1a17f03bdSSanjay Patel //===------- VectorCombine.cpp - Optimize partial vector operations -------===//
2a17f03bdSSanjay Patel //
3a17f03bdSSanjay Patel // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4a17f03bdSSanjay Patel // See https://llvm.org/LICENSE.txt for license information.
5a17f03bdSSanjay Patel // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6a17f03bdSSanjay Patel //
7a17f03bdSSanjay Patel //===----------------------------------------------------------------------===//
8a17f03bdSSanjay Patel //
9a17f03bdSSanjay Patel // This pass optimizes scalar/vector interactions using target cost models. The
10a17f03bdSSanjay Patel // transforms implemented here may not fit in traditional loop-based or SLP
11a17f03bdSSanjay Patel // vectorization passes.
12a17f03bdSSanjay Patel //
13a17f03bdSSanjay Patel //===----------------------------------------------------------------------===//
14a17f03bdSSanjay Patel 
15a17f03bdSSanjay Patel #include "llvm/Transforms/Vectorize/VectorCombine.h"
16*ded8187eSDavid Green #include "llvm/ADT/SmallBitVector.h"
17a17f03bdSSanjay Patel #include "llvm/ADT/Statistic.h"
18575e2affSFlorian Hahn #include "llvm/Analysis/AssumptionCache.h"
195006e551SSimon Pilgrim #include "llvm/Analysis/BasicAliasAnalysis.h"
20a17f03bdSSanjay Patel #include "llvm/Analysis/GlobalsModRef.h"
2143bdac29SSanjay Patel #include "llvm/Analysis/Loads.h"
22a17f03bdSSanjay Patel #include "llvm/Analysis/TargetTransformInfo.h"
2319b62b79SSanjay Patel #include "llvm/Analysis/ValueTracking.h"
24b6050ca1SSanjay Patel #include "llvm/Analysis/VectorUtils.h"
25a17f03bdSSanjay Patel #include "llvm/IR/Dominators.h"
26a17f03bdSSanjay Patel #include "llvm/IR/Function.h"
27a17f03bdSSanjay Patel #include "llvm/IR/IRBuilder.h"
28a17f03bdSSanjay Patel #include "llvm/IR/PatternMatch.h"
29a17f03bdSSanjay Patel #include "llvm/InitializePasses.h"
30a17f03bdSSanjay Patel #include "llvm/Pass.h"
3125c6544fSSanjay Patel #include "llvm/Support/CommandLine.h"
32a17f03bdSSanjay Patel #include "llvm/Transforms/Utils/Local.h"
335006e551SSimon Pilgrim #include "llvm/Transforms/Vectorize.h"
34a17f03bdSSanjay Patel 
35300870a9SFlorian Hahn #define DEBUG_TYPE "vector-combine"
36300870a9SFlorian Hahn #include "llvm/Transforms/Utils/InstructionWorklist.h"
37300870a9SFlorian Hahn 
38a17f03bdSSanjay Patel using namespace llvm;
39a17f03bdSSanjay Patel using namespace llvm::PatternMatch;
40a17f03bdSSanjay Patel 
4143bdac29SSanjay Patel STATISTIC(NumVecLoad, "Number of vector loads formed");
42a17f03bdSSanjay Patel STATISTIC(NumVecCmp, "Number of vector compares formed");
4319b62b79SSanjay Patel STATISTIC(NumVecBO, "Number of vector binops formed");
44b6315aeeSSanjay Patel STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed");
457aeb41b3SRoman Lebedev STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast");
460d2a0b44SSanjay Patel STATISTIC(NumScalarBO, "Number of scalar binops formed");
47ed67f5e7SSanjay Patel STATISTIC(NumScalarCmp, "Number of scalar compares formed");
48a17f03bdSSanjay Patel 
4925c6544fSSanjay Patel static cl::opt<bool> DisableVectorCombine(
5025c6544fSSanjay Patel     "disable-vector-combine", cl::init(false), cl::Hidden,
5125c6544fSSanjay Patel     cl::desc("Disable all vector combine transforms"));
5225c6544fSSanjay Patel 
53a69158c1SSanjay Patel static cl::opt<bool> DisableBinopExtractShuffle(
54a69158c1SSanjay Patel     "disable-binop-extract-shuffle", cl::init(false), cl::Hidden,
55a69158c1SSanjay Patel     cl::desc("Disable binop extract to shuffle transforms"));
56a69158c1SSanjay Patel 
572db4979cSQiu Chaofan static cl::opt<unsigned> MaxInstrsToScan(
582db4979cSQiu Chaofan     "vector-combine-max-scan-instrs", cl::init(30), cl::Hidden,
592db4979cSQiu Chaofan     cl::desc("Max number of instructions to scan for vector combining."));
602db4979cSQiu Chaofan 
61a0f96741SSanjay Patel static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max();
62a0f96741SSanjay Patel 
63b4447054SBenjamin Kramer namespace {
646bdd531aSSanjay Patel class VectorCombine {
656bdd531aSSanjay Patel public:
666bdd531aSSanjay Patel   VectorCombine(Function &F, const TargetTransformInfo &TTI,
674a1d63d7SFlorian Hahn                 const DominatorTree &DT, AAResults &AA, AssumptionCache &AC,
684a1d63d7SFlorian Hahn                 bool ScalarizationOnly)
694a1d63d7SFlorian Hahn       : F(F), Builder(F.getContext()), TTI(TTI), DT(DT), AA(AA), AC(AC),
704a1d63d7SFlorian Hahn         ScalarizationOnly(ScalarizationOnly) {}
716bdd531aSSanjay Patel 
726bdd531aSSanjay Patel   bool run();
736bdd531aSSanjay Patel 
746bdd531aSSanjay Patel private:
756bdd531aSSanjay Patel   Function &F;
76de65b356SSanjay Patel   IRBuilder<> Builder;
776bdd531aSSanjay Patel   const TargetTransformInfo &TTI;
786bdd531aSSanjay Patel   const DominatorTree &DT;
792db4979cSQiu Chaofan   AAResults &AA;
80575e2affSFlorian Hahn   AssumptionCache &AC;
814a1d63d7SFlorian Hahn 
824a1d63d7SFlorian Hahn   /// If true only perform scalarization combines and do not introduce new
834a1d63d7SFlorian Hahn   /// vector operations.
844a1d63d7SFlorian Hahn   bool ScalarizationOnly;
854a1d63d7SFlorian Hahn 
86300870a9SFlorian Hahn   InstructionWorklist Worklist;
876bdd531aSSanjay Patel 
8843bdac29SSanjay Patel   bool vectorizeLoadInsert(Instruction &I);
893b95d834SSanjay Patel   ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0,
903b95d834SSanjay Patel                                         ExtractElementInst *Ext1,
913b95d834SSanjay Patel                                         unsigned PreferredExtractIndex) const;
926bdd531aSSanjay Patel   bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
930dcd2b40SSimon Pilgrim                              const Instruction &I,
946bdd531aSSanjay Patel                              ExtractElementInst *&ConvertToShuffle,
956bdd531aSSanjay Patel                              unsigned PreferredExtractIndex);
96de65b356SSanjay Patel   void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
97de65b356SSanjay Patel                      Instruction &I);
98de65b356SSanjay Patel   void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
99de65b356SSanjay Patel                        Instruction &I);
1006bdd531aSSanjay Patel   bool foldExtractExtract(Instruction &I);
1016bdd531aSSanjay Patel   bool foldBitcastShuf(Instruction &I);
1026bdd531aSSanjay Patel   bool scalarizeBinopOrCmp(Instruction &I);
103b6315aeeSSanjay Patel   bool foldExtractedCmps(Instruction &I);
1042db4979cSQiu Chaofan   bool foldSingleElementStore(Instruction &I);
1054e8c28b6SFlorian Hahn   bool scalarizeLoadExtract(Instruction &I);
10666d22b4dSSanjay Patel   bool foldShuffleOfBinops(Instruction &I);
107*ded8187eSDavid Green   bool foldShuffleFromReductions(Instruction &I);
108a69158c1SSanjay Patel 
109300870a9SFlorian Hahn   void replaceValue(Value &Old, Value &New) {
11098c2f4eeSSanjay Patel     Old.replaceAllUsesWith(&New);
111300870a9SFlorian Hahn     if (auto *NewI = dyn_cast<Instruction>(&New)) {
112*ded8187eSDavid Green       New.takeName(&Old);
113300870a9SFlorian Hahn       Worklist.pushUsersToWorkList(*NewI);
114300870a9SFlorian Hahn       Worklist.pushValue(NewI);
11598c2f4eeSSanjay Patel     }
116300870a9SFlorian Hahn     Worklist.pushValue(&Old);
117300870a9SFlorian Hahn   }
118300870a9SFlorian Hahn 
119300870a9SFlorian Hahn   void eraseInstruction(Instruction &I) {
120300870a9SFlorian Hahn     for (Value *Op : I.operands())
121300870a9SFlorian Hahn       Worklist.pushValue(Op);
122300870a9SFlorian Hahn     Worklist.remove(&I);
123300870a9SFlorian Hahn     I.eraseFromParent();
124300870a9SFlorian Hahn   }
125300870a9SFlorian Hahn };
126300870a9SFlorian Hahn } // namespace
12798c2f4eeSSanjay Patel 
12843bdac29SSanjay Patel bool VectorCombine::vectorizeLoadInsert(Instruction &I) {
129b2ef2640SSanjay Patel   // Match insert into fixed vector of scalar value.
13047aaa99cSSanjay Patel   // TODO: Handle non-zero insert index.
131ddd9575dSSanjay Patel   auto *Ty = dyn_cast<FixedVectorType>(I.getType());
13243bdac29SSanjay Patel   Value *Scalar;
13348a23bccSSanjay Patel   if (!Ty || !match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) ||
13448a23bccSSanjay Patel       !Scalar->hasOneUse())
13543bdac29SSanjay Patel     return false;
136ddd9575dSSanjay Patel 
137b2ef2640SSanjay Patel   // Optionally match an extract from another vector.
138b2ef2640SSanjay Patel   Value *X;
139b2ef2640SSanjay Patel   bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt()));
140b2ef2640SSanjay Patel   if (!HasExtract)
141b2ef2640SSanjay Patel     X = Scalar;
142b2ef2640SSanjay Patel 
143b2ef2640SSanjay Patel   // Match source value as load of scalar or vector.
1444452cc40SFangrui Song   // Do not vectorize scalar load (widening) if atomic/volatile or under
1454452cc40SFangrui Song   // asan/hwasan/memtag/tsan. The widened load may load data from dirty regions
1464452cc40SFangrui Song   // or create data races non-existent in the source.
147b2ef2640SSanjay Patel   auto *Load = dyn_cast<LoadInst>(X);
148b2ef2640SSanjay Patel   if (!Load || !Load->isSimple() || !Load->hasOneUse() ||
1494452cc40SFangrui Song       Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) ||
1504452cc40SFangrui Song       mustSuppressSpeculation(*Load))
15143bdac29SSanjay Patel     return false;
15243bdac29SSanjay Patel 
15312b684aeSSanjay Patel   const DataLayout &DL = I.getModule()->getDataLayout();
15412b684aeSSanjay Patel   Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts();
15512b684aeSSanjay Patel   assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type");
156c36c0fabSArtem Belevich 
15712b684aeSSanjay Patel   unsigned AS = Load->getPointerAddressSpace();
15843bdac29SSanjay Patel 
15947aaa99cSSanjay Patel   // We are potentially transforming byte-sized (8-bit) memory accesses, so make
16047aaa99cSSanjay Patel   // sure we have all of our type-based constraints in place for this target.
161ddd9575dSSanjay Patel   Type *ScalarTy = Scalar->getType();
16243bdac29SSanjay Patel   uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
163ddd9575dSSanjay Patel   unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
16447aaa99cSSanjay Patel   if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 ||
16547aaa99cSSanjay Patel       ScalarSize % 8 != 0)
16643bdac29SSanjay Patel     return false;
16743bdac29SSanjay Patel 
16843bdac29SSanjay Patel   // Check safety of replacing the scalar load with a larger vector load.
169aaaf0ec7SSanjay Patel   // We use minimal alignment (maximum flexibility) because we only care about
170aaaf0ec7SSanjay Patel   // the dereferenceable region. When calculating cost and creating a new op,
171aaaf0ec7SSanjay Patel   // we may use a larger value based on alignment attributes.
1728fb05593SSanjay Patel   unsigned MinVecNumElts = MinVectorSize / ScalarSize;
1738fb05593SSanjay Patel   auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false);
17447aaa99cSSanjay Patel   unsigned OffsetEltIndex = 0;
17547aaa99cSSanjay Patel   Align Alignment = Load->getAlign();
17647aaa99cSSanjay Patel   if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) {
17747aaa99cSSanjay Patel     // It is not safe to load directly from the pointer, but we can still peek
17847aaa99cSSanjay Patel     // through gep offsets and check if it safe to load from a base address with
17947aaa99cSSanjay Patel     // updated alignment. If it is, we can shuffle the element(s) into place
18047aaa99cSSanjay Patel     // after loading.
18147aaa99cSSanjay Patel     unsigned OffsetBitWidth = DL.getIndexTypeSizeInBits(SrcPtr->getType());
18247aaa99cSSanjay Patel     APInt Offset(OffsetBitWidth, 0);
18347aaa99cSSanjay Patel     SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
18447aaa99cSSanjay Patel 
18547aaa99cSSanjay Patel     // We want to shuffle the result down from a high element of a vector, so
18647aaa99cSSanjay Patel     // the offset must be positive.
18747aaa99cSSanjay Patel     if (Offset.isNegative())
18847aaa99cSSanjay Patel       return false;
18947aaa99cSSanjay Patel 
19047aaa99cSSanjay Patel     // The offset must be a multiple of the scalar element to shuffle cleanly
19147aaa99cSSanjay Patel     // in the element's size.
19247aaa99cSSanjay Patel     uint64_t ScalarSizeInBytes = ScalarSize / 8;
19347aaa99cSSanjay Patel     if (Offset.urem(ScalarSizeInBytes) != 0)
19447aaa99cSSanjay Patel       return false;
19547aaa99cSSanjay Patel 
19647aaa99cSSanjay Patel     // If we load MinVecNumElts, will our target element still be loaded?
19747aaa99cSSanjay Patel     OffsetEltIndex = Offset.udiv(ScalarSizeInBytes).getZExtValue();
19847aaa99cSSanjay Patel     if (OffsetEltIndex >= MinVecNumElts)
19947aaa99cSSanjay Patel       return false;
20047aaa99cSSanjay Patel 
201aaaf0ec7SSanjay Patel     if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT))
20243bdac29SSanjay Patel       return false;
20343bdac29SSanjay Patel 
20447aaa99cSSanjay Patel     // Update alignment with offset value. Note that the offset could be negated
20547aaa99cSSanjay Patel     // to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but
20647aaa99cSSanjay Patel     // negation does not change the result of the alignment calculation.
20747aaa99cSSanjay Patel     Alignment = commonAlignment(Alignment, Offset.getZExtValue());
20847aaa99cSSanjay Patel   }
20947aaa99cSSanjay Patel 
210b2ef2640SSanjay Patel   // Original pattern: insertelt undef, load [free casts of] PtrOp, 0
21138ebc1a1SSanjay Patel   // Use the greater of the alignment on the load or its source pointer.
21247aaa99cSSanjay Patel   Alignment = std::max(SrcPtr->getPointerAlignment(DL), Alignment);
213b2ef2640SSanjay Patel   Type *LoadTy = Load->getType();
21436710c38SCaroline Concatto   InstructionCost OldCost =
21536710c38SCaroline Concatto       TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS);
2168fb05593SSanjay Patel   APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0);
217b2ef2640SSanjay Patel   OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts,
218b2ef2640SSanjay Patel                                           /* Insert */ true, HasExtract);
21943bdac29SSanjay Patel 
22043bdac29SSanjay Patel   // New pattern: load VecPtr
22136710c38SCaroline Concatto   InstructionCost NewCost =
22236710c38SCaroline Concatto       TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS);
22347aaa99cSSanjay Patel   // Optionally, we are shuffling the loaded vector element(s) into place.
224e2935dcfSDavid Green   // For the mask set everything but element 0 to undef to prevent poison from
225e2935dcfSDavid Green   // propagating from the extra loaded memory. This will also optionally
226e2935dcfSDavid Green   // shrink/grow the vector from the loaded size to the output size.
227e2935dcfSDavid Green   // We assume this operation has no cost in codegen if there was no offset.
228e2935dcfSDavid Green   // Note that we could use freeze to avoid poison problems, but then we might
229e2935dcfSDavid Green   // still need a shuffle to change the vector size.
230e2935dcfSDavid Green   unsigned OutputNumElts = Ty->getNumElements();
231e2935dcfSDavid Green   SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem);
232e2935dcfSDavid Green   assert(OffsetEltIndex < MinVecNumElts && "Address offset too big");
233e2935dcfSDavid Green   Mask[0] = OffsetEltIndex;
23447aaa99cSSanjay Patel   if (OffsetEltIndex)
235e2935dcfSDavid Green     NewCost += TTI.getShuffleCost(TTI::SK_PermuteSingleSrc, MinVecTy, Mask);
23643bdac29SSanjay Patel 
23743bdac29SSanjay Patel   // We can aggressively convert to the vector form because the backend can
23843bdac29SSanjay Patel   // invert this transform if it does not result in a performance win.
23936710c38SCaroline Concatto   if (OldCost < NewCost || !NewCost.isValid())
24043bdac29SSanjay Patel     return false;
24143bdac29SSanjay Patel 
24243bdac29SSanjay Patel   // It is safe and potentially profitable to load a vector directly:
24343bdac29SSanjay Patel   // inselt undef, load Scalar, 0 --> load VecPtr
24443bdac29SSanjay Patel   IRBuilder<> Builder(Load);
2452e44b787SFraser Cormack   Value *CastedPtr = Builder.CreatePointerBitCastOrAddrSpaceCast(
2462e44b787SFraser Cormack       SrcPtr, MinVecTy->getPointerTo(AS));
2478fb05593SSanjay Patel   Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment);
2481e6b240dSSanjay Patel   VecLd = Builder.CreateShuffleVector(VecLd, Mask);
249d399f870SSanjay Patel 
25043bdac29SSanjay Patel   replaceValue(I, *VecLd);
25143bdac29SSanjay Patel   ++NumVecLoad;
25243bdac29SSanjay Patel   return true;
25343bdac29SSanjay Patel }
25443bdac29SSanjay Patel 
2553b95d834SSanjay Patel /// Determine which, if any, of the inputs should be replaced by a shuffle
2563b95d834SSanjay Patel /// followed by extract from a different index.
2573b95d834SSanjay Patel ExtractElementInst *VectorCombine::getShuffleExtract(
2583b95d834SSanjay Patel     ExtractElementInst *Ext0, ExtractElementInst *Ext1,
2593b95d834SSanjay Patel     unsigned PreferredExtractIndex = InvalidIndex) const {
2603b95d834SSanjay Patel   assert(isa<ConstantInt>(Ext0->getIndexOperand()) &&
2613b95d834SSanjay Patel          isa<ConstantInt>(Ext1->getIndexOperand()) &&
2623b95d834SSanjay Patel          "Expected constant extract indexes");
2633b95d834SSanjay Patel 
2643b95d834SSanjay Patel   unsigned Index0 = cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue();
2653b95d834SSanjay Patel   unsigned Index1 = cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue();
2663b95d834SSanjay Patel 
2673b95d834SSanjay Patel   // If the extract indexes are identical, no shuffle is needed.
2683b95d834SSanjay Patel   if (Index0 == Index1)
2693b95d834SSanjay Patel     return nullptr;
2703b95d834SSanjay Patel 
2713b95d834SSanjay Patel   Type *VecTy = Ext0->getVectorOperand()->getType();
2723b95d834SSanjay Patel   assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types");
27336710c38SCaroline Concatto   InstructionCost Cost0 =
27436710c38SCaroline Concatto       TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
27536710c38SCaroline Concatto   InstructionCost Cost1 =
27636710c38SCaroline Concatto       TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);
27736710c38SCaroline Concatto 
27836710c38SCaroline Concatto   // If both costs are invalid no shuffle is needed
27936710c38SCaroline Concatto   if (!Cost0.isValid() && !Cost1.isValid())
28036710c38SCaroline Concatto     return nullptr;
2813b95d834SSanjay Patel 
2823b95d834SSanjay Patel   // We are extracting from 2 different indexes, so one operand must be shuffled
2833b95d834SSanjay Patel   // before performing a vector operation and/or extract. The more expensive
2843b95d834SSanjay Patel   // extract will be replaced by a shuffle.
2853b95d834SSanjay Patel   if (Cost0 > Cost1)
2863b95d834SSanjay Patel     return Ext0;
2873b95d834SSanjay Patel   if (Cost1 > Cost0)
2883b95d834SSanjay Patel     return Ext1;
2893b95d834SSanjay Patel 
2903b95d834SSanjay Patel   // If the costs are equal and there is a preferred extract index, shuffle the
2913b95d834SSanjay Patel   // opposite operand.
2923b95d834SSanjay Patel   if (PreferredExtractIndex == Index0)
2933b95d834SSanjay Patel     return Ext1;
2943b95d834SSanjay Patel   if (PreferredExtractIndex == Index1)
2953b95d834SSanjay Patel     return Ext0;
2963b95d834SSanjay Patel 
2973b95d834SSanjay Patel   // Otherwise, replace the extract with the higher index.
2983b95d834SSanjay Patel   return Index0 > Index1 ? Ext0 : Ext1;
2993b95d834SSanjay Patel }
3003b95d834SSanjay Patel 
301a69158c1SSanjay Patel /// Compare the relative costs of 2 extracts followed by scalar operation vs.
302a69158c1SSanjay Patel /// vector operation(s) followed by extract. Return true if the existing
303a69158c1SSanjay Patel /// instructions are cheaper than a vector alternative. Otherwise, return false
304a69158c1SSanjay Patel /// and if one of the extracts should be transformed to a shufflevector, set
305a69158c1SSanjay Patel /// \p ConvertToShuffle to that extract instruction.
3066bdd531aSSanjay Patel bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0,
3076bdd531aSSanjay Patel                                           ExtractElementInst *Ext1,
3080dcd2b40SSimon Pilgrim                                           const Instruction &I,
309216a37bbSSanjay Patel                                           ExtractElementInst *&ConvertToShuffle,
310ce97ce3aSSanjay Patel                                           unsigned PreferredExtractIndex) {
3114fa63fd4SAustin Kerbow   assert(isa<ConstantInt>(Ext0->getOperand(1)) &&
312a69158c1SSanjay Patel          isa<ConstantInt>(Ext1->getOperand(1)) &&
313a69158c1SSanjay Patel          "Expected constant extract indexes");
3140dcd2b40SSimon Pilgrim   unsigned Opcode = I.getOpcode();
31534e34855SSanjay Patel   Type *ScalarTy = Ext0->getType();
316e3056ae9SSam Parker   auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType());
31736710c38SCaroline Concatto   InstructionCost ScalarOpCost, VectorOpCost;
31834e34855SSanjay Patel 
31934e34855SSanjay Patel   // Get cost estimates for scalar and vector versions of the operation.
32034e34855SSanjay Patel   bool IsBinOp = Instruction::isBinaryOp(Opcode);
32134e34855SSanjay Patel   if (IsBinOp) {
32234e34855SSanjay Patel     ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
32334e34855SSanjay Patel     VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
32434e34855SSanjay Patel   } else {
32534e34855SSanjay Patel     assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
32634e34855SSanjay Patel            "Expected a compare");
3270dcd2b40SSimon Pilgrim     CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate();
3280dcd2b40SSimon Pilgrim     ScalarOpCost = TTI.getCmpSelInstrCost(
3290dcd2b40SSimon Pilgrim         Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred);
3300dcd2b40SSimon Pilgrim     VectorOpCost = TTI.getCmpSelInstrCost(
3310dcd2b40SSimon Pilgrim         Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred);
33234e34855SSanjay Patel   }
33334e34855SSanjay Patel 
334a69158c1SSanjay Patel   // Get cost estimates for the extract elements. These costs will factor into
33534e34855SSanjay Patel   // both sequences.
336a69158c1SSanjay Patel   unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue();
337a69158c1SSanjay Patel   unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue();
338a69158c1SSanjay Patel 
33936710c38SCaroline Concatto   InstructionCost Extract0Cost =
3406bdd531aSSanjay Patel       TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index);
34136710c38SCaroline Concatto   InstructionCost Extract1Cost =
3426bdd531aSSanjay Patel       TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index);
343a69158c1SSanjay Patel 
344a69158c1SSanjay Patel   // A more expensive extract will always be replaced by a splat shuffle.
345a69158c1SSanjay Patel   // For example, if Ext0 is more expensive:
346a69158c1SSanjay Patel   // opcode (extelt V0, Ext0), (ext V1, Ext1) -->
347a69158c1SSanjay Patel   // extelt (opcode (splat V0, Ext0), V1), Ext1
348a69158c1SSanjay Patel   // TODO: Evaluate whether that always results in lowest cost. Alternatively,
349a69158c1SSanjay Patel   //       check the cost of creating a broadcast shuffle and shuffling both
350a69158c1SSanjay Patel   //       operands to element 0.
35136710c38SCaroline Concatto   InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost);
35234e34855SSanjay Patel 
35334e34855SSanjay Patel   // Extra uses of the extracts mean that we include those costs in the
35434e34855SSanjay Patel   // vector total because those instructions will not be eliminated.
35536710c38SCaroline Concatto   InstructionCost OldCost, NewCost;
356a69158c1SSanjay Patel   if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) {
357a69158c1SSanjay Patel     // Handle a special case. If the 2 extracts are identical, adjust the
35834e34855SSanjay Patel     // formulas to account for that. The extra use charge allows for either the
35934e34855SSanjay Patel     // CSE'd pattern or an unoptimized form with identical values:
36034e34855SSanjay Patel     // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C
36134e34855SSanjay Patel     bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2)
36234e34855SSanjay Patel                                   : !Ext0->hasOneUse() || !Ext1->hasOneUse();
363a69158c1SSanjay Patel     OldCost = CheapExtractCost + ScalarOpCost;
364a69158c1SSanjay Patel     NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost;
36534e34855SSanjay Patel   } else {
36634e34855SSanjay Patel     // Handle the general case. Each extract is actually a different value:
367a69158c1SSanjay Patel     // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C
368a69158c1SSanjay Patel     OldCost = Extract0Cost + Extract1Cost + ScalarOpCost;
369a69158c1SSanjay Patel     NewCost = VectorOpCost + CheapExtractCost +
370a69158c1SSanjay Patel               !Ext0->hasOneUse() * Extract0Cost +
371a69158c1SSanjay Patel               !Ext1->hasOneUse() * Extract1Cost;
37234e34855SSanjay Patel   }
373a69158c1SSanjay Patel 
3743b95d834SSanjay Patel   ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex);
3753b95d834SSanjay Patel   if (ConvertToShuffle) {
376a69158c1SSanjay Patel     if (IsBinOp && DisableBinopExtractShuffle)
377a69158c1SSanjay Patel       return true;
378a69158c1SSanjay Patel 
379a69158c1SSanjay Patel     // If we are extracting from 2 different indexes, then one operand must be
380a69158c1SSanjay Patel     // shuffled before performing the vector operation. The shuffle mask is
381a69158c1SSanjay Patel     // undefined except for 1 lane that is being translated to the remaining
382a69158c1SSanjay Patel     // extraction lane. Therefore, it is a splat shuffle. Ex:
383a69158c1SSanjay Patel     // ShufMask = { undef, undef, 0, undef }
384a69158c1SSanjay Patel     // TODO: The cost model has an option for a "broadcast" shuffle
385a69158c1SSanjay Patel     //       (splat-from-element-0), but no option for a more general splat.
386a69158c1SSanjay Patel     NewCost +=
387a69158c1SSanjay Patel         TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
388a69158c1SSanjay Patel   }
389a69158c1SSanjay Patel 
39010ea01d8SSanjay Patel   // Aggressively form a vector op if the cost is equal because the transform
39110ea01d8SSanjay Patel   // may enable further optimization.
39210ea01d8SSanjay Patel   // Codegen can reverse this transform (scalarize) if it was not profitable.
39310ea01d8SSanjay Patel   return OldCost < NewCost;
39434e34855SSanjay Patel }
39534e34855SSanjay Patel 
3969934cc54SSanjay Patel /// Create a shuffle that translates (shifts) 1 element from the input vector
3979934cc54SSanjay Patel /// to a new element location.
3989934cc54SSanjay Patel static Value *createShiftShuffle(Value *Vec, unsigned OldIndex,
3999934cc54SSanjay Patel                                  unsigned NewIndex, IRBuilder<> &Builder) {
4009934cc54SSanjay Patel   // The shuffle mask is undefined except for 1 lane that is being translated
4019934cc54SSanjay Patel   // to the new element index. Example for OldIndex == 2 and NewIndex == 0:
4029934cc54SSanjay Patel   // ShufMask = { 2, undef, undef, undef }
4039934cc54SSanjay Patel   auto *VecTy = cast<FixedVectorType>(Vec->getType());
40454143e2bSSanjay Patel   SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem);
4059934cc54SSanjay Patel   ShufMask[NewIndex] = OldIndex;
4061e6b240dSSanjay Patel   return Builder.CreateShuffleVector(Vec, ShufMask, "shift");
4079934cc54SSanjay Patel }
4089934cc54SSanjay Patel 
409216a37bbSSanjay Patel /// Given an extract element instruction with constant index operand, shuffle
410216a37bbSSanjay Patel /// the source vector (shift the scalar element) to a NewIndex for extraction.
411216a37bbSSanjay Patel /// Return null if the input can be constant folded, so that we are not creating
412216a37bbSSanjay Patel /// unnecessary instructions.
4139934cc54SSanjay Patel static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt,
4149934cc54SSanjay Patel                                             unsigned NewIndex,
4159934cc54SSanjay Patel                                             IRBuilder<> &Builder) {
416216a37bbSSanjay Patel   // If the extract can be constant-folded, this code is unsimplified. Defer
417216a37bbSSanjay Patel   // to other passes to handle that.
418216a37bbSSanjay Patel   Value *X = ExtElt->getVectorOperand();
419216a37bbSSanjay Patel   Value *C = ExtElt->getIndexOperand();
420de65b356SSanjay Patel   assert(isa<ConstantInt>(C) && "Expected a constant index operand");
421216a37bbSSanjay Patel   if (isa<Constant>(X))
422216a37bbSSanjay Patel     return nullptr;
423216a37bbSSanjay Patel 
4249934cc54SSanjay Patel   Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(),
4259934cc54SSanjay Patel                                    NewIndex, Builder);
426216a37bbSSanjay Patel   return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex));
427216a37bbSSanjay Patel }
428216a37bbSSanjay Patel 
429fc445589SSanjay Patel /// Try to reduce extract element costs by converting scalar compares to vector
430fc445589SSanjay Patel /// compares followed by extract.
431e9c79a7aSSanjay Patel /// cmp (ext0 V0, C), (ext1 V1, C)
432de65b356SSanjay Patel void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0,
433de65b356SSanjay Patel                                   ExtractElementInst *Ext1, Instruction &I) {
434fc445589SSanjay Patel   assert(isa<CmpInst>(&I) && "Expected a compare");
435216a37bbSSanjay Patel   assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
436216a37bbSSanjay Patel              cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
437216a37bbSSanjay Patel          "Expected matching constant extract indexes");
438a17f03bdSSanjay Patel 
439a17f03bdSSanjay Patel   // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C
440a17f03bdSSanjay Patel   ++NumVecCmp;
441fc445589SSanjay Patel   CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate();
442216a37bbSSanjay Patel   Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
44346a285adSSanjay Patel   Value *VecCmp = Builder.CreateCmp(Pred, V0, V1);
444216a37bbSSanjay Patel   Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand());
44598c2f4eeSSanjay Patel   replaceValue(I, *NewExt);
446a17f03bdSSanjay Patel }
447a17f03bdSSanjay Patel 
44819b62b79SSanjay Patel /// Try to reduce extract element costs by converting scalar binops to vector
44919b62b79SSanjay Patel /// binops followed by extract.
450e9c79a7aSSanjay Patel /// bo (ext0 V0, C), (ext1 V1, C)
451de65b356SSanjay Patel void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0,
452de65b356SSanjay Patel                                     ExtractElementInst *Ext1, Instruction &I) {
453fc445589SSanjay Patel   assert(isa<BinaryOperator>(&I) && "Expected a binary operator");
454216a37bbSSanjay Patel   assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
455216a37bbSSanjay Patel              cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
456216a37bbSSanjay Patel          "Expected matching constant extract indexes");
45719b62b79SSanjay Patel 
45834e34855SSanjay Patel   // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C
45919b62b79SSanjay Patel   ++NumVecBO;
460216a37bbSSanjay Patel   Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
461e9c79a7aSSanjay Patel   Value *VecBO =
46234e34855SSanjay Patel       Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1);
463e9c79a7aSSanjay Patel 
46419b62b79SSanjay Patel   // All IR flags are safe to back-propagate because any potential poison
46519b62b79SSanjay Patel   // created in unused vector elements is discarded by the extract.
466e9c79a7aSSanjay Patel   if (auto *VecBOInst = dyn_cast<Instruction>(VecBO))
46719b62b79SSanjay Patel     VecBOInst->copyIRFlags(&I);
468e9c79a7aSSanjay Patel 
469216a37bbSSanjay Patel   Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand());
47098c2f4eeSSanjay Patel   replaceValue(I, *NewExt);
47119b62b79SSanjay Patel }
47219b62b79SSanjay Patel 
473fc445589SSanjay Patel /// Match an instruction with extracted vector operands.
4746bdd531aSSanjay Patel bool VectorCombine::foldExtractExtract(Instruction &I) {
475e9c79a7aSSanjay Patel   // It is not safe to transform things like div, urem, etc. because we may
476e9c79a7aSSanjay Patel   // create undefined behavior when executing those on unknown vector elements.
477e9c79a7aSSanjay Patel   if (!isSafeToSpeculativelyExecute(&I))
478e9c79a7aSSanjay Patel     return false;
479e9c79a7aSSanjay Patel 
480216a37bbSSanjay Patel   Instruction *I0, *I1;
481fc445589SSanjay Patel   CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
482216a37bbSSanjay Patel   if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) &&
483216a37bbSSanjay Patel       !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1))))
484fc445589SSanjay Patel     return false;
485fc445589SSanjay Patel 
486fc445589SSanjay Patel   Value *V0, *V1;
487fc445589SSanjay Patel   uint64_t C0, C1;
488216a37bbSSanjay Patel   if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) ||
489216a37bbSSanjay Patel       !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) ||
490fc445589SSanjay Patel       V0->getType() != V1->getType())
491fc445589SSanjay Patel     return false;
492fc445589SSanjay Patel 
493ce97ce3aSSanjay Patel   // If the scalar value 'I' is going to be re-inserted into a vector, then try
494ce97ce3aSSanjay Patel   // to create an extract to that same element. The extract/insert can be
495ce97ce3aSSanjay Patel   // reduced to a "select shuffle".
496ce97ce3aSSanjay Patel   // TODO: If we add a larger pattern match that starts from an insert, this
497ce97ce3aSSanjay Patel   //       probably becomes unnecessary.
498216a37bbSSanjay Patel   auto *Ext0 = cast<ExtractElementInst>(I0);
499216a37bbSSanjay Patel   auto *Ext1 = cast<ExtractElementInst>(I1);
500a0f96741SSanjay Patel   uint64_t InsertIndex = InvalidIndex;
501ce97ce3aSSanjay Patel   if (I.hasOneUse())
5027eed772aSSanjay Patel     match(I.user_back(),
5037eed772aSSanjay Patel           m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex)));
504ce97ce3aSSanjay Patel 
505216a37bbSSanjay Patel   ExtractElementInst *ExtractToChange;
5060dcd2b40SSimon Pilgrim   if (isExtractExtractCheap(Ext0, Ext1, I, ExtractToChange, InsertIndex))
507fc445589SSanjay Patel     return false;
508e9c79a7aSSanjay Patel 
509216a37bbSSanjay Patel   if (ExtractToChange) {
510216a37bbSSanjay Patel     unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0;
511216a37bbSSanjay Patel     ExtractElementInst *NewExtract =
5129934cc54SSanjay Patel         translateExtract(ExtractToChange, CheapExtractIdx, Builder);
513216a37bbSSanjay Patel     if (!NewExtract)
5146d864097SSanjay Patel       return false;
515216a37bbSSanjay Patel     if (ExtractToChange == Ext0)
516216a37bbSSanjay Patel       Ext0 = NewExtract;
517a69158c1SSanjay Patel     else
518216a37bbSSanjay Patel       Ext1 = NewExtract;
519a69158c1SSanjay Patel   }
520e9c79a7aSSanjay Patel 
521e9c79a7aSSanjay Patel   if (Pred != CmpInst::BAD_ICMP_PREDICATE)
522039ff29eSSanjay Patel     foldExtExtCmp(Ext0, Ext1, I);
523e9c79a7aSSanjay Patel   else
524039ff29eSSanjay Patel     foldExtExtBinop(Ext0, Ext1, I);
525e9c79a7aSSanjay Patel 
526300870a9SFlorian Hahn   Worklist.push(Ext0);
527300870a9SFlorian Hahn   Worklist.push(Ext1);
528e9c79a7aSSanjay Patel   return true;
529fc445589SSanjay Patel }
530fc445589SSanjay Patel 
531bef6e67eSSanjay Patel /// If this is a bitcast of a shuffle, try to bitcast the source vector to the
532bef6e67eSSanjay Patel /// destination type followed by shuffle. This can enable further transforms by
533bef6e67eSSanjay Patel /// moving bitcasts or shuffles together.
5346bdd531aSSanjay Patel bool VectorCombine::foldBitcastShuf(Instruction &I) {
535b6050ca1SSanjay Patel   Value *V;
536b6050ca1SSanjay Patel   ArrayRef<int> Mask;
5377eed772aSSanjay Patel   if (!match(&I, m_BitCast(
5387eed772aSSanjay Patel                      m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))))))
539b6050ca1SSanjay Patel     return false;
540b6050ca1SSanjay Patel 
541b4f04d71SHuihui Zhang   // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for
542b4f04d71SHuihui Zhang   // scalable type is unknown; Second, we cannot reason if the narrowed shuffle
543b4f04d71SHuihui Zhang   // mask for scalable type is a splat or not.
544b4f04d71SHuihui Zhang   // 2) Disallow non-vector casts and length-changing shuffles.
545bef6e67eSSanjay Patel   // TODO: We could allow any shuffle.
546b4f04d71SHuihui Zhang   auto *DestTy = dyn_cast<FixedVectorType>(I.getType());
547b4f04d71SHuihui Zhang   auto *SrcTy = dyn_cast<FixedVectorType>(V->getType());
548b4f04d71SHuihui Zhang   if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy)
549b6050ca1SSanjay Patel     return false;
550b6050ca1SSanjay Patel 
551b4f04d71SHuihui Zhang   unsigned DestNumElts = DestTy->getNumElements();
552b4f04d71SHuihui Zhang   unsigned SrcNumElts = SrcTy->getNumElements();
553b6050ca1SSanjay Patel   SmallVector<int, 16> NewMask;
554bef6e67eSSanjay Patel   if (SrcNumElts <= DestNumElts) {
555bef6e67eSSanjay Patel     // The bitcast is from wide to narrow/equal elements. The shuffle mask can
556bef6e67eSSanjay Patel     // always be expanded to the equivalent form choosing narrower elements.
557b6050ca1SSanjay Patel     assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask");
558b6050ca1SSanjay Patel     unsigned ScaleFactor = DestNumElts / SrcNumElts;
5591318ddbcSSanjay Patel     narrowShuffleMaskElts(ScaleFactor, Mask, NewMask);
560bef6e67eSSanjay Patel   } else {
561bef6e67eSSanjay Patel     // The bitcast is from narrow elements to wide elements. The shuffle mask
562bef6e67eSSanjay Patel     // must choose consecutive elements to allow casting first.
563bef6e67eSSanjay Patel     assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask");
564bef6e67eSSanjay Patel     unsigned ScaleFactor = SrcNumElts / DestNumElts;
565bef6e67eSSanjay Patel     if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask))
566bef6e67eSSanjay Patel       return false;
567bef6e67eSSanjay Patel   }
568e2935dcfSDavid Green 
569e2935dcfSDavid Green   // The new shuffle must not cost more than the old shuffle. The bitcast is
570e2935dcfSDavid Green   // moved ahead of the shuffle, so assume that it has the same cost as before.
571e2935dcfSDavid Green   InstructionCost DestCost = TTI.getShuffleCost(
572e2935dcfSDavid Green       TargetTransformInfo::SK_PermuteSingleSrc, DestTy, NewMask);
573e2935dcfSDavid Green   InstructionCost SrcCost =
574e2935dcfSDavid Green       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy, Mask);
575e2935dcfSDavid Green   if (DestCost > SrcCost || !DestCost.isValid())
576e2935dcfSDavid Green     return false;
577e2935dcfSDavid Green 
578bef6e67eSSanjay Patel   // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC'
5797aeb41b3SRoman Lebedev   ++NumShufOfBitcast;
580bef6e67eSSanjay Patel   Value *CastV = Builder.CreateBitCast(V, DestTy);
5811e6b240dSSanjay Patel   Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask);
58298c2f4eeSSanjay Patel   replaceValue(I, *Shuf);
583b6050ca1SSanjay Patel   return true;
584b6050ca1SSanjay Patel }
585b6050ca1SSanjay Patel 
586ed67f5e7SSanjay Patel /// Match a vector binop or compare instruction with at least one inserted
587ed67f5e7SSanjay Patel /// scalar operand and convert to scalar binop/cmp followed by insertelement.
5886bdd531aSSanjay Patel bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) {
589ed67f5e7SSanjay Patel   CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
5905dc4e7c2SSimon Pilgrim   Value *Ins0, *Ins1;
591ed67f5e7SSanjay Patel   if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) &&
592ed67f5e7SSanjay Patel       !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1))))
593ed67f5e7SSanjay Patel     return false;
594ed67f5e7SSanjay Patel 
595ed67f5e7SSanjay Patel   // Do not convert the vector condition of a vector select into a scalar
596ed67f5e7SSanjay Patel   // condition. That may cause problems for codegen because of differences in
597ed67f5e7SSanjay Patel   // boolean formats and register-file transfers.
598ed67f5e7SSanjay Patel   // TODO: Can we account for that in the cost model?
599ed67f5e7SSanjay Patel   bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE;
600ed67f5e7SSanjay Patel   if (IsCmp)
601ed67f5e7SSanjay Patel     for (User *U : I.users())
602ed67f5e7SSanjay Patel       if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value())))
6030d2a0b44SSanjay Patel         return false;
6040d2a0b44SSanjay Patel 
6055dc4e7c2SSimon Pilgrim   // Match against one or both scalar values being inserted into constant
6065dc4e7c2SSimon Pilgrim   // vectors:
607ed67f5e7SSanjay Patel   // vec_op VecC0, (inselt VecC1, V1, Index)
608ed67f5e7SSanjay Patel   // vec_op (inselt VecC0, V0, Index), VecC1
609ed67f5e7SSanjay Patel   // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index)
6100d2a0b44SSanjay Patel   // TODO: Deal with mismatched index constants and variable indexes?
6115dc4e7c2SSimon Pilgrim   Constant *VecC0 = nullptr, *VecC1 = nullptr;
6125dc4e7c2SSimon Pilgrim   Value *V0 = nullptr, *V1 = nullptr;
6135dc4e7c2SSimon Pilgrim   uint64_t Index0 = 0, Index1 = 0;
6147eed772aSSanjay Patel   if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0),
6155dc4e7c2SSimon Pilgrim                                m_ConstantInt(Index0))) &&
6165dc4e7c2SSimon Pilgrim       !match(Ins0, m_Constant(VecC0)))
6175dc4e7c2SSimon Pilgrim     return false;
6185dc4e7c2SSimon Pilgrim   if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1),
6195dc4e7c2SSimon Pilgrim                                m_ConstantInt(Index1))) &&
6205dc4e7c2SSimon Pilgrim       !match(Ins1, m_Constant(VecC1)))
6210d2a0b44SSanjay Patel     return false;
6220d2a0b44SSanjay Patel 
6235dc4e7c2SSimon Pilgrim   bool IsConst0 = !V0;
6245dc4e7c2SSimon Pilgrim   bool IsConst1 = !V1;
6255dc4e7c2SSimon Pilgrim   if (IsConst0 && IsConst1)
6265dc4e7c2SSimon Pilgrim     return false;
6275dc4e7c2SSimon Pilgrim   if (!IsConst0 && !IsConst1 && Index0 != Index1)
6285dc4e7c2SSimon Pilgrim     return false;
6295dc4e7c2SSimon Pilgrim 
6305dc4e7c2SSimon Pilgrim   // Bail for single insertion if it is a load.
6315dc4e7c2SSimon Pilgrim   // TODO: Handle this once getVectorInstrCost can cost for load/stores.
6325dc4e7c2SSimon Pilgrim   auto *I0 = dyn_cast_or_null<Instruction>(V0);
6335dc4e7c2SSimon Pilgrim   auto *I1 = dyn_cast_or_null<Instruction>(V1);
6345dc4e7c2SSimon Pilgrim   if ((IsConst0 && I1 && I1->mayReadFromMemory()) ||
6355dc4e7c2SSimon Pilgrim       (IsConst1 && I0 && I0->mayReadFromMemory()))
6365dc4e7c2SSimon Pilgrim     return false;
6375dc4e7c2SSimon Pilgrim 
6385dc4e7c2SSimon Pilgrim   uint64_t Index = IsConst0 ? Index1 : Index0;
6395dc4e7c2SSimon Pilgrim   Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType();
6400d2a0b44SSanjay Patel   Type *VecTy = I.getType();
6415dc4e7c2SSimon Pilgrim   assert(VecTy->isVectorTy() &&
6425dc4e7c2SSimon Pilgrim          (IsConst0 || IsConst1 || V0->getType() == V1->getType()) &&
643741e20f3SSanjay Patel          (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() ||
644741e20f3SSanjay Patel           ScalarTy->isPointerTy()) &&
645741e20f3SSanjay Patel          "Unexpected types for insert element into binop or cmp");
6460d2a0b44SSanjay Patel 
647ed67f5e7SSanjay Patel   unsigned Opcode = I.getOpcode();
64836710c38SCaroline Concatto   InstructionCost ScalarOpCost, VectorOpCost;
649ed67f5e7SSanjay Patel   if (IsCmp) {
6500dcd2b40SSimon Pilgrim     CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate();
6510dcd2b40SSimon Pilgrim     ScalarOpCost = TTI.getCmpSelInstrCost(
6520dcd2b40SSimon Pilgrim         Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred);
6530dcd2b40SSimon Pilgrim     VectorOpCost = TTI.getCmpSelInstrCost(
6540dcd2b40SSimon Pilgrim         Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred);
655ed67f5e7SSanjay Patel   } else {
656ed67f5e7SSanjay Patel     ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
657ed67f5e7SSanjay Patel     VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
658ed67f5e7SSanjay Patel   }
6590d2a0b44SSanjay Patel 
6600d2a0b44SSanjay Patel   // Get cost estimate for the insert element. This cost will factor into
6610d2a0b44SSanjay Patel   // both sequences.
66236710c38SCaroline Concatto   InstructionCost InsertCost =
6630d2a0b44SSanjay Patel       TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index);
66436710c38SCaroline Concatto   InstructionCost OldCost =
66536710c38SCaroline Concatto       (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + VectorOpCost;
66636710c38SCaroline Concatto   InstructionCost NewCost = ScalarOpCost + InsertCost +
6675dc4e7c2SSimon Pilgrim                             (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) +
6685dc4e7c2SSimon Pilgrim                             (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost);
6690d2a0b44SSanjay Patel 
6700d2a0b44SSanjay Patel   // We want to scalarize unless the vector variant actually has lower cost.
67136710c38SCaroline Concatto   if (OldCost < NewCost || !NewCost.isValid())
6720d2a0b44SSanjay Patel     return false;
6730d2a0b44SSanjay Patel 
674ed67f5e7SSanjay Patel   // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) -->
675ed67f5e7SSanjay Patel   // inselt NewVecC, (scalar_op V0, V1), Index
676ed67f5e7SSanjay Patel   if (IsCmp)
677ed67f5e7SSanjay Patel     ++NumScalarCmp;
678ed67f5e7SSanjay Patel   else
6790d2a0b44SSanjay Patel     ++NumScalarBO;
6805dc4e7c2SSimon Pilgrim 
6815dc4e7c2SSimon Pilgrim   // For constant cases, extract the scalar element, this should constant fold.
6825dc4e7c2SSimon Pilgrim   if (IsConst0)
6835dc4e7c2SSimon Pilgrim     V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index));
6845dc4e7c2SSimon Pilgrim   if (IsConst1)
6855dc4e7c2SSimon Pilgrim     V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index));
6865dc4e7c2SSimon Pilgrim 
687ed67f5e7SSanjay Patel   Value *Scalar =
68846a285adSSanjay Patel       IsCmp ? Builder.CreateCmp(Pred, V0, V1)
689ed67f5e7SSanjay Patel             : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1);
690ed67f5e7SSanjay Patel 
691ed67f5e7SSanjay Patel   Scalar->setName(I.getName() + ".scalar");
6920d2a0b44SSanjay Patel 
6930d2a0b44SSanjay Patel   // All IR flags are safe to back-propagate. There is no potential for extra
6940d2a0b44SSanjay Patel   // poison to be created by the scalar instruction.
6950d2a0b44SSanjay Patel   if (auto *ScalarInst = dyn_cast<Instruction>(Scalar))
6960d2a0b44SSanjay Patel     ScalarInst->copyIRFlags(&I);
6970d2a0b44SSanjay Patel 
6980d2a0b44SSanjay Patel   // Fold the vector constants in the original vectors into a new base vector.
699ed67f5e7SSanjay Patel   Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1)
700ed67f5e7SSanjay Patel                             : ConstantExpr::get(Opcode, VecC0, VecC1);
7010d2a0b44SSanjay Patel   Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index);
70298c2f4eeSSanjay Patel   replaceValue(I, *Insert);
7030d2a0b44SSanjay Patel   return true;
7040d2a0b44SSanjay Patel }
7050d2a0b44SSanjay Patel 
706b6315aeeSSanjay Patel /// Try to combine a scalar binop + 2 scalar compares of extracted elements of
707b6315aeeSSanjay Patel /// a vector into vector operations followed by extract. Note: The SLP pass
708b6315aeeSSanjay Patel /// may miss this pattern because of implementation problems.
709b6315aeeSSanjay Patel bool VectorCombine::foldExtractedCmps(Instruction &I) {
710b6315aeeSSanjay Patel   // We are looking for a scalar binop of booleans.
711b6315aeeSSanjay Patel   // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1)
712b6315aeeSSanjay Patel   if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1))
713b6315aeeSSanjay Patel     return false;
714b6315aeeSSanjay Patel 
715b6315aeeSSanjay Patel   // The compare predicates should match, and each compare should have a
716b6315aeeSSanjay Patel   // constant operand.
717b6315aeeSSanjay Patel   // TODO: Relax the one-use constraints.
718b6315aeeSSanjay Patel   Value *B0 = I.getOperand(0), *B1 = I.getOperand(1);
719b6315aeeSSanjay Patel   Instruction *I0, *I1;
720b6315aeeSSanjay Patel   Constant *C0, *C1;
721b6315aeeSSanjay Patel   CmpInst::Predicate P0, P1;
722b6315aeeSSanjay Patel   if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) ||
723b6315aeeSSanjay Patel       !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) ||
724b6315aeeSSanjay Patel       P0 != P1)
725b6315aeeSSanjay Patel     return false;
726b6315aeeSSanjay Patel 
727b6315aeeSSanjay Patel   // The compare operands must be extracts of the same vector with constant
728b6315aeeSSanjay Patel   // extract indexes.
729b6315aeeSSanjay Patel   // TODO: Relax the one-use constraints.
730b6315aeeSSanjay Patel   Value *X;
731b6315aeeSSanjay Patel   uint64_t Index0, Index1;
732b6315aeeSSanjay Patel   if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) ||
733b6315aeeSSanjay Patel       !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1)))))
734b6315aeeSSanjay Patel     return false;
735b6315aeeSSanjay Patel 
736b6315aeeSSanjay Patel   auto *Ext0 = cast<ExtractElementInst>(I0);
737b6315aeeSSanjay Patel   auto *Ext1 = cast<ExtractElementInst>(I1);
738b6315aeeSSanjay Patel   ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1);
739b6315aeeSSanjay Patel   if (!ConvertToShuf)
740b6315aeeSSanjay Patel     return false;
741b6315aeeSSanjay Patel 
742b6315aeeSSanjay Patel   // The original scalar pattern is:
743b6315aeeSSanjay Patel   // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1)
744b6315aeeSSanjay Patel   CmpInst::Predicate Pred = P0;
745b6315aeeSSanjay Patel   unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp
746b6315aeeSSanjay Patel                                                     : Instruction::ICmp;
747b6315aeeSSanjay Patel   auto *VecTy = dyn_cast<FixedVectorType>(X->getType());
748b6315aeeSSanjay Patel   if (!VecTy)
749b6315aeeSSanjay Patel     return false;
750b6315aeeSSanjay Patel 
75136710c38SCaroline Concatto   InstructionCost OldCost =
75236710c38SCaroline Concatto       TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
753b6315aeeSSanjay Patel   OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);
7540dcd2b40SSimon Pilgrim   OldCost +=
7550dcd2b40SSimon Pilgrim       TTI.getCmpSelInstrCost(CmpOpcode, I0->getType(),
7560dcd2b40SSimon Pilgrim                              CmpInst::makeCmpResultType(I0->getType()), Pred) *
7570dcd2b40SSimon Pilgrim       2;
758b6315aeeSSanjay Patel   OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType());
759b6315aeeSSanjay Patel 
760b6315aeeSSanjay Patel   // The proposed vector pattern is:
761b6315aeeSSanjay Patel   // vcmp = cmp Pred X, VecC
762b6315aeeSSanjay Patel   // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0
763b6315aeeSSanjay Patel   int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0;
764b6315aeeSSanjay Patel   int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1;
765b6315aeeSSanjay Patel   auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType()));
7660dcd2b40SSimon Pilgrim   InstructionCost NewCost = TTI.getCmpSelInstrCost(
7670dcd2b40SSimon Pilgrim       CmpOpcode, X->getType(), CmpInst::makeCmpResultType(X->getType()), Pred);
768e2935dcfSDavid Green   SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem);
769e2935dcfSDavid Green   ShufMask[CheapIndex] = ExpensiveIndex;
770e2935dcfSDavid Green   NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy,
771e2935dcfSDavid Green                                 ShufMask);
772b6315aeeSSanjay Patel   NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy);
773b6315aeeSSanjay Patel   NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex);
774b6315aeeSSanjay Patel 
775b6315aeeSSanjay Patel   // Aggressively form vector ops if the cost is equal because the transform
776b6315aeeSSanjay Patel   // may enable further optimization.
777b6315aeeSSanjay Patel   // Codegen can reverse this transform (scalarize) if it was not profitable.
77836710c38SCaroline Concatto   if (OldCost < NewCost || !NewCost.isValid())
779b6315aeeSSanjay Patel     return false;
780b6315aeeSSanjay Patel 
781b6315aeeSSanjay Patel   // Create a vector constant from the 2 scalar constants.
782b6315aeeSSanjay Patel   SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(),
783b6315aeeSSanjay Patel                                    UndefValue::get(VecTy->getElementType()));
784b6315aeeSSanjay Patel   CmpC[Index0] = C0;
785b6315aeeSSanjay Patel   CmpC[Index1] = C1;
786b6315aeeSSanjay Patel   Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC));
787b6315aeeSSanjay Patel 
788b6315aeeSSanjay Patel   Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder);
789b6315aeeSSanjay Patel   Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
790b6315aeeSSanjay Patel                                         VCmp, Shuf);
791b6315aeeSSanjay Patel   Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex);
792b6315aeeSSanjay Patel   replaceValue(I, *NewExt);
793b6315aeeSSanjay Patel   ++NumVecCmpBO;
794b6315aeeSSanjay Patel   return true;
795b6315aeeSSanjay Patel }
796b6315aeeSSanjay Patel 
7972db4979cSQiu Chaofan // Check if memory loc modified between two instrs in the same BB
7982db4979cSQiu Chaofan static bool isMemModifiedBetween(BasicBlock::iterator Begin,
7992db4979cSQiu Chaofan                                  BasicBlock::iterator End,
8002db4979cSQiu Chaofan                                  const MemoryLocation &Loc, AAResults &AA) {
8012db4979cSQiu Chaofan   unsigned NumScanned = 0;
8022db4979cSQiu Chaofan   return std::any_of(Begin, End, [&](const Instruction &Instr) {
8032db4979cSQiu Chaofan     return isModSet(AA.getModRefInfo(&Instr, Loc)) ||
8042db4979cSQiu Chaofan            ++NumScanned > MaxInstrsToScan;
8052db4979cSQiu Chaofan   });
8062db4979cSQiu Chaofan }
8072db4979cSQiu Chaofan 
808c24fc37eSFlorian Hahn /// Helper class to indicate whether a vector index can be safely scalarized and
809c24fc37eSFlorian Hahn /// if a freeze needs to be inserted.
810c24fc37eSFlorian Hahn class ScalarizationResult {
811c24fc37eSFlorian Hahn   enum class StatusTy { Unsafe, Safe, SafeWithFreeze };
812c24fc37eSFlorian Hahn 
813c24fc37eSFlorian Hahn   StatusTy Status;
814c24fc37eSFlorian Hahn   Value *ToFreeze;
815c24fc37eSFlorian Hahn 
816c24fc37eSFlorian Hahn   ScalarizationResult(StatusTy Status, Value *ToFreeze = nullptr)
817c24fc37eSFlorian Hahn       : Status(Status), ToFreeze(ToFreeze) {}
818c24fc37eSFlorian Hahn 
819c24fc37eSFlorian Hahn public:
820c24fc37eSFlorian Hahn   ScalarizationResult(const ScalarizationResult &Other) = default;
821c24fc37eSFlorian Hahn   ~ScalarizationResult() {
822c24fc37eSFlorian Hahn     assert(!ToFreeze && "freeze() not called with ToFreeze being set");
823c24fc37eSFlorian Hahn   }
824c24fc37eSFlorian Hahn 
825c24fc37eSFlorian Hahn   static ScalarizationResult unsafe() { return {StatusTy::Unsafe}; }
826c24fc37eSFlorian Hahn   static ScalarizationResult safe() { return {StatusTy::Safe}; }
827c24fc37eSFlorian Hahn   static ScalarizationResult safeWithFreeze(Value *ToFreeze) {
828c24fc37eSFlorian Hahn     return {StatusTy::SafeWithFreeze, ToFreeze};
829c24fc37eSFlorian Hahn   }
830c24fc37eSFlorian Hahn 
831c24fc37eSFlorian Hahn   /// Returns true if the index can be scalarize without requiring a freeze.
832c24fc37eSFlorian Hahn   bool isSafe() const { return Status == StatusTy::Safe; }
833c24fc37eSFlorian Hahn   /// Returns true if the index cannot be scalarized.
834c24fc37eSFlorian Hahn   bool isUnsafe() const { return Status == StatusTy::Unsafe; }
835c24fc37eSFlorian Hahn   /// Returns true if the index can be scalarize, but requires inserting a
836c24fc37eSFlorian Hahn   /// freeze.
837c24fc37eSFlorian Hahn   bool isSafeWithFreeze() const { return Status == StatusTy::SafeWithFreeze; }
838c24fc37eSFlorian Hahn 
839e2f6290eSFlorian Hahn   /// Reset the state of Unsafe and clear ToFreze if set.
840e2f6290eSFlorian Hahn   void discard() {
841e2f6290eSFlorian Hahn     ToFreeze = nullptr;
842e2f6290eSFlorian Hahn     Status = StatusTy::Unsafe;
843e2f6290eSFlorian Hahn   }
844e2f6290eSFlorian Hahn 
845c24fc37eSFlorian Hahn   /// Freeze the ToFreeze and update the use in \p User to use it.
846c24fc37eSFlorian Hahn   void freeze(IRBuilder<> &Builder, Instruction &UserI) {
847c24fc37eSFlorian Hahn     assert(isSafeWithFreeze() &&
848c24fc37eSFlorian Hahn            "should only be used when freezing is required");
849c24fc37eSFlorian Hahn     assert(is_contained(ToFreeze->users(), &UserI) &&
850c24fc37eSFlorian Hahn            "UserI must be a user of ToFreeze");
851c24fc37eSFlorian Hahn     IRBuilder<>::InsertPointGuard Guard(Builder);
852c24fc37eSFlorian Hahn     Builder.SetInsertPoint(cast<Instruction>(&UserI));
853c24fc37eSFlorian Hahn     Value *Frozen =
854c24fc37eSFlorian Hahn         Builder.CreateFreeze(ToFreeze, ToFreeze->getName() + ".frozen");
855c24fc37eSFlorian Hahn     for (Use &U : make_early_inc_range((UserI.operands())))
856c24fc37eSFlorian Hahn       if (U.get() == ToFreeze)
857c24fc37eSFlorian Hahn         U.set(Frozen);
858c24fc37eSFlorian Hahn 
859c24fc37eSFlorian Hahn     ToFreeze = nullptr;
860c24fc37eSFlorian Hahn   }
861c24fc37eSFlorian Hahn };
862c24fc37eSFlorian Hahn 
8634e8c28b6SFlorian Hahn /// Check if it is legal to scalarize a memory access to \p VecTy at index \p
8644e8c28b6SFlorian Hahn /// Idx. \p Idx must access a valid vector element.
865c24fc37eSFlorian Hahn static ScalarizationResult canScalarizeAccess(FixedVectorType *VecTy,
866c24fc37eSFlorian Hahn                                               Value *Idx, Instruction *CtxI,
8675131037eSFlorian Hahn                                               AssumptionCache &AC,
8685131037eSFlorian Hahn                                               const DominatorTree &DT) {
869c24fc37eSFlorian Hahn   if (auto *C = dyn_cast<ConstantInt>(Idx)) {
870c24fc37eSFlorian Hahn     if (C->getValue().ult(VecTy->getNumElements()))
871c24fc37eSFlorian Hahn       return ScalarizationResult::safe();
872c24fc37eSFlorian Hahn     return ScalarizationResult::unsafe();
873c24fc37eSFlorian Hahn   }
874575e2affSFlorian Hahn 
875c24fc37eSFlorian Hahn   unsigned IntWidth = Idx->getType()->getScalarSizeInBits();
876c24fc37eSFlorian Hahn   APInt Zero(IntWidth, 0);
877c24fc37eSFlorian Hahn   APInt MaxElts(IntWidth, VecTy->getNumElements());
878575e2affSFlorian Hahn   ConstantRange ValidIndices(Zero, MaxElts);
879c24fc37eSFlorian Hahn   ConstantRange IdxRange(IntWidth, true);
880c24fc37eSFlorian Hahn 
881c24fc37eSFlorian Hahn   if (isGuaranteedNotToBePoison(Idx, &AC)) {
8820edf9995SSanjay Patel     if (ValidIndices.contains(computeConstantRange(Idx, /* ForSigned */ false,
8830edf9995SSanjay Patel                                                    true, &AC, CtxI, &DT)))
884c24fc37eSFlorian Hahn       return ScalarizationResult::safe();
885c24fc37eSFlorian Hahn     return ScalarizationResult::unsafe();
886c24fc37eSFlorian Hahn   }
887c24fc37eSFlorian Hahn 
888c24fc37eSFlorian Hahn   // If the index may be poison, check if we can insert a freeze before the
889c24fc37eSFlorian Hahn   // range of the index is restricted.
890c24fc37eSFlorian Hahn   Value *IdxBase;
891c24fc37eSFlorian Hahn   ConstantInt *CI;
892c24fc37eSFlorian Hahn   if (match(Idx, m_And(m_Value(IdxBase), m_ConstantInt(CI)))) {
893c24fc37eSFlorian Hahn     IdxRange = IdxRange.binaryAnd(CI->getValue());
894c24fc37eSFlorian Hahn   } else if (match(Idx, m_URem(m_Value(IdxBase), m_ConstantInt(CI)))) {
895c24fc37eSFlorian Hahn     IdxRange = IdxRange.urem(CI->getValue());
896c24fc37eSFlorian Hahn   }
897c24fc37eSFlorian Hahn 
898c24fc37eSFlorian Hahn   if (ValidIndices.contains(IdxRange))
899c24fc37eSFlorian Hahn     return ScalarizationResult::safeWithFreeze(IdxBase);
900c24fc37eSFlorian Hahn   return ScalarizationResult::unsafe();
9014e8c28b6SFlorian Hahn }
9024e8c28b6SFlorian Hahn 
903abc0e012SRoman Lebedev /// The memory operation on a vector of \p ScalarType had alignment of
904abc0e012SRoman Lebedev /// \p VectorAlignment. Compute the maximal, but conservatively correct,
905abc0e012SRoman Lebedev /// alignment that will be valid for the memory operation on a single scalar
906abc0e012SRoman Lebedev /// element of the same type with index \p Idx.
907abc0e012SRoman Lebedev static Align computeAlignmentAfterScalarization(Align VectorAlignment,
908abc0e012SRoman Lebedev                                                 Type *ScalarType, Value *Idx,
909abc0e012SRoman Lebedev                                                 const DataLayout &DL) {
910abc0e012SRoman Lebedev   if (auto *C = dyn_cast<ConstantInt>(Idx))
911abc0e012SRoman Lebedev     return commonAlignment(VectorAlignment,
912abc0e012SRoman Lebedev                            C->getZExtValue() * DL.getTypeStoreSize(ScalarType));
913abc0e012SRoman Lebedev   return commonAlignment(VectorAlignment, DL.getTypeStoreSize(ScalarType));
914abc0e012SRoman Lebedev }
915abc0e012SRoman Lebedev 
9162db4979cSQiu Chaofan // Combine patterns like:
9172db4979cSQiu Chaofan //   %0 = load <4 x i32>, <4 x i32>* %a
9182db4979cSQiu Chaofan //   %1 = insertelement <4 x i32> %0, i32 %b, i32 1
9192db4979cSQiu Chaofan //   store <4 x i32> %1, <4 x i32>* %a
9202db4979cSQiu Chaofan // to:
9212db4979cSQiu Chaofan //   %0 = bitcast <4 x i32>* %a to i32*
9222db4979cSQiu Chaofan //   %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1
9232db4979cSQiu Chaofan //   store i32 %b, i32* %1
9242db4979cSQiu Chaofan bool VectorCombine::foldSingleElementStore(Instruction &I) {
9252db4979cSQiu Chaofan   StoreInst *SI = dyn_cast<StoreInst>(&I);
9266d2df181SQiu Chaofan   if (!SI || !SI->isSimple() ||
9276d2df181SQiu Chaofan       !isa<FixedVectorType>(SI->getValueOperand()->getType()))
9282db4979cSQiu Chaofan     return false;
9292db4979cSQiu Chaofan 
9302db4979cSQiu Chaofan   // TODO: Combine more complicated patterns (multiple insert) by referencing
9312db4979cSQiu Chaofan   // TargetTransformInfo.
9322db4979cSQiu Chaofan   Instruction *Source;
9336d2df181SQiu Chaofan   Value *NewElement;
934575e2affSFlorian Hahn   Value *Idx;
9352db4979cSQiu Chaofan   if (!match(SI->getValueOperand(),
9362db4979cSQiu Chaofan              m_InsertElt(m_Instruction(Source), m_Value(NewElement),
937575e2affSFlorian Hahn                          m_Value(Idx))))
9382db4979cSQiu Chaofan     return false;
9392db4979cSQiu Chaofan 
9402db4979cSQiu Chaofan   if (auto *Load = dyn_cast<LoadInst>(Source)) {
9416d2df181SQiu Chaofan     auto VecTy = cast<FixedVectorType>(SI->getValueOperand()->getType());
9422db4979cSQiu Chaofan     const DataLayout &DL = I.getModule()->getDataLayout();
9432db4979cSQiu Chaofan     Value *SrcAddr = Load->getPointerOperand()->stripPointerCasts();
9446d2df181SQiu Chaofan     // Don't optimize for atomic/volatile load or store. Ensure memory is not
9456d2df181SQiu Chaofan     // modified between, vector type matches store size, and index is inbounds.
9462db4979cSQiu Chaofan     if (!Load->isSimple() || Load->getParent() != SI->getParent() ||
9472db4979cSQiu Chaofan         !DL.typeSizeEqualsStoreSize(Load->getType()) ||
948c24fc37eSFlorian Hahn         SrcAddr != SI->getPointerOperand()->stripPointerCasts())
949c24fc37eSFlorian Hahn       return false;
950c24fc37eSFlorian Hahn 
9515131037eSFlorian Hahn     auto ScalarizableIdx = canScalarizeAccess(VecTy, Idx, Load, AC, DT);
952c24fc37eSFlorian Hahn     if (ScalarizableIdx.isUnsafe() ||
9532db4979cSQiu Chaofan         isMemModifiedBetween(Load->getIterator(), SI->getIterator(),
9542db4979cSQiu Chaofan                              MemoryLocation::get(SI), AA))
9552db4979cSQiu Chaofan       return false;
9562db4979cSQiu Chaofan 
957c24fc37eSFlorian Hahn     if (ScalarizableIdx.isSafeWithFreeze())
958c24fc37eSFlorian Hahn       ScalarizableIdx.freeze(Builder, *cast<Instruction>(Idx));
959a213f735SNikita Popov     Value *GEP = Builder.CreateInBoundsGEP(
960a213f735SNikita Popov         SI->getValueOperand()->getType(), SI->getPointerOperand(),
961a213f735SNikita Popov         {ConstantInt::get(Idx->getType(), 0), Idx});
9622db4979cSQiu Chaofan     StoreInst *NSI = Builder.CreateStore(NewElement, GEP);
9632db4979cSQiu Chaofan     NSI->copyMetadata(*SI);
964abc0e012SRoman Lebedev     Align ScalarOpAlignment = computeAlignmentAfterScalarization(
965abc0e012SRoman Lebedev         std::max(SI->getAlign(), Load->getAlign()), NewElement->getType(), Idx,
966abc0e012SRoman Lebedev         DL);
967abc0e012SRoman Lebedev     NSI->setAlignment(ScalarOpAlignment);
9682db4979cSQiu Chaofan     replaceValue(I, *NSI);
969300870a9SFlorian Hahn     eraseInstruction(I);
9702db4979cSQiu Chaofan     return true;
9712db4979cSQiu Chaofan   }
9722db4979cSQiu Chaofan 
9732db4979cSQiu Chaofan   return false;
9742db4979cSQiu Chaofan }
9752db4979cSQiu Chaofan 
9764e8c28b6SFlorian Hahn /// Try to scalarize vector loads feeding extractelement instructions.
9774e8c28b6SFlorian Hahn bool VectorCombine::scalarizeLoadExtract(Instruction &I) {
9784e8c28b6SFlorian Hahn   Value *Ptr;
979300870a9SFlorian Hahn   if (!match(&I, m_Load(m_Value(Ptr))))
9804e8c28b6SFlorian Hahn     return false;
9814e8c28b6SFlorian Hahn 
982300870a9SFlorian Hahn   auto *LI = cast<LoadInst>(&I);
9834e8c28b6SFlorian Hahn   const DataLayout &DL = I.getModule()->getDataLayout();
9844e8c28b6SFlorian Hahn   if (LI->isVolatile() || !DL.typeSizeEqualsStoreSize(LI->getType()))
9854e8c28b6SFlorian Hahn     return false;
9864e8c28b6SFlorian Hahn 
9874e8c28b6SFlorian Hahn   auto *FixedVT = dyn_cast<FixedVectorType>(LI->getType());
9884e8c28b6SFlorian Hahn   if (!FixedVT)
9894e8c28b6SFlorian Hahn     return false;
9904e8c28b6SFlorian Hahn 
9915a81a603SArthur Eubanks   InstructionCost OriginalCost =
9925a81a603SArthur Eubanks       TTI.getMemoryOpCost(Instruction::Load, LI->getType(), LI->getAlign(),
9934e8c28b6SFlorian Hahn                           LI->getPointerAddressSpace());
9944e8c28b6SFlorian Hahn   InstructionCost ScalarizedCost = 0;
9954e8c28b6SFlorian Hahn 
9964e8c28b6SFlorian Hahn   Instruction *LastCheckedInst = LI;
9974e8c28b6SFlorian Hahn   unsigned NumInstChecked = 0;
9984e8c28b6SFlorian Hahn   // Check if all users of the load are extracts with no memory modifications
9994e8c28b6SFlorian Hahn   // between the load and the extract. Compute the cost of both the original
10004e8c28b6SFlorian Hahn   // code and the scalarized version.
10014e8c28b6SFlorian Hahn   for (User *U : LI->users()) {
10024e8c28b6SFlorian Hahn     auto *UI = dyn_cast<ExtractElementInst>(U);
10034e8c28b6SFlorian Hahn     if (!UI || UI->getParent() != LI->getParent())
10044e8c28b6SFlorian Hahn       return false;
10054e8c28b6SFlorian Hahn 
100696ca0349SFlorian Hahn     if (!isGuaranteedNotToBePoison(UI->getOperand(1), &AC, LI, &DT))
100796ca0349SFlorian Hahn       return false;
100896ca0349SFlorian Hahn 
10094e8c28b6SFlorian Hahn     // Check if any instruction between the load and the extract may modify
10104e8c28b6SFlorian Hahn     // memory.
10114e8c28b6SFlorian Hahn     if (LastCheckedInst->comesBefore(UI)) {
10124e8c28b6SFlorian Hahn       for (Instruction &I :
10134e8c28b6SFlorian Hahn            make_range(std::next(LI->getIterator()), UI->getIterator())) {
10144e8c28b6SFlorian Hahn         // Bail out if we reached the check limit or the instruction may write
10154e8c28b6SFlorian Hahn         // to memory.
10164e8c28b6SFlorian Hahn         if (NumInstChecked == MaxInstrsToScan || I.mayWriteToMemory())
10174e8c28b6SFlorian Hahn           return false;
10184e8c28b6SFlorian Hahn         NumInstChecked++;
10194e8c28b6SFlorian Hahn       }
1020c141d158SFlorian Hahn       LastCheckedInst = UI;
10214e8c28b6SFlorian Hahn     }
10224e8c28b6SFlorian Hahn 
10235131037eSFlorian Hahn     auto ScalarIdx = canScalarizeAccess(FixedVT, UI->getOperand(1), &I, AC, DT);
1024c24fc37eSFlorian Hahn     if (!ScalarIdx.isSafe()) {
1025c24fc37eSFlorian Hahn       // TODO: Freeze index if it is safe to do so.
1026e2f6290eSFlorian Hahn       ScalarIdx.discard();
1027007f268cSFlorian Hahn       return false;
1028c24fc37eSFlorian Hahn     }
1029007f268cSFlorian Hahn 
10304e8c28b6SFlorian Hahn     auto *Index = dyn_cast<ConstantInt>(UI->getOperand(1));
10314e8c28b6SFlorian Hahn     OriginalCost +=
10324e8c28b6SFlorian Hahn         TTI.getVectorInstrCost(Instruction::ExtractElement, LI->getType(),
10334e8c28b6SFlorian Hahn                                Index ? Index->getZExtValue() : -1);
10344e8c28b6SFlorian Hahn     ScalarizedCost +=
10354e8c28b6SFlorian Hahn         TTI.getMemoryOpCost(Instruction::Load, FixedVT->getElementType(),
10364e8c28b6SFlorian Hahn                             Align(1), LI->getPointerAddressSpace());
10374e8c28b6SFlorian Hahn     ScalarizedCost += TTI.getAddressComputationCost(FixedVT->getElementType());
10384e8c28b6SFlorian Hahn   }
10394e8c28b6SFlorian Hahn 
10404e8c28b6SFlorian Hahn   if (ScalarizedCost >= OriginalCost)
10414e8c28b6SFlorian Hahn     return false;
10424e8c28b6SFlorian Hahn 
10434e8c28b6SFlorian Hahn   // Replace extracts with narrow scalar loads.
10444e8c28b6SFlorian Hahn   for (User *U : LI->users()) {
10454e8c28b6SFlorian Hahn     auto *EI = cast<ExtractElementInst>(U);
10464e8c28b6SFlorian Hahn     Builder.SetInsertPoint(EI);
1047d4c070d8SFlorian Hahn 
1048d4c070d8SFlorian Hahn     Value *Idx = EI->getOperand(1);
1049d4c070d8SFlorian Hahn     Value *GEP =
1050d4c070d8SFlorian Hahn         Builder.CreateInBoundsGEP(FixedVT, Ptr, {Builder.getInt32(0), Idx});
10514e8c28b6SFlorian Hahn     auto *NewLoad = cast<LoadInst>(Builder.CreateLoad(
10524e8c28b6SFlorian Hahn         FixedVT->getElementType(), GEP, EI->getName() + ".scalar"));
10534e8c28b6SFlorian Hahn 
105420542b47SRoman Lebedev     Align ScalarOpAlignment = computeAlignmentAfterScalarization(
105520542b47SRoman Lebedev         LI->getAlign(), FixedVT->getElementType(), Idx, DL);
105620542b47SRoman Lebedev     NewLoad->setAlignment(ScalarOpAlignment);
105720542b47SRoman Lebedev 
10584e8c28b6SFlorian Hahn     replaceValue(*EI, *NewLoad);
10594e8c28b6SFlorian Hahn   }
10604e8c28b6SFlorian Hahn 
10614e8c28b6SFlorian Hahn   return true;
10624e8c28b6SFlorian Hahn }
10634e8c28b6SFlorian Hahn 
106466d22b4dSSanjay Patel /// Try to convert "shuffle (binop), (binop)" with a shared binop operand into
106566d22b4dSSanjay Patel /// "binop (shuffle), (shuffle)".
106666d22b4dSSanjay Patel bool VectorCombine::foldShuffleOfBinops(Instruction &I) {
106766d22b4dSSanjay Patel   auto *VecTy = dyn_cast<FixedVectorType>(I.getType());
106866d22b4dSSanjay Patel   if (!VecTy)
106966d22b4dSSanjay Patel     return false;
107066d22b4dSSanjay Patel 
107166d22b4dSSanjay Patel   BinaryOperator *B0, *B1;
107266d22b4dSSanjay Patel   ArrayRef<int> Mask;
107366d22b4dSSanjay Patel   if (!match(&I, m_Shuffle(m_OneUse(m_BinOp(B0)), m_OneUse(m_BinOp(B1)),
107466d22b4dSSanjay Patel                            m_Mask(Mask))) ||
107566d22b4dSSanjay Patel       B0->getOpcode() != B1->getOpcode() || B0->getType() != VecTy)
107666d22b4dSSanjay Patel     return false;
107766d22b4dSSanjay Patel 
107866d22b4dSSanjay Patel   // Try to replace a binop with a shuffle if the shuffle is not costly.
107966d22b4dSSanjay Patel   // The new shuffle will choose from a single, common operand, so it may be
108066d22b4dSSanjay Patel   // cheaper than the existing two-operand shuffle.
108166d22b4dSSanjay Patel   SmallVector<int> UnaryMask = createUnaryMask(Mask, Mask.size());
108266d22b4dSSanjay Patel   Instruction::BinaryOps Opcode = B0->getOpcode();
108366d22b4dSSanjay Patel   InstructionCost BinopCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
108466d22b4dSSanjay Patel   InstructionCost ShufCost = TTI.getShuffleCost(
108566d22b4dSSanjay Patel       TargetTransformInfo::SK_PermuteSingleSrc, VecTy, UnaryMask);
108666d22b4dSSanjay Patel   if (ShufCost > BinopCost)
108766d22b4dSSanjay Patel     return false;
108866d22b4dSSanjay Patel 
108966d22b4dSSanjay Patel   // If we have something like "add X, Y" and "add Z, X", swap ops to match.
109066d22b4dSSanjay Patel   Value *X = B0->getOperand(0), *Y = B0->getOperand(1);
109166d22b4dSSanjay Patel   Value *Z = B1->getOperand(0), *W = B1->getOperand(1);
109266d22b4dSSanjay Patel   if (BinaryOperator::isCommutative(Opcode) && X != Z && Y != W)
109366d22b4dSSanjay Patel     std::swap(X, Y);
109466d22b4dSSanjay Patel 
109566d22b4dSSanjay Patel   Value *Shuf0, *Shuf1;
109666d22b4dSSanjay Patel   if (X == Z) {
109766d22b4dSSanjay Patel     // shuf (bo X, Y), (bo X, W) --> bo (shuf X), (shuf Y, W)
109866d22b4dSSanjay Patel     Shuf0 = Builder.CreateShuffleVector(X, UnaryMask);
109966d22b4dSSanjay Patel     Shuf1 = Builder.CreateShuffleVector(Y, W, Mask);
110066d22b4dSSanjay Patel   } else if (Y == W) {
110166d22b4dSSanjay Patel     // shuf (bo X, Y), (bo Z, Y) --> bo (shuf X, Z), (shuf Y)
110266d22b4dSSanjay Patel     Shuf0 = Builder.CreateShuffleVector(X, Z, Mask);
110366d22b4dSSanjay Patel     Shuf1 = Builder.CreateShuffleVector(Y, UnaryMask);
110466d22b4dSSanjay Patel   } else {
110566d22b4dSSanjay Patel     return false;
110666d22b4dSSanjay Patel   }
110766d22b4dSSanjay Patel 
110866d22b4dSSanjay Patel   Value *NewBO = Builder.CreateBinOp(Opcode, Shuf0, Shuf1);
110966d22b4dSSanjay Patel   // Intersect flags from the old binops.
111066d22b4dSSanjay Patel   if (auto *NewInst = dyn_cast<Instruction>(NewBO)) {
111166d22b4dSSanjay Patel     NewInst->copyIRFlags(B0);
111266d22b4dSSanjay Patel     NewInst->andIRFlags(B1);
111366d22b4dSSanjay Patel   }
111466d22b4dSSanjay Patel   replaceValue(I, *NewBO);
111566d22b4dSSanjay Patel   return true;
111666d22b4dSSanjay Patel }
111766d22b4dSSanjay Patel 
1118*ded8187eSDavid Green /// Given a commutative reduction, the order of the input lanes does not alter
1119*ded8187eSDavid Green /// the results. We can use this to remove certain shuffles feeding the
1120*ded8187eSDavid Green /// reduction, removing the need to shuffle at all.
1121*ded8187eSDavid Green bool VectorCombine::foldShuffleFromReductions(Instruction &I) {
1122*ded8187eSDavid Green   auto *II = dyn_cast<IntrinsicInst>(&I);
1123*ded8187eSDavid Green   if (!II)
1124*ded8187eSDavid Green     return false;
1125*ded8187eSDavid Green   switch (II->getIntrinsicID()) {
1126*ded8187eSDavid Green   case Intrinsic::vector_reduce_add:
1127*ded8187eSDavid Green   case Intrinsic::vector_reduce_mul:
1128*ded8187eSDavid Green   case Intrinsic::vector_reduce_and:
1129*ded8187eSDavid Green   case Intrinsic::vector_reduce_or:
1130*ded8187eSDavid Green   case Intrinsic::vector_reduce_xor:
1131*ded8187eSDavid Green   case Intrinsic::vector_reduce_smin:
1132*ded8187eSDavid Green   case Intrinsic::vector_reduce_smax:
1133*ded8187eSDavid Green   case Intrinsic::vector_reduce_umin:
1134*ded8187eSDavid Green   case Intrinsic::vector_reduce_umax:
1135*ded8187eSDavid Green     break;
1136*ded8187eSDavid Green   default:
1137*ded8187eSDavid Green     return false;
1138*ded8187eSDavid Green   }
1139*ded8187eSDavid Green 
1140*ded8187eSDavid Green   // Find all the inputs when looking through operations that do not alter the
1141*ded8187eSDavid Green   // lane order (binops, for example). Currently we look for a single shuffle,
1142*ded8187eSDavid Green   // and can ignore splat values.
1143*ded8187eSDavid Green   std::queue<Value *> Worklist;
1144*ded8187eSDavid Green   SmallPtrSet<Value *, 4> Visited;
1145*ded8187eSDavid Green   ShuffleVectorInst *Shuffle = nullptr;
1146*ded8187eSDavid Green   if (auto *Op = dyn_cast<Instruction>(I.getOperand(0)))
1147*ded8187eSDavid Green     Worklist.push(Op);
1148*ded8187eSDavid Green 
1149*ded8187eSDavid Green   while (!Worklist.empty()) {
1150*ded8187eSDavid Green     Value *CV = Worklist.front();
1151*ded8187eSDavid Green     Worklist.pop();
1152*ded8187eSDavid Green     if (Visited.contains(CV))
1153*ded8187eSDavid Green       continue;
1154*ded8187eSDavid Green 
1155*ded8187eSDavid Green     // Splats don't change the order, so can be safely ignored.
1156*ded8187eSDavid Green     if (isSplatValue(CV))
1157*ded8187eSDavid Green       continue;
1158*ded8187eSDavid Green 
1159*ded8187eSDavid Green     Visited.insert(CV);
1160*ded8187eSDavid Green 
1161*ded8187eSDavid Green     if (auto *CI = dyn_cast<Instruction>(CV)) {
1162*ded8187eSDavid Green       if (CI->isBinaryOp()) {
1163*ded8187eSDavid Green         for (auto *Op : CI->operand_values())
1164*ded8187eSDavid Green           Worklist.push(Op);
1165*ded8187eSDavid Green         continue;
1166*ded8187eSDavid Green       } else if (auto *SV = dyn_cast<ShuffleVectorInst>(CI)) {
1167*ded8187eSDavid Green         if (Shuffle && Shuffle != SV)
1168*ded8187eSDavid Green           return false;
1169*ded8187eSDavid Green         Shuffle = SV;
1170*ded8187eSDavid Green         continue;
1171*ded8187eSDavid Green       }
1172*ded8187eSDavid Green     }
1173*ded8187eSDavid Green 
1174*ded8187eSDavid Green     // Anything else is currently an unknown node.
1175*ded8187eSDavid Green     return false;
1176*ded8187eSDavid Green   }
1177*ded8187eSDavid Green 
1178*ded8187eSDavid Green   if (!Shuffle)
1179*ded8187eSDavid Green     return false;
1180*ded8187eSDavid Green 
1181*ded8187eSDavid Green   // Check all uses of the binary ops and shuffles are also included in the
1182*ded8187eSDavid Green   // lane-invariant operations (Visited should be the list of lanewise
1183*ded8187eSDavid Green   // instructions, including the shuffle that we found).
1184*ded8187eSDavid Green   for (auto *V : Visited)
1185*ded8187eSDavid Green     for (auto *U : V->users())
1186*ded8187eSDavid Green       if (!Visited.contains(U) && U != &I)
1187*ded8187eSDavid Green         return false;
1188*ded8187eSDavid Green 
1189*ded8187eSDavid Green   FixedVectorType *VecType =
1190*ded8187eSDavid Green       dyn_cast<FixedVectorType>(II->getOperand(0)->getType());
1191*ded8187eSDavid Green   if (!VecType)
1192*ded8187eSDavid Green     return false;
1193*ded8187eSDavid Green   FixedVectorType *ShuffleInputType =
1194*ded8187eSDavid Green       dyn_cast<FixedVectorType>(Shuffle->getOperand(0)->getType());
1195*ded8187eSDavid Green   if (!ShuffleInputType)
1196*ded8187eSDavid Green     return false;
1197*ded8187eSDavid Green   int NumInputElts = ShuffleInputType->getNumElements();
1198*ded8187eSDavid Green 
1199*ded8187eSDavid Green   // Find the mask from sorting the lanes into order. This is most likely to
1200*ded8187eSDavid Green   // become a identity or concat mask. Undef elements are pushed to the end.
1201*ded8187eSDavid Green   SmallVector<int> ConcatMask;
1202*ded8187eSDavid Green   Shuffle->getShuffleMask(ConcatMask);
1203*ded8187eSDavid Green   sort(ConcatMask, [](int X, int Y) {
1204*ded8187eSDavid Green     return Y == UndefMaskElem ? true : (X == UndefMaskElem ? false : X < Y);
1205*ded8187eSDavid Green   });
1206*ded8187eSDavid Green   bool UsesSecondVec =
1207*ded8187eSDavid Green       any_of(ConcatMask, [&](int M) { return M >= NumInputElts; });
1208*ded8187eSDavid Green   InstructionCost OldCost = TTI.getShuffleCost(
1209*ded8187eSDavid Green       UsesSecondVec ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc, VecType,
1210*ded8187eSDavid Green       Shuffle->getShuffleMask());
1211*ded8187eSDavid Green   InstructionCost NewCost = TTI.getShuffleCost(
1212*ded8187eSDavid Green       UsesSecondVec ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc, VecType,
1213*ded8187eSDavid Green       ConcatMask);
1214*ded8187eSDavid Green 
1215*ded8187eSDavid Green   LLVM_DEBUG(dbgs() << "Found a reduction feeding from a shuffle: " << *Shuffle
1216*ded8187eSDavid Green                     << "\n");
1217*ded8187eSDavid Green   LLVM_DEBUG(dbgs() << "  OldCost: " << OldCost << " vs NewCost: " << NewCost
1218*ded8187eSDavid Green                     << "\n");
1219*ded8187eSDavid Green   if (NewCost < OldCost) {
1220*ded8187eSDavid Green     Builder.SetInsertPoint(Shuffle);
1221*ded8187eSDavid Green     Value *NewShuffle = Builder.CreateShuffleVector(
1222*ded8187eSDavid Green         Shuffle->getOperand(0), Shuffle->getOperand(1), ConcatMask);
1223*ded8187eSDavid Green     LLVM_DEBUG(dbgs() << "Created new shuffle: " << *NewShuffle << "\n");
1224*ded8187eSDavid Green     replaceValue(*Shuffle, *NewShuffle);
1225*ded8187eSDavid Green   }
1226*ded8187eSDavid Green 
1227*ded8187eSDavid Green   return false;
1228*ded8187eSDavid Green }
1229*ded8187eSDavid Green 
1230a17f03bdSSanjay Patel /// This is the entry point for all transforms. Pass manager differences are
1231a17f03bdSSanjay Patel /// handled in the callers of this function.
12326bdd531aSSanjay Patel bool VectorCombine::run() {
123325c6544fSSanjay Patel   if (DisableVectorCombine)
123425c6544fSSanjay Patel     return false;
123525c6544fSSanjay Patel 
1236cc892fd9SSanjay Patel   // Don't attempt vectorization if the target does not support vectors.
1237cc892fd9SSanjay Patel   if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true)))
1238cc892fd9SSanjay Patel     return false;
1239cc892fd9SSanjay Patel 
1240a17f03bdSSanjay Patel   bool MadeChange = false;
1241300870a9SFlorian Hahn   auto FoldInst = [this, &MadeChange](Instruction &I) {
1242de65b356SSanjay Patel     Builder.SetInsertPoint(&I);
12434a1d63d7SFlorian Hahn     if (!ScalarizationOnly) {
124443bdac29SSanjay Patel       MadeChange |= vectorizeLoadInsert(I);
12456bdd531aSSanjay Patel       MadeChange |= foldExtractExtract(I);
12466bdd531aSSanjay Patel       MadeChange |= foldBitcastShuf(I);
1247b6315aeeSSanjay Patel       MadeChange |= foldExtractedCmps(I);
124866d22b4dSSanjay Patel       MadeChange |= foldShuffleOfBinops(I);
1249*ded8187eSDavid Green       MadeChange |= foldShuffleFromReductions(I);
12504a1d63d7SFlorian Hahn     }
12514a1d63d7SFlorian Hahn     MadeChange |= scalarizeBinopOrCmp(I);
12524e8c28b6SFlorian Hahn     MadeChange |= scalarizeLoadExtract(I);
12532db4979cSQiu Chaofan     MadeChange |= foldSingleElementStore(I);
1254300870a9SFlorian Hahn   };
1255300870a9SFlorian Hahn   for (BasicBlock &BB : F) {
1256300870a9SFlorian Hahn     // Ignore unreachable basic blocks.
1257300870a9SFlorian Hahn     if (!DT.isReachableFromEntry(&BB))
1258300870a9SFlorian Hahn       continue;
1259300870a9SFlorian Hahn     // Use early increment range so that we can erase instructions in loop.
1260300870a9SFlorian Hahn     for (Instruction &I : make_early_inc_range(BB)) {
1261098a0d8fSHongtao Yu       if (I.isDebugOrPseudoInst())
1262300870a9SFlorian Hahn         continue;
1263300870a9SFlorian Hahn       FoldInst(I);
1264a17f03bdSSanjay Patel     }
1265fc3cc8a4SSanjay Patel   }
1266a17f03bdSSanjay Patel 
1267300870a9SFlorian Hahn   while (!Worklist.isEmpty()) {
1268300870a9SFlorian Hahn     Instruction *I = Worklist.removeOne();
1269300870a9SFlorian Hahn     if (!I)
1270300870a9SFlorian Hahn       continue;
1271300870a9SFlorian Hahn 
1272300870a9SFlorian Hahn     if (isInstructionTriviallyDead(I)) {
1273300870a9SFlorian Hahn       eraseInstruction(*I);
1274300870a9SFlorian Hahn       continue;
1275300870a9SFlorian Hahn     }
1276300870a9SFlorian Hahn 
1277300870a9SFlorian Hahn     FoldInst(*I);
1278300870a9SFlorian Hahn   }
1279a17f03bdSSanjay Patel 
1280a17f03bdSSanjay Patel   return MadeChange;
1281a17f03bdSSanjay Patel }
1282a17f03bdSSanjay Patel 
1283a17f03bdSSanjay Patel // Pass manager boilerplate below here.
1284a17f03bdSSanjay Patel 
1285a17f03bdSSanjay Patel namespace {
1286a17f03bdSSanjay Patel class VectorCombineLegacyPass : public FunctionPass {
1287a17f03bdSSanjay Patel public:
1288a17f03bdSSanjay Patel   static char ID;
1289a17f03bdSSanjay Patel   VectorCombineLegacyPass() : FunctionPass(ID) {
1290a17f03bdSSanjay Patel     initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry());
1291a17f03bdSSanjay Patel   }
1292a17f03bdSSanjay Patel 
1293a17f03bdSSanjay Patel   void getAnalysisUsage(AnalysisUsage &AU) const override {
1294575e2affSFlorian Hahn     AU.addRequired<AssumptionCacheTracker>();
1295a17f03bdSSanjay Patel     AU.addRequired<DominatorTreeWrapperPass>();
1296a17f03bdSSanjay Patel     AU.addRequired<TargetTransformInfoWrapperPass>();
12972db4979cSQiu Chaofan     AU.addRequired<AAResultsWrapperPass>();
1298a17f03bdSSanjay Patel     AU.setPreservesCFG();
1299a17f03bdSSanjay Patel     AU.addPreserved<DominatorTreeWrapperPass>();
1300a17f03bdSSanjay Patel     AU.addPreserved<GlobalsAAWrapperPass>();
1301024098aeSSanjay Patel     AU.addPreserved<AAResultsWrapperPass>();
1302024098aeSSanjay Patel     AU.addPreserved<BasicAAWrapperPass>();
1303a17f03bdSSanjay Patel     FunctionPass::getAnalysisUsage(AU);
1304a17f03bdSSanjay Patel   }
1305a17f03bdSSanjay Patel 
1306a17f03bdSSanjay Patel   bool runOnFunction(Function &F) override {
1307a17f03bdSSanjay Patel     if (skipFunction(F))
1308a17f03bdSSanjay Patel       return false;
1309575e2affSFlorian Hahn     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1310a17f03bdSSanjay Patel     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1311a17f03bdSSanjay Patel     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
13122db4979cSQiu Chaofan     auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
13134a1d63d7SFlorian Hahn     VectorCombine Combiner(F, TTI, DT, AA, AC, false);
13146bdd531aSSanjay Patel     return Combiner.run();
1315a17f03bdSSanjay Patel   }
1316a17f03bdSSanjay Patel };
1317a17f03bdSSanjay Patel } // namespace
1318a17f03bdSSanjay Patel 
1319a17f03bdSSanjay Patel char VectorCombineLegacyPass::ID = 0;
1320a17f03bdSSanjay Patel INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine",
1321a17f03bdSSanjay Patel                       "Optimize scalar/vector ops", false,
1322a17f03bdSSanjay Patel                       false)
1323575e2affSFlorian Hahn INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1324a17f03bdSSanjay Patel INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1325a17f03bdSSanjay Patel INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine",
1326a17f03bdSSanjay Patel                     "Optimize scalar/vector ops", false, false)
1327a17f03bdSSanjay Patel Pass *llvm::createVectorCombinePass() {
1328a17f03bdSSanjay Patel   return new VectorCombineLegacyPass();
1329a17f03bdSSanjay Patel }
1330a17f03bdSSanjay Patel 
1331a17f03bdSSanjay Patel PreservedAnalyses VectorCombinePass::run(Function &F,
1332a17f03bdSSanjay Patel                                          FunctionAnalysisManager &FAM) {
1333575e2affSFlorian Hahn   auto &AC = FAM.getResult<AssumptionAnalysis>(F);
1334a17f03bdSSanjay Patel   TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
1335a17f03bdSSanjay Patel   DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
13362db4979cSQiu Chaofan   AAResults &AA = FAM.getResult<AAManager>(F);
13374a1d63d7SFlorian Hahn   VectorCombine Combiner(F, TTI, DT, AA, AC, ScalarizationOnly);
13386bdd531aSSanjay Patel   if (!Combiner.run())
1339a17f03bdSSanjay Patel     return PreservedAnalyses::all();
1340a17f03bdSSanjay Patel   PreservedAnalyses PA;
1341a17f03bdSSanjay Patel   PA.preserveSet<CFGAnalyses>();
1342a17f03bdSSanjay Patel   return PA;
1343a17f03bdSSanjay Patel }
1344