for (BasicBlock &BB : F) 723 SimplifyInstructionsInBlock(&BB); 724 725 return MadeChange; 726 } 727 728 // Pass manager boilerplate below here. 729 730 namespace { 731 class VectorCombineLegacyPass : public FunctionPass { 732 public: 733 static char ID; 734 VectorCombineLegacyPass() : FunctionPass(ID) { 735 initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry()); 736 } 737 738 void getAnalysisUsage(AnalysisUsage &AU) const override { 739 AU.addRequired<DominatorTreeWrapperPass>(); 740 AU.addRequired<TargetTransformInfoWrapperPass>(); 741 AU.setPreservesCFG(); 742 AU.addPreserved<DominatorTreeWrapperPass>(); 743 AU.addPreserved<GlobalsAAWrapperPass>(); 744 AU.addPreserved<AAResultsWrapperPass>(); 745 AU.addPreserved<BasicAAWrapperPass>(); 746 FunctionPass::getAnalysisUsage(AU); 747 } 748 749 bool runOnFunction(Function &F) override { 750 if (skipFunction(F)) 751 return false; 752 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 753 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 754 VectorCombine Combiner(F, TTI, DT); 755 return Combiner.run(); 756 } 757 }; 758 } // namespace 759 760 char VectorCombineLegacyPass::ID = 0; 761 INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine", 762 "Optimize scalar/vector ops", false, 763 false) 764 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 765 INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine", 766 "Optimize scalar/vector ops", false, false) 767 Pass *llvm::createVectorCombinePass() { 768 return new VectorCombineLegacyPass(); 769 } 770 771 PreservedAnalyses VectorCombinePass::run(Function &F, 772 FunctionAnalysisManager &FAM) { 773 TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); 774 DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); 775 VectorCombine Combiner(F, TTI, DT); 776 if (!Combiner.run()) 777 return PreservedAnalyses::all(); 778 PreservedAnalyses PA; 779 PA.preserveSet<CFGAnalyses>(); 780 PA.preserve<GlobalsAA>(); 781 PA.preserve<AAManager>(); 782 PA.preserve<BasicAA>(); 783 return PA; 784 } 785