1a17f03bdSSanjay Patel //===------- VectorCombine.cpp - Optimize partial vector operations -------===//
2a17f03bdSSanjay Patel //
3a17f03bdSSanjay Patel // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4a17f03bdSSanjay Patel // See https://llvm.org/LICENSE.txt for license information.
5a17f03bdSSanjay Patel // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6a17f03bdSSanjay Patel //
7a17f03bdSSanjay Patel //===----------------------------------------------------------------------===//
8a17f03bdSSanjay Patel //
9a17f03bdSSanjay Patel // This pass optimizes scalar/vector interactions using target cost models. The
10a17f03bdSSanjay Patel // transforms implemented here may not fit in traditional loop-based or SLP
11a17f03bdSSanjay Patel // vectorization passes.
12a17f03bdSSanjay Patel //
13a17f03bdSSanjay Patel //===----------------------------------------------------------------------===//
14a17f03bdSSanjay Patel 
15a17f03bdSSanjay Patel #include "llvm/Transforms/Vectorize/VectorCombine.h"
16a17f03bdSSanjay Patel #include "llvm/ADT/Statistic.h"
175006e551SSimon Pilgrim #include "llvm/Analysis/BasicAliasAnalysis.h"
18a17f03bdSSanjay Patel #include "llvm/Analysis/GlobalsModRef.h"
1943bdac29SSanjay Patel #include "llvm/Analysis/Loads.h"
20a17f03bdSSanjay Patel #include "llvm/Analysis/TargetTransformInfo.h"
2119b62b79SSanjay Patel #include "llvm/Analysis/ValueTracking.h"
22b6050ca1SSanjay Patel #include "llvm/Analysis/VectorUtils.h"
23a17f03bdSSanjay Patel #include "llvm/IR/Dominators.h"
24a17f03bdSSanjay Patel #include "llvm/IR/Function.h"
25a17f03bdSSanjay Patel #include "llvm/IR/IRBuilder.h"
26a17f03bdSSanjay Patel #include "llvm/IR/PatternMatch.h"
27a17f03bdSSanjay Patel #include "llvm/InitializePasses.h"
28a17f03bdSSanjay Patel #include "llvm/Pass.h"
2925c6544fSSanjay Patel #include "llvm/Support/CommandLine.h"
30a17f03bdSSanjay Patel #include "llvm/Transforms/Utils/Local.h"
315006e551SSimon Pilgrim #include "llvm/Transforms/Vectorize.h"
32a17f03bdSSanjay Patel 
33a17f03bdSSanjay Patel using namespace llvm;
34a17f03bdSSanjay Patel using namespace llvm::PatternMatch;
35a17f03bdSSanjay Patel 
36a17f03bdSSanjay Patel #define DEBUG_TYPE "vector-combine"
3743bdac29SSanjay Patel STATISTIC(NumVecLoad, "Number of vector loads formed");
38a17f03bdSSanjay Patel STATISTIC(NumVecCmp, "Number of vector compares formed");
3919b62b79SSanjay Patel STATISTIC(NumVecBO, "Number of vector binops formed");
40b6315aeeSSanjay Patel STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed");
417aeb41b3SRoman Lebedev STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast");
420d2a0b44SSanjay Patel STATISTIC(NumScalarBO, "Number of scalar binops formed");
43ed67f5e7SSanjay Patel STATISTIC(NumScalarCmp, "Number of scalar compares formed");
44a17f03bdSSanjay Patel 
4525c6544fSSanjay Patel static cl::opt<bool> DisableVectorCombine(
4625c6544fSSanjay Patel     "disable-vector-combine", cl::init(false), cl::Hidden,
4725c6544fSSanjay Patel     cl::desc("Disable all vector combine transforms"));
4825c6544fSSanjay Patel 
49a69158c1SSanjay Patel static cl::opt<bool> DisableBinopExtractShuffle(
50a69158c1SSanjay Patel     "disable-binop-extract-shuffle", cl::init(false), cl::Hidden,
51a69158c1SSanjay Patel     cl::desc("Disable binop extract to shuffle transforms"));
52a69158c1SSanjay Patel 
53a0f96741SSanjay Patel static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max();
54a0f96741SSanjay Patel 
55b4447054SBenjamin Kramer namespace {
566bdd531aSSanjay Patel class VectorCombine {
576bdd531aSSanjay Patel public:
586bdd531aSSanjay Patel   VectorCombine(Function &F, const TargetTransformInfo &TTI,
596bdd531aSSanjay Patel                 const DominatorTree &DT)
60de65b356SSanjay Patel       : F(F), Builder(F.getContext()), TTI(TTI), DT(DT) {}
616bdd531aSSanjay Patel 
626bdd531aSSanjay Patel   bool run();
636bdd531aSSanjay Patel 
646bdd531aSSanjay Patel private:
656bdd531aSSanjay Patel   Function &F;
66de65b356SSanjay Patel   IRBuilder<> Builder;
676bdd531aSSanjay Patel   const TargetTransformInfo &TTI;
686bdd531aSSanjay Patel   const DominatorTree &DT;
696bdd531aSSanjay Patel 
7043bdac29SSanjay Patel   bool vectorizeLoadInsert(Instruction &I);
713b95d834SSanjay Patel   ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0,
723b95d834SSanjay Patel                                         ExtractElementInst *Ext1,
733b95d834SSanjay Patel                                         unsigned PreferredExtractIndex) const;
746bdd531aSSanjay Patel   bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
756bdd531aSSanjay Patel                              unsigned Opcode,
766bdd531aSSanjay Patel                              ExtractElementInst *&ConvertToShuffle,
776bdd531aSSanjay Patel                              unsigned PreferredExtractIndex);
78de65b356SSanjay Patel   void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
79de65b356SSanjay Patel                      Instruction &I);
80de65b356SSanjay Patel   void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
81de65b356SSanjay Patel                        Instruction &I);
826bdd531aSSanjay Patel   bool foldExtractExtract(Instruction &I);
836bdd531aSSanjay Patel   bool foldBitcastShuf(Instruction &I);
846bdd531aSSanjay Patel   bool scalarizeBinopOrCmp(Instruction &I);
85b6315aeeSSanjay Patel   bool foldExtractedCmps(Instruction &I);
866bdd531aSSanjay Patel };
87b4447054SBenjamin Kramer } // namespace
88a69158c1SSanjay Patel 
8998c2f4eeSSanjay Patel static void replaceValue(Value &Old, Value &New) {
9098c2f4eeSSanjay Patel   Old.replaceAllUsesWith(&New);
9198c2f4eeSSanjay Patel   New.takeName(&Old);
9298c2f4eeSSanjay Patel }
9398c2f4eeSSanjay Patel 
9443bdac29SSanjay Patel bool VectorCombine::vectorizeLoadInsert(Instruction &I) {
95*ddd9575dSSanjay Patel   // Match insert into fixed vector of scalar load.
96*ddd9575dSSanjay Patel   auto *Ty = dyn_cast<FixedVectorType>(I.getType());
9743bdac29SSanjay Patel   Value *Scalar;
98*ddd9575dSSanjay Patel   if (!Ty || !match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())))
9943bdac29SSanjay Patel     return false;
100*ddd9575dSSanjay Patel 
1014452cc40SFangrui Song   // Do not vectorize scalar load (widening) if atomic/volatile or under
1024452cc40SFangrui Song   // asan/hwasan/memtag/tsan. The widened load may load data from dirty regions
1034452cc40SFangrui Song   // or create data races non-existent in the source.
104*ddd9575dSSanjay Patel   auto *Load = dyn_cast<LoadInst>(Scalar);
1054452cc40SFangrui Song   if (!Load || !Load->isSimple() ||
1064452cc40SFangrui Song       Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) ||
1074452cc40SFangrui Song       mustSuppressSpeculation(*Load))
10843bdac29SSanjay Patel     return false;
10943bdac29SSanjay Patel 
11043bdac29SSanjay Patel   // TODO: Extend this to match GEP with constant offsets.
11143bdac29SSanjay Patel   Value *PtrOp = Load->getPointerOperand()->stripPointerCasts();
11243bdac29SSanjay Patel   assert(isa<PointerType>(PtrOp->getType()) && "Expected a pointer type");
11343bdac29SSanjay Patel 
114*ddd9575dSSanjay Patel   Type *ScalarTy = Scalar->getType();
11543bdac29SSanjay Patel   uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
116*ddd9575dSSanjay Patel   unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
1178fb05593SSanjay Patel   if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0)
11843bdac29SSanjay Patel     return false;
11943bdac29SSanjay Patel 
12043bdac29SSanjay Patel   // Check safety of replacing the scalar load with a larger vector load.
1218fb05593SSanjay Patel   unsigned MinVecNumElts = MinVectorSize / ScalarSize;
1228fb05593SSanjay Patel   auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false);
12343bdac29SSanjay Patel   Align Alignment = Load->getAlign();
12443bdac29SSanjay Patel   const DataLayout &DL = I.getModule()->getDataLayout();
1258fb05593SSanjay Patel   if (!isSafeToLoadUnconditionally(PtrOp, MinVecTy, Alignment, DL, Load, &DT))
12643bdac29SSanjay Patel     return false;
12743bdac29SSanjay Patel 
12811446b02SBjorn Pettersson   unsigned AS = Load->getPointerAddressSpace();
12911446b02SBjorn Pettersson 
13043bdac29SSanjay Patel   // Original pattern: insertelt undef, load [free casts of] ScalarPtr, 0
13111446b02SBjorn Pettersson   int OldCost = TTI.getMemoryOpCost(Instruction::Load, ScalarTy, Alignment, AS);
1328fb05593SSanjay Patel   APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0);
1338fb05593SSanjay Patel   OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts, true, false);
13443bdac29SSanjay Patel 
13543bdac29SSanjay Patel   // New pattern: load VecPtr
1368fb05593SSanjay Patel   int NewCost = TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS);
13743bdac29SSanjay Patel 
13843bdac29SSanjay Patel   // We can aggressively convert to the vector form because the backend can
13943bdac29SSanjay Patel   // invert this transform if it does not result in a performance win.
14043bdac29SSanjay Patel   if (OldCost < NewCost)
14143bdac29SSanjay Patel     return false;
14243bdac29SSanjay Patel 
14343bdac29SSanjay Patel   // It is safe and potentially profitable to load a vector directly:
14443bdac29SSanjay Patel   // inselt undef, load Scalar, 0 --> load VecPtr
14543bdac29SSanjay Patel   IRBuilder<> Builder(Load);
1468fb05593SSanjay Patel   Value *CastedPtr = Builder.CreateBitCast(PtrOp, MinVecTy->getPointerTo(AS));
1478fb05593SSanjay Patel   Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment);
1488fb05593SSanjay Patel 
1498fb05593SSanjay Patel   // If the insert type does not match the target's minimum vector type,
1508fb05593SSanjay Patel   // use an identity shuffle to shrink/grow the vector.
1518fb05593SSanjay Patel   if (Ty != MinVecTy) {
1528fb05593SSanjay Patel     unsigned OutputNumElts = Ty->getNumElements();
1538fb05593SSanjay Patel     SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem);
1548fb05593SSanjay Patel     for (unsigned i = 0; i < OutputNumElts && i < MinVecNumElts; ++i)
1558fb05593SSanjay Patel       Mask[i] = i;
1568fb05593SSanjay Patel     VecLd = Builder.CreateShuffleVector(VecLd, UndefValue::get(MinVecTy), Mask);
1578fb05593SSanjay Patel   }
15843bdac29SSanjay Patel   replaceValue(I, *VecLd);
15943bdac29SSanjay Patel   ++NumVecLoad;
16043bdac29SSanjay Patel   return true;
16143bdac29SSanjay Patel }
16243bdac29SSanjay Patel 
1633b95d834SSanjay Patel /// Determine which, if any, of the inputs should be replaced by a shuffle
1643b95d834SSanjay Patel /// followed by extract from a different index.
1653b95d834SSanjay Patel ExtractElementInst *VectorCombine::getShuffleExtract(
1663b95d834SSanjay Patel     ExtractElementInst *Ext0, ExtractElementInst *Ext1,
1673b95d834SSanjay Patel     unsigned PreferredExtractIndex = InvalidIndex) const {
1683b95d834SSanjay Patel   assert(isa<ConstantInt>(Ext0->getIndexOperand()) &&
1693b95d834SSanjay Patel          isa<ConstantInt>(Ext1->getIndexOperand()) &&
1703b95d834SSanjay Patel          "Expected constant extract indexes");
1713b95d834SSanjay Patel 
1723b95d834SSanjay Patel   unsigned Index0 = cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue();
1733b95d834SSanjay Patel   unsigned Index1 = cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue();
1743b95d834SSanjay Patel 
1753b95d834SSanjay Patel   // If the extract indexes are identical, no shuffle is needed.
1763b95d834SSanjay Patel   if (Index0 == Index1)
1773b95d834SSanjay Patel     return nullptr;
1783b95d834SSanjay Patel 
1793b95d834SSanjay Patel   Type *VecTy = Ext0->getVectorOperand()->getType();
1803b95d834SSanjay Patel   assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types");
1813b95d834SSanjay Patel   int Cost0 = TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
1823b95d834SSanjay Patel   int Cost1 = TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);
1833b95d834SSanjay Patel 
1843b95d834SSanjay Patel   // We are extracting from 2 different indexes, so one operand must be shuffled
1853b95d834SSanjay Patel   // before performing a vector operation and/or extract. The more expensive
1863b95d834SSanjay Patel   // extract will be replaced by a shuffle.
1873b95d834SSanjay Patel   if (Cost0 > Cost1)
1883b95d834SSanjay Patel     return Ext0;
1893b95d834SSanjay Patel   if (Cost1 > Cost0)
1903b95d834SSanjay Patel     return Ext1;
1913b95d834SSanjay Patel 
1923b95d834SSanjay Patel   // If the costs are equal and there is a preferred extract index, shuffle the
1933b95d834SSanjay Patel   // opposite operand.
1943b95d834SSanjay Patel   if (PreferredExtractIndex == Index0)
1953b95d834SSanjay Patel     return Ext1;
1963b95d834SSanjay Patel   if (PreferredExtractIndex == Index1)
1973b95d834SSanjay Patel     return Ext0;
1983b95d834SSanjay Patel 
1993b95d834SSanjay Patel   // Otherwise, replace the extract with the higher index.
2003b95d834SSanjay Patel   return Index0 > Index1 ? Ext0 : Ext1;
2013b95d834SSanjay Patel }
2023b95d834SSanjay Patel 
203a69158c1SSanjay Patel /// Compare the relative costs of 2 extracts followed by scalar operation vs.
204a69158c1SSanjay Patel /// vector operation(s) followed by extract. Return true if the existing
205a69158c1SSanjay Patel /// instructions are cheaper than a vector alternative. Otherwise, return false
206a69158c1SSanjay Patel /// and if one of the extracts should be transformed to a shufflevector, set
207a69158c1SSanjay Patel /// \p ConvertToShuffle to that extract instruction.
2086bdd531aSSanjay Patel bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0,
2096bdd531aSSanjay Patel                                           ExtractElementInst *Ext1,
2106bdd531aSSanjay Patel                                           unsigned Opcode,
211216a37bbSSanjay Patel                                           ExtractElementInst *&ConvertToShuffle,
212ce97ce3aSSanjay Patel                                           unsigned PreferredExtractIndex) {
2134fa63fd4SAustin Kerbow   assert(isa<ConstantInt>(Ext0->getOperand(1)) &&
214a69158c1SSanjay Patel          isa<ConstantInt>(Ext1->getOperand(1)) &&
215a69158c1SSanjay Patel          "Expected constant extract indexes");
21634e34855SSanjay Patel   Type *ScalarTy = Ext0->getType();
217e3056ae9SSam Parker   auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType());
21834e34855SSanjay Patel   int ScalarOpCost, VectorOpCost;
21934e34855SSanjay Patel 
22034e34855SSanjay Patel   // Get cost estimates for scalar and vector versions of the operation.
22134e34855SSanjay Patel   bool IsBinOp = Instruction::isBinaryOp(Opcode);
22234e34855SSanjay Patel   if (IsBinOp) {
22334e34855SSanjay Patel     ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
22434e34855SSanjay Patel     VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
22534e34855SSanjay Patel   } else {
22634e34855SSanjay Patel     assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
22734e34855SSanjay Patel            "Expected a compare");
22834e34855SSanjay Patel     ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy,
22934e34855SSanjay Patel                                           CmpInst::makeCmpResultType(ScalarTy));
23034e34855SSanjay Patel     VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy,
23134e34855SSanjay Patel                                           CmpInst::makeCmpResultType(VecTy));
23234e34855SSanjay Patel   }
23334e34855SSanjay Patel 
234a69158c1SSanjay Patel   // Get cost estimates for the extract elements. These costs will factor into
23534e34855SSanjay Patel   // both sequences.
236a69158c1SSanjay Patel   unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue();
237a69158c1SSanjay Patel   unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue();
238a69158c1SSanjay Patel 
2396bdd531aSSanjay Patel   int Extract0Cost =
2406bdd531aSSanjay Patel       TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index);
2416bdd531aSSanjay Patel   int Extract1Cost =
2426bdd531aSSanjay Patel       TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index);
243a69158c1SSanjay Patel 
244a69158c1SSanjay Patel   // A more expensive extract will always be replaced by a splat shuffle.
245a69158c1SSanjay Patel   // For example, if Ext0 is more expensive:
246a69158c1SSanjay Patel   // opcode (extelt V0, Ext0), (ext V1, Ext1) -->
247a69158c1SSanjay Patel   // extelt (opcode (splat V0, Ext0), V1), Ext1
248a69158c1SSanjay Patel   // TODO: Evaluate whether that always results in lowest cost. Alternatively,
249a69158c1SSanjay Patel   //       check the cost of creating a broadcast shuffle and shuffling both
250a69158c1SSanjay Patel   //       operands to element 0.
251a69158c1SSanjay Patel   int CheapExtractCost = std::min(Extract0Cost, Extract1Cost);
25234e34855SSanjay Patel 
25334e34855SSanjay Patel   // Extra uses of the extracts mean that we include those costs in the
25434e34855SSanjay Patel   // vector total because those instructions will not be eliminated.
255e9c79a7aSSanjay Patel   int OldCost, NewCost;
256a69158c1SSanjay Patel   if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) {
257a69158c1SSanjay Patel     // Handle a special case. If the 2 extracts are identical, adjust the
25834e34855SSanjay Patel     // formulas to account for that. The extra use charge allows for either the
25934e34855SSanjay Patel     // CSE'd pattern or an unoptimized form with identical values:
26034e34855SSanjay Patel     // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C
26134e34855SSanjay Patel     bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2)
26234e34855SSanjay Patel                                   : !Ext0->hasOneUse() || !Ext1->hasOneUse();
263a69158c1SSanjay Patel     OldCost = CheapExtractCost + ScalarOpCost;
264a69158c1SSanjay Patel     NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost;
26534e34855SSanjay Patel   } else {
26634e34855SSanjay Patel     // Handle the general case. Each extract is actually a different value:
267a69158c1SSanjay Patel     // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C
268a69158c1SSanjay Patel     OldCost = Extract0Cost + Extract1Cost + ScalarOpCost;
269a69158c1SSanjay Patel     NewCost = VectorOpCost + CheapExtractCost +
270a69158c1SSanjay Patel               !Ext0->hasOneUse() * Extract0Cost +
271a69158c1SSanjay Patel               !Ext1->hasOneUse() * Extract1Cost;
27234e34855SSanjay Patel   }
273a69158c1SSanjay Patel 
2743b95d834SSanjay Patel   ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex);
2753b95d834SSanjay Patel   if (ConvertToShuffle) {
276a69158c1SSanjay Patel     if (IsBinOp && DisableBinopExtractShuffle)
277a69158c1SSanjay Patel       return true;
278a69158c1SSanjay Patel 
279a69158c1SSanjay Patel     // If we are extracting from 2 different indexes, then one operand must be
280a69158c1SSanjay Patel     // shuffled before performing the vector operation. The shuffle mask is
281a69158c1SSanjay Patel     // undefined except for 1 lane that is being translated to the remaining
282a69158c1SSanjay Patel     // extraction lane. Therefore, it is a splat shuffle. Ex:
283a69158c1SSanjay Patel     // ShufMask = { undef, undef, 0, undef }
284a69158c1SSanjay Patel     // TODO: The cost model has an option for a "broadcast" shuffle
285a69158c1SSanjay Patel     //       (splat-from-element-0), but no option for a more general splat.
286a69158c1SSanjay Patel     NewCost +=
287a69158c1SSanjay Patel         TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
288a69158c1SSanjay Patel   }
289a69158c1SSanjay Patel 
29010ea01d8SSanjay Patel   // Aggressively form a vector op if the cost is equal because the transform
29110ea01d8SSanjay Patel   // may enable further optimization.
29210ea01d8SSanjay Patel   // Codegen can reverse this transform (scalarize) if it was not profitable.
29310ea01d8SSanjay Patel   return OldCost < NewCost;
29434e34855SSanjay Patel }
29534e34855SSanjay Patel 
2969934cc54SSanjay Patel /// Create a shuffle that translates (shifts) 1 element from the input vector
2979934cc54SSanjay Patel /// to a new element location.
2989934cc54SSanjay Patel static Value *createShiftShuffle(Value *Vec, unsigned OldIndex,
2999934cc54SSanjay Patel                                  unsigned NewIndex, IRBuilder<> &Builder) {
3009934cc54SSanjay Patel   // The shuffle mask is undefined except for 1 lane that is being translated
3019934cc54SSanjay Patel   // to the new element index. Example for OldIndex == 2 and NewIndex == 0:
3029934cc54SSanjay Patel   // ShufMask = { 2, undef, undef, undef }
3039934cc54SSanjay Patel   auto *VecTy = cast<FixedVectorType>(Vec->getType());
30454143e2bSSanjay Patel   SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem);
3059934cc54SSanjay Patel   ShufMask[NewIndex] = OldIndex;
3069934cc54SSanjay Patel   Value *Undef = UndefValue::get(VecTy);
3079934cc54SSanjay Patel   return Builder.CreateShuffleVector(Vec, Undef, ShufMask, "shift");
3089934cc54SSanjay Patel }
3099934cc54SSanjay Patel 
310216a37bbSSanjay Patel /// Given an extract element instruction with constant index operand, shuffle
311216a37bbSSanjay Patel /// the source vector (shift the scalar element) to a NewIndex for extraction.
312216a37bbSSanjay Patel /// Return null if the input can be constant folded, so that we are not creating
313216a37bbSSanjay Patel /// unnecessary instructions.
3149934cc54SSanjay Patel static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt,
3159934cc54SSanjay Patel                                             unsigned NewIndex,
3169934cc54SSanjay Patel                                             IRBuilder<> &Builder) {
317216a37bbSSanjay Patel   // If the extract can be constant-folded, this code is unsimplified. Defer
318216a37bbSSanjay Patel   // to other passes to handle that.
319216a37bbSSanjay Patel   Value *X = ExtElt->getVectorOperand();
320216a37bbSSanjay Patel   Value *C = ExtElt->getIndexOperand();
321de65b356SSanjay Patel   assert(isa<ConstantInt>(C) && "Expected a constant index operand");
322216a37bbSSanjay Patel   if (isa<Constant>(X))
323216a37bbSSanjay Patel     return nullptr;
324216a37bbSSanjay Patel 
3259934cc54SSanjay Patel   Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(),
3269934cc54SSanjay Patel                                    NewIndex, Builder);
327216a37bbSSanjay Patel   return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex));
328216a37bbSSanjay Patel }
329216a37bbSSanjay Patel 
330fc445589SSanjay Patel /// Try to reduce extract element costs by converting scalar compares to vector
331fc445589SSanjay Patel /// compares followed by extract.
332e9c79a7aSSanjay Patel /// cmp (ext0 V0, C), (ext1 V1, C)
333de65b356SSanjay Patel void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0,
334de65b356SSanjay Patel                                   ExtractElementInst *Ext1, Instruction &I) {
335fc445589SSanjay Patel   assert(isa<CmpInst>(&I) && "Expected a compare");
336216a37bbSSanjay Patel   assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
337216a37bbSSanjay Patel              cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
338216a37bbSSanjay Patel          "Expected matching constant extract indexes");
339a17f03bdSSanjay Patel 
340a17f03bdSSanjay Patel   // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C
341a17f03bdSSanjay Patel   ++NumVecCmp;
342fc445589SSanjay Patel   CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate();
343216a37bbSSanjay Patel   Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
34446a285adSSanjay Patel   Value *VecCmp = Builder.CreateCmp(Pred, V0, V1);
345216a37bbSSanjay Patel   Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand());
34698c2f4eeSSanjay Patel   replaceValue(I, *NewExt);
347a17f03bdSSanjay Patel }
348a17f03bdSSanjay Patel 
34919b62b79SSanjay Patel /// Try to reduce extract element costs by converting scalar binops to vector
35019b62b79SSanjay Patel /// binops followed by extract.
351e9c79a7aSSanjay Patel /// bo (ext0 V0, C), (ext1 V1, C)
352de65b356SSanjay Patel void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0,
353de65b356SSanjay Patel                                     ExtractElementInst *Ext1, Instruction &I) {
354fc445589SSanjay Patel   assert(isa<BinaryOperator>(&I) && "Expected a binary operator");
355216a37bbSSanjay Patel   assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
356216a37bbSSanjay Patel              cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
357216a37bbSSanjay Patel          "Expected matching constant extract indexes");
35819b62b79SSanjay Patel 
35934e34855SSanjay Patel   // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C
36019b62b79SSanjay Patel   ++NumVecBO;
361216a37bbSSanjay Patel   Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
362e9c79a7aSSanjay Patel   Value *VecBO =
36334e34855SSanjay Patel       Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1);
364e9c79a7aSSanjay Patel 
36519b62b79SSanjay Patel   // All IR flags are safe to back-propagate because any potential poison
36619b62b79SSanjay Patel   // created in unused vector elements is discarded by the extract.
367e9c79a7aSSanjay Patel   if (auto *VecBOInst = dyn_cast<Instruction>(VecBO))
36819b62b79SSanjay Patel     VecBOInst->copyIRFlags(&I);
369e9c79a7aSSanjay Patel 
370216a37bbSSanjay Patel   Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand());
37198c2f4eeSSanjay Patel   replaceValue(I, *NewExt);
37219b62b79SSanjay Patel }
37319b62b79SSanjay Patel 
374fc445589SSanjay Patel /// Match an instruction with extracted vector operands.
3756bdd531aSSanjay Patel bool VectorCombine::foldExtractExtract(Instruction &I) {
376e9c79a7aSSanjay Patel   // It is not safe to transform things like div, urem, etc. because we may
377e9c79a7aSSanjay Patel   // create undefined behavior when executing those on unknown vector elements.
378e9c79a7aSSanjay Patel   if (!isSafeToSpeculativelyExecute(&I))
379e9c79a7aSSanjay Patel     return false;
380e9c79a7aSSanjay Patel 
381216a37bbSSanjay Patel   Instruction *I0, *I1;
382fc445589SSanjay Patel   CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
383216a37bbSSanjay Patel   if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) &&
384216a37bbSSanjay Patel       !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1))))
385fc445589SSanjay Patel     return false;
386fc445589SSanjay Patel 
387fc445589SSanjay Patel   Value *V0, *V1;
388fc445589SSanjay Patel   uint64_t C0, C1;
389216a37bbSSanjay Patel   if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) ||
390216a37bbSSanjay Patel       !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) ||
391fc445589SSanjay Patel       V0->getType() != V1->getType())
392fc445589SSanjay Patel     return false;
393fc445589SSanjay Patel 
394ce97ce3aSSanjay Patel   // If the scalar value 'I' is going to be re-inserted into a vector, then try
395ce97ce3aSSanjay Patel   // to create an extract to that same element. The extract/insert can be
396ce97ce3aSSanjay Patel   // reduced to a "select shuffle".
397ce97ce3aSSanjay Patel   // TODO: If we add a larger pattern match that starts from an insert, this
398ce97ce3aSSanjay Patel   //       probably becomes unnecessary.
399216a37bbSSanjay Patel   auto *Ext0 = cast<ExtractElementInst>(I0);
400216a37bbSSanjay Patel   auto *Ext1 = cast<ExtractElementInst>(I1);
401a0f96741SSanjay Patel   uint64_t InsertIndex = InvalidIndex;
402ce97ce3aSSanjay Patel   if (I.hasOneUse())
4037eed772aSSanjay Patel     match(I.user_back(),
4047eed772aSSanjay Patel           m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex)));
405ce97ce3aSSanjay Patel 
406216a37bbSSanjay Patel   ExtractElementInst *ExtractToChange;
4076bdd531aSSanjay Patel   if (isExtractExtractCheap(Ext0, Ext1, I.getOpcode(), ExtractToChange,
408ce97ce3aSSanjay Patel                             InsertIndex))
409fc445589SSanjay Patel     return false;
410e9c79a7aSSanjay Patel 
411216a37bbSSanjay Patel   if (ExtractToChange) {
412216a37bbSSanjay Patel     unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0;
413216a37bbSSanjay Patel     ExtractElementInst *NewExtract =
4149934cc54SSanjay Patel         translateExtract(ExtractToChange, CheapExtractIdx, Builder);
415216a37bbSSanjay Patel     if (!NewExtract)
4166d864097SSanjay Patel       return false;
417216a37bbSSanjay Patel     if (ExtractToChange == Ext0)
418216a37bbSSanjay Patel       Ext0 = NewExtract;
419a69158c1SSanjay Patel     else
420216a37bbSSanjay Patel       Ext1 = NewExtract;
421a69158c1SSanjay Patel   }
422e9c79a7aSSanjay Patel 
423e9c79a7aSSanjay Patel   if (Pred != CmpInst::BAD_ICMP_PREDICATE)
424039ff29eSSanjay Patel     foldExtExtCmp(Ext0, Ext1, I);
425e9c79a7aSSanjay Patel   else
426039ff29eSSanjay Patel     foldExtExtBinop(Ext0, Ext1, I);
427e9c79a7aSSanjay Patel 
428e9c79a7aSSanjay Patel   return true;
429fc445589SSanjay Patel }
430fc445589SSanjay Patel 
431bef6e67eSSanjay Patel /// If this is a bitcast of a shuffle, try to bitcast the source vector to the
432bef6e67eSSanjay Patel /// destination type followed by shuffle. This can enable further transforms by
433bef6e67eSSanjay Patel /// moving bitcasts or shuffles together.
4346bdd531aSSanjay Patel bool VectorCombine::foldBitcastShuf(Instruction &I) {
435b6050ca1SSanjay Patel   Value *V;
436b6050ca1SSanjay Patel   ArrayRef<int> Mask;
4377eed772aSSanjay Patel   if (!match(&I, m_BitCast(
4387eed772aSSanjay Patel                      m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))))))
439b6050ca1SSanjay Patel     return false;
440b6050ca1SSanjay Patel 
441b4f04d71SHuihui Zhang   // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for
442b4f04d71SHuihui Zhang   // scalable type is unknown; Second, we cannot reason if the narrowed shuffle
443b4f04d71SHuihui Zhang   // mask for scalable type is a splat or not.
444b4f04d71SHuihui Zhang   // 2) Disallow non-vector casts and length-changing shuffles.
445bef6e67eSSanjay Patel   // TODO: We could allow any shuffle.
446b4f04d71SHuihui Zhang   auto *DestTy = dyn_cast<FixedVectorType>(I.getType());
447b4f04d71SHuihui Zhang   auto *SrcTy = dyn_cast<FixedVectorType>(V->getType());
448b4f04d71SHuihui Zhang   if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy)
449b6050ca1SSanjay Patel     return false;
450b6050ca1SSanjay Patel 
451b6050ca1SSanjay Patel   // The new shuffle must not cost more than the old shuffle. The bitcast is
452b6050ca1SSanjay Patel   // moved ahead of the shuffle, so assume that it has the same cost as before.
453b6050ca1SSanjay Patel   if (TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, DestTy) >
454b6050ca1SSanjay Patel       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy))
455b6050ca1SSanjay Patel     return false;
456b6050ca1SSanjay Patel 
457b4f04d71SHuihui Zhang   unsigned DestNumElts = DestTy->getNumElements();
458b4f04d71SHuihui Zhang   unsigned SrcNumElts = SrcTy->getNumElements();
459b6050ca1SSanjay Patel   SmallVector<int, 16> NewMask;
460bef6e67eSSanjay Patel   if (SrcNumElts <= DestNumElts) {
461bef6e67eSSanjay Patel     // The bitcast is from wide to narrow/equal elements. The shuffle mask can
462bef6e67eSSanjay Patel     // always be expanded to the equivalent form choosing narrower elements.
463b6050ca1SSanjay Patel     assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask");
464b6050ca1SSanjay Patel     unsigned ScaleFactor = DestNumElts / SrcNumElts;
4651318ddbcSSanjay Patel     narrowShuffleMaskElts(ScaleFactor, Mask, NewMask);
466bef6e67eSSanjay Patel   } else {
467bef6e67eSSanjay Patel     // The bitcast is from narrow elements to wide elements. The shuffle mask
468bef6e67eSSanjay Patel     // must choose consecutive elements to allow casting first.
469bef6e67eSSanjay Patel     assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask");
470bef6e67eSSanjay Patel     unsigned ScaleFactor = SrcNumElts / DestNumElts;
471bef6e67eSSanjay Patel     if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask))
472bef6e67eSSanjay Patel       return false;
473bef6e67eSSanjay Patel   }
474bef6e67eSSanjay Patel   // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC'
4757aeb41b3SRoman Lebedev   ++NumShufOfBitcast;
476bef6e67eSSanjay Patel   Value *CastV = Builder.CreateBitCast(V, DestTy);
4777eed772aSSanjay Patel   Value *Shuf =
4787eed772aSSanjay Patel       Builder.CreateShuffleVector(CastV, UndefValue::get(DestTy), NewMask);
47998c2f4eeSSanjay Patel   replaceValue(I, *Shuf);
480b6050ca1SSanjay Patel   return true;
481b6050ca1SSanjay Patel }
482b6050ca1SSanjay Patel 
483ed67f5e7SSanjay Patel /// Match a vector binop or compare instruction with at least one inserted
484ed67f5e7SSanjay Patel /// scalar operand and convert to scalar binop/cmp followed by insertelement.
4856bdd531aSSanjay Patel bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) {
486ed67f5e7SSanjay Patel   CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
4875dc4e7c2SSimon Pilgrim   Value *Ins0, *Ins1;
488ed67f5e7SSanjay Patel   if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) &&
489ed67f5e7SSanjay Patel       !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1))))
490ed67f5e7SSanjay Patel     return false;
491ed67f5e7SSanjay Patel 
492ed67f5e7SSanjay Patel   // Do not convert the vector condition of a vector select into a scalar
493ed67f5e7SSanjay Patel   // condition. That may cause problems for codegen because of differences in
494ed67f5e7SSanjay Patel   // boolean formats and register-file transfers.
495ed67f5e7SSanjay Patel   // TODO: Can we account for that in the cost model?
496ed67f5e7SSanjay Patel   bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE;
497ed67f5e7SSanjay Patel   if (IsCmp)
498ed67f5e7SSanjay Patel     for (User *U : I.users())
499ed67f5e7SSanjay Patel       if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value())))
5000d2a0b44SSanjay Patel         return false;
5010d2a0b44SSanjay Patel 
5025dc4e7c2SSimon Pilgrim   // Match against one or both scalar values being inserted into constant
5035dc4e7c2SSimon Pilgrim   // vectors:
504ed67f5e7SSanjay Patel   // vec_op VecC0, (inselt VecC1, V1, Index)
505ed67f5e7SSanjay Patel   // vec_op (inselt VecC0, V0, Index), VecC1
506ed67f5e7SSanjay Patel   // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index)
5070d2a0b44SSanjay Patel   // TODO: Deal with mismatched index constants and variable indexes?
5085dc4e7c2SSimon Pilgrim   Constant *VecC0 = nullptr, *VecC1 = nullptr;
5095dc4e7c2SSimon Pilgrim   Value *V0 = nullptr, *V1 = nullptr;
5105dc4e7c2SSimon Pilgrim   uint64_t Index0 = 0, Index1 = 0;
5117eed772aSSanjay Patel   if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0),
5125dc4e7c2SSimon Pilgrim                                m_ConstantInt(Index0))) &&
5135dc4e7c2SSimon Pilgrim       !match(Ins0, m_Constant(VecC0)))
5145dc4e7c2SSimon Pilgrim     return false;
5155dc4e7c2SSimon Pilgrim   if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1),
5165dc4e7c2SSimon Pilgrim                                m_ConstantInt(Index1))) &&
5175dc4e7c2SSimon Pilgrim       !match(Ins1, m_Constant(VecC1)))
5180d2a0b44SSanjay Patel     return false;
5190d2a0b44SSanjay Patel 
5205dc4e7c2SSimon Pilgrim   bool IsConst0 = !V0;
5215dc4e7c2SSimon Pilgrim   bool IsConst1 = !V1;
5225dc4e7c2SSimon Pilgrim   if (IsConst0 && IsConst1)
5235dc4e7c2SSimon Pilgrim     return false;
5245dc4e7c2SSimon Pilgrim   if (!IsConst0 && !IsConst1 && Index0 != Index1)
5255dc4e7c2SSimon Pilgrim     return false;
5265dc4e7c2SSimon Pilgrim 
5275dc4e7c2SSimon Pilgrim   // Bail for single insertion if it is a load.
5285dc4e7c2SSimon Pilgrim   // TODO: Handle this once getVectorInstrCost can cost for load/stores.
5295dc4e7c2SSimon Pilgrim   auto *I0 = dyn_cast_or_null<Instruction>(V0);
5305dc4e7c2SSimon Pilgrim   auto *I1 = dyn_cast_or_null<Instruction>(V1);
5315dc4e7c2SSimon Pilgrim   if ((IsConst0 && I1 && I1->mayReadFromMemory()) ||
5325dc4e7c2SSimon Pilgrim       (IsConst1 && I0 && I0->mayReadFromMemory()))
5335dc4e7c2SSimon Pilgrim     return false;
5345dc4e7c2SSimon Pilgrim 
5355dc4e7c2SSimon Pilgrim   uint64_t Index = IsConst0 ? Index1 : Index0;
5365dc4e7c2SSimon Pilgrim   Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType();
5370d2a0b44SSanjay Patel   Type *VecTy = I.getType();
5385dc4e7c2SSimon Pilgrim   assert(VecTy->isVectorTy() &&
5395dc4e7c2SSimon Pilgrim          (IsConst0 || IsConst1 || V0->getType() == V1->getType()) &&
540741e20f3SSanjay Patel          (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() ||
541741e20f3SSanjay Patel           ScalarTy->isPointerTy()) &&
542741e20f3SSanjay Patel          "Unexpected types for insert element into binop or cmp");
5430d2a0b44SSanjay Patel 
544ed67f5e7SSanjay Patel   unsigned Opcode = I.getOpcode();
545ed67f5e7SSanjay Patel   int ScalarOpCost, VectorOpCost;
546ed67f5e7SSanjay Patel   if (IsCmp) {
547ed67f5e7SSanjay Patel     ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy);
548ed67f5e7SSanjay Patel     VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy);
549ed67f5e7SSanjay Patel   } else {
550ed67f5e7SSanjay Patel     ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
551ed67f5e7SSanjay Patel     VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
552ed67f5e7SSanjay Patel   }
5530d2a0b44SSanjay Patel 
5540d2a0b44SSanjay Patel   // Get cost estimate for the insert element. This cost will factor into
5550d2a0b44SSanjay Patel   // both sequences.
5560d2a0b44SSanjay Patel   int InsertCost =
5570d2a0b44SSanjay Patel       TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index);
5585dc4e7c2SSimon Pilgrim   int OldCost = (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) +
5595dc4e7c2SSimon Pilgrim                 VectorOpCost;
5605f730b64SSanjay Patel   int NewCost = ScalarOpCost + InsertCost +
5615dc4e7c2SSimon Pilgrim                 (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) +
5625dc4e7c2SSimon Pilgrim                 (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost);
5630d2a0b44SSanjay Patel 
5640d2a0b44SSanjay Patel   // We want to scalarize unless the vector variant actually has lower cost.
5650d2a0b44SSanjay Patel   if (OldCost < NewCost)
5660d2a0b44SSanjay Patel     return false;
5670d2a0b44SSanjay Patel 
568ed67f5e7SSanjay Patel   // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) -->
569ed67f5e7SSanjay Patel   // inselt NewVecC, (scalar_op V0, V1), Index
570ed67f5e7SSanjay Patel   if (IsCmp)
571ed67f5e7SSanjay Patel     ++NumScalarCmp;
572ed67f5e7SSanjay Patel   else
5730d2a0b44SSanjay Patel     ++NumScalarBO;
5745dc4e7c2SSimon Pilgrim 
5755dc4e7c2SSimon Pilgrim   // For constant cases, extract the scalar element, this should constant fold.
5765dc4e7c2SSimon Pilgrim   if (IsConst0)
5775dc4e7c2SSimon Pilgrim     V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index));
5785dc4e7c2SSimon Pilgrim   if (IsConst1)
5795dc4e7c2SSimon Pilgrim     V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index));
5805dc4e7c2SSimon Pilgrim 
581ed67f5e7SSanjay Patel   Value *Scalar =
58246a285adSSanjay Patel       IsCmp ? Builder.CreateCmp(Pred, V0, V1)
583ed67f5e7SSanjay Patel             : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1);
584ed67f5e7SSanjay Patel 
585ed67f5e7SSanjay Patel   Scalar->setName(I.getName() + ".scalar");
5860d2a0b44SSanjay Patel 
5870d2a0b44SSanjay Patel   // All IR flags are safe to back-propagate. There is no potential for extra
5880d2a0b44SSanjay Patel   // poison to be created by the scalar instruction.
5890d2a0b44SSanjay Patel   if (auto *ScalarInst = dyn_cast<Instruction>(Scalar))
5900d2a0b44SSanjay Patel     ScalarInst->copyIRFlags(&I);
5910d2a0b44SSanjay Patel 
5920d2a0b44SSanjay Patel   // Fold the vector constants in the original vectors into a new base vector.
593ed67f5e7SSanjay Patel   Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1)
594ed67f5e7SSanjay Patel                             : ConstantExpr::get(Opcode, VecC0, VecC1);
5950d2a0b44SSanjay Patel   Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index);
59698c2f4eeSSanjay Patel   replaceValue(I, *Insert);
5970d2a0b44SSanjay Patel   return true;
5980d2a0b44SSanjay Patel }
5990d2a0b44SSanjay Patel 
600b6315aeeSSanjay Patel /// Try to combine a scalar binop + 2 scalar compares of extracted elements of
601b6315aeeSSanjay Patel /// a vector into vector operations followed by extract. Note: The SLP pass
602b6315aeeSSanjay Patel /// may miss this pattern because of implementation problems.
603b6315aeeSSanjay Patel bool VectorCombine::foldExtractedCmps(Instruction &I) {
604b6315aeeSSanjay Patel   // We are looking for a scalar binop of booleans.
605b6315aeeSSanjay Patel   // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1)
606b6315aeeSSanjay Patel   if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1))
607b6315aeeSSanjay Patel     return false;
608b6315aeeSSanjay Patel 
609b6315aeeSSanjay Patel   // The compare predicates should match, and each compare should have a
610b6315aeeSSanjay Patel   // constant operand.
611b6315aeeSSanjay Patel   // TODO: Relax the one-use constraints.
612b6315aeeSSanjay Patel   Value *B0 = I.getOperand(0), *B1 = I.getOperand(1);
613b6315aeeSSanjay Patel   Instruction *I0, *I1;
614b6315aeeSSanjay Patel   Constant *C0, *C1;
615b6315aeeSSanjay Patel   CmpInst::Predicate P0, P1;
616b6315aeeSSanjay Patel   if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) ||
617b6315aeeSSanjay Patel       !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) ||
618b6315aeeSSanjay Patel       P0 != P1)
619b6315aeeSSanjay Patel     return false;
620b6315aeeSSanjay Patel 
621b6315aeeSSanjay Patel   // The compare operands must be extracts of the same vector with constant
622b6315aeeSSanjay Patel   // extract indexes.
623b6315aeeSSanjay Patel   // TODO: Relax the one-use constraints.
624b6315aeeSSanjay Patel   Value *X;
625b6315aeeSSanjay Patel   uint64_t Index0, Index1;
626b6315aeeSSanjay Patel   if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) ||
627b6315aeeSSanjay Patel       !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1)))))
628b6315aeeSSanjay Patel     return false;
629b6315aeeSSanjay Patel 
630b6315aeeSSanjay Patel   auto *Ext0 = cast<ExtractElementInst>(I0);
631b6315aeeSSanjay Patel   auto *Ext1 = cast<ExtractElementInst>(I1);
632b6315aeeSSanjay Patel   ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1);
633b6315aeeSSanjay Patel   if (!ConvertToShuf)
634b6315aeeSSanjay Patel     return false;
635b6315aeeSSanjay Patel 
636b6315aeeSSanjay Patel   // The original scalar pattern is:
637b6315aeeSSanjay Patel   // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1)
638b6315aeeSSanjay Patel   CmpInst::Predicate Pred = P0;
639b6315aeeSSanjay Patel   unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp
640b6315aeeSSanjay Patel                                                     : Instruction::ICmp;
641b6315aeeSSanjay Patel   auto *VecTy = dyn_cast<FixedVectorType>(X->getType());
642b6315aeeSSanjay Patel   if (!VecTy)
643b6315aeeSSanjay Patel     return false;
644b6315aeeSSanjay Patel 
645b6315aeeSSanjay Patel   int OldCost = TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
646b6315aeeSSanjay Patel   OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);
647b6315aeeSSanjay Patel   OldCost += TTI.getCmpSelInstrCost(CmpOpcode, I0->getType()) * 2;
648b6315aeeSSanjay Patel   OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType());
649b6315aeeSSanjay Patel 
650b6315aeeSSanjay Patel   // The proposed vector pattern is:
651b6315aeeSSanjay Patel   // vcmp = cmp Pred X, VecC
652b6315aeeSSanjay Patel   // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0
653b6315aeeSSanjay Patel   int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0;
654b6315aeeSSanjay Patel   int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1;
655b6315aeeSSanjay Patel   auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType()));
656b6315aeeSSanjay Patel   int NewCost = TTI.getCmpSelInstrCost(CmpOpcode, X->getType());
657b6315aeeSSanjay Patel   NewCost +=
658b6315aeeSSanjay Patel       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy);
659b6315aeeSSanjay Patel   NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy);
660b6315aeeSSanjay Patel   NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex);
661b6315aeeSSanjay Patel 
662b6315aeeSSanjay Patel   // Aggressively form vector ops if the cost is equal because the transform
663b6315aeeSSanjay Patel   // may enable further optimization.
664b6315aeeSSanjay Patel   // Codegen can reverse this transform (scalarize) if it was not profitable.
665b6315aeeSSanjay Patel   if (OldCost < NewCost)
666b6315aeeSSanjay Patel     return false;
667b6315aeeSSanjay Patel 
668b6315aeeSSanjay Patel   // Create a vector constant from the 2 scalar constants.
669b6315aeeSSanjay Patel   SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(),
670b6315aeeSSanjay Patel                                    UndefValue::get(VecTy->getElementType()));
671b6315aeeSSanjay Patel   CmpC[Index0] = C0;
672b6315aeeSSanjay Patel   CmpC[Index1] = C1;
673b6315aeeSSanjay Patel   Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC));
674b6315aeeSSanjay Patel 
675b6315aeeSSanjay Patel   Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder);
676b6315aeeSSanjay Patel   Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
677b6315aeeSSanjay Patel                                         VCmp, Shuf);
678b6315aeeSSanjay Patel   Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex);
679b6315aeeSSanjay Patel   replaceValue(I, *NewExt);
680b6315aeeSSanjay Patel   ++NumVecCmpBO;
681b6315aeeSSanjay Patel   return true;
682b6315aeeSSanjay Patel }
683b6315aeeSSanjay Patel 
684a17f03bdSSanjay Patel /// This is the entry point for all transforms. Pass manager differences are
685a17f03bdSSanjay Patel /// handled in the callers of this function.
6866bdd531aSSanjay Patel bool VectorCombine::run() {
68725c6544fSSanjay Patel   if (DisableVectorCombine)
68825c6544fSSanjay Patel     return false;
68925c6544fSSanjay Patel 
690cc892fd9SSanjay Patel   // Don't attempt vectorization if the target does not support vectors.
691cc892fd9SSanjay Patel   if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true)))
692cc892fd9SSanjay Patel     return false;
693cc892fd9SSanjay Patel 
694a17f03bdSSanjay Patel   bool MadeChange = false;
695a17f03bdSSanjay Patel   for (BasicBlock &BB : F) {
696a17f03bdSSanjay Patel     // Ignore unreachable basic blocks.
697a17f03bdSSanjay Patel     if (!DT.isReachableFromEntry(&BB))
698a17f03bdSSanjay Patel       continue;
699a17f03bdSSanjay Patel     // Do not delete instructions under here and invalidate the iterator.
70081e9ede3SSanjay Patel     // Walk the block forwards to enable simple iterative chains of transforms.
701a17f03bdSSanjay Patel     // TODO: It could be more efficient to remove dead instructions
702a17f03bdSSanjay Patel     //       iteratively in this loop rather than waiting until the end.
70381e9ede3SSanjay Patel     for (Instruction &I : BB) {
704fc3cc8a4SSanjay Patel       if (isa<DbgInfoIntrinsic>(I))
705fc3cc8a4SSanjay Patel         continue;
706de65b356SSanjay Patel       Builder.SetInsertPoint(&I);
70743bdac29SSanjay Patel       MadeChange |= vectorizeLoadInsert(I);
7086bdd531aSSanjay Patel       MadeChange |= foldExtractExtract(I);
7096bdd531aSSanjay Patel       MadeChange |= foldBitcastShuf(I);
7106bdd531aSSanjay Patel       MadeChange |= scalarizeBinopOrCmp(I);
711b6315aeeSSanjay Patel       MadeChange |= foldExtractedCmps(I);
712a17f03bdSSanjay Patel     }
713fc3cc8a4SSanjay Patel   }
714a17f03bdSSanjay Patel 
715a17f03bdSSanjay Patel   // We're done with transforms, so remove dead instructions.
716a17f03bdSSanjay Patel   if (MadeChange)
717a17f03bdSSanjay Patel     for (BasicBlock &BB : F)
718a17f03bdSSanjay Patel       SimplifyInstructionsInBlock(&BB);
719a17f03bdSSanjay Patel 
720a17f03bdSSanjay Patel   return MadeChange;
721a17f03bdSSanjay Patel }
722a17f03bdSSanjay Patel 
723a17f03bdSSanjay Patel // Pass manager boilerplate below here.
724a17f03bdSSanjay Patel 
725a17f03bdSSanjay Patel namespace {
726a17f03bdSSanjay Patel class VectorCombineLegacyPass : public FunctionPass {
727a17f03bdSSanjay Patel public:
728a17f03bdSSanjay Patel   static char ID;
729a17f03bdSSanjay Patel   VectorCombineLegacyPass() : FunctionPass(ID) {
730a17f03bdSSanjay Patel     initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry());
731a17f03bdSSanjay Patel   }
732a17f03bdSSanjay Patel 
733a17f03bdSSanjay Patel   void getAnalysisUsage(AnalysisUsage &AU) const override {
734a17f03bdSSanjay Patel     AU.addRequired<DominatorTreeWrapperPass>();
735a17f03bdSSanjay Patel     AU.addRequired<TargetTransformInfoWrapperPass>();
736a17f03bdSSanjay Patel     AU.setPreservesCFG();
737a17f03bdSSanjay Patel     AU.addPreserved<DominatorTreeWrapperPass>();
738a17f03bdSSanjay Patel     AU.addPreserved<GlobalsAAWrapperPass>();
739024098aeSSanjay Patel     AU.addPreserved<AAResultsWrapperPass>();
740024098aeSSanjay Patel     AU.addPreserved<BasicAAWrapperPass>();
741a17f03bdSSanjay Patel     FunctionPass::getAnalysisUsage(AU);
742a17f03bdSSanjay Patel   }
743a17f03bdSSanjay Patel 
744a17f03bdSSanjay Patel   bool runOnFunction(Function &F) override {
745a17f03bdSSanjay Patel     if (skipFunction(F))
746a17f03bdSSanjay Patel       return false;
747a17f03bdSSanjay Patel     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
748a17f03bdSSanjay Patel     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
7496bdd531aSSanjay Patel     VectorCombine Combiner(F, TTI, DT);
7506bdd531aSSanjay Patel     return Combiner.run();
751a17f03bdSSanjay Patel   }
752a17f03bdSSanjay Patel };
753a17f03bdSSanjay Patel } // namespace
754a17f03bdSSanjay Patel 
755a17f03bdSSanjay Patel char VectorCombineLegacyPass::ID = 0;
756a17f03bdSSanjay Patel INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine",
757a17f03bdSSanjay Patel                       "Optimize scalar/vector ops", false,
758a17f03bdSSanjay Patel                       false)
759a17f03bdSSanjay Patel INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
760a17f03bdSSanjay Patel INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine",
761a17f03bdSSanjay Patel                     "Optimize scalar/vector ops", false, false)
762a17f03bdSSanjay Patel Pass *llvm::createVectorCombinePass() {
763a17f03bdSSanjay Patel   return new VectorCombineLegacyPass();
764a17f03bdSSanjay Patel }
765a17f03bdSSanjay Patel 
766a17f03bdSSanjay Patel PreservedAnalyses VectorCombinePass::run(Function &F,
767a17f03bdSSanjay Patel                                          FunctionAnalysisManager &FAM) {
768a17f03bdSSanjay Patel   TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
769a17f03bdSSanjay Patel   DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
7706bdd531aSSanjay Patel   VectorCombine Combiner(F, TTI, DT);
7716bdd531aSSanjay Patel   if (!Combiner.run())
772a17f03bdSSanjay Patel     return PreservedAnalyses::all();
773a17f03bdSSanjay Patel   PreservedAnalyses PA;
774a17f03bdSSanjay Patel   PA.preserveSet<CFGAnalyses>();
775a17f03bdSSanjay Patel   PA.preserve<GlobalsAA>();
776024098aeSSanjay Patel   PA.preserve<AAManager>();
777024098aeSSanjay Patel   PA.preserve<BasicAA>();
778a17f03bdSSanjay Patel   return PA;
779a17f03bdSSanjay Patel }
780