1 //===------- VectorCombine.cpp - Optimize partial vector operations -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass optimizes scalar/vector interactions using target cost models. The 10 // transforms implemented here may not fit in traditional loop-based or SLP 11 // vectorization passes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Vectorize/VectorCombine.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/BasicAliasAnalysis.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/Analysis/VectorUtils.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/InitializePasses.h" 28 #include "llvm/Pass.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Transforms/Utils/Local.h" 31 #include "llvm/Transforms/Vectorize.h" 32 33 using namespace llvm; 34 using namespace llvm::PatternMatch; 35 36 #define DEBUG_TYPE "vector-combine" 37 STATISTIC(NumVecLoad, "Number of vector loads formed"); 38 STATISTIC(NumVecCmp, "Number of vector compares formed"); 39 STATISTIC(NumVecBO, "Number of vector binops formed"); 40 STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed"); 41 STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast"); 42 STATISTIC(NumScalarBO, "Number of scalar binops formed"); 43 STATISTIC(NumScalarCmp, "Number of scalar compares formed"); 44 45 static cl::opt<bool> DisableVectorCombine( 46 "disable-vector-combine", cl::init(false), cl::Hidden, 47 cl::desc("Disable all vector combine transforms")); 48 49 static cl::opt<bool> DisableBinopExtractShuffle( 50 "disable-binop-extract-shuffle", cl::init(false), cl::Hidden, 51 cl::desc("Disable binop extract to shuffle transforms")); 52 53 static cl::opt<unsigned> MaxInstrsToScan( 54 "vector-combine-max-scan-instrs", cl::init(30), cl::Hidden, 55 cl::desc("Max number of instructions to scan for vector combining.")); 56 57 static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max(); 58 59 namespace { 60 class VectorCombine { 61 public: 62 VectorCombine(Function &F, const TargetTransformInfo &TTI, 63 const DominatorTree &DT, AAResults &AA) 64 : F(F), Builder(F.getContext()), TTI(TTI), DT(DT), AA(AA) {} 65 66 bool run(); 67 68 private: 69 Function &F; 70 IRBuilder<> Builder; 71 const TargetTransformInfo &TTI; 72 const DominatorTree &DT; 73 AAResults &AA; 74 75 bool vectorizeLoadInsert(Instruction &I); 76 ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0, 77 ExtractElementInst *Ext1, 78 unsigned PreferredExtractIndex) const; 79 bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 80 unsigned Opcode, 81 ExtractElementInst *&ConvertToShuffle, 82 unsigned PreferredExtractIndex); 83 void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 84 Instruction &I); 85 void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 86 Instruction &I); 87 bool foldExtractExtract(Instruction &I); 88 bool foldBitcastShuf(Instruction &I); 89 bool scalarizeBinopOrCmp(Instruction &I); 90 bool foldExtractedCmps(Instruction &I); 91 bool foldSingleElementStore(Instruction &I); 92 }; 93 } // namespace 94 95 static void replaceValue(Value &Old, Value &New) { 96 Old.replaceAllUsesWith(&New); 97 New.takeName(&Old); 98 } 99 100 bool VectorCombine::vectorizeLoadInsert(Instruction &I) { 101 // Match insert into fixed vector of scalar value. 102 // TODO: Handle non-zero insert index. 103 auto *Ty = dyn_cast<FixedVectorType>(I.getType()); 104 Value *Scalar; 105 if (!Ty || !match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) || 106 !Scalar->hasOneUse()) 107 return false; 108 109 // Optionally match an extract from another vector. 110 Value *X; 111 bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt())); 112 if (!HasExtract) 113 X = Scalar; 114 115 // Match source value as load of scalar or vector. 116 // Do not vectorize scalar load (widening) if atomic/volatile or under 117 // asan/hwasan/memtag/tsan. The widened load may load data from dirty regions 118 // or create data races non-existent in the source. 119 auto *Load = dyn_cast<LoadInst>(X); 120 if (!Load || !Load->isSimple() || !Load->hasOneUse() || 121 Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) || 122 mustSuppressSpeculation(*Load)) 123 return false; 124 125 const DataLayout &DL = I.getModule()->getDataLayout(); 126 Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts(); 127 assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type"); 128 129 // If original AS != Load's AS, we can't bitcast the original pointer and have 130 // to use Load's operand instead. Ideally we would want to strip pointer casts 131 // without changing AS, but there's no API to do that ATM. 132 unsigned AS = Load->getPointerAddressSpace(); 133 if (AS != SrcPtr->getType()->getPointerAddressSpace()) 134 SrcPtr = Load->getPointerOperand(); 135 136 // We are potentially transforming byte-sized (8-bit) memory accesses, so make 137 // sure we have all of our type-based constraints in place for this target. 138 Type *ScalarTy = Scalar->getType(); 139 uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits(); 140 unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth(); 141 if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 || 142 ScalarSize % 8 != 0) 143 return false; 144 145 // Check safety of replacing the scalar load with a larger vector load. 146 // We use minimal alignment (maximum flexibility) because we only care about 147 // the dereferenceable region. When calculating cost and creating a new op, 148 // we may use a larger value based on alignment attributes. 149 unsigned MinVecNumElts = MinVectorSize / ScalarSize; 150 auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false); 151 unsigned OffsetEltIndex = 0; 152 Align Alignment = Load->getAlign(); 153 if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) { 154 // It is not safe to load directly from the pointer, but we can still peek 155 // through gep offsets and check if it safe to load from a base address with 156 // updated alignment. If it is, we can shuffle the element(s) into place 157 // after loading. 158 unsigned OffsetBitWidth = DL.getIndexTypeSizeInBits(SrcPtr->getType()); 159 APInt Offset(OffsetBitWidth, 0); 160 SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); 161 162 // We want to shuffle the result down from a high element of a vector, so 163 // the offset must be positive. 164 if (Offset.isNegative()) 165 return false; 166 167 // The offset must be a multiple of the scalar element to shuffle cleanly 168 // in the element's size. 169 uint64_t ScalarSizeInBytes = ScalarSize / 8; 170 if (Offset.urem(ScalarSizeInBytes) != 0) 171 return false; 172 173 // If we load MinVecNumElts, will our target element still be loaded? 174 OffsetEltIndex = Offset.udiv(ScalarSizeInBytes).getZExtValue(); 175 if (OffsetEltIndex >= MinVecNumElts) 176 return false; 177 178 if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) 179 return false; 180 181 // Update alignment with offset value. Note that the offset could be negated 182 // to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but 183 // negation does not change the result of the alignment calculation. 184 Alignment = commonAlignment(Alignment, Offset.getZExtValue()); 185 } 186 187 // Original pattern: insertelt undef, load [free casts of] PtrOp, 0 188 // Use the greater of the alignment on the load or its source pointer. 189 Alignment = std::max(SrcPtr->getPointerAlignment(DL), Alignment); 190 Type *LoadTy = Load->getType(); 191 InstructionCost OldCost = 192 TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS); 193 APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0); 194 OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts, 195 /* Insert */ true, HasExtract); 196 197 // New pattern: load VecPtr 198 InstructionCost NewCost = 199 TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS); 200 // Optionally, we are shuffling the loaded vector element(s) into place. 201 // For the mask set everything but element 0 to undef to prevent poison from 202 // propagating from the extra loaded memory. This will also optionally 203 // shrink/grow the vector from the loaded size to the output size. 204 // We assume this operation has no cost in codegen if there was no offset. 205 // Note that we could use freeze to avoid poison problems, but then we might 206 // still need a shuffle to change the vector size. 207 unsigned OutputNumElts = Ty->getNumElements(); 208 SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem); 209 assert(OffsetEltIndex < MinVecNumElts && "Address offset too big"); 210 Mask[0] = OffsetEltIndex; 211 if (OffsetEltIndex) 212 NewCost += TTI.getShuffleCost(TTI::SK_PermuteSingleSrc, MinVecTy, Mask); 213 214 // We can aggressively convert to the vector form because the backend can 215 // invert this transform if it does not result in a performance win. 216 if (OldCost < NewCost || !NewCost.isValid()) 217 return false; 218 219 // It is safe and potentially profitable to load a vector directly: 220 // inselt undef, load Scalar, 0 --> load VecPtr 221 IRBuilder<> Builder(Load); 222 Value *CastedPtr = Builder.CreateBitCast(SrcPtr, MinVecTy->getPointerTo(AS)); 223 Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment); 224 VecLd = Builder.CreateShuffleVector(VecLd, Mask); 225 226 replaceValue(I, *VecLd); 227 ++NumVecLoad; 228 return true; 229 } 230 231 /// Determine which, if any, of the inputs should be replaced by a shuffle 232 /// followed by extract from a different index. 233 ExtractElementInst *VectorCombine::getShuffleExtract( 234 ExtractElementInst *Ext0, ExtractElementInst *Ext1, 235 unsigned PreferredExtractIndex = InvalidIndex) const { 236 assert(isa<ConstantInt>(Ext0->getIndexOperand()) && 237 isa<ConstantInt>(Ext1->getIndexOperand()) && 238 "Expected constant extract indexes"); 239 240 unsigned Index0 = cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue(); 241 unsigned Index1 = cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue(); 242 243 // If the extract indexes are identical, no shuffle is needed. 244 if (Index0 == Index1) 245 return nullptr; 246 247 Type *VecTy = Ext0->getVectorOperand()->getType(); 248 assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types"); 249 InstructionCost Cost0 = 250 TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 251 InstructionCost Cost1 = 252 TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 253 254 // If both costs are invalid no shuffle is needed 255 if (!Cost0.isValid() && !Cost1.isValid()) 256 return nullptr; 257 258 // We are extracting from 2 different indexes, so one operand must be shuffled 259 // before performing a vector operation and/or extract. The more expensive 260 // extract will be replaced by a shuffle. 261 if (Cost0 > Cost1) 262 return Ext0; 263 if (Cost1 > Cost0) 264 return Ext1; 265 266 // If the costs are equal and there is a preferred extract index, shuffle the 267 // opposite operand. 268 if (PreferredExtractIndex == Index0) 269 return Ext1; 270 if (PreferredExtractIndex == Index1) 271 return Ext0; 272 273 // Otherwise, replace the extract with the higher index. 274 return Index0 > Index1 ? Ext0 : Ext1; 275 } 276 277 /// Compare the relative costs of 2 extracts followed by scalar operation vs. 278 /// vector operation(s) followed by extract. Return true if the existing 279 /// instructions are cheaper than a vector alternative. Otherwise, return false 280 /// and if one of the extracts should be transformed to a shufflevector, set 281 /// \p ConvertToShuffle to that extract instruction. 282 bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0, 283 ExtractElementInst *Ext1, 284 unsigned Opcode, 285 ExtractElementInst *&ConvertToShuffle, 286 unsigned PreferredExtractIndex) { 287 assert(isa<ConstantInt>(Ext0->getOperand(1)) && 288 isa<ConstantInt>(Ext1->getOperand(1)) && 289 "Expected constant extract indexes"); 290 Type *ScalarTy = Ext0->getType(); 291 auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType()); 292 InstructionCost ScalarOpCost, VectorOpCost; 293 294 // Get cost estimates for scalar and vector versions of the operation. 295 bool IsBinOp = Instruction::isBinaryOp(Opcode); 296 if (IsBinOp) { 297 ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 298 VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 299 } else { 300 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 301 "Expected a compare"); 302 ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy, 303 CmpInst::makeCmpResultType(ScalarTy)); 304 VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy, 305 CmpInst::makeCmpResultType(VecTy)); 306 } 307 308 // Get cost estimates for the extract elements. These costs will factor into 309 // both sequences. 310 unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue(); 311 unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue(); 312 313 InstructionCost Extract0Cost = 314 TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index); 315 InstructionCost Extract1Cost = 316 TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index); 317 318 // A more expensive extract will always be replaced by a splat shuffle. 319 // For example, if Ext0 is more expensive: 320 // opcode (extelt V0, Ext0), (ext V1, Ext1) --> 321 // extelt (opcode (splat V0, Ext0), V1), Ext1 322 // TODO: Evaluate whether that always results in lowest cost. Alternatively, 323 // check the cost of creating a broadcast shuffle and shuffling both 324 // operands to element 0. 325 InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost); 326 327 // Extra uses of the extracts mean that we include those costs in the 328 // vector total because those instructions will not be eliminated. 329 InstructionCost OldCost, NewCost; 330 if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) { 331 // Handle a special case. If the 2 extracts are identical, adjust the 332 // formulas to account for that. The extra use charge allows for either the 333 // CSE'd pattern or an unoptimized form with identical values: 334 // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C 335 bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2) 336 : !Ext0->hasOneUse() || !Ext1->hasOneUse(); 337 OldCost = CheapExtractCost + ScalarOpCost; 338 NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost; 339 } else { 340 // Handle the general case. Each extract is actually a different value: 341 // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C 342 OldCost = Extract0Cost + Extract1Cost + ScalarOpCost; 343 NewCost = VectorOpCost + CheapExtractCost + 344 !Ext0->hasOneUse() * Extract0Cost + 345 !Ext1->hasOneUse() * Extract1Cost; 346 } 347 348 ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex); 349 if (ConvertToShuffle) { 350 if (IsBinOp && DisableBinopExtractShuffle) 351 return true; 352 353 // If we are extracting from 2 different indexes, then one operand must be 354 // shuffled before performing the vector operation. The shuffle mask is 355 // undefined except for 1 lane that is being translated to the remaining 356 // extraction lane. Therefore, it is a splat shuffle. Ex: 357 // ShufMask = { undef, undef, 0, undef } 358 // TODO: The cost model has an option for a "broadcast" shuffle 359 // (splat-from-element-0), but no option for a more general splat. 360 NewCost += 361 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 362 } 363 364 // Aggressively form a vector op if the cost is equal because the transform 365 // may enable further optimization. 366 // Codegen can reverse this transform (scalarize) if it was not profitable. 367 return OldCost < NewCost; 368 } 369 370 /// Create a shuffle that translates (shifts) 1 element from the input vector 371 /// to a new element location. 372 static Value *createShiftShuffle(Value *Vec, unsigned OldIndex, 373 unsigned NewIndex, IRBuilder<> &Builder) { 374 // The shuffle mask is undefined except for 1 lane that is being translated 375 // to the new element index. Example for OldIndex == 2 and NewIndex == 0: 376 // ShufMask = { 2, undef, undef, undef } 377 auto *VecTy = cast<FixedVectorType>(Vec->getType()); 378 SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem); 379 ShufMask[NewIndex] = OldIndex; 380 return Builder.CreateShuffleVector(Vec, ShufMask, "shift"); 381 } 382 383 /// Given an extract element instruction with constant index operand, shuffle 384 /// the source vector (shift the scalar element) to a NewIndex for extraction. 385 /// Return null if the input can be constant folded, so that we are not creating 386 /// unnecessary instructions. 387 static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt, 388 unsigned NewIndex, 389 IRBuilder<> &Builder) { 390 // If the extract can be constant-folded, this code is unsimplified. Defer 391 // to other passes to handle that. 392 Value *X = ExtElt->getVectorOperand(); 393 Value *C = ExtElt->getIndexOperand(); 394 assert(isa<ConstantInt>(C) && "Expected a constant index operand"); 395 if (isa<Constant>(X)) 396 return nullptr; 397 398 Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(), 399 NewIndex, Builder); 400 return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex)); 401 } 402 403 /// Try to reduce extract element costs by converting scalar compares to vector 404 /// compares followed by extract. 405 /// cmp (ext0 V0, C), (ext1 V1, C) 406 void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0, 407 ExtractElementInst *Ext1, Instruction &I) { 408 assert(isa<CmpInst>(&I) && "Expected a compare"); 409 assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 410 cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 411 "Expected matching constant extract indexes"); 412 413 // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C 414 ++NumVecCmp; 415 CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate(); 416 Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 417 Value *VecCmp = Builder.CreateCmp(Pred, V0, V1); 418 Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand()); 419 replaceValue(I, *NewExt); 420 } 421 422 /// Try to reduce extract element costs by converting scalar binops to vector 423 /// binops followed by extract. 424 /// bo (ext0 V0, C), (ext1 V1, C) 425 void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0, 426 ExtractElementInst *Ext1, Instruction &I) { 427 assert(isa<BinaryOperator>(&I) && "Expected a binary operator"); 428 assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 429 cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 430 "Expected matching constant extract indexes"); 431 432 // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C 433 ++NumVecBO; 434 Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 435 Value *VecBO = 436 Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1); 437 438 // All IR flags are safe to back-propagate because any potential poison 439 // created in unused vector elements is discarded by the extract. 440 if (auto *VecBOInst = dyn_cast<Instruction>(VecBO)) 441 VecBOInst->copyIRFlags(&I); 442 443 Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand()); 444 replaceValue(I, *NewExt); 445 } 446 447 /// Match an instruction with extracted vector operands. 448 bool VectorCombine::foldExtractExtract(Instruction &I) { 449 // It is not safe to transform things like div, urem, etc. because we may 450 // create undefined behavior when executing those on unknown vector elements. 451 if (!isSafeToSpeculativelyExecute(&I)) 452 return false; 453 454 Instruction *I0, *I1; 455 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 456 if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) && 457 !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1)))) 458 return false; 459 460 Value *V0, *V1; 461 uint64_t C0, C1; 462 if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) || 463 !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) || 464 V0->getType() != V1->getType()) 465 return false; 466 467 // If the scalar value 'I' is going to be re-inserted into a vector, then try 468 // to create an extract to that same element. The extract/insert can be 469 // reduced to a "select shuffle". 470 // TODO: If we add a larger pattern match that starts from an insert, this 471 // probably becomes unnecessary. 472 auto *Ext0 = cast<ExtractElementInst>(I0); 473 auto *Ext1 = cast<ExtractElementInst>(I1); 474 uint64_t InsertIndex = InvalidIndex; 475 if (I.hasOneUse()) 476 match(I.user_back(), 477 m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex))); 478 479 ExtractElementInst *ExtractToChange; 480 if (isExtractExtractCheap(Ext0, Ext1, I.getOpcode(), ExtractToChange, 481 InsertIndex)) 482 return false; 483 484 if (ExtractToChange) { 485 unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0; 486 ExtractElementInst *NewExtract = 487 translateExtract(ExtractToChange, CheapExtractIdx, Builder); 488 if (!NewExtract) 489 return false; 490 if (ExtractToChange == Ext0) 491 Ext0 = NewExtract; 492 else 493 Ext1 = NewExtract; 494 } 495 496 if (Pred != CmpInst::BAD_ICMP_PREDICATE) 497 foldExtExtCmp(Ext0, Ext1, I); 498 else 499 foldExtExtBinop(Ext0, Ext1, I); 500 501 return true; 502 } 503 504 /// If this is a bitcast of a shuffle, try to bitcast the source vector to the 505 /// destination type followed by shuffle. This can enable further transforms by 506 /// moving bitcasts or shuffles together. 507 bool VectorCombine::foldBitcastShuf(Instruction &I) { 508 Value *V; 509 ArrayRef<int> Mask; 510 if (!match(&I, m_BitCast( 511 m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask)))))) 512 return false; 513 514 // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for 515 // scalable type is unknown; Second, we cannot reason if the narrowed shuffle 516 // mask for scalable type is a splat or not. 517 // 2) Disallow non-vector casts and length-changing shuffles. 518 // TODO: We could allow any shuffle. 519 auto *DestTy = dyn_cast<FixedVectorType>(I.getType()); 520 auto *SrcTy = dyn_cast<FixedVectorType>(V->getType()); 521 if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy) 522 return false; 523 524 unsigned DestNumElts = DestTy->getNumElements(); 525 unsigned SrcNumElts = SrcTy->getNumElements(); 526 SmallVector<int, 16> NewMask; 527 if (SrcNumElts <= DestNumElts) { 528 // The bitcast is from wide to narrow/equal elements. The shuffle mask can 529 // always be expanded to the equivalent form choosing narrower elements. 530 assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask"); 531 unsigned ScaleFactor = DestNumElts / SrcNumElts; 532 narrowShuffleMaskElts(ScaleFactor, Mask, NewMask); 533 } else { 534 // The bitcast is from narrow elements to wide elements. The shuffle mask 535 // must choose consecutive elements to allow casting first. 536 assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask"); 537 unsigned ScaleFactor = SrcNumElts / DestNumElts; 538 if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask)) 539 return false; 540 } 541 542 // The new shuffle must not cost more than the old shuffle. The bitcast is 543 // moved ahead of the shuffle, so assume that it has the same cost as before. 544 InstructionCost DestCost = TTI.getShuffleCost( 545 TargetTransformInfo::SK_PermuteSingleSrc, DestTy, NewMask); 546 InstructionCost SrcCost = 547 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy, Mask); 548 if (DestCost > SrcCost || !DestCost.isValid()) 549 return false; 550 551 // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC' 552 ++NumShufOfBitcast; 553 Value *CastV = Builder.CreateBitCast(V, DestTy); 554 Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask); 555 replaceValue(I, *Shuf); 556 return true; 557 } 558 559 /// Match a vector binop or compare instruction with at least one inserted 560 /// scalar operand and convert to scalar binop/cmp followed by insertelement. 561 bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) { 562 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 563 Value *Ins0, *Ins1; 564 if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) && 565 !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1)))) 566 return false; 567 568 // Do not convert the vector condition of a vector select into a scalar 569 // condition. That may cause problems for codegen because of differences in 570 // boolean formats and register-file transfers. 571 // TODO: Can we account for that in the cost model? 572 bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE; 573 if (IsCmp) 574 for (User *U : I.users()) 575 if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value()))) 576 return false; 577 578 // Match against one or both scalar values being inserted into constant 579 // vectors: 580 // vec_op VecC0, (inselt VecC1, V1, Index) 581 // vec_op (inselt VecC0, V0, Index), VecC1 582 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) 583 // TODO: Deal with mismatched index constants and variable indexes? 584 Constant *VecC0 = nullptr, *VecC1 = nullptr; 585 Value *V0 = nullptr, *V1 = nullptr; 586 uint64_t Index0 = 0, Index1 = 0; 587 if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0), 588 m_ConstantInt(Index0))) && 589 !match(Ins0, m_Constant(VecC0))) 590 return false; 591 if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1), 592 m_ConstantInt(Index1))) && 593 !match(Ins1, m_Constant(VecC1))) 594 return false; 595 596 bool IsConst0 = !V0; 597 bool IsConst1 = !V1; 598 if (IsConst0 && IsConst1) 599 return false; 600 if (!IsConst0 && !IsConst1 && Index0 != Index1) 601 return false; 602 603 // Bail for single insertion if it is a load. 604 // TODO: Handle this once getVectorInstrCost can cost for load/stores. 605 auto *I0 = dyn_cast_or_null<Instruction>(V0); 606 auto *I1 = dyn_cast_or_null<Instruction>(V1); 607 if ((IsConst0 && I1 && I1->mayReadFromMemory()) || 608 (IsConst1 && I0 && I0->mayReadFromMemory())) 609 return false; 610 611 uint64_t Index = IsConst0 ? Index1 : Index0; 612 Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType(); 613 Type *VecTy = I.getType(); 614 assert(VecTy->isVectorTy() && 615 (IsConst0 || IsConst1 || V0->getType() == V1->getType()) && 616 (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() || 617 ScalarTy->isPointerTy()) && 618 "Unexpected types for insert element into binop or cmp"); 619 620 unsigned Opcode = I.getOpcode(); 621 InstructionCost ScalarOpCost, VectorOpCost; 622 if (IsCmp) { 623 ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy); 624 VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy); 625 } else { 626 ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 627 VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 628 } 629 630 // Get cost estimate for the insert element. This cost will factor into 631 // both sequences. 632 InstructionCost InsertCost = 633 TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index); 634 InstructionCost OldCost = 635 (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + VectorOpCost; 636 InstructionCost NewCost = ScalarOpCost + InsertCost + 637 (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) + 638 (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost); 639 640 // We want to scalarize unless the vector variant actually has lower cost. 641 if (OldCost < NewCost || !NewCost.isValid()) 642 return false; 643 644 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) --> 645 // inselt NewVecC, (scalar_op V0, V1), Index 646 if (IsCmp) 647 ++NumScalarCmp; 648 else 649 ++NumScalarBO; 650 651 // For constant cases, extract the scalar element, this should constant fold. 652 if (IsConst0) 653 V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index)); 654 if (IsConst1) 655 V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index)); 656 657 Value *Scalar = 658 IsCmp ? Builder.CreateCmp(Pred, V0, V1) 659 : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1); 660 661 Scalar->setName(I.getName() + ".scalar"); 662 663 // All IR flags are safe to back-propagate. There is no potential for extra 664 // poison to be created by the scalar instruction. 665 if (auto *ScalarInst = dyn_cast<Instruction>(Scalar)) 666 ScalarInst->copyIRFlags(&I); 667 668 // Fold the vector constants in the original vectors into a new base vector. 669 Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1) 670 : ConstantExpr::get(Opcode, VecC0, VecC1); 671 Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index); 672 replaceValue(I, *Insert); 673 return true; 674 } 675 676 /// Try to combine a scalar binop + 2 scalar compares of extracted elements of 677 /// a vector into vector operations followed by extract. Note: The SLP pass 678 /// may miss this pattern because of implementation problems. 679 bool VectorCombine::foldExtractedCmps(Instruction &I) { 680 // We are looking for a scalar binop of booleans. 681 // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1) 682 if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1)) 683 return false; 684 685 // The compare predicates should match, and each compare should have a 686 // constant operand. 687 // TODO: Relax the one-use constraints. 688 Value *B0 = I.getOperand(0), *B1 = I.getOperand(1); 689 Instruction *I0, *I1; 690 Constant *C0, *C1; 691 CmpInst::Predicate P0, P1; 692 if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) || 693 !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) || 694 P0 != P1) 695 return false; 696 697 // The compare operands must be extracts of the same vector with constant 698 // extract indexes. 699 // TODO: Relax the one-use constraints. 700 Value *X; 701 uint64_t Index0, Index1; 702 if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) || 703 !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1))))) 704 return false; 705 706 auto *Ext0 = cast<ExtractElementInst>(I0); 707 auto *Ext1 = cast<ExtractElementInst>(I1); 708 ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1); 709 if (!ConvertToShuf) 710 return false; 711 712 // The original scalar pattern is: 713 // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1) 714 CmpInst::Predicate Pred = P0; 715 unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp 716 : Instruction::ICmp; 717 auto *VecTy = dyn_cast<FixedVectorType>(X->getType()); 718 if (!VecTy) 719 return false; 720 721 InstructionCost OldCost = 722 TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 723 OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 724 OldCost += TTI.getCmpSelInstrCost(CmpOpcode, I0->getType()) * 2; 725 OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType()); 726 727 // The proposed vector pattern is: 728 // vcmp = cmp Pred X, VecC 729 // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0 730 int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0; 731 int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1; 732 auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType())); 733 InstructionCost NewCost = TTI.getCmpSelInstrCost(CmpOpcode, X->getType()); 734 SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem); 735 ShufMask[CheapIndex] = ExpensiveIndex; 736 NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy, 737 ShufMask); 738 NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy); 739 NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex); 740 741 // Aggressively form vector ops if the cost is equal because the transform 742 // may enable further optimization. 743 // Codegen can reverse this transform (scalarize) if it was not profitable. 744 if (OldCost < NewCost || !NewCost.isValid()) 745 return false; 746 747 // Create a vector constant from the 2 scalar constants. 748 SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(), 749 UndefValue::get(VecTy->getElementType())); 750 CmpC[Index0] = C0; 751 CmpC[Index1] = C1; 752 Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC)); 753 754 Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder); 755 Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(), 756 VCmp, Shuf); 757 Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex); 758 replaceValue(I, *NewExt); 759 ++NumVecCmpBO; 760 return true; 761 } 762 763 // Check if memory loc modified between two instrs in the same BB 764 static bool isMemModifiedBetween(BasicBlock::iterator Begin, 765 BasicBlock::iterator End, 766 const MemoryLocation &Loc, AAResults &AA) { 767 unsigned NumScanned = 0; 768 return std::any_of(Begin, End, [&](const Instruction &Instr) { 769 return isModSet(AA.getModRefInfo(&Instr, Loc)) || 770 ++NumScanned > MaxInstrsToScan; 771 }); 772 } 773 774 // Combine patterns like: 775 // %0 = load <4 x i32>, <4 x i32>* %a 776 // %1 = insertelement <4 x i32> %0, i32 %b, i32 1 777 // store <4 x i32> %1, <4 x i32>* %a 778 // to: 779 // %0 = bitcast <4 x i32>* %a to i32* 780 // %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1 781 // store i32 %b, i32* %1 782 bool VectorCombine::foldSingleElementStore(Instruction &I) { 783 StoreInst *SI = dyn_cast<StoreInst>(&I); 784 if (!SI || !SI->isSimple() || 785 !isa<FixedVectorType>(SI->getValueOperand()->getType())) 786 return false; 787 788 // TODO: Combine more complicated patterns (multiple insert) by referencing 789 // TargetTransformInfo. 790 Instruction *Source; 791 Value *NewElement; 792 ConstantInt *Idx; 793 if (!match(SI->getValueOperand(), 794 m_InsertElt(m_Instruction(Source), m_Value(NewElement), 795 m_ConstantInt(Idx)))) 796 return false; 797 798 if (auto *Load = dyn_cast<LoadInst>(Source)) { 799 auto VecTy = cast<FixedVectorType>(SI->getValueOperand()->getType()); 800 const DataLayout &DL = I.getModule()->getDataLayout(); 801 Value *SrcAddr = Load->getPointerOperand()->stripPointerCasts(); 802 // Don't optimize for atomic/volatile load or store. Ensure memory is not 803 // modified between, vector type matches store size, and index is inbounds. 804 if (!Load->isSimple() || Load->getParent() != SI->getParent() || 805 !DL.typeSizeEqualsStoreSize(Load->getType()) || 806 Idx->uge(VecTy->getNumElements()) || 807 SrcAddr != SI->getPointerOperand()->stripPointerCasts() || 808 isMemModifiedBetween(Load->getIterator(), SI->getIterator(), 809 MemoryLocation::get(SI), AA)) 810 return false; 811 812 Value *GEP = GetElementPtrInst::CreateInBounds( 813 SI->getPointerOperand(), {ConstantInt::get(Idx->getType(), 0), Idx}); 814 Builder.Insert(GEP); 815 StoreInst *NSI = Builder.CreateStore(NewElement, GEP); 816 NSI->copyMetadata(*SI); 817 if (SI->getAlign() < NSI->getAlign()) 818 NSI->setAlignment(SI->getAlign()); 819 replaceValue(I, *NSI); 820 // Need erasing the store manually. 821 I.eraseFromParent(); 822 return true; 823 } 824 825 return false; 826 } 827 828 /// This is the entry point for all transforms. Pass manager differences are 829 /// handled in the callers of this function. 830 bool VectorCombine::run() { 831 if (DisableVectorCombine) 832 return false; 833 834 // Don't attempt vectorization if the target does not support vectors. 835 if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true))) 836 return false; 837 838 bool MadeChange = false; 839 for (BasicBlock &BB : F) { 840 // Ignore unreachable basic blocks. 841 if (!DT.isReachableFromEntry(&BB)) 842 continue; 843 // Use early increment range so that we can erase instructions in loop. 844 for (Instruction &I : make_early_inc_range(BB)) { 845 if (isa<DbgInfoIntrinsic>(I)) 846 continue; 847 Builder.SetInsertPoint(&I); 848 MadeChange |= vectorizeLoadInsert(I); 849 MadeChange |= foldExtractExtract(I); 850 MadeChange |= foldBitcastShuf(I); 851 MadeChange |= scalarizeBinopOrCmp(I); 852 MadeChange |= foldExtractedCmps(I); 853 MadeChange |= foldSingleElementStore(I); 854 } 855 } 856 857 // We're done with transforms, so remove dead instructions. 858 if (MadeChange) 859 for (BasicBlock &BB : F) 860 SimplifyInstructionsInBlock(&BB); 861 862 return MadeChange; 863 } 864 865 // Pass manager boilerplate below here. 866 867 namespace { 868 class VectorCombineLegacyPass : public FunctionPass { 869 public: 870 static char ID; 871 VectorCombineLegacyPass() : FunctionPass(ID) { 872 initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry()); 873 } 874 875 void getAnalysisUsage(AnalysisUsage &AU) const override { 876 AU.addRequired<DominatorTreeWrapperPass>(); 877 AU.addRequired<TargetTransformInfoWrapperPass>(); 878 AU.addRequired<AAResultsWrapperPass>(); 879 AU.setPreservesCFG(); 880 AU.addPreserved<DominatorTreeWrapperPass>(); 881 AU.addPreserved<GlobalsAAWrapperPass>(); 882 AU.addPreserved<AAResultsWrapperPass>(); 883 AU.addPreserved<BasicAAWrapperPass>(); 884 FunctionPass::getAnalysisUsage(AU); 885 } 886 887 bool runOnFunction(Function &F) override { 888 if (skipFunction(F)) 889 return false; 890 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 891 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 892 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 893 VectorCombine Combiner(F, TTI, DT, AA); 894 return Combiner.run(); 895 } 896 }; 897 } // namespace 898 899 char VectorCombineLegacyPass::ID = 0; 900 INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine", 901 "Optimize scalar/vector ops", false, 902 false) 903 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 904 INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine", 905 "Optimize scalar/vector ops", false, false) 906 Pass *llvm::createVectorCombinePass() { 907 return new VectorCombineLegacyPass(); 908 } 909 910 PreservedAnalyses VectorCombinePass::run(Function &F, 911 FunctionAnalysisManager &FAM) { 912 TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); 913 DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); 914 AAResults &AA = FAM.getResult<AAManager>(F); 915 VectorCombine Combiner(F, TTI, DT, AA); 916 if (!Combiner.run()) 917 return PreservedAnalyses::all(); 918 PreservedAnalyses PA; 919 PA.preserveSet<CFGAnalyses>(); 920 PA.preserve<GlobalsAA>(); 921 PA.preserve<AAManager>(); 922 PA.preserve<BasicAA>(); 923 return PA; 924 } 925