1a17f03bdSSanjay Patel //===------- VectorCombine.cpp - Optimize partial vector operations -------===// 2a17f03bdSSanjay Patel // 3a17f03bdSSanjay Patel // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4a17f03bdSSanjay Patel // See https://llvm.org/LICENSE.txt for license information. 5a17f03bdSSanjay Patel // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6a17f03bdSSanjay Patel // 7a17f03bdSSanjay Patel //===----------------------------------------------------------------------===// 8a17f03bdSSanjay Patel // 9a17f03bdSSanjay Patel // This pass optimizes scalar/vector interactions using target cost models. The 10a17f03bdSSanjay Patel // transforms implemented here may not fit in traditional loop-based or SLP 11a17f03bdSSanjay Patel // vectorization passes. 12a17f03bdSSanjay Patel // 13a17f03bdSSanjay Patel //===----------------------------------------------------------------------===// 14a17f03bdSSanjay Patel 15a17f03bdSSanjay Patel #include "llvm/Transforms/Vectorize/VectorCombine.h" 16*ded8187eSDavid Green #include "llvm/ADT/SmallBitVector.h" 17a17f03bdSSanjay Patel #include "llvm/ADT/Statistic.h" 18575e2affSFlorian Hahn #include "llvm/Analysis/AssumptionCache.h" 195006e551SSimon Pilgrim #include "llvm/Analysis/BasicAliasAnalysis.h" 20a17f03bdSSanjay Patel #include "llvm/Analysis/GlobalsModRef.h" 2143bdac29SSanjay Patel #include "llvm/Analysis/Loads.h" 22a17f03bdSSanjay Patel #include "llvm/Analysis/TargetTransformInfo.h" 2319b62b79SSanjay Patel #include "llvm/Analysis/ValueTracking.h" 24b6050ca1SSanjay Patel #include "llvm/Analysis/VectorUtils.h" 25a17f03bdSSanjay Patel #include "llvm/IR/Dominators.h" 26a17f03bdSSanjay Patel #include "llvm/IR/Function.h" 27a17f03bdSSanjay Patel #include "llvm/IR/IRBuilder.h" 28a17f03bdSSanjay Patel #include "llvm/IR/PatternMatch.h" 29a17f03bdSSanjay Patel #include "llvm/InitializePasses.h" 30a17f03bdSSanjay Patel #include "llvm/Pass.h" 3125c6544fSSanjay Patel #include "llvm/Support/CommandLine.h" 32a17f03bdSSanjay Patel #include "llvm/Transforms/Utils/Local.h" 335006e551SSimon Pilgrim #include "llvm/Transforms/Vectorize.h" 34a17f03bdSSanjay Patel 35300870a9SFlorian Hahn #define DEBUG_TYPE "vector-combine" 36300870a9SFlorian Hahn #include "llvm/Transforms/Utils/InstructionWorklist.h" 37300870a9SFlorian Hahn 38a17f03bdSSanjay Patel using namespace llvm; 39a17f03bdSSanjay Patel using namespace llvm::PatternMatch; 40a17f03bdSSanjay Patel 4143bdac29SSanjay Patel STATISTIC(NumVecLoad, "Number of vector loads formed"); 42a17f03bdSSanjay Patel STATISTIC(NumVecCmp, "Number of vector compares formed"); 4319b62b79SSanjay Patel STATISTIC(NumVecBO, "Number of vector binops formed"); 44b6315aeeSSanjay Patel STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed"); 457aeb41b3SRoman Lebedev STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast"); 460d2a0b44SSanjay Patel STATISTIC(NumScalarBO, "Number of scalar binops formed"); 47ed67f5e7SSanjay Patel STATISTIC(NumScalarCmp, "Number of scalar compares formed"); 48a17f03bdSSanjay Patel 4925c6544fSSanjay Patel static cl::opt<bool> DisableVectorCombine( 5025c6544fSSanjay Patel "disable-vector-combine", cl::init(false), cl::Hidden, 5125c6544fSSanjay Patel cl::desc("Disable all vector combine transforms")); 5225c6544fSSanjay Patel 53a69158c1SSanjay Patel static cl::opt<bool> DisableBinopExtractShuffle( 54a69158c1SSanjay Patel "disable-binop-extract-shuffle", cl::init(false), cl::Hidden, 55a69158c1SSanjay Patel cl::desc("Disable binop extract to shuffle transforms")); 56a69158c1SSanjay Patel 572db4979cSQiu Chaofan static cl::opt<unsigned> MaxInstrsToScan( 582db4979cSQiu Chaofan "vector-combine-max-scan-instrs", cl::init(30), cl::Hidden, 592db4979cSQiu Chaofan cl::desc("Max number of instructions to scan for vector combining.")); 602db4979cSQiu Chaofan 61a0f96741SSanjay Patel static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max(); 62a0f96741SSanjay Patel 63b4447054SBenjamin Kramer namespace { 646bdd531aSSanjay Patel class VectorCombine { 656bdd531aSSanjay Patel public: 666bdd531aSSanjay Patel VectorCombine(Function &F, const TargetTransformInfo &TTI, 674a1d63d7SFlorian Hahn const DominatorTree &DT, AAResults &AA, AssumptionCache &AC, 684a1d63d7SFlorian Hahn bool ScalarizationOnly) 694a1d63d7SFlorian Hahn : F(F), Builder(F.getContext()), TTI(TTI), DT(DT), AA(AA), AC(AC), 704a1d63d7SFlorian Hahn ScalarizationOnly(ScalarizationOnly) {} 716bdd531aSSanjay Patel 726bdd531aSSanjay Patel bool run(); 736bdd531aSSanjay Patel 746bdd531aSSanjay Patel private: 756bdd531aSSanjay Patel Function &F; 76de65b356SSanjay Patel IRBuilder<> Builder; 776bdd531aSSanjay Patel const TargetTransformInfo &TTI; 786bdd531aSSanjay Patel const DominatorTree &DT; 792db4979cSQiu Chaofan AAResults &AA; 80575e2affSFlorian Hahn AssumptionCache &AC; 814a1d63d7SFlorian Hahn 824a1d63d7SFlorian Hahn /// If true only perform scalarization combines and do not introduce new 834a1d63d7SFlorian Hahn /// vector operations. 844a1d63d7SFlorian Hahn bool ScalarizationOnly; 854a1d63d7SFlorian Hahn 86300870a9SFlorian Hahn InstructionWorklist Worklist; 876bdd531aSSanjay Patel 8843bdac29SSanjay Patel bool vectorizeLoadInsert(Instruction &I); 893b95d834SSanjay Patel ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0, 903b95d834SSanjay Patel ExtractElementInst *Ext1, 913b95d834SSanjay Patel unsigned PreferredExtractIndex) const; 926bdd531aSSanjay Patel bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 930dcd2b40SSimon Pilgrim const Instruction &I, 946bdd531aSSanjay Patel ExtractElementInst *&ConvertToShuffle, 956bdd531aSSanjay Patel unsigned PreferredExtractIndex); 96de65b356SSanjay Patel void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 97de65b356SSanjay Patel Instruction &I); 98de65b356SSanjay Patel void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 99de65b356SSanjay Patel Instruction &I); 1006bdd531aSSanjay Patel bool foldExtractExtract(Instruction &I); 1016bdd531aSSanjay Patel bool foldBitcastShuf(Instruction &I); 1026bdd531aSSanjay Patel bool scalarizeBinopOrCmp(Instruction &I); 103b6315aeeSSanjay Patel bool foldExtractedCmps(Instruction &I); 1042db4979cSQiu Chaofan bool foldSingleElementStore(Instruction &I); 1054e8c28b6SFlorian Hahn bool scalarizeLoadExtract(Instruction &I); 10666d22b4dSSanjay Patel bool foldShuffleOfBinops(Instruction &I); 107*ded8187eSDavid Green bool foldShuffleFromReductions(Instruction &I); 108a69158c1SSanjay Patel 109300870a9SFlorian Hahn void replaceValue(Value &Old, Value &New) { 11098c2f4eeSSanjay Patel Old.replaceAllUsesWith(&New); 111300870a9SFlorian Hahn if (auto *NewI = dyn_cast<Instruction>(&New)) { 112*ded8187eSDavid Green New.takeName(&Old); 113300870a9SFlorian Hahn Worklist.pushUsersToWorkList(*NewI); 114300870a9SFlorian Hahn Worklist.pushValue(NewI); 11598c2f4eeSSanjay Patel } 116300870a9SFlorian Hahn Worklist.pushValue(&Old); 117300870a9SFlorian Hahn } 118300870a9SFlorian Hahn 119300870a9SFlorian Hahn void eraseInstruction(Instruction &I) { 120300870a9SFlorian Hahn for (Value *Op : I.operands()) 121300870a9SFlorian Hahn Worklist.pushValue(Op); 122300870a9SFlorian Hahn Worklist.remove(&I); 123300870a9SFlorian Hahn I.eraseFromParent(); 124300870a9SFlorian Hahn } 125300870a9SFlorian Hahn }; 126300870a9SFlorian Hahn } // namespace 12798c2f4eeSSanjay Patel 12843bdac29SSanjay Patel bool VectorCombine::vectorizeLoadInsert(Instruction &I) { 129b2ef2640SSanjay Patel // Match insert into fixed vector of scalar value. 13047aaa99cSSanjay Patel // TODO: Handle non-zero insert index. 131ddd9575dSSanjay Patel auto *Ty = dyn_cast<FixedVectorType>(I.getType()); 13243bdac29SSanjay Patel Value *Scalar; 13348a23bccSSanjay Patel if (!Ty || !match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) || 13448a23bccSSanjay Patel !Scalar->hasOneUse()) 13543bdac29SSanjay Patel return false; 136ddd9575dSSanjay Patel 137b2ef2640SSanjay Patel // Optionally match an extract from another vector. 138b2ef2640SSanjay Patel Value *X; 139b2ef2640SSanjay Patel bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt())); 140b2ef2640SSanjay Patel if (!HasExtract) 141b2ef2640SSanjay Patel X = Scalar; 142b2ef2640SSanjay Patel 143b2ef2640SSanjay Patel // Match source value as load of scalar or vector. 1444452cc40SFangrui Song // Do not vectorize scalar load (widening) if atomic/volatile or under 1454452cc40SFangrui Song // asan/hwasan/memtag/tsan. The widened load may load data from dirty regions 1464452cc40SFangrui Song // or create data races non-existent in the source. 147b2ef2640SSanjay Patel auto *Load = dyn_cast<LoadInst>(X); 148b2ef2640SSanjay Patel if (!Load || !Load->isSimple() || !Load->hasOneUse() || 1494452cc40SFangrui Song Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) || 1504452cc40SFangrui Song mustSuppressSpeculation(*Load)) 15143bdac29SSanjay Patel return false; 15243bdac29SSanjay Patel 15312b684aeSSanjay Patel const DataLayout &DL = I.getModule()->getDataLayout(); 15412b684aeSSanjay Patel Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts(); 15512b684aeSSanjay Patel assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type"); 156c36c0fabSArtem Belevich 15712b684aeSSanjay Patel unsigned AS = Load->getPointerAddressSpace(); 15843bdac29SSanjay Patel 15947aaa99cSSanjay Patel // We are potentially transforming byte-sized (8-bit) memory accesses, so make 16047aaa99cSSanjay Patel // sure we have all of our type-based constraints in place for this target. 161ddd9575dSSanjay Patel Type *ScalarTy = Scalar->getType(); 16243bdac29SSanjay Patel uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits(); 163ddd9575dSSanjay Patel unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth(); 16447aaa99cSSanjay Patel if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 || 16547aaa99cSSanjay Patel ScalarSize % 8 != 0) 16643bdac29SSanjay Patel return false; 16743bdac29SSanjay Patel 16843bdac29SSanjay Patel // Check safety of replacing the scalar load with a larger vector load. 169aaaf0ec7SSanjay Patel // We use minimal alignment (maximum flexibility) because we only care about 170aaaf0ec7SSanjay Patel // the dereferenceable region. When calculating cost and creating a new op, 171aaaf0ec7SSanjay Patel // we may use a larger value based on alignment attributes. 1728fb05593SSanjay Patel unsigned MinVecNumElts = MinVectorSize / ScalarSize; 1738fb05593SSanjay Patel auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false); 17447aaa99cSSanjay Patel unsigned OffsetEltIndex = 0; 17547aaa99cSSanjay Patel Align Alignment = Load->getAlign(); 17647aaa99cSSanjay Patel if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) { 17747aaa99cSSanjay Patel // It is not safe to load directly from the pointer, but we can still peek 17847aaa99cSSanjay Patel // through gep offsets and check if it safe to load from a base address with 17947aaa99cSSanjay Patel // updated alignment. If it is, we can shuffle the element(s) into place 18047aaa99cSSanjay Patel // after loading. 18147aaa99cSSanjay Patel unsigned OffsetBitWidth = DL.getIndexTypeSizeInBits(SrcPtr->getType()); 18247aaa99cSSanjay Patel APInt Offset(OffsetBitWidth, 0); 18347aaa99cSSanjay Patel SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); 18447aaa99cSSanjay Patel 18547aaa99cSSanjay Patel // We want to shuffle the result down from a high element of a vector, so 18647aaa99cSSanjay Patel // the offset must be positive. 18747aaa99cSSanjay Patel if (Offset.isNegative()) 18847aaa99cSSanjay Patel return false; 18947aaa99cSSanjay Patel 19047aaa99cSSanjay Patel // The offset must be a multiple of the scalar element to shuffle cleanly 19147aaa99cSSanjay Patel // in the element's size. 19247aaa99cSSanjay Patel uint64_t ScalarSizeInBytes = ScalarSize / 8; 19347aaa99cSSanjay Patel if (Offset.urem(ScalarSizeInBytes) != 0) 19447aaa99cSSanjay Patel return false; 19547aaa99cSSanjay Patel 19647aaa99cSSanjay Patel // If we load MinVecNumElts, will our target element still be loaded? 19747aaa99cSSanjay Patel OffsetEltIndex = Offset.udiv(ScalarSizeInBytes).getZExtValue(); 19847aaa99cSSanjay Patel if (OffsetEltIndex >= MinVecNumElts) 19947aaa99cSSanjay Patel return false; 20047aaa99cSSanjay Patel 201aaaf0ec7SSanjay Patel if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) 20243bdac29SSanjay Patel return false; 20343bdac29SSanjay Patel 20447aaa99cSSanjay Patel // Update alignment with offset value. Note that the offset could be negated 20547aaa99cSSanjay Patel // to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but 20647aaa99cSSanjay Patel // negation does not change the result of the alignment calculation. 20747aaa99cSSanjay Patel Alignment = commonAlignment(Alignment, Offset.getZExtValue()); 20847aaa99cSSanjay Patel } 20947aaa99cSSanjay Patel 210b2ef2640SSanjay Patel // Original pattern: insertelt undef, load [free casts of] PtrOp, 0 21138ebc1a1SSanjay Patel // Use the greater of the alignment on the load or its source pointer. 21247aaa99cSSanjay Patel Alignment = std::max(SrcPtr->getPointerAlignment(DL), Alignment); 213b2ef2640SSanjay Patel Type *LoadTy = Load->getType(); 21436710c38SCaroline Concatto InstructionCost OldCost = 21536710c38SCaroline Concatto TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS); 2168fb05593SSanjay Patel APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0); 217b2ef2640SSanjay Patel OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts, 218b2ef2640SSanjay Patel /* Insert */ true, HasExtract); 21943bdac29SSanjay Patel 22043bdac29SSanjay Patel // New pattern: load VecPtr 22136710c38SCaroline Concatto InstructionCost NewCost = 22236710c38SCaroline Concatto TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS); 22347aaa99cSSanjay Patel // Optionally, we are shuffling the loaded vector element(s) into place. 224e2935dcfSDavid Green // For the mask set everything but element 0 to undef to prevent poison from 225e2935dcfSDavid Green // propagating from the extra loaded memory. This will also optionally 226e2935dcfSDavid Green // shrink/grow the vector from the loaded size to the output size. 227e2935dcfSDavid Green // We assume this operation has no cost in codegen if there was no offset. 228e2935dcfSDavid Green // Note that we could use freeze to avoid poison problems, but then we might 229e2935dcfSDavid Green // still need a shuffle to change the vector size. 230e2935dcfSDavid Green unsigned OutputNumElts = Ty->getNumElements(); 231e2935dcfSDavid Green SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem); 232e2935dcfSDavid Green assert(OffsetEltIndex < MinVecNumElts && "Address offset too big"); 233e2935dcfSDavid Green Mask[0] = OffsetEltIndex; 23447aaa99cSSanjay Patel if (OffsetEltIndex) 235e2935dcfSDavid Green NewCost += TTI.getShuffleCost(TTI::SK_PermuteSingleSrc, MinVecTy, Mask); 23643bdac29SSanjay Patel 23743bdac29SSanjay Patel // We can aggressively convert to the vector form because the backend can 23843bdac29SSanjay Patel // invert this transform if it does not result in a performance win. 23936710c38SCaroline Concatto if (OldCost < NewCost || !NewCost.isValid()) 24043bdac29SSanjay Patel return false; 24143bdac29SSanjay Patel 24243bdac29SSanjay Patel // It is safe and potentially profitable to load a vector directly: 24343bdac29SSanjay Patel // inselt undef, load Scalar, 0 --> load VecPtr 24443bdac29SSanjay Patel IRBuilder<> Builder(Load); 2452e44b787SFraser Cormack Value *CastedPtr = Builder.CreatePointerBitCastOrAddrSpaceCast( 2462e44b787SFraser Cormack SrcPtr, MinVecTy->getPointerTo(AS)); 2478fb05593SSanjay Patel Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment); 2481e6b240dSSanjay Patel VecLd = Builder.CreateShuffleVector(VecLd, Mask); 249d399f870SSanjay Patel 25043bdac29SSanjay Patel replaceValue(I, *VecLd); 25143bdac29SSanjay Patel ++NumVecLoad; 25243bdac29SSanjay Patel return true; 25343bdac29SSanjay Patel } 25443bdac29SSanjay Patel 2553b95d834SSanjay Patel /// Determine which, if any, of the inputs should be replaced by a shuffle 2563b95d834SSanjay Patel /// followed by extract from a different index. 2573b95d834SSanjay Patel ExtractElementInst *VectorCombine::getShuffleExtract( 2583b95d834SSanjay Patel ExtractElementInst *Ext0, ExtractElementInst *Ext1, 2593b95d834SSanjay Patel unsigned PreferredExtractIndex = InvalidIndex) const { 2603b95d834SSanjay Patel assert(isa<ConstantInt>(Ext0->getIndexOperand()) && 2613b95d834SSanjay Patel isa<ConstantInt>(Ext1->getIndexOperand()) && 2623b95d834SSanjay Patel "Expected constant extract indexes"); 2633b95d834SSanjay Patel 2643b95d834SSanjay Patel unsigned Index0 = cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue(); 2653b95d834SSanjay Patel unsigned Index1 = cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue(); 2663b95d834SSanjay Patel 2673b95d834SSanjay Patel // If the extract indexes are identical, no shuffle is needed. 2683b95d834SSanjay Patel if (Index0 == Index1) 2693b95d834SSanjay Patel return nullptr; 2703b95d834SSanjay Patel 2713b95d834SSanjay Patel Type *VecTy = Ext0->getVectorOperand()->getType(); 2723b95d834SSanjay Patel assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types"); 27336710c38SCaroline Concatto InstructionCost Cost0 = 27436710c38SCaroline Concatto TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 27536710c38SCaroline Concatto InstructionCost Cost1 = 27636710c38SCaroline Concatto TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 27736710c38SCaroline Concatto 27836710c38SCaroline Concatto // If both costs are invalid no shuffle is needed 27936710c38SCaroline Concatto if (!Cost0.isValid() && !Cost1.isValid()) 28036710c38SCaroline Concatto return nullptr; 2813b95d834SSanjay Patel 2823b95d834SSanjay Patel // We are extracting from 2 different indexes, so one operand must be shuffled 2833b95d834SSanjay Patel // before performing a vector operation and/or extract. The more expensive 2843b95d834SSanjay Patel // extract will be replaced by a shuffle. 2853b95d834SSanjay Patel if (Cost0 > Cost1) 2863b95d834SSanjay Patel return Ext0; 2873b95d834SSanjay Patel if (Cost1 > Cost0) 2883b95d834SSanjay Patel return Ext1; 2893b95d834SSanjay Patel 2903b95d834SSanjay Patel // If the costs are equal and there is a preferred extract index, shuffle the 2913b95d834SSanjay Patel // opposite operand. 2923b95d834SSanjay Patel if (PreferredExtractIndex == Index0) 2933b95d834SSanjay Patel return Ext1; 2943b95d834SSanjay Patel if (PreferredExtractIndex == Index1) 2953b95d834SSanjay Patel return Ext0; 2963b95d834SSanjay Patel 2973b95d834SSanjay Patel // Otherwise, replace the extract with the higher index. 2983b95d834SSanjay Patel return Index0 > Index1 ? Ext0 : Ext1; 2993b95d834SSanjay Patel } 3003b95d834SSanjay Patel 301a69158c1SSanjay Patel /// Compare the relative costs of 2 extracts followed by scalar operation vs. 302a69158c1SSanjay Patel /// vector operation(s) followed by extract. Return true if the existing 303a69158c1SSanjay Patel /// instructions are cheaper than a vector alternative. Otherwise, return false 304a69158c1SSanjay Patel /// and if one of the extracts should be transformed to a shufflevector, set 305a69158c1SSanjay Patel /// \p ConvertToShuffle to that extract instruction. 3066bdd531aSSanjay Patel bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0, 3076bdd531aSSanjay Patel ExtractElementInst *Ext1, 3080dcd2b40SSimon Pilgrim const Instruction &I, 309216a37bbSSanjay Patel ExtractElementInst *&ConvertToShuffle, 310ce97ce3aSSanjay Patel unsigned PreferredExtractIndex) { 3114fa63fd4SAustin Kerbow assert(isa<ConstantInt>(Ext0->getOperand(1)) && 312a69158c1SSanjay Patel isa<ConstantInt>(Ext1->getOperand(1)) && 313a69158c1SSanjay Patel "Expected constant extract indexes"); 3140dcd2b40SSimon Pilgrim unsigned Opcode = I.getOpcode(); 31534e34855SSanjay Patel Type *ScalarTy = Ext0->getType(); 316e3056ae9SSam Parker auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType()); 31736710c38SCaroline Concatto InstructionCost ScalarOpCost, VectorOpCost; 31834e34855SSanjay Patel 31934e34855SSanjay Patel // Get cost estimates for scalar and vector versions of the operation. 32034e34855SSanjay Patel bool IsBinOp = Instruction::isBinaryOp(Opcode); 32134e34855SSanjay Patel if (IsBinOp) { 32234e34855SSanjay Patel ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 32334e34855SSanjay Patel VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 32434e34855SSanjay Patel } else { 32534e34855SSanjay Patel assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 32634e34855SSanjay Patel "Expected a compare"); 3270dcd2b40SSimon Pilgrim CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate(); 3280dcd2b40SSimon Pilgrim ScalarOpCost = TTI.getCmpSelInstrCost( 3290dcd2b40SSimon Pilgrim Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred); 3300dcd2b40SSimon Pilgrim VectorOpCost = TTI.getCmpSelInstrCost( 3310dcd2b40SSimon Pilgrim Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred); 33234e34855SSanjay Patel } 33334e34855SSanjay Patel 334a69158c1SSanjay Patel // Get cost estimates for the extract elements. These costs will factor into 33534e34855SSanjay Patel // both sequences. 336a69158c1SSanjay Patel unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue(); 337a69158c1SSanjay Patel unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue(); 338a69158c1SSanjay Patel 33936710c38SCaroline Concatto InstructionCost Extract0Cost = 3406bdd531aSSanjay Patel TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index); 34136710c38SCaroline Concatto InstructionCost Extract1Cost = 3426bdd531aSSanjay Patel TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index); 343a69158c1SSanjay Patel 344a69158c1SSanjay Patel // A more expensive extract will always be replaced by a splat shuffle. 345a69158c1SSanjay Patel // For example, if Ext0 is more expensive: 346a69158c1SSanjay Patel // opcode (extelt V0, Ext0), (ext V1, Ext1) --> 347a69158c1SSanjay Patel // extelt (opcode (splat V0, Ext0), V1), Ext1 348a69158c1SSanjay Patel // TODO: Evaluate whether that always results in lowest cost. Alternatively, 349a69158c1SSanjay Patel // check the cost of creating a broadcast shuffle and shuffling both 350a69158c1SSanjay Patel // operands to element 0. 35136710c38SCaroline Concatto InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost); 35234e34855SSanjay Patel 35334e34855SSanjay Patel // Extra uses of the extracts mean that we include those costs in the 35434e34855SSanjay Patel // vector total because those instructions will not be eliminated. 35536710c38SCaroline Concatto InstructionCost OldCost, NewCost; 356a69158c1SSanjay Patel if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) { 357a69158c1SSanjay Patel // Handle a special case. If the 2 extracts are identical, adjust the 35834e34855SSanjay Patel // formulas to account for that. The extra use charge allows for either the 35934e34855SSanjay Patel // CSE'd pattern or an unoptimized form with identical values: 36034e34855SSanjay Patel // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C 36134e34855SSanjay Patel bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2) 36234e34855SSanjay Patel : !Ext0->hasOneUse() || !Ext1->hasOneUse(); 363a69158c1SSanjay Patel OldCost = CheapExtractCost + ScalarOpCost; 364a69158c1SSanjay Patel NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost; 36534e34855SSanjay Patel } else { 36634e34855SSanjay Patel // Handle the general case. Each extract is actually a different value: 367a69158c1SSanjay Patel // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C 368a69158c1SSanjay Patel OldCost = Extract0Cost + Extract1Cost + ScalarOpCost; 369a69158c1SSanjay Patel NewCost = VectorOpCost + CheapExtractCost + 370a69158c1SSanjay Patel !Ext0->hasOneUse() * Extract0Cost + 371a69158c1SSanjay Patel !Ext1->hasOneUse() * Extract1Cost; 37234e34855SSanjay Patel } 373a69158c1SSanjay Patel 3743b95d834SSanjay Patel ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex); 3753b95d834SSanjay Patel if (ConvertToShuffle) { 376a69158c1SSanjay Patel if (IsBinOp && DisableBinopExtractShuffle) 377a69158c1SSanjay Patel return true; 378a69158c1SSanjay Patel 379a69158c1SSanjay Patel // If we are extracting from 2 different indexes, then one operand must be 380a69158c1SSanjay Patel // shuffled before performing the vector operation. The shuffle mask is 381a69158c1SSanjay Patel // undefined except for 1 lane that is being translated to the remaining 382a69158c1SSanjay Patel // extraction lane. Therefore, it is a splat shuffle. Ex: 383a69158c1SSanjay Patel // ShufMask = { undef, undef, 0, undef } 384a69158c1SSanjay Patel // TODO: The cost model has an option for a "broadcast" shuffle 385a69158c1SSanjay Patel // (splat-from-element-0), but no option for a more general splat. 386a69158c1SSanjay Patel NewCost += 387a69158c1SSanjay Patel TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 388a69158c1SSanjay Patel } 389a69158c1SSanjay Patel 39010ea01d8SSanjay Patel // Aggressively form a vector op if the cost is equal because the transform 39110ea01d8SSanjay Patel // may enable further optimization. 39210ea01d8SSanjay Patel // Codegen can reverse this transform (scalarize) if it was not profitable. 39310ea01d8SSanjay Patel return OldCost < NewCost; 39434e34855SSanjay Patel } 39534e34855SSanjay Patel 3969934cc54SSanjay Patel /// Create a shuffle that translates (shifts) 1 element from the input vector 3979934cc54SSanjay Patel /// to a new element location. 3989934cc54SSanjay Patel static Value *createShiftShuffle(Value *Vec, unsigned OldIndex, 3999934cc54SSanjay Patel unsigned NewIndex, IRBuilder<> &Builder) { 4009934cc54SSanjay Patel // The shuffle mask is undefined except for 1 lane that is being translated 4019934cc54SSanjay Patel // to the new element index. Example for OldIndex == 2 and NewIndex == 0: 4029934cc54SSanjay Patel // ShufMask = { 2, undef, undef, undef } 4039934cc54SSanjay Patel auto *VecTy = cast<FixedVectorType>(Vec->getType()); 40454143e2bSSanjay Patel SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem); 4059934cc54SSanjay Patel ShufMask[NewIndex] = OldIndex; 4061e6b240dSSanjay Patel return Builder.CreateShuffleVector(Vec, ShufMask, "shift"); 4079934cc54SSanjay Patel } 4089934cc54SSanjay Patel 409216a37bbSSanjay Patel /// Given an extract element instruction with constant index operand, shuffle 410216a37bbSSanjay Patel /// the source vector (shift the scalar element) to a NewIndex for extraction. 411216a37bbSSanjay Patel /// Return null if the input can be constant folded, so that we are not creating 412216a37bbSSanjay Patel /// unnecessary instructions. 4139934cc54SSanjay Patel static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt, 4149934cc54SSanjay Patel unsigned NewIndex, 4159934cc54SSanjay Patel IRBuilder<> &Builder) { 416216a37bbSSanjay Patel // If the extract can be constant-folded, this code is unsimplified. Defer 417216a37bbSSanjay Patel // to other passes to handle that. 418216a37bbSSanjay Patel Value *X = ExtElt->getVectorOperand(); 419216a37bbSSanjay Patel Value *C = ExtElt->getIndexOperand(); 420de65b356SSanjay Patel assert(isa<ConstantInt>(C) && "Expected a constant index operand"); 421216a37bbSSanjay Patel if (isa<Constant>(X)) 422216a37bbSSanjay Patel return nullptr; 423216a37bbSSanjay Patel 4249934cc54SSanjay Patel Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(), 4259934cc54SSanjay Patel NewIndex, Builder); 426216a37bbSSanjay Patel return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex)); 427216a37bbSSanjay Patel } 428216a37bbSSanjay Patel 429fc445589SSanjay Patel /// Try to reduce extract element costs by converting scalar compares to vector 430fc445589SSanjay Patel /// compares followed by extract. 431e9c79a7aSSanjay Patel /// cmp (ext0 V0, C), (ext1 V1, C) 432de65b356SSanjay Patel void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0, 433de65b356SSanjay Patel ExtractElementInst *Ext1, Instruction &I) { 434fc445589SSanjay Patel assert(isa<CmpInst>(&I) && "Expected a compare"); 435216a37bbSSanjay Patel assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 436216a37bbSSanjay Patel cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 437216a37bbSSanjay Patel "Expected matching constant extract indexes"); 438a17f03bdSSanjay Patel 439a17f03bdSSanjay Patel // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C 440a17f03bdSSanjay Patel ++NumVecCmp; 441fc445589SSanjay Patel CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate(); 442216a37bbSSanjay Patel Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 44346a285adSSanjay Patel Value *VecCmp = Builder.CreateCmp(Pred, V0, V1); 444216a37bbSSanjay Patel Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand()); 44598c2f4eeSSanjay Patel replaceValue(I, *NewExt); 446a17f03bdSSanjay Patel } 447a17f03bdSSanjay Patel 44819b62b79SSanjay Patel /// Try to reduce extract element costs by converting scalar binops to vector 44919b62b79SSanjay Patel /// binops followed by extract. 450e9c79a7aSSanjay Patel /// bo (ext0 V0, C), (ext1 V1, C) 451de65b356SSanjay Patel void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0, 452de65b356SSanjay Patel ExtractElementInst *Ext1, Instruction &I) { 453fc445589SSanjay Patel assert(isa<BinaryOperator>(&I) && "Expected a binary operator"); 454216a37bbSSanjay Patel assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 455216a37bbSSanjay Patel cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 456216a37bbSSanjay Patel "Expected matching constant extract indexes"); 45719b62b79SSanjay Patel 45834e34855SSanjay Patel // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C 45919b62b79SSanjay Patel ++NumVecBO; 460216a37bbSSanjay Patel Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 461e9c79a7aSSanjay Patel Value *VecBO = 46234e34855SSanjay Patel Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1); 463e9c79a7aSSanjay Patel 46419b62b79SSanjay Patel // All IR flags are safe to back-propagate because any potential poison 46519b62b79SSanjay Patel // created in unused vector elements is discarded by the extract. 466e9c79a7aSSanjay Patel if (auto *VecBOInst = dyn_cast<Instruction>(VecBO)) 46719b62b79SSanjay Patel VecBOInst->copyIRFlags(&I); 468e9c79a7aSSanjay Patel 469216a37bbSSanjay Patel Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand()); 47098c2f4eeSSanjay Patel replaceValue(I, *NewExt); 47119b62b79SSanjay Patel } 47219b62b79SSanjay Patel 473fc445589SSanjay Patel /// Match an instruction with extracted vector operands. 4746bdd531aSSanjay Patel bool VectorCombine::foldExtractExtract(Instruction &I) { 475e9c79a7aSSanjay Patel // It is not safe to transform things like div, urem, etc. because we may 476e9c79a7aSSanjay Patel // create undefined behavior when executing those on unknown vector elements. 477e9c79a7aSSanjay Patel if (!isSafeToSpeculativelyExecute(&I)) 478e9c79a7aSSanjay Patel return false; 479e9c79a7aSSanjay Patel 480216a37bbSSanjay Patel Instruction *I0, *I1; 481fc445589SSanjay Patel CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 482216a37bbSSanjay Patel if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) && 483216a37bbSSanjay Patel !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1)))) 484fc445589SSanjay Patel return false; 485fc445589SSanjay Patel 486fc445589SSanjay Patel Value *V0, *V1; 487fc445589SSanjay Patel uint64_t C0, C1; 488216a37bbSSanjay Patel if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) || 489216a37bbSSanjay Patel !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) || 490fc445589SSanjay Patel V0->getType() != V1->getType()) 491fc445589SSanjay Patel return false; 492fc445589SSanjay Patel 493ce97ce3aSSanjay Patel // If the scalar value 'I' is going to be re-inserted into a vector, then try 494ce97ce3aSSanjay Patel // to create an extract to that same element. The extract/insert can be 495ce97ce3aSSanjay Patel // reduced to a "select shuffle". 496ce97ce3aSSanjay Patel // TODO: If we add a larger pattern match that starts from an insert, this 497ce97ce3aSSanjay Patel // probably becomes unnecessary. 498216a37bbSSanjay Patel auto *Ext0 = cast<ExtractElementInst>(I0); 499216a37bbSSanjay Patel auto *Ext1 = cast<ExtractElementInst>(I1); 500a0f96741SSanjay Patel uint64_t InsertIndex = InvalidIndex; 501ce97ce3aSSanjay Patel if (I.hasOneUse()) 5027eed772aSSanjay Patel match(I.user_back(), 5037eed772aSSanjay Patel m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex))); 504ce97ce3aSSanjay Patel 505216a37bbSSanjay Patel ExtractElementInst *ExtractToChange; 5060dcd2b40SSimon Pilgrim if (isExtractExtractCheap(Ext0, Ext1, I, ExtractToChange, InsertIndex)) 507fc445589SSanjay Patel return false; 508e9c79a7aSSanjay Patel 509216a37bbSSanjay Patel if (ExtractToChange) { 510216a37bbSSanjay Patel unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0; 511216a37bbSSanjay Patel ExtractElementInst *NewExtract = 5129934cc54SSanjay Patel translateExtract(ExtractToChange, CheapExtractIdx, Builder); 513216a37bbSSanjay Patel if (!NewExtract) 5146d864097SSanjay Patel return false; 515216a37bbSSanjay Patel if (ExtractToChange == Ext0) 516216a37bbSSanjay Patel Ext0 = NewExtract; 517a69158c1SSanjay Patel else 518216a37bbSSanjay Patel Ext1 = NewExtract; 519a69158c1SSanjay Patel } 520e9c79a7aSSanjay Patel 521e9c79a7aSSanjay Patel if (Pred != CmpInst::BAD_ICMP_PREDICATE) 522039ff29eSSanjay Patel foldExtExtCmp(Ext0, Ext1, I); 523e9c79a7aSSanjay Patel else 524039ff29eSSanjay Patel foldExtExtBinop(Ext0, Ext1, I); 525e9c79a7aSSanjay Patel 526300870a9SFlorian Hahn Worklist.push(Ext0); 527300870a9SFlorian Hahn Worklist.push(Ext1); 528e9c79a7aSSanjay Patel return true; 529fc445589SSanjay Patel } 530fc445589SSanjay Patel 531bef6e67eSSanjay Patel /// If this is a bitcast of a shuffle, try to bitcast the source vector to the 532bef6e67eSSanjay Patel /// destination type followed by shuffle. This can enable further transforms by 533bef6e67eSSanjay Patel /// moving bitcasts or shuffles together. 5346bdd531aSSanjay Patel bool VectorCombine::foldBitcastShuf(Instruction &I) { 535b6050ca1SSanjay Patel Value *V; 536b6050ca1SSanjay Patel ArrayRef<int> Mask; 5377eed772aSSanjay Patel if (!match(&I, m_BitCast( 5387eed772aSSanjay Patel m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask)))))) 539b6050ca1SSanjay Patel return false; 540b6050ca1SSanjay Patel 541b4f04d71SHuihui Zhang // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for 542b4f04d71SHuihui Zhang // scalable type is unknown; Second, we cannot reason if the narrowed shuffle 543b4f04d71SHuihui Zhang // mask for scalable type is a splat or not. 544b4f04d71SHuihui Zhang // 2) Disallow non-vector casts and length-changing shuffles. 545bef6e67eSSanjay Patel // TODO: We could allow any shuffle. 546b4f04d71SHuihui Zhang auto *DestTy = dyn_cast<FixedVectorType>(I.getType()); 547b4f04d71SHuihui Zhang auto *SrcTy = dyn_cast<FixedVectorType>(V->getType()); 548b4f04d71SHuihui Zhang if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy) 549b6050ca1SSanjay Patel return false; 550b6050ca1SSanjay Patel 551b4f04d71SHuihui Zhang unsigned DestNumElts = DestTy->getNumElements(); 552b4f04d71SHuihui Zhang unsigned SrcNumElts = SrcTy->getNumElements(); 553b6050ca1SSanjay Patel SmallVector<int, 16> NewMask; 554bef6e67eSSanjay Patel if (SrcNumElts <= DestNumElts) { 555bef6e67eSSanjay Patel // The bitcast is from wide to narrow/equal elements. The shuffle mask can 556bef6e67eSSanjay Patel // always be expanded to the equivalent form choosing narrower elements. 557b6050ca1SSanjay Patel assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask"); 558b6050ca1SSanjay Patel unsigned ScaleFactor = DestNumElts / SrcNumElts; 5591318ddbcSSanjay Patel narrowShuffleMaskElts(ScaleFactor, Mask, NewMask); 560bef6e67eSSanjay Patel } else { 561bef6e67eSSanjay Patel // The bitcast is from narrow elements to wide elements. The shuffle mask 562bef6e67eSSanjay Patel // must choose consecutive elements to allow casting first. 563bef6e67eSSanjay Patel assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask"); 564bef6e67eSSanjay Patel unsigned ScaleFactor = SrcNumElts / DestNumElts; 565bef6e67eSSanjay Patel if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask)) 566bef6e67eSSanjay Patel return false; 567bef6e67eSSanjay Patel } 568e2935dcfSDavid Green 569e2935dcfSDavid Green // The new shuffle must not cost more than the old shuffle. The bitcast is 570e2935dcfSDavid Green // moved ahead of the shuffle, so assume that it has the same cost as before. 571e2935dcfSDavid Green InstructionCost DestCost = TTI.getShuffleCost( 572e2935dcfSDavid Green TargetTransformInfo::SK_PermuteSingleSrc, DestTy, NewMask); 573e2935dcfSDavid Green InstructionCost SrcCost = 574e2935dcfSDavid Green TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy, Mask); 575e2935dcfSDavid Green if (DestCost > SrcCost || !DestCost.isValid()) 576e2935dcfSDavid Green return false; 577e2935dcfSDavid Green 578bef6e67eSSanjay Patel // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC' 5797aeb41b3SRoman Lebedev ++NumShufOfBitcast; 580bef6e67eSSanjay Patel Value *CastV = Builder.CreateBitCast(V, DestTy); 5811e6b240dSSanjay Patel Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask); 58298c2f4eeSSanjay Patel replaceValue(I, *Shuf); 583b6050ca1SSanjay Patel return true; 584b6050ca1SSanjay Patel } 585b6050ca1SSanjay Patel 586ed67f5e7SSanjay Patel /// Match a vector binop or compare instruction with at least one inserted 587ed67f5e7SSanjay Patel /// scalar operand and convert to scalar binop/cmp followed by insertelement. 5886bdd531aSSanjay Patel bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) { 589ed67f5e7SSanjay Patel CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 5905dc4e7c2SSimon Pilgrim Value *Ins0, *Ins1; 591ed67f5e7SSanjay Patel if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) && 592ed67f5e7SSanjay Patel !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1)))) 593ed67f5e7SSanjay Patel return false; 594ed67f5e7SSanjay Patel 595ed67f5e7SSanjay Patel // Do not convert the vector condition of a vector select into a scalar 596ed67f5e7SSanjay Patel // condition. That may cause problems for codegen because of differences in 597ed67f5e7SSanjay Patel // boolean formats and register-file transfers. 598ed67f5e7SSanjay Patel // TODO: Can we account for that in the cost model? 599ed67f5e7SSanjay Patel bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE; 600ed67f5e7SSanjay Patel if (IsCmp) 601ed67f5e7SSanjay Patel for (User *U : I.users()) 602ed67f5e7SSanjay Patel if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value()))) 6030d2a0b44SSanjay Patel return false; 6040d2a0b44SSanjay Patel 6055dc4e7c2SSimon Pilgrim // Match against one or both scalar values being inserted into constant 6065dc4e7c2SSimon Pilgrim // vectors: 607ed67f5e7SSanjay Patel // vec_op VecC0, (inselt VecC1, V1, Index) 608ed67f5e7SSanjay Patel // vec_op (inselt VecC0, V0, Index), VecC1 609ed67f5e7SSanjay Patel // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) 6100d2a0b44SSanjay Patel // TODO: Deal with mismatched index constants and variable indexes? 6115dc4e7c2SSimon Pilgrim Constant *VecC0 = nullptr, *VecC1 = nullptr; 6125dc4e7c2SSimon Pilgrim Value *V0 = nullptr, *V1 = nullptr; 6135dc4e7c2SSimon Pilgrim uint64_t Index0 = 0, Index1 = 0; 6147eed772aSSanjay Patel if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0), 6155dc4e7c2SSimon Pilgrim m_ConstantInt(Index0))) && 6165dc4e7c2SSimon Pilgrim !match(Ins0, m_Constant(VecC0))) 6175dc4e7c2SSimon Pilgrim return false; 6185dc4e7c2SSimon Pilgrim if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1), 6195dc4e7c2SSimon Pilgrim m_ConstantInt(Index1))) && 6205dc4e7c2SSimon Pilgrim !match(Ins1, m_Constant(VecC1))) 6210d2a0b44SSanjay Patel return false; 6220d2a0b44SSanjay Patel 6235dc4e7c2SSimon Pilgrim bool IsConst0 = !V0; 6245dc4e7c2SSimon Pilgrim bool IsConst1 = !V1; 6255dc4e7c2SSimon Pilgrim if (IsConst0 && IsConst1) 6265dc4e7c2SSimon Pilgrim return false; 6275dc4e7c2SSimon Pilgrim if (!IsConst0 && !IsConst1 && Index0 != Index1) 6285dc4e7c2SSimon Pilgrim return false; 6295dc4e7c2SSimon Pilgrim 6305dc4e7c2SSimon Pilgrim // Bail for single insertion if it is a load. 6315dc4e7c2SSimon Pilgrim // TODO: Handle this once getVectorInstrCost can cost for load/stores. 6325dc4e7c2SSimon Pilgrim auto *I0 = dyn_cast_or_null<Instruction>(V0); 6335dc4e7c2SSimon Pilgrim auto *I1 = dyn_cast_or_null<Instruction>(V1); 6345dc4e7c2SSimon Pilgrim if ((IsConst0 && I1 && I1->mayReadFromMemory()) || 6355dc4e7c2SSimon Pilgrim (IsConst1 && I0 && I0->mayReadFromMemory())) 6365dc4e7c2SSimon Pilgrim return false; 6375dc4e7c2SSimon Pilgrim 6385dc4e7c2SSimon Pilgrim uint64_t Index = IsConst0 ? Index1 : Index0; 6395dc4e7c2SSimon Pilgrim Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType(); 6400d2a0b44SSanjay Patel Type *VecTy = I.getType(); 6415dc4e7c2SSimon Pilgrim assert(VecTy->isVectorTy() && 6425dc4e7c2SSimon Pilgrim (IsConst0 || IsConst1 || V0->getType() == V1->getType()) && 643741e20f3SSanjay Patel (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() || 644741e20f3SSanjay Patel ScalarTy->isPointerTy()) && 645741e20f3SSanjay Patel "Unexpected types for insert element into binop or cmp"); 6460d2a0b44SSanjay Patel 647ed67f5e7SSanjay Patel unsigned Opcode = I.getOpcode(); 64836710c38SCaroline Concatto InstructionCost ScalarOpCost, VectorOpCost; 649ed67f5e7SSanjay Patel if (IsCmp) { 6500dcd2b40SSimon Pilgrim CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate(); 6510dcd2b40SSimon Pilgrim ScalarOpCost = TTI.getCmpSelInstrCost( 6520dcd2b40SSimon Pilgrim Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred); 6530dcd2b40SSimon Pilgrim VectorOpCost = TTI.getCmpSelInstrCost( 6540dcd2b40SSimon Pilgrim Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred); 655ed67f5e7SSanjay Patel } else { 656ed67f5e7SSanjay Patel ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 657ed67f5e7SSanjay Patel VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 658ed67f5e7SSanjay Patel } 6590d2a0b44SSanjay Patel 6600d2a0b44SSanjay Patel // Get cost estimate for the insert element. This cost will factor into 6610d2a0b44SSanjay Patel // both sequences. 66236710c38SCaroline Concatto InstructionCost InsertCost = 6630d2a0b44SSanjay Patel TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index); 66436710c38SCaroline Concatto InstructionCost OldCost = 66536710c38SCaroline Concatto (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + VectorOpCost; 66636710c38SCaroline Concatto InstructionCost NewCost = ScalarOpCost + InsertCost + 6675dc4e7c2SSimon Pilgrim (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) + 6685dc4e7c2SSimon Pilgrim (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost); 6690d2a0b44SSanjay Patel 6700d2a0b44SSanjay Patel // We want to scalarize unless the vector variant actually has lower cost. 67136710c38SCaroline Concatto if (OldCost < NewCost || !NewCost.isValid()) 6720d2a0b44SSanjay Patel return false; 6730d2a0b44SSanjay Patel 674ed67f5e7SSanjay Patel // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) --> 675ed67f5e7SSanjay Patel // inselt NewVecC, (scalar_op V0, V1), Index 676ed67f5e7SSanjay Patel if (IsCmp) 677ed67f5e7SSanjay Patel ++NumScalarCmp; 678ed67f5e7SSanjay Patel else 6790d2a0b44SSanjay Patel ++NumScalarBO; 6805dc4e7c2SSimon Pilgrim 6815dc4e7c2SSimon Pilgrim // For constant cases, extract the scalar element, this should constant fold. 6825dc4e7c2SSimon Pilgrim if (IsConst0) 6835dc4e7c2SSimon Pilgrim V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index)); 6845dc4e7c2SSimon Pilgrim if (IsConst1) 6855dc4e7c2SSimon Pilgrim V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index)); 6865dc4e7c2SSimon Pilgrim 687ed67f5e7SSanjay Patel Value *Scalar = 68846a285adSSanjay Patel IsCmp ? Builder.CreateCmp(Pred, V0, V1) 689ed67f5e7SSanjay Patel : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1); 690ed67f5e7SSanjay Patel 691ed67f5e7SSanjay Patel Scalar->setName(I.getName() + ".scalar"); 6920d2a0b44SSanjay Patel 6930d2a0b44SSanjay Patel // All IR flags are safe to back-propagate. There is no potential for extra 6940d2a0b44SSanjay Patel // poison to be created by the scalar instruction. 6950d2a0b44SSanjay Patel if (auto *ScalarInst = dyn_cast<Instruction>(Scalar)) 6960d2a0b44SSanjay Patel ScalarInst->copyIRFlags(&I); 6970d2a0b44SSanjay Patel 6980d2a0b44SSanjay Patel // Fold the vector constants in the original vectors into a new base vector. 699ed67f5e7SSanjay Patel Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1) 700ed67f5e7SSanjay Patel : ConstantExpr::get(Opcode, VecC0, VecC1); 7010d2a0b44SSanjay Patel Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index); 70298c2f4eeSSanjay Patel replaceValue(I, *Insert); 7030d2a0b44SSanjay Patel return true; 7040d2a0b44SSanjay Patel } 7050d2a0b44SSanjay Patel 706b6315aeeSSanjay Patel /// Try to combine a scalar binop + 2 scalar compares of extracted elements of 707b6315aeeSSanjay Patel /// a vector into vector operations followed by extract. Note: The SLP pass 708b6315aeeSSanjay Patel /// may miss this pattern because of implementation problems. 709b6315aeeSSanjay Patel bool VectorCombine::foldExtractedCmps(Instruction &I) { 710b6315aeeSSanjay Patel // We are looking for a scalar binop of booleans. 711b6315aeeSSanjay Patel // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1) 712b6315aeeSSanjay Patel if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1)) 713b6315aeeSSanjay Patel return false; 714b6315aeeSSanjay Patel 715b6315aeeSSanjay Patel // The compare predicates should match, and each compare should have a 716b6315aeeSSanjay Patel // constant operand. 717b6315aeeSSanjay Patel // TODO: Relax the one-use constraints. 718b6315aeeSSanjay Patel Value *B0 = I.getOperand(0), *B1 = I.getOperand(1); 719b6315aeeSSanjay Patel Instruction *I0, *I1; 720b6315aeeSSanjay Patel Constant *C0, *C1; 721b6315aeeSSanjay Patel CmpInst::Predicate P0, P1; 722b6315aeeSSanjay Patel if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) || 723b6315aeeSSanjay Patel !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) || 724b6315aeeSSanjay Patel P0 != P1) 725b6315aeeSSanjay Patel return false; 726b6315aeeSSanjay Patel 727b6315aeeSSanjay Patel // The compare operands must be extracts of the same vector with constant 728b6315aeeSSanjay Patel // extract indexes. 729b6315aeeSSanjay Patel // TODO: Relax the one-use constraints. 730b6315aeeSSanjay Patel Value *X; 731b6315aeeSSanjay Patel uint64_t Index0, Index1; 732b6315aeeSSanjay Patel if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) || 733b6315aeeSSanjay Patel !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1))))) 734b6315aeeSSanjay Patel return false; 735b6315aeeSSanjay Patel 736b6315aeeSSanjay Patel auto *Ext0 = cast<ExtractElementInst>(I0); 737b6315aeeSSanjay Patel auto *Ext1 = cast<ExtractElementInst>(I1); 738b6315aeeSSanjay Patel ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1); 739b6315aeeSSanjay Patel if (!ConvertToShuf) 740b6315aeeSSanjay Patel return false; 741b6315aeeSSanjay Patel 742b6315aeeSSanjay Patel // The original scalar pattern is: 743b6315aeeSSanjay Patel // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1) 744b6315aeeSSanjay Patel CmpInst::Predicate Pred = P0; 745b6315aeeSSanjay Patel unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp 746b6315aeeSSanjay Patel : Instruction::ICmp; 747b6315aeeSSanjay Patel auto *VecTy = dyn_cast<FixedVectorType>(X->getType()); 748b6315aeeSSanjay Patel if (!VecTy) 749b6315aeeSSanjay Patel return false; 750b6315aeeSSanjay Patel 75136710c38SCaroline Concatto InstructionCost OldCost = 75236710c38SCaroline Concatto TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 753b6315aeeSSanjay Patel OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 7540dcd2b40SSimon Pilgrim OldCost += 7550dcd2b40SSimon Pilgrim TTI.getCmpSelInstrCost(CmpOpcode, I0->getType(), 7560dcd2b40SSimon Pilgrim CmpInst::makeCmpResultType(I0->getType()), Pred) * 7570dcd2b40SSimon Pilgrim 2; 758b6315aeeSSanjay Patel OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType()); 759b6315aeeSSanjay Patel 760b6315aeeSSanjay Patel // The proposed vector pattern is: 761b6315aeeSSanjay Patel // vcmp = cmp Pred X, VecC 762b6315aeeSSanjay Patel // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0 763b6315aeeSSanjay Patel int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0; 764b6315aeeSSanjay Patel int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1; 765b6315aeeSSanjay Patel auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType())); 7660dcd2b40SSimon Pilgrim InstructionCost NewCost = TTI.getCmpSelInstrCost( 7670dcd2b40SSimon Pilgrim CmpOpcode, X->getType(), CmpInst::makeCmpResultType(X->getType()), Pred); 768e2935dcfSDavid Green SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem); 769e2935dcfSDavid Green ShufMask[CheapIndex] = ExpensiveIndex; 770e2935dcfSDavid Green NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy, 771e2935dcfSDavid Green ShufMask); 772b6315aeeSSanjay Patel NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy); 773b6315aeeSSanjay Patel NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex); 774b6315aeeSSanjay Patel 775b6315aeeSSanjay Patel // Aggressively form vector ops if the cost is equal because the transform 776b6315aeeSSanjay Patel // may enable further optimization. 777b6315aeeSSanjay Patel // Codegen can reverse this transform (scalarize) if it was not profitable. 77836710c38SCaroline Concatto if (OldCost < NewCost || !NewCost.isValid()) 779b6315aeeSSanjay Patel return false; 780b6315aeeSSanjay Patel 781b6315aeeSSanjay Patel // Create a vector constant from the 2 scalar constants. 782b6315aeeSSanjay Patel SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(), 783b6315aeeSSanjay Patel UndefValue::get(VecTy->getElementType())); 784b6315aeeSSanjay Patel CmpC[Index0] = C0; 785b6315aeeSSanjay Patel CmpC[Index1] = C1; 786b6315aeeSSanjay Patel Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC)); 787b6315aeeSSanjay Patel 788b6315aeeSSanjay Patel Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder); 789b6315aeeSSanjay Patel Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(), 790b6315aeeSSanjay Patel VCmp, Shuf); 791b6315aeeSSanjay Patel Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex); 792b6315aeeSSanjay Patel replaceValue(I, *NewExt); 793b6315aeeSSanjay Patel ++NumVecCmpBO; 794b6315aeeSSanjay Patel return true; 795b6315aeeSSanjay Patel } 796b6315aeeSSanjay Patel 7972db4979cSQiu Chaofan // Check if memory loc modified between two instrs in the same BB 7982db4979cSQiu Chaofan static bool isMemModifiedBetween(BasicBlock::iterator Begin, 7992db4979cSQiu Chaofan BasicBlock::iterator End, 8002db4979cSQiu Chaofan const MemoryLocation &Loc, AAResults &AA) { 8012db4979cSQiu Chaofan unsigned NumScanned = 0; 8022db4979cSQiu Chaofan return std::any_of(Begin, End, [&](const Instruction &Instr) { 8032db4979cSQiu Chaofan return isModSet(AA.getModRefInfo(&Instr, Loc)) || 8042db4979cSQiu Chaofan ++NumScanned > MaxInstrsToScan; 8052db4979cSQiu Chaofan }); 8062db4979cSQiu Chaofan } 8072db4979cSQiu Chaofan 808c24fc37eSFlorian Hahn /// Helper class to indicate whether a vector index can be safely scalarized and 809c24fc37eSFlorian Hahn /// if a freeze needs to be inserted. 810c24fc37eSFlorian Hahn class ScalarizationResult { 811c24fc37eSFlorian Hahn enum class StatusTy { Unsafe, Safe, SafeWithFreeze }; 812c24fc37eSFlorian Hahn 813c24fc37eSFlorian Hahn StatusTy Status; 814c24fc37eSFlorian Hahn Value *ToFreeze; 815c24fc37eSFlorian Hahn 816c24fc37eSFlorian Hahn ScalarizationResult(StatusTy Status, Value *ToFreeze = nullptr) 817c24fc37eSFlorian Hahn : Status(Status), ToFreeze(ToFreeze) {} 818c24fc37eSFlorian Hahn 819c24fc37eSFlorian Hahn public: 820c24fc37eSFlorian Hahn ScalarizationResult(const ScalarizationResult &Other) = default; 821c24fc37eSFlorian Hahn ~ScalarizationResult() { 822c24fc37eSFlorian Hahn assert(!ToFreeze && "freeze() not called with ToFreeze being set"); 823c24fc37eSFlorian Hahn } 824c24fc37eSFlorian Hahn 825c24fc37eSFlorian Hahn static ScalarizationResult unsafe() { return {StatusTy::Unsafe}; } 826c24fc37eSFlorian Hahn static ScalarizationResult safe() { return {StatusTy::Safe}; } 827c24fc37eSFlorian Hahn static ScalarizationResult safeWithFreeze(Value *ToFreeze) { 828c24fc37eSFlorian Hahn return {StatusTy::SafeWithFreeze, ToFreeze}; 829c24fc37eSFlorian Hahn } 830c24fc37eSFlorian Hahn 831c24fc37eSFlorian Hahn /// Returns true if the index can be scalarize without requiring a freeze. 832c24fc37eSFlorian Hahn bool isSafe() const { return Status == StatusTy::Safe; } 833c24fc37eSFlorian Hahn /// Returns true if the index cannot be scalarized. 834c24fc37eSFlorian Hahn bool isUnsafe() const { return Status == StatusTy::Unsafe; } 835c24fc37eSFlorian Hahn /// Returns true if the index can be scalarize, but requires inserting a 836c24fc37eSFlorian Hahn /// freeze. 837c24fc37eSFlorian Hahn bool isSafeWithFreeze() const { return Status == StatusTy::SafeWithFreeze; } 838c24fc37eSFlorian Hahn 839e2f6290eSFlorian Hahn /// Reset the state of Unsafe and clear ToFreze if set. 840e2f6290eSFlorian Hahn void discard() { 841e2f6290eSFlorian Hahn ToFreeze = nullptr; 842e2f6290eSFlorian Hahn Status = StatusTy::Unsafe; 843e2f6290eSFlorian Hahn } 844e2f6290eSFlorian Hahn 845c24fc37eSFlorian Hahn /// Freeze the ToFreeze and update the use in \p User to use it. 846c24fc37eSFlorian Hahn void freeze(IRBuilder<> &Builder, Instruction &UserI) { 847c24fc37eSFlorian Hahn assert(isSafeWithFreeze() && 848c24fc37eSFlorian Hahn "should only be used when freezing is required"); 849c24fc37eSFlorian Hahn assert(is_contained(ToFreeze->users(), &UserI) && 850c24fc37eSFlorian Hahn "UserI must be a user of ToFreeze"); 851c24fc37eSFlorian Hahn IRBuilder<>::InsertPointGuard Guard(Builder); 852c24fc37eSFlorian Hahn Builder.SetInsertPoint(cast<Instruction>(&UserI)); 853c24fc37eSFlorian Hahn Value *Frozen = 854c24fc37eSFlorian Hahn Builder.CreateFreeze(ToFreeze, ToFreeze->getName() + ".frozen"); 855c24fc37eSFlorian Hahn for (Use &U : make_early_inc_range((UserI.operands()))) 856c24fc37eSFlorian Hahn if (U.get() == ToFreeze) 857c24fc37eSFlorian Hahn U.set(Frozen); 858c24fc37eSFlorian Hahn 859c24fc37eSFlorian Hahn ToFreeze = nullptr; 860c24fc37eSFlorian Hahn } 861c24fc37eSFlorian Hahn }; 862c24fc37eSFlorian Hahn 8634e8c28b6SFlorian Hahn /// Check if it is legal to scalarize a memory access to \p VecTy at index \p 8644e8c28b6SFlorian Hahn /// Idx. \p Idx must access a valid vector element. 865c24fc37eSFlorian Hahn static ScalarizationResult canScalarizeAccess(FixedVectorType *VecTy, 866c24fc37eSFlorian Hahn Value *Idx, Instruction *CtxI, 8675131037eSFlorian Hahn AssumptionCache &AC, 8685131037eSFlorian Hahn const DominatorTree &DT) { 869c24fc37eSFlorian Hahn if (auto *C = dyn_cast<ConstantInt>(Idx)) { 870c24fc37eSFlorian Hahn if (C->getValue().ult(VecTy->getNumElements())) 871c24fc37eSFlorian Hahn return ScalarizationResult::safe(); 872c24fc37eSFlorian Hahn return ScalarizationResult::unsafe(); 873c24fc37eSFlorian Hahn } 874575e2affSFlorian Hahn 875c24fc37eSFlorian Hahn unsigned IntWidth = Idx->getType()->getScalarSizeInBits(); 876c24fc37eSFlorian Hahn APInt Zero(IntWidth, 0); 877c24fc37eSFlorian Hahn APInt MaxElts(IntWidth, VecTy->getNumElements()); 878575e2affSFlorian Hahn ConstantRange ValidIndices(Zero, MaxElts); 879c24fc37eSFlorian Hahn ConstantRange IdxRange(IntWidth, true); 880c24fc37eSFlorian Hahn 881c24fc37eSFlorian Hahn if (isGuaranteedNotToBePoison(Idx, &AC)) { 8820edf9995SSanjay Patel if (ValidIndices.contains(computeConstantRange(Idx, /* ForSigned */ false, 8830edf9995SSanjay Patel true, &AC, CtxI, &DT))) 884c24fc37eSFlorian Hahn return ScalarizationResult::safe(); 885c24fc37eSFlorian Hahn return ScalarizationResult::unsafe(); 886c24fc37eSFlorian Hahn } 887c24fc37eSFlorian Hahn 888c24fc37eSFlorian Hahn // If the index may be poison, check if we can insert a freeze before the 889c24fc37eSFlorian Hahn // range of the index is restricted. 890c24fc37eSFlorian Hahn Value *IdxBase; 891c24fc37eSFlorian Hahn ConstantInt *CI; 892c24fc37eSFlorian Hahn if (match(Idx, m_And(m_Value(IdxBase), m_ConstantInt(CI)))) { 893c24fc37eSFlorian Hahn IdxRange = IdxRange.binaryAnd(CI->getValue()); 894c24fc37eSFlorian Hahn } else if (match(Idx, m_URem(m_Value(IdxBase), m_ConstantInt(CI)))) { 895c24fc37eSFlorian Hahn IdxRange = IdxRange.urem(CI->getValue()); 896c24fc37eSFlorian Hahn } 897c24fc37eSFlorian Hahn 898c24fc37eSFlorian Hahn if (ValidIndices.contains(IdxRange)) 899c24fc37eSFlorian Hahn return ScalarizationResult::safeWithFreeze(IdxBase); 900c24fc37eSFlorian Hahn return ScalarizationResult::unsafe(); 9014e8c28b6SFlorian Hahn } 9024e8c28b6SFlorian Hahn 903abc0e012SRoman Lebedev /// The memory operation on a vector of \p ScalarType had alignment of 904abc0e012SRoman Lebedev /// \p VectorAlignment. Compute the maximal, but conservatively correct, 905abc0e012SRoman Lebedev /// alignment that will be valid for the memory operation on a single scalar 906abc0e012SRoman Lebedev /// element of the same type with index \p Idx. 907abc0e012SRoman Lebedev static Align computeAlignmentAfterScalarization(Align VectorAlignment, 908abc0e012SRoman Lebedev Type *ScalarType, Value *Idx, 909abc0e012SRoman Lebedev const DataLayout &DL) { 910abc0e012SRoman Lebedev if (auto *C = dyn_cast<ConstantInt>(Idx)) 911abc0e012SRoman Lebedev return commonAlignment(VectorAlignment, 912abc0e012SRoman Lebedev C->getZExtValue() * DL.getTypeStoreSize(ScalarType)); 913abc0e012SRoman Lebedev return commonAlignment(VectorAlignment, DL.getTypeStoreSize(ScalarType)); 914abc0e012SRoman Lebedev } 915abc0e012SRoman Lebedev 9162db4979cSQiu Chaofan // Combine patterns like: 9172db4979cSQiu Chaofan // %0 = load <4 x i32>, <4 x i32>* %a 9182db4979cSQiu Chaofan // %1 = insertelement <4 x i32> %0, i32 %b, i32 1 9192db4979cSQiu Chaofan // store <4 x i32> %1, <4 x i32>* %a 9202db4979cSQiu Chaofan // to: 9212db4979cSQiu Chaofan // %0 = bitcast <4 x i32>* %a to i32* 9222db4979cSQiu Chaofan // %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1 9232db4979cSQiu Chaofan // store i32 %b, i32* %1 9242db4979cSQiu Chaofan bool VectorCombine::foldSingleElementStore(Instruction &I) { 9252db4979cSQiu Chaofan StoreInst *SI = dyn_cast<StoreInst>(&I); 9266d2df181SQiu Chaofan if (!SI || !SI->isSimple() || 9276d2df181SQiu Chaofan !isa<FixedVectorType>(SI->getValueOperand()->getType())) 9282db4979cSQiu Chaofan return false; 9292db4979cSQiu Chaofan 9302db4979cSQiu Chaofan // TODO: Combine more complicated patterns (multiple insert) by referencing 9312db4979cSQiu Chaofan // TargetTransformInfo. 9322db4979cSQiu Chaofan Instruction *Source; 9336d2df181SQiu Chaofan Value *NewElement; 934575e2affSFlorian Hahn Value *Idx; 9352db4979cSQiu Chaofan if (!match(SI->getValueOperand(), 9362db4979cSQiu Chaofan m_InsertElt(m_Instruction(Source), m_Value(NewElement), 937575e2affSFlorian Hahn m_Value(Idx)))) 9382db4979cSQiu Chaofan return false; 9392db4979cSQiu Chaofan 9402db4979cSQiu Chaofan if (auto *Load = dyn_cast<LoadInst>(Source)) { 9416d2df181SQiu Chaofan auto VecTy = cast<FixedVectorType>(SI->getValueOperand()->getType()); 9422db4979cSQiu Chaofan const DataLayout &DL = I.getModule()->getDataLayout(); 9432db4979cSQiu Chaofan Value *SrcAddr = Load->getPointerOperand()->stripPointerCasts(); 9446d2df181SQiu Chaofan // Don't optimize for atomic/volatile load or store. Ensure memory is not 9456d2df181SQiu Chaofan // modified between, vector type matches store size, and index is inbounds. 9462db4979cSQiu Chaofan if (!Load->isSimple() || Load->getParent() != SI->getParent() || 9472db4979cSQiu Chaofan !DL.typeSizeEqualsStoreSize(Load->getType()) || 948c24fc37eSFlorian Hahn SrcAddr != SI->getPointerOperand()->stripPointerCasts()) 949c24fc37eSFlorian Hahn return false; 950c24fc37eSFlorian Hahn 9515131037eSFlorian Hahn auto ScalarizableIdx = canScalarizeAccess(VecTy, Idx, Load, AC, DT); 952c24fc37eSFlorian Hahn if (ScalarizableIdx.isUnsafe() || 9532db4979cSQiu Chaofan isMemModifiedBetween(Load->getIterator(), SI->getIterator(), 9542db4979cSQiu Chaofan MemoryLocation::get(SI), AA)) 9552db4979cSQiu Chaofan return false; 9562db4979cSQiu Chaofan 957c24fc37eSFlorian Hahn if (ScalarizableIdx.isSafeWithFreeze()) 958c24fc37eSFlorian Hahn ScalarizableIdx.freeze(Builder, *cast<Instruction>(Idx)); 959a213f735SNikita Popov Value *GEP = Builder.CreateInBoundsGEP( 960a213f735SNikita Popov SI->getValueOperand()->getType(), SI->getPointerOperand(), 961a213f735SNikita Popov {ConstantInt::get(Idx->getType(), 0), Idx}); 9622db4979cSQiu Chaofan StoreInst *NSI = Builder.CreateStore(NewElement, GEP); 9632db4979cSQiu Chaofan NSI->copyMetadata(*SI); 964abc0e012SRoman Lebedev Align ScalarOpAlignment = computeAlignmentAfterScalarization( 965abc0e012SRoman Lebedev std::max(SI->getAlign(), Load->getAlign()), NewElement->getType(), Idx, 966abc0e012SRoman Lebedev DL); 967abc0e012SRoman Lebedev NSI->setAlignment(ScalarOpAlignment); 9682db4979cSQiu Chaofan replaceValue(I, *NSI); 969300870a9SFlorian Hahn eraseInstruction(I); 9702db4979cSQiu Chaofan return true; 9712db4979cSQiu Chaofan } 9722db4979cSQiu Chaofan 9732db4979cSQiu Chaofan return false; 9742db4979cSQiu Chaofan } 9752db4979cSQiu Chaofan 9764e8c28b6SFlorian Hahn /// Try to scalarize vector loads feeding extractelement instructions. 9774e8c28b6SFlorian Hahn bool VectorCombine::scalarizeLoadExtract(Instruction &I) { 9784e8c28b6SFlorian Hahn Value *Ptr; 979300870a9SFlorian Hahn if (!match(&I, m_Load(m_Value(Ptr)))) 9804e8c28b6SFlorian Hahn return false; 9814e8c28b6SFlorian Hahn 982300870a9SFlorian Hahn auto *LI = cast<LoadInst>(&I); 9834e8c28b6SFlorian Hahn const DataLayout &DL = I.getModule()->getDataLayout(); 9844e8c28b6SFlorian Hahn if (LI->isVolatile() || !DL.typeSizeEqualsStoreSize(LI->getType())) 9854e8c28b6SFlorian Hahn return false; 9864e8c28b6SFlorian Hahn 9874e8c28b6SFlorian Hahn auto *FixedVT = dyn_cast<FixedVectorType>(LI->getType()); 9884e8c28b6SFlorian Hahn if (!FixedVT) 9894e8c28b6SFlorian Hahn return false; 9904e8c28b6SFlorian Hahn 9915a81a603SArthur Eubanks InstructionCost OriginalCost = 9925a81a603SArthur Eubanks TTI.getMemoryOpCost(Instruction::Load, LI->getType(), LI->getAlign(), 9934e8c28b6SFlorian Hahn LI->getPointerAddressSpace()); 9944e8c28b6SFlorian Hahn InstructionCost ScalarizedCost = 0; 9954e8c28b6SFlorian Hahn 9964e8c28b6SFlorian Hahn Instruction *LastCheckedInst = LI; 9974e8c28b6SFlorian Hahn unsigned NumInstChecked = 0; 9984e8c28b6SFlorian Hahn // Check if all users of the load are extracts with no memory modifications 9994e8c28b6SFlorian Hahn // between the load and the extract. Compute the cost of both the original 10004e8c28b6SFlorian Hahn // code and the scalarized version. 10014e8c28b6SFlorian Hahn for (User *U : LI->users()) { 10024e8c28b6SFlorian Hahn auto *UI = dyn_cast<ExtractElementInst>(U); 10034e8c28b6SFlorian Hahn if (!UI || UI->getParent() != LI->getParent()) 10044e8c28b6SFlorian Hahn return false; 10054e8c28b6SFlorian Hahn 100696ca0349SFlorian Hahn if (!isGuaranteedNotToBePoison(UI->getOperand(1), &AC, LI, &DT)) 100796ca0349SFlorian Hahn return false; 100896ca0349SFlorian Hahn 10094e8c28b6SFlorian Hahn // Check if any instruction between the load and the extract may modify 10104e8c28b6SFlorian Hahn // memory. 10114e8c28b6SFlorian Hahn if (LastCheckedInst->comesBefore(UI)) { 10124e8c28b6SFlorian Hahn for (Instruction &I : 10134e8c28b6SFlorian Hahn make_range(std::next(LI->getIterator()), UI->getIterator())) { 10144e8c28b6SFlorian Hahn // Bail out if we reached the check limit or the instruction may write 10154e8c28b6SFlorian Hahn // to memory. 10164e8c28b6SFlorian Hahn if (NumInstChecked == MaxInstrsToScan || I.mayWriteToMemory()) 10174e8c28b6SFlorian Hahn return false; 10184e8c28b6SFlorian Hahn NumInstChecked++; 10194e8c28b6SFlorian Hahn } 1020c141d158SFlorian Hahn LastCheckedInst = UI; 10214e8c28b6SFlorian Hahn } 10224e8c28b6SFlorian Hahn 10235131037eSFlorian Hahn auto ScalarIdx = canScalarizeAccess(FixedVT, UI->getOperand(1), &I, AC, DT); 1024c24fc37eSFlorian Hahn if (!ScalarIdx.isSafe()) { 1025c24fc37eSFlorian Hahn // TODO: Freeze index if it is safe to do so. 1026e2f6290eSFlorian Hahn ScalarIdx.discard(); 1027007f268cSFlorian Hahn return false; 1028c24fc37eSFlorian Hahn } 1029007f268cSFlorian Hahn 10304e8c28b6SFlorian Hahn auto *Index = dyn_cast<ConstantInt>(UI->getOperand(1)); 10314e8c28b6SFlorian Hahn OriginalCost += 10324e8c28b6SFlorian Hahn TTI.getVectorInstrCost(Instruction::ExtractElement, LI->getType(), 10334e8c28b6SFlorian Hahn Index ? Index->getZExtValue() : -1); 10344e8c28b6SFlorian Hahn ScalarizedCost += 10354e8c28b6SFlorian Hahn TTI.getMemoryOpCost(Instruction::Load, FixedVT->getElementType(), 10364e8c28b6SFlorian Hahn Align(1), LI->getPointerAddressSpace()); 10374e8c28b6SFlorian Hahn ScalarizedCost += TTI.getAddressComputationCost(FixedVT->getElementType()); 10384e8c28b6SFlorian Hahn } 10394e8c28b6SFlorian Hahn 10404e8c28b6SFlorian Hahn if (ScalarizedCost >= OriginalCost) 10414e8c28b6SFlorian Hahn return false; 10424e8c28b6SFlorian Hahn 10434e8c28b6SFlorian Hahn // Replace extracts with narrow scalar loads. 10444e8c28b6SFlorian Hahn for (User *U : LI->users()) { 10454e8c28b6SFlorian Hahn auto *EI = cast<ExtractElementInst>(U); 10464e8c28b6SFlorian Hahn Builder.SetInsertPoint(EI); 1047d4c070d8SFlorian Hahn 1048d4c070d8SFlorian Hahn Value *Idx = EI->getOperand(1); 1049d4c070d8SFlorian Hahn Value *GEP = 1050d4c070d8SFlorian Hahn Builder.CreateInBoundsGEP(FixedVT, Ptr, {Builder.getInt32(0), Idx}); 10514e8c28b6SFlorian Hahn auto *NewLoad = cast<LoadInst>(Builder.CreateLoad( 10524e8c28b6SFlorian Hahn FixedVT->getElementType(), GEP, EI->getName() + ".scalar")); 10534e8c28b6SFlorian Hahn 105420542b47SRoman Lebedev Align ScalarOpAlignment = computeAlignmentAfterScalarization( 105520542b47SRoman Lebedev LI->getAlign(), FixedVT->getElementType(), Idx, DL); 105620542b47SRoman Lebedev NewLoad->setAlignment(ScalarOpAlignment); 105720542b47SRoman Lebedev 10584e8c28b6SFlorian Hahn replaceValue(*EI, *NewLoad); 10594e8c28b6SFlorian Hahn } 10604e8c28b6SFlorian Hahn 10614e8c28b6SFlorian Hahn return true; 10624e8c28b6SFlorian Hahn } 10634e8c28b6SFlorian Hahn 106466d22b4dSSanjay Patel /// Try to convert "shuffle (binop), (binop)" with a shared binop operand into 106566d22b4dSSanjay Patel /// "binop (shuffle), (shuffle)". 106666d22b4dSSanjay Patel bool VectorCombine::foldShuffleOfBinops(Instruction &I) { 106766d22b4dSSanjay Patel auto *VecTy = dyn_cast<FixedVectorType>(I.getType()); 106866d22b4dSSanjay Patel if (!VecTy) 106966d22b4dSSanjay Patel return false; 107066d22b4dSSanjay Patel 107166d22b4dSSanjay Patel BinaryOperator *B0, *B1; 107266d22b4dSSanjay Patel ArrayRef<int> Mask; 107366d22b4dSSanjay Patel if (!match(&I, m_Shuffle(m_OneUse(m_BinOp(B0)), m_OneUse(m_BinOp(B1)), 107466d22b4dSSanjay Patel m_Mask(Mask))) || 107566d22b4dSSanjay Patel B0->getOpcode() != B1->getOpcode() || B0->getType() != VecTy) 107666d22b4dSSanjay Patel return false; 107766d22b4dSSanjay Patel 107866d22b4dSSanjay Patel // Try to replace a binop with a shuffle if the shuffle is not costly. 107966d22b4dSSanjay Patel // The new shuffle will choose from a single, common operand, so it may be 108066d22b4dSSanjay Patel // cheaper than the existing two-operand shuffle. 108166d22b4dSSanjay Patel SmallVector<int> UnaryMask = createUnaryMask(Mask, Mask.size()); 108266d22b4dSSanjay Patel Instruction::BinaryOps Opcode = B0->getOpcode(); 108366d22b4dSSanjay Patel InstructionCost BinopCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 108466d22b4dSSanjay Patel InstructionCost ShufCost = TTI.getShuffleCost( 108566d22b4dSSanjay Patel TargetTransformInfo::SK_PermuteSingleSrc, VecTy, UnaryMask); 108666d22b4dSSanjay Patel if (ShufCost > BinopCost) 108766d22b4dSSanjay Patel return false; 108866d22b4dSSanjay Patel 108966d22b4dSSanjay Patel // If we have something like "add X, Y" and "add Z, X", swap ops to match. 109066d22b4dSSanjay Patel Value *X = B0->getOperand(0), *Y = B0->getOperand(1); 109166d22b4dSSanjay Patel Value *Z = B1->getOperand(0), *W = B1->getOperand(1); 109266d22b4dSSanjay Patel if (BinaryOperator::isCommutative(Opcode) && X != Z && Y != W) 109366d22b4dSSanjay Patel std::swap(X, Y); 109466d22b4dSSanjay Patel 109566d22b4dSSanjay Patel Value *Shuf0, *Shuf1; 109666d22b4dSSanjay Patel if (X == Z) { 109766d22b4dSSanjay Patel // shuf (bo X, Y), (bo X, W) --> bo (shuf X), (shuf Y, W) 109866d22b4dSSanjay Patel Shuf0 = Builder.CreateShuffleVector(X, UnaryMask); 109966d22b4dSSanjay Patel Shuf1 = Builder.CreateShuffleVector(Y, W, Mask); 110066d22b4dSSanjay Patel } else if (Y == W) { 110166d22b4dSSanjay Patel // shuf (bo X, Y), (bo Z, Y) --> bo (shuf X, Z), (shuf Y) 110266d22b4dSSanjay Patel Shuf0 = Builder.CreateShuffleVector(X, Z, Mask); 110366d22b4dSSanjay Patel Shuf1 = Builder.CreateShuffleVector(Y, UnaryMask); 110466d22b4dSSanjay Patel } else { 110566d22b4dSSanjay Patel return false; 110666d22b4dSSanjay Patel } 110766d22b4dSSanjay Patel 110866d22b4dSSanjay Patel Value *NewBO = Builder.CreateBinOp(Opcode, Shuf0, Shuf1); 110966d22b4dSSanjay Patel // Intersect flags from the old binops. 111066d22b4dSSanjay Patel if (auto *NewInst = dyn_cast<Instruction>(NewBO)) { 111166d22b4dSSanjay Patel NewInst->copyIRFlags(B0); 111266d22b4dSSanjay Patel NewInst->andIRFlags(B1); 111366d22b4dSSanjay Patel } 111466d22b4dSSanjay Patel replaceValue(I, *NewBO); 111566d22b4dSSanjay Patel return true; 111666d22b4dSSanjay Patel } 111766d22b4dSSanjay Patel 1118*ded8187eSDavid Green /// Given a commutative reduction, the order of the input lanes does not alter 1119*ded8187eSDavid Green /// the results. We can use this to remove certain shuffles feeding the 1120*ded8187eSDavid Green /// reduction, removing the need to shuffle at all. 1121*ded8187eSDavid Green bool VectorCombine::foldShuffleFromReductions(Instruction &I) { 1122*ded8187eSDavid Green auto *II = dyn_cast<IntrinsicInst>(&I); 1123*ded8187eSDavid Green if (!II) 1124*ded8187eSDavid Green return false; 1125*ded8187eSDavid Green switch (II->getIntrinsicID()) { 1126*ded8187eSDavid Green case Intrinsic::vector_reduce_add: 1127*ded8187eSDavid Green case Intrinsic::vector_reduce_mul: 1128*ded8187eSDavid Green case Intrinsic::vector_reduce_and: 1129*ded8187eSDavid Green case Intrinsic::vector_reduce_or: 1130*ded8187eSDavid Green case Intrinsic::vector_reduce_xor: 1131*ded8187eSDavid Green case Intrinsic::vector_reduce_smin: 1132*ded8187eSDavid Green case Intrinsic::vector_reduce_smax: 1133*ded8187eSDavid Green case Intrinsic::vector_reduce_umin: 1134*ded8187eSDavid Green case Intrinsic::vector_reduce_umax: 1135*ded8187eSDavid Green break; 1136*ded8187eSDavid Green default: 1137*ded8187eSDavid Green return false; 1138*ded8187eSDavid Green } 1139*ded8187eSDavid Green 1140*ded8187eSDavid Green // Find all the inputs when looking through operations that do not alter the 1141*ded8187eSDavid Green // lane order (binops, for example). Currently we look for a single shuffle, 1142*ded8187eSDavid Green // and can ignore splat values. 1143*ded8187eSDavid Green std::queue<Value *> Worklist; 1144*ded8187eSDavid Green SmallPtrSet<Value *, 4> Visited; 1145*ded8187eSDavid Green ShuffleVectorInst *Shuffle = nullptr; 1146*ded8187eSDavid Green if (auto *Op = dyn_cast<Instruction>(I.getOperand(0))) 1147*ded8187eSDavid Green Worklist.push(Op); 1148*ded8187eSDavid Green 1149*ded8187eSDavid Green while (!Worklist.empty()) { 1150*ded8187eSDavid Green Value *CV = Worklist.front(); 1151*ded8187eSDavid Green Worklist.pop(); 1152*ded8187eSDavid Green if (Visited.contains(CV)) 1153*ded8187eSDavid Green continue; 1154*ded8187eSDavid Green 1155*ded8187eSDavid Green // Splats don't change the order, so can be safely ignored. 1156*ded8187eSDavid Green if (isSplatValue(CV)) 1157*ded8187eSDavid Green continue; 1158*ded8187eSDavid Green 1159*ded8187eSDavid Green Visited.insert(CV); 1160*ded8187eSDavid Green 1161*ded8187eSDavid Green if (auto *CI = dyn_cast<Instruction>(CV)) { 1162*ded8187eSDavid Green if (CI->isBinaryOp()) { 1163*ded8187eSDavid Green for (auto *Op : CI->operand_values()) 1164*ded8187eSDavid Green Worklist.push(Op); 1165*ded8187eSDavid Green continue; 1166*ded8187eSDavid Green } else if (auto *SV = dyn_cast<ShuffleVectorInst>(CI)) { 1167*ded8187eSDavid Green if (Shuffle && Shuffle != SV) 1168*ded8187eSDavid Green return false; 1169*ded8187eSDavid Green Shuffle = SV; 1170*ded8187eSDavid Green continue; 1171*ded8187eSDavid Green } 1172*ded8187eSDavid Green } 1173*ded8187eSDavid Green 1174*ded8187eSDavid Green // Anything else is currently an unknown node. 1175*ded8187eSDavid Green return false; 1176*ded8187eSDavid Green } 1177*ded8187eSDavid Green 1178*ded8187eSDavid Green if (!Shuffle) 1179*ded8187eSDavid Green return false; 1180*ded8187eSDavid Green 1181*ded8187eSDavid Green // Check all uses of the binary ops and shuffles are also included in the 1182*ded8187eSDavid Green // lane-invariant operations (Visited should be the list of lanewise 1183*ded8187eSDavid Green // instructions, including the shuffle that we found). 1184*ded8187eSDavid Green for (auto *V : Visited) 1185*ded8187eSDavid Green for (auto *U : V->users()) 1186*ded8187eSDavid Green if (!Visited.contains(U) && U != &I) 1187*ded8187eSDavid Green return false; 1188*ded8187eSDavid Green 1189*ded8187eSDavid Green FixedVectorType *VecType = 1190*ded8187eSDavid Green dyn_cast<FixedVectorType>(II->getOperand(0)->getType()); 1191*ded8187eSDavid Green if (!VecType) 1192*ded8187eSDavid Green return false; 1193*ded8187eSDavid Green FixedVectorType *ShuffleInputType = 1194*ded8187eSDavid Green dyn_cast<FixedVectorType>(Shuffle->getOperand(0)->getType()); 1195*ded8187eSDavid Green if (!ShuffleInputType) 1196*ded8187eSDavid Green return false; 1197*ded8187eSDavid Green int NumInputElts = ShuffleInputType->getNumElements(); 1198*ded8187eSDavid Green 1199*ded8187eSDavid Green // Find the mask from sorting the lanes into order. This is most likely to 1200*ded8187eSDavid Green // become a identity or concat mask. Undef elements are pushed to the end. 1201*ded8187eSDavid Green SmallVector<int> ConcatMask; 1202*ded8187eSDavid Green Shuffle->getShuffleMask(ConcatMask); 1203*ded8187eSDavid Green sort(ConcatMask, [](int X, int Y) { 1204*ded8187eSDavid Green return Y == UndefMaskElem ? true : (X == UndefMaskElem ? false : X < Y); 1205*ded8187eSDavid Green }); 1206*ded8187eSDavid Green bool UsesSecondVec = 1207*ded8187eSDavid Green any_of(ConcatMask, [&](int M) { return M >= NumInputElts; }); 1208*ded8187eSDavid Green InstructionCost OldCost = TTI.getShuffleCost( 1209*ded8187eSDavid Green UsesSecondVec ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc, VecType, 1210*ded8187eSDavid Green Shuffle->getShuffleMask()); 1211*ded8187eSDavid Green InstructionCost NewCost = TTI.getShuffleCost( 1212*ded8187eSDavid Green UsesSecondVec ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc, VecType, 1213*ded8187eSDavid Green ConcatMask); 1214*ded8187eSDavid Green 1215*ded8187eSDavid Green LLVM_DEBUG(dbgs() << "Found a reduction feeding from a shuffle: " << *Shuffle 1216*ded8187eSDavid Green << "\n"); 1217*ded8187eSDavid Green LLVM_DEBUG(dbgs() << " OldCost: " << OldCost << " vs NewCost: " << NewCost 1218*ded8187eSDavid Green << "\n"); 1219*ded8187eSDavid Green if (NewCost < OldCost) { 1220*ded8187eSDavid Green Builder.SetInsertPoint(Shuffle); 1221*ded8187eSDavid Green Value *NewShuffle = Builder.CreateShuffleVector( 1222*ded8187eSDavid Green Shuffle->getOperand(0), Shuffle->getOperand(1), ConcatMask); 1223*ded8187eSDavid Green LLVM_DEBUG(dbgs() << "Created new shuffle: " << *NewShuffle << "\n"); 1224*ded8187eSDavid Green replaceValue(*Shuffle, *NewShuffle); 1225*ded8187eSDavid Green } 1226*ded8187eSDavid Green 1227*ded8187eSDavid Green return false; 1228*ded8187eSDavid Green } 1229*ded8187eSDavid Green 1230a17f03bdSSanjay Patel /// This is the entry point for all transforms. Pass manager differences are 1231a17f03bdSSanjay Patel /// handled in the callers of this function. 12326bdd531aSSanjay Patel bool VectorCombine::run() { 123325c6544fSSanjay Patel if (DisableVectorCombine) 123425c6544fSSanjay Patel return false; 123525c6544fSSanjay Patel 1236cc892fd9SSanjay Patel // Don't attempt vectorization if the target does not support vectors. 1237cc892fd9SSanjay Patel if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true))) 1238cc892fd9SSanjay Patel return false; 1239cc892fd9SSanjay Patel 1240a17f03bdSSanjay Patel bool MadeChange = false; 1241300870a9SFlorian Hahn auto FoldInst = [this, &MadeChange](Instruction &I) { 1242de65b356SSanjay Patel Builder.SetInsertPoint(&I); 12434a1d63d7SFlorian Hahn if (!ScalarizationOnly) { 124443bdac29SSanjay Patel MadeChange |= vectorizeLoadInsert(I); 12456bdd531aSSanjay Patel MadeChange |= foldExtractExtract(I); 12466bdd531aSSanjay Patel MadeChange |= foldBitcastShuf(I); 1247b6315aeeSSanjay Patel MadeChange |= foldExtractedCmps(I); 124866d22b4dSSanjay Patel MadeChange |= foldShuffleOfBinops(I); 1249*ded8187eSDavid Green MadeChange |= foldShuffleFromReductions(I); 12504a1d63d7SFlorian Hahn } 12514a1d63d7SFlorian Hahn MadeChange |= scalarizeBinopOrCmp(I); 12524e8c28b6SFlorian Hahn MadeChange |= scalarizeLoadExtract(I); 12532db4979cSQiu Chaofan MadeChange |= foldSingleElementStore(I); 1254300870a9SFlorian Hahn }; 1255300870a9SFlorian Hahn for (BasicBlock &BB : F) { 1256300870a9SFlorian Hahn // Ignore unreachable basic blocks. 1257300870a9SFlorian Hahn if (!DT.isReachableFromEntry(&BB)) 1258300870a9SFlorian Hahn continue; 1259300870a9SFlorian Hahn // Use early increment range so that we can erase instructions in loop. 1260300870a9SFlorian Hahn for (Instruction &I : make_early_inc_range(BB)) { 1261098a0d8fSHongtao Yu if (I.isDebugOrPseudoInst()) 1262300870a9SFlorian Hahn continue; 1263300870a9SFlorian Hahn FoldInst(I); 1264a17f03bdSSanjay Patel } 1265fc3cc8a4SSanjay Patel } 1266a17f03bdSSanjay Patel 1267300870a9SFlorian Hahn while (!Worklist.isEmpty()) { 1268300870a9SFlorian Hahn Instruction *I = Worklist.removeOne(); 1269300870a9SFlorian Hahn if (!I) 1270300870a9SFlorian Hahn continue; 1271300870a9SFlorian Hahn 1272300870a9SFlorian Hahn if (isInstructionTriviallyDead(I)) { 1273300870a9SFlorian Hahn eraseInstruction(*I); 1274300870a9SFlorian Hahn continue; 1275300870a9SFlorian Hahn } 1276300870a9SFlorian Hahn 1277300870a9SFlorian Hahn FoldInst(*I); 1278300870a9SFlorian Hahn } 1279a17f03bdSSanjay Patel 1280a17f03bdSSanjay Patel return MadeChange; 1281a17f03bdSSanjay Patel } 1282a17f03bdSSanjay Patel 1283a17f03bdSSanjay Patel // Pass manager boilerplate below here. 1284a17f03bdSSanjay Patel 1285a17f03bdSSanjay Patel namespace { 1286a17f03bdSSanjay Patel class VectorCombineLegacyPass : public FunctionPass { 1287a17f03bdSSanjay Patel public: 1288a17f03bdSSanjay Patel static char ID; 1289a17f03bdSSanjay Patel VectorCombineLegacyPass() : FunctionPass(ID) { 1290a17f03bdSSanjay Patel initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry()); 1291a17f03bdSSanjay Patel } 1292a17f03bdSSanjay Patel 1293a17f03bdSSanjay Patel void getAnalysisUsage(AnalysisUsage &AU) const override { 1294575e2affSFlorian Hahn AU.addRequired<AssumptionCacheTracker>(); 1295a17f03bdSSanjay Patel AU.addRequired<DominatorTreeWrapperPass>(); 1296a17f03bdSSanjay Patel AU.addRequired<TargetTransformInfoWrapperPass>(); 12972db4979cSQiu Chaofan AU.addRequired<AAResultsWrapperPass>(); 1298a17f03bdSSanjay Patel AU.setPreservesCFG(); 1299a17f03bdSSanjay Patel AU.addPreserved<DominatorTreeWrapperPass>(); 1300a17f03bdSSanjay Patel AU.addPreserved<GlobalsAAWrapperPass>(); 1301024098aeSSanjay Patel AU.addPreserved<AAResultsWrapperPass>(); 1302024098aeSSanjay Patel AU.addPreserved<BasicAAWrapperPass>(); 1303a17f03bdSSanjay Patel FunctionPass::getAnalysisUsage(AU); 1304a17f03bdSSanjay Patel } 1305a17f03bdSSanjay Patel 1306a17f03bdSSanjay Patel bool runOnFunction(Function &F) override { 1307a17f03bdSSanjay Patel if (skipFunction(F)) 1308a17f03bdSSanjay Patel return false; 1309575e2affSFlorian Hahn auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1310a17f03bdSSanjay Patel auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1311a17f03bdSSanjay Patel auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 13122db4979cSQiu Chaofan auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 13134a1d63d7SFlorian Hahn VectorCombine Combiner(F, TTI, DT, AA, AC, false); 13146bdd531aSSanjay Patel return Combiner.run(); 1315a17f03bdSSanjay Patel } 1316a17f03bdSSanjay Patel }; 1317a17f03bdSSanjay Patel } // namespace 1318a17f03bdSSanjay Patel 1319a17f03bdSSanjay Patel char VectorCombineLegacyPass::ID = 0; 1320a17f03bdSSanjay Patel INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine", 1321a17f03bdSSanjay Patel "Optimize scalar/vector ops", false, 1322a17f03bdSSanjay Patel false) 1323575e2affSFlorian Hahn INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1324a17f03bdSSanjay Patel INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1325a17f03bdSSanjay Patel INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine", 1326a17f03bdSSanjay Patel "Optimize scalar/vector ops", false, false) 1327a17f03bdSSanjay Patel Pass *llvm::createVectorCombinePass() { 1328a17f03bdSSanjay Patel return new VectorCombineLegacyPass(); 1329a17f03bdSSanjay Patel } 1330a17f03bdSSanjay Patel 1331a17f03bdSSanjay Patel PreservedAnalyses VectorCombinePass::run(Function &F, 1332a17f03bdSSanjay Patel FunctionAnalysisManager &FAM) { 1333575e2affSFlorian Hahn auto &AC = FAM.getResult<AssumptionAnalysis>(F); 1334a17f03bdSSanjay Patel TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); 1335a17f03bdSSanjay Patel DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); 13362db4979cSQiu Chaofan AAResults &AA = FAM.getResult<AAManager>(F); 13374a1d63d7SFlorian Hahn VectorCombine Combiner(F, TTI, DT, AA, AC, ScalarizationOnly); 13386bdd531aSSanjay Patel if (!Combiner.run()) 1339a17f03bdSSanjay Patel return PreservedAnalyses::all(); 1340a17f03bdSSanjay Patel PreservedAnalyses PA; 1341a17f03bdSSanjay Patel PA.preserveSet<CFGAnalyses>(); 1342a17f03bdSSanjay Patel return PA; 1343a17f03bdSSanjay Patel } 1344