1a17f03bdSSanjay Patel //===------- VectorCombine.cpp - Optimize partial vector operations -------===//
2a17f03bdSSanjay Patel //
3a17f03bdSSanjay Patel // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4a17f03bdSSanjay Patel // See https://llvm.org/LICENSE.txt for license information.
5a17f03bdSSanjay Patel // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6a17f03bdSSanjay Patel //
7a17f03bdSSanjay Patel //===----------------------------------------------------------------------===//
8a17f03bdSSanjay Patel //
9a17f03bdSSanjay Patel // This pass optimizes scalar/vector interactions using target cost models. The
10a17f03bdSSanjay Patel // transforms implemented here may not fit in traditional loop-based or SLP
11a17f03bdSSanjay Patel // vectorization passes.
12a17f03bdSSanjay Patel //
13a17f03bdSSanjay Patel //===----------------------------------------------------------------------===//
14a17f03bdSSanjay Patel 
15a17f03bdSSanjay Patel #include "llvm/Transforms/Vectorize/VectorCombine.h"
16a17f03bdSSanjay Patel #include "llvm/ADT/Statistic.h"
17575e2affSFlorian Hahn #include "llvm/Analysis/AssumptionCache.h"
185006e551SSimon Pilgrim #include "llvm/Analysis/BasicAliasAnalysis.h"
19a17f03bdSSanjay Patel #include "llvm/Analysis/GlobalsModRef.h"
2043bdac29SSanjay Patel #include "llvm/Analysis/Loads.h"
21a17f03bdSSanjay Patel #include "llvm/Analysis/TargetTransformInfo.h"
2219b62b79SSanjay Patel #include "llvm/Analysis/ValueTracking.h"
23b6050ca1SSanjay Patel #include "llvm/Analysis/VectorUtils.h"
24a17f03bdSSanjay Patel #include "llvm/IR/Dominators.h"
25a17f03bdSSanjay Patel #include "llvm/IR/Function.h"
26a17f03bdSSanjay Patel #include "llvm/IR/IRBuilder.h"
27a17f03bdSSanjay Patel #include "llvm/IR/PatternMatch.h"
28a17f03bdSSanjay Patel #include "llvm/InitializePasses.h"
29a17f03bdSSanjay Patel #include "llvm/Pass.h"
3025c6544fSSanjay Patel #include "llvm/Support/CommandLine.h"
31a17f03bdSSanjay Patel #include "llvm/Transforms/Utils/Local.h"
325006e551SSimon Pilgrim #include "llvm/Transforms/Vectorize.h"
33a17f03bdSSanjay Patel 
34300870a9SFlorian Hahn #define DEBUG_TYPE "vector-combine"
35300870a9SFlorian Hahn #include "llvm/Transforms/Utils/InstructionWorklist.h"
36300870a9SFlorian Hahn 
37a17f03bdSSanjay Patel using namespace llvm;
38a17f03bdSSanjay Patel using namespace llvm::PatternMatch;
39a17f03bdSSanjay Patel 
4043bdac29SSanjay Patel STATISTIC(NumVecLoad, "Number of vector loads formed");
41a17f03bdSSanjay Patel STATISTIC(NumVecCmp, "Number of vector compares formed");
4219b62b79SSanjay Patel STATISTIC(NumVecBO, "Number of vector binops formed");
43b6315aeeSSanjay Patel STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed");
447aeb41b3SRoman Lebedev STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast");
450d2a0b44SSanjay Patel STATISTIC(NumScalarBO, "Number of scalar binops formed");
46ed67f5e7SSanjay Patel STATISTIC(NumScalarCmp, "Number of scalar compares formed");
47a17f03bdSSanjay Patel 
4825c6544fSSanjay Patel static cl::opt<bool> DisableVectorCombine(
4925c6544fSSanjay Patel     "disable-vector-combine", cl::init(false), cl::Hidden,
5025c6544fSSanjay Patel     cl::desc("Disable all vector combine transforms"));
5125c6544fSSanjay Patel 
52a69158c1SSanjay Patel static cl::opt<bool> DisableBinopExtractShuffle(
53a69158c1SSanjay Patel     "disable-binop-extract-shuffle", cl::init(false), cl::Hidden,
54a69158c1SSanjay Patel     cl::desc("Disable binop extract to shuffle transforms"));
55a69158c1SSanjay Patel 
562db4979cSQiu Chaofan static cl::opt<unsigned> MaxInstrsToScan(
572db4979cSQiu Chaofan     "vector-combine-max-scan-instrs", cl::init(30), cl::Hidden,
582db4979cSQiu Chaofan     cl::desc("Max number of instructions to scan for vector combining."));
592db4979cSQiu Chaofan 
60a0f96741SSanjay Patel static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max();
61a0f96741SSanjay Patel 
62b4447054SBenjamin Kramer namespace {
636bdd531aSSanjay Patel class VectorCombine {
646bdd531aSSanjay Patel public:
656bdd531aSSanjay Patel   VectorCombine(Function &F, const TargetTransformInfo &TTI,
664a1d63d7SFlorian Hahn                 const DominatorTree &DT, AAResults &AA, AssumptionCache &AC,
674a1d63d7SFlorian Hahn                 bool ScalarizationOnly)
684a1d63d7SFlorian Hahn       : F(F), Builder(F.getContext()), TTI(TTI), DT(DT), AA(AA), AC(AC),
694a1d63d7SFlorian Hahn         ScalarizationOnly(ScalarizationOnly) {}
706bdd531aSSanjay Patel 
716bdd531aSSanjay Patel   bool run();
726bdd531aSSanjay Patel 
736bdd531aSSanjay Patel private:
746bdd531aSSanjay Patel   Function &F;
75de65b356SSanjay Patel   IRBuilder<> Builder;
766bdd531aSSanjay Patel   const TargetTransformInfo &TTI;
776bdd531aSSanjay Patel   const DominatorTree &DT;
782db4979cSQiu Chaofan   AAResults &AA;
79575e2affSFlorian Hahn   AssumptionCache &AC;
804a1d63d7SFlorian Hahn 
814a1d63d7SFlorian Hahn   /// If true only perform scalarization combines and do not introduce new
824a1d63d7SFlorian Hahn   /// vector operations.
834a1d63d7SFlorian Hahn   bool ScalarizationOnly;
844a1d63d7SFlorian Hahn 
85300870a9SFlorian Hahn   InstructionWorklist Worklist;
866bdd531aSSanjay Patel 
8743bdac29SSanjay Patel   bool vectorizeLoadInsert(Instruction &I);
883b95d834SSanjay Patel   ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0,
893b95d834SSanjay Patel                                         ExtractElementInst *Ext1,
903b95d834SSanjay Patel                                         unsigned PreferredExtractIndex) const;
916bdd531aSSanjay Patel   bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
920dcd2b40SSimon Pilgrim                              const Instruction &I,
936bdd531aSSanjay Patel                              ExtractElementInst *&ConvertToShuffle,
946bdd531aSSanjay Patel                              unsigned PreferredExtractIndex);
95de65b356SSanjay Patel   void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
96de65b356SSanjay Patel                      Instruction &I);
97de65b356SSanjay Patel   void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
98de65b356SSanjay Patel                        Instruction &I);
996bdd531aSSanjay Patel   bool foldExtractExtract(Instruction &I);
1006bdd531aSSanjay Patel   bool foldBitcastShuf(Instruction &I);
1016bdd531aSSanjay Patel   bool scalarizeBinopOrCmp(Instruction &I);
102b6315aeeSSanjay Patel   bool foldExtractedCmps(Instruction &I);
1032db4979cSQiu Chaofan   bool foldSingleElementStore(Instruction &I);
1044e8c28b6SFlorian Hahn   bool scalarizeLoadExtract(Instruction &I);
10566d22b4dSSanjay Patel   bool foldShuffleOfBinops(Instruction &I);
106a69158c1SSanjay Patel 
107300870a9SFlorian Hahn   void replaceValue(Value &Old, Value &New) {
10898c2f4eeSSanjay Patel     Old.replaceAllUsesWith(&New);
10998c2f4eeSSanjay Patel     New.takeName(&Old);
110300870a9SFlorian Hahn     if (auto *NewI = dyn_cast<Instruction>(&New)) {
111300870a9SFlorian Hahn       Worklist.pushUsersToWorkList(*NewI);
112300870a9SFlorian Hahn       Worklist.pushValue(NewI);
11398c2f4eeSSanjay Patel     }
114300870a9SFlorian Hahn     Worklist.pushValue(&Old);
115300870a9SFlorian Hahn   }
116300870a9SFlorian Hahn 
117300870a9SFlorian Hahn   void eraseInstruction(Instruction &I) {
118300870a9SFlorian Hahn     for (Value *Op : I.operands())
119300870a9SFlorian Hahn       Worklist.pushValue(Op);
120300870a9SFlorian Hahn     Worklist.remove(&I);
121300870a9SFlorian Hahn     I.eraseFromParent();
122300870a9SFlorian Hahn   }
123300870a9SFlorian Hahn };
124300870a9SFlorian Hahn } // namespace
12598c2f4eeSSanjay Patel 
12643bdac29SSanjay Patel bool VectorCombine::vectorizeLoadInsert(Instruction &I) {
127b2ef2640SSanjay Patel   // Match insert into fixed vector of scalar value.
12847aaa99cSSanjay Patel   // TODO: Handle non-zero insert index.
129ddd9575dSSanjay Patel   auto *Ty = dyn_cast<FixedVectorType>(I.getType());
13043bdac29SSanjay Patel   Value *Scalar;
13148a23bccSSanjay Patel   if (!Ty || !match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) ||
13248a23bccSSanjay Patel       !Scalar->hasOneUse())
13343bdac29SSanjay Patel     return false;
134ddd9575dSSanjay Patel 
135b2ef2640SSanjay Patel   // Optionally match an extract from another vector.
136b2ef2640SSanjay Patel   Value *X;
137b2ef2640SSanjay Patel   bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt()));
138b2ef2640SSanjay Patel   if (!HasExtract)
139b2ef2640SSanjay Patel     X = Scalar;
140b2ef2640SSanjay Patel 
141b2ef2640SSanjay Patel   // Match source value as load of scalar or vector.
1424452cc40SFangrui Song   // Do not vectorize scalar load (widening) if atomic/volatile or under
1434452cc40SFangrui Song   // asan/hwasan/memtag/tsan. The widened load may load data from dirty regions
1444452cc40SFangrui Song   // or create data races non-existent in the source.
145b2ef2640SSanjay Patel   auto *Load = dyn_cast<LoadInst>(X);
146b2ef2640SSanjay Patel   if (!Load || !Load->isSimple() || !Load->hasOneUse() ||
1474452cc40SFangrui Song       Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) ||
1484452cc40SFangrui Song       mustSuppressSpeculation(*Load))
14943bdac29SSanjay Patel     return false;
15043bdac29SSanjay Patel 
15112b684aeSSanjay Patel   const DataLayout &DL = I.getModule()->getDataLayout();
15212b684aeSSanjay Patel   Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts();
15312b684aeSSanjay Patel   assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type");
154c36c0fabSArtem Belevich 
155c36c0fabSArtem Belevich   // If original AS != Load's AS, we can't bitcast the original pointer and have
156c36c0fabSArtem Belevich   // to use Load's operand instead. Ideally we would want to strip pointer casts
157c36c0fabSArtem Belevich   // without changing AS, but there's no API to do that ATM.
15812b684aeSSanjay Patel   unsigned AS = Load->getPointerAddressSpace();
15912b684aeSSanjay Patel   if (AS != SrcPtr->getType()->getPointerAddressSpace())
16012b684aeSSanjay Patel     SrcPtr = Load->getPointerOperand();
16143bdac29SSanjay Patel 
16247aaa99cSSanjay Patel   // We are potentially transforming byte-sized (8-bit) memory accesses, so make
16347aaa99cSSanjay Patel   // sure we have all of our type-based constraints in place for this target.
164ddd9575dSSanjay Patel   Type *ScalarTy = Scalar->getType();
16543bdac29SSanjay Patel   uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
166ddd9575dSSanjay Patel   unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
16747aaa99cSSanjay Patel   if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 ||
16847aaa99cSSanjay Patel       ScalarSize % 8 != 0)
16943bdac29SSanjay Patel     return false;
17043bdac29SSanjay Patel 
17143bdac29SSanjay Patel   // Check safety of replacing the scalar load with a larger vector load.
172aaaf0ec7SSanjay Patel   // We use minimal alignment (maximum flexibility) because we only care about
173aaaf0ec7SSanjay Patel   // the dereferenceable region. When calculating cost and creating a new op,
174aaaf0ec7SSanjay Patel   // we may use a larger value based on alignment attributes.
1758fb05593SSanjay Patel   unsigned MinVecNumElts = MinVectorSize / ScalarSize;
1768fb05593SSanjay Patel   auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false);
17747aaa99cSSanjay Patel   unsigned OffsetEltIndex = 0;
17847aaa99cSSanjay Patel   Align Alignment = Load->getAlign();
17947aaa99cSSanjay Patel   if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) {
18047aaa99cSSanjay Patel     // It is not safe to load directly from the pointer, but we can still peek
18147aaa99cSSanjay Patel     // through gep offsets and check if it safe to load from a base address with
18247aaa99cSSanjay Patel     // updated alignment. If it is, we can shuffle the element(s) into place
18347aaa99cSSanjay Patel     // after loading.
18447aaa99cSSanjay Patel     unsigned OffsetBitWidth = DL.getIndexTypeSizeInBits(SrcPtr->getType());
18547aaa99cSSanjay Patel     APInt Offset(OffsetBitWidth, 0);
18647aaa99cSSanjay Patel     SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
18747aaa99cSSanjay Patel 
18847aaa99cSSanjay Patel     // We want to shuffle the result down from a high element of a vector, so
18947aaa99cSSanjay Patel     // the offset must be positive.
19047aaa99cSSanjay Patel     if (Offset.isNegative())
19147aaa99cSSanjay Patel       return false;
19247aaa99cSSanjay Patel 
19347aaa99cSSanjay Patel     // The offset must be a multiple of the scalar element to shuffle cleanly
19447aaa99cSSanjay Patel     // in the element's size.
19547aaa99cSSanjay Patel     uint64_t ScalarSizeInBytes = ScalarSize / 8;
19647aaa99cSSanjay Patel     if (Offset.urem(ScalarSizeInBytes) != 0)
19747aaa99cSSanjay Patel       return false;
19847aaa99cSSanjay Patel 
19947aaa99cSSanjay Patel     // If we load MinVecNumElts, will our target element still be loaded?
20047aaa99cSSanjay Patel     OffsetEltIndex = Offset.udiv(ScalarSizeInBytes).getZExtValue();
20147aaa99cSSanjay Patel     if (OffsetEltIndex >= MinVecNumElts)
20247aaa99cSSanjay Patel       return false;
20347aaa99cSSanjay Patel 
204aaaf0ec7SSanjay Patel     if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT))
20543bdac29SSanjay Patel       return false;
20643bdac29SSanjay Patel 
20747aaa99cSSanjay Patel     // Update alignment with offset value. Note that the offset could be negated
20847aaa99cSSanjay Patel     // to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but
20947aaa99cSSanjay Patel     // negation does not change the result of the alignment calculation.
21047aaa99cSSanjay Patel     Alignment = commonAlignment(Alignment, Offset.getZExtValue());
21147aaa99cSSanjay Patel   }
21247aaa99cSSanjay Patel 
213b2ef2640SSanjay Patel   // Original pattern: insertelt undef, load [free casts of] PtrOp, 0
21438ebc1a1SSanjay Patel   // Use the greater of the alignment on the load or its source pointer.
21547aaa99cSSanjay Patel   Alignment = std::max(SrcPtr->getPointerAlignment(DL), Alignment);
216b2ef2640SSanjay Patel   Type *LoadTy = Load->getType();
21736710c38SCaroline Concatto   InstructionCost OldCost =
21836710c38SCaroline Concatto       TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS);
2198fb05593SSanjay Patel   APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0);
220b2ef2640SSanjay Patel   OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts,
221b2ef2640SSanjay Patel                                           /* Insert */ true, HasExtract);
22243bdac29SSanjay Patel 
22343bdac29SSanjay Patel   // New pattern: load VecPtr
22436710c38SCaroline Concatto   InstructionCost NewCost =
22536710c38SCaroline Concatto       TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS);
22647aaa99cSSanjay Patel   // Optionally, we are shuffling the loaded vector element(s) into place.
227e2935dcfSDavid Green   // For the mask set everything but element 0 to undef to prevent poison from
228e2935dcfSDavid Green   // propagating from the extra loaded memory. This will also optionally
229e2935dcfSDavid Green   // shrink/grow the vector from the loaded size to the output size.
230e2935dcfSDavid Green   // We assume this operation has no cost in codegen if there was no offset.
231e2935dcfSDavid Green   // Note that we could use freeze to avoid poison problems, but then we might
232e2935dcfSDavid Green   // still need a shuffle to change the vector size.
233e2935dcfSDavid Green   unsigned OutputNumElts = Ty->getNumElements();
234e2935dcfSDavid Green   SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem);
235e2935dcfSDavid Green   assert(OffsetEltIndex < MinVecNumElts && "Address offset too big");
236e2935dcfSDavid Green   Mask[0] = OffsetEltIndex;
23747aaa99cSSanjay Patel   if (OffsetEltIndex)
238e2935dcfSDavid Green     NewCost += TTI.getShuffleCost(TTI::SK_PermuteSingleSrc, MinVecTy, Mask);
23943bdac29SSanjay Patel 
24043bdac29SSanjay Patel   // We can aggressively convert to the vector form because the backend can
24143bdac29SSanjay Patel   // invert this transform if it does not result in a performance win.
24236710c38SCaroline Concatto   if (OldCost < NewCost || !NewCost.isValid())
24343bdac29SSanjay Patel     return false;
24443bdac29SSanjay Patel 
24543bdac29SSanjay Patel   // It is safe and potentially profitable to load a vector directly:
24643bdac29SSanjay Patel   // inselt undef, load Scalar, 0 --> load VecPtr
24743bdac29SSanjay Patel   IRBuilder<> Builder(Load);
24812b684aeSSanjay Patel   Value *CastedPtr = Builder.CreateBitCast(SrcPtr, MinVecTy->getPointerTo(AS));
2498fb05593SSanjay Patel   Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment);
2501e6b240dSSanjay Patel   VecLd = Builder.CreateShuffleVector(VecLd, Mask);
251d399f870SSanjay Patel 
25243bdac29SSanjay Patel   replaceValue(I, *VecLd);
25343bdac29SSanjay Patel   ++NumVecLoad;
25443bdac29SSanjay Patel   return true;
25543bdac29SSanjay Patel }
25643bdac29SSanjay Patel 
2573b95d834SSanjay Patel /// Determine which, if any, of the inputs should be replaced by a shuffle
2583b95d834SSanjay Patel /// followed by extract from a different index.
2593b95d834SSanjay Patel ExtractElementInst *VectorCombine::getShuffleExtract(
2603b95d834SSanjay Patel     ExtractElementInst *Ext0, ExtractElementInst *Ext1,
2613b95d834SSanjay Patel     unsigned PreferredExtractIndex = InvalidIndex) const {
2623b95d834SSanjay Patel   assert(isa<ConstantInt>(Ext0->getIndexOperand()) &&
2633b95d834SSanjay Patel          isa<ConstantInt>(Ext1->getIndexOperand()) &&
2643b95d834SSanjay Patel          "Expected constant extract indexes");
2653b95d834SSanjay Patel 
2663b95d834SSanjay Patel   unsigned Index0 = cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue();
2673b95d834SSanjay Patel   unsigned Index1 = cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue();
2683b95d834SSanjay Patel 
2693b95d834SSanjay Patel   // If the extract indexes are identical, no shuffle is needed.
2703b95d834SSanjay Patel   if (Index0 == Index1)
2713b95d834SSanjay Patel     return nullptr;
2723b95d834SSanjay Patel 
2733b95d834SSanjay Patel   Type *VecTy = Ext0->getVectorOperand()->getType();
2743b95d834SSanjay Patel   assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types");
27536710c38SCaroline Concatto   InstructionCost Cost0 =
27636710c38SCaroline Concatto       TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
27736710c38SCaroline Concatto   InstructionCost Cost1 =
27836710c38SCaroline Concatto       TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);
27936710c38SCaroline Concatto 
28036710c38SCaroline Concatto   // If both costs are invalid no shuffle is needed
28136710c38SCaroline Concatto   if (!Cost0.isValid() && !Cost1.isValid())
28236710c38SCaroline Concatto     return nullptr;
2833b95d834SSanjay Patel 
2843b95d834SSanjay Patel   // We are extracting from 2 different indexes, so one operand must be shuffled
2853b95d834SSanjay Patel   // before performing a vector operation and/or extract. The more expensive
2863b95d834SSanjay Patel   // extract will be replaced by a shuffle.
2873b95d834SSanjay Patel   if (Cost0 > Cost1)
2883b95d834SSanjay Patel     return Ext0;
2893b95d834SSanjay Patel   if (Cost1 > Cost0)
2903b95d834SSanjay Patel     return Ext1;
2913b95d834SSanjay Patel 
2923b95d834SSanjay Patel   // If the costs are equal and there is a preferred extract index, shuffle the
2933b95d834SSanjay Patel   // opposite operand.
2943b95d834SSanjay Patel   if (PreferredExtractIndex == Index0)
2953b95d834SSanjay Patel     return Ext1;
2963b95d834SSanjay Patel   if (PreferredExtractIndex == Index1)
2973b95d834SSanjay Patel     return Ext0;
2983b95d834SSanjay Patel 
2993b95d834SSanjay Patel   // Otherwise, replace the extract with the higher index.
3003b95d834SSanjay Patel   return Index0 > Index1 ? Ext0 : Ext1;
3013b95d834SSanjay Patel }
3023b95d834SSanjay Patel 
303a69158c1SSanjay Patel /// Compare the relative costs of 2 extracts followed by scalar operation vs.
304a69158c1SSanjay Patel /// vector operation(s) followed by extract. Return true if the existing
305a69158c1SSanjay Patel /// instructions are cheaper than a vector alternative. Otherwise, return false
306a69158c1SSanjay Patel /// and if one of the extracts should be transformed to a shufflevector, set
307a69158c1SSanjay Patel /// \p ConvertToShuffle to that extract instruction.
3086bdd531aSSanjay Patel bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0,
3096bdd531aSSanjay Patel                                           ExtractElementInst *Ext1,
3100dcd2b40SSimon Pilgrim                                           const Instruction &I,
311216a37bbSSanjay Patel                                           ExtractElementInst *&ConvertToShuffle,
312ce97ce3aSSanjay Patel                                           unsigned PreferredExtractIndex) {
3134fa63fd4SAustin Kerbow   assert(isa<ConstantInt>(Ext0->getOperand(1)) &&
314a69158c1SSanjay Patel          isa<ConstantInt>(Ext1->getOperand(1)) &&
315a69158c1SSanjay Patel          "Expected constant extract indexes");
3160dcd2b40SSimon Pilgrim   unsigned Opcode = I.getOpcode();
31734e34855SSanjay Patel   Type *ScalarTy = Ext0->getType();
318e3056ae9SSam Parker   auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType());
31936710c38SCaroline Concatto   InstructionCost ScalarOpCost, VectorOpCost;
32034e34855SSanjay Patel 
32134e34855SSanjay Patel   // Get cost estimates for scalar and vector versions of the operation.
32234e34855SSanjay Patel   bool IsBinOp = Instruction::isBinaryOp(Opcode);
32334e34855SSanjay Patel   if (IsBinOp) {
32434e34855SSanjay Patel     ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
32534e34855SSanjay Patel     VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
32634e34855SSanjay Patel   } else {
32734e34855SSanjay Patel     assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
32834e34855SSanjay Patel            "Expected a compare");
3290dcd2b40SSimon Pilgrim     CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate();
3300dcd2b40SSimon Pilgrim     ScalarOpCost = TTI.getCmpSelInstrCost(
3310dcd2b40SSimon Pilgrim         Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred);
3320dcd2b40SSimon Pilgrim     VectorOpCost = TTI.getCmpSelInstrCost(
3330dcd2b40SSimon Pilgrim         Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred);
33434e34855SSanjay Patel   }
33534e34855SSanjay Patel 
336a69158c1SSanjay Patel   // Get cost estimates for the extract elements. These costs will factor into
33734e34855SSanjay Patel   // both sequences.
338a69158c1SSanjay Patel   unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue();
339a69158c1SSanjay Patel   unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue();
340a69158c1SSanjay Patel 
34136710c38SCaroline Concatto   InstructionCost Extract0Cost =
3426bdd531aSSanjay Patel       TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index);
34336710c38SCaroline Concatto   InstructionCost Extract1Cost =
3446bdd531aSSanjay Patel       TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index);
345a69158c1SSanjay Patel 
346a69158c1SSanjay Patel   // A more expensive extract will always be replaced by a splat shuffle.
347a69158c1SSanjay Patel   // For example, if Ext0 is more expensive:
348a69158c1SSanjay Patel   // opcode (extelt V0, Ext0), (ext V1, Ext1) -->
349a69158c1SSanjay Patel   // extelt (opcode (splat V0, Ext0), V1), Ext1
350a69158c1SSanjay Patel   // TODO: Evaluate whether that always results in lowest cost. Alternatively,
351a69158c1SSanjay Patel   //       check the cost of creating a broadcast shuffle and shuffling both
352a69158c1SSanjay Patel   //       operands to element 0.
35336710c38SCaroline Concatto   InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost);
35434e34855SSanjay Patel 
35534e34855SSanjay Patel   // Extra uses of the extracts mean that we include those costs in the
35634e34855SSanjay Patel   // vector total because those instructions will not be eliminated.
35736710c38SCaroline Concatto   InstructionCost OldCost, NewCost;
358a69158c1SSanjay Patel   if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) {
359a69158c1SSanjay Patel     // Handle a special case. If the 2 extracts are identical, adjust the
36034e34855SSanjay Patel     // formulas to account for that. The extra use charge allows for either the
36134e34855SSanjay Patel     // CSE'd pattern or an unoptimized form with identical values:
36234e34855SSanjay Patel     // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C
36334e34855SSanjay Patel     bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2)
36434e34855SSanjay Patel                                   : !Ext0->hasOneUse() || !Ext1->hasOneUse();
365a69158c1SSanjay Patel     OldCost = CheapExtractCost + ScalarOpCost;
366a69158c1SSanjay Patel     NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost;
36734e34855SSanjay Patel   } else {
36834e34855SSanjay Patel     // Handle the general case. Each extract is actually a different value:
369a69158c1SSanjay Patel     // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C
370a69158c1SSanjay Patel     OldCost = Extract0Cost + Extract1Cost + ScalarOpCost;
371a69158c1SSanjay Patel     NewCost = VectorOpCost + CheapExtractCost +
372a69158c1SSanjay Patel               !Ext0->hasOneUse() * Extract0Cost +
373a69158c1SSanjay Patel               !Ext1->hasOneUse() * Extract1Cost;
37434e34855SSanjay Patel   }
375a69158c1SSanjay Patel 
3763b95d834SSanjay Patel   ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex);
3773b95d834SSanjay Patel   if (ConvertToShuffle) {
378a69158c1SSanjay Patel     if (IsBinOp && DisableBinopExtractShuffle)
379a69158c1SSanjay Patel       return true;
380a69158c1SSanjay Patel 
381a69158c1SSanjay Patel     // If we are extracting from 2 different indexes, then one operand must be
382a69158c1SSanjay Patel     // shuffled before performing the vector operation. The shuffle mask is
383a69158c1SSanjay Patel     // undefined except for 1 lane that is being translated to the remaining
384a69158c1SSanjay Patel     // extraction lane. Therefore, it is a splat shuffle. Ex:
385a69158c1SSanjay Patel     // ShufMask = { undef, undef, 0, undef }
386a69158c1SSanjay Patel     // TODO: The cost model has an option for a "broadcast" shuffle
387a69158c1SSanjay Patel     //       (splat-from-element-0), but no option for a more general splat.
388a69158c1SSanjay Patel     NewCost +=
389a69158c1SSanjay Patel         TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
390a69158c1SSanjay Patel   }
391a69158c1SSanjay Patel 
39210ea01d8SSanjay Patel   // Aggressively form a vector op if the cost is equal because the transform
39310ea01d8SSanjay Patel   // may enable further optimization.
39410ea01d8SSanjay Patel   // Codegen can reverse this transform (scalarize) if it was not profitable.
39510ea01d8SSanjay Patel   return OldCost < NewCost;
39634e34855SSanjay Patel }
39734e34855SSanjay Patel 
3989934cc54SSanjay Patel /// Create a shuffle that translates (shifts) 1 element from the input vector
3999934cc54SSanjay Patel /// to a new element location.
4009934cc54SSanjay Patel static Value *createShiftShuffle(Value *Vec, unsigned OldIndex,
4019934cc54SSanjay Patel                                  unsigned NewIndex, IRBuilder<> &Builder) {
4029934cc54SSanjay Patel   // The shuffle mask is undefined except for 1 lane that is being translated
4039934cc54SSanjay Patel   // to the new element index. Example for OldIndex == 2 and NewIndex == 0:
4049934cc54SSanjay Patel   // ShufMask = { 2, undef, undef, undef }
4059934cc54SSanjay Patel   auto *VecTy = cast<FixedVectorType>(Vec->getType());
40654143e2bSSanjay Patel   SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem);
4079934cc54SSanjay Patel   ShufMask[NewIndex] = OldIndex;
4081e6b240dSSanjay Patel   return Builder.CreateShuffleVector(Vec, ShufMask, "shift");
4099934cc54SSanjay Patel }
4109934cc54SSanjay Patel 
411216a37bbSSanjay Patel /// Given an extract element instruction with constant index operand, shuffle
412216a37bbSSanjay Patel /// the source vector (shift the scalar element) to a NewIndex for extraction.
413216a37bbSSanjay Patel /// Return null if the input can be constant folded, so that we are not creating
414216a37bbSSanjay Patel /// unnecessary instructions.
4159934cc54SSanjay Patel static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt,
4169934cc54SSanjay Patel                                             unsigned NewIndex,
4179934cc54SSanjay Patel                                             IRBuilder<> &Builder) {
418216a37bbSSanjay Patel   // If the extract can be constant-folded, this code is unsimplified. Defer
419216a37bbSSanjay Patel   // to other passes to handle that.
420216a37bbSSanjay Patel   Value *X = ExtElt->getVectorOperand();
421216a37bbSSanjay Patel   Value *C = ExtElt->getIndexOperand();
422de65b356SSanjay Patel   assert(isa<ConstantInt>(C) && "Expected a constant index operand");
423216a37bbSSanjay Patel   if (isa<Constant>(X))
424216a37bbSSanjay Patel     return nullptr;
425216a37bbSSanjay Patel 
4269934cc54SSanjay Patel   Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(),
4279934cc54SSanjay Patel                                    NewIndex, Builder);
428216a37bbSSanjay Patel   return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex));
429216a37bbSSanjay Patel }
430216a37bbSSanjay Patel 
431fc445589SSanjay Patel /// Try to reduce extract element costs by converting scalar compares to vector
432fc445589SSanjay Patel /// compares followed by extract.
433e9c79a7aSSanjay Patel /// cmp (ext0 V0, C), (ext1 V1, C)
434de65b356SSanjay Patel void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0,
435de65b356SSanjay Patel                                   ExtractElementInst *Ext1, Instruction &I) {
436fc445589SSanjay Patel   assert(isa<CmpInst>(&I) && "Expected a compare");
437216a37bbSSanjay Patel   assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
438216a37bbSSanjay Patel              cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
439216a37bbSSanjay Patel          "Expected matching constant extract indexes");
440a17f03bdSSanjay Patel 
441a17f03bdSSanjay Patel   // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C
442a17f03bdSSanjay Patel   ++NumVecCmp;
443fc445589SSanjay Patel   CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate();
444216a37bbSSanjay Patel   Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
44546a285adSSanjay Patel   Value *VecCmp = Builder.CreateCmp(Pred, V0, V1);
446216a37bbSSanjay Patel   Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand());
44798c2f4eeSSanjay Patel   replaceValue(I, *NewExt);
448a17f03bdSSanjay Patel }
449a17f03bdSSanjay Patel 
45019b62b79SSanjay Patel /// Try to reduce extract element costs by converting scalar binops to vector
45119b62b79SSanjay Patel /// binops followed by extract.
452e9c79a7aSSanjay Patel /// bo (ext0 V0, C), (ext1 V1, C)
453de65b356SSanjay Patel void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0,
454de65b356SSanjay Patel                                     ExtractElementInst *Ext1, Instruction &I) {
455fc445589SSanjay Patel   assert(isa<BinaryOperator>(&I) && "Expected a binary operator");
456216a37bbSSanjay Patel   assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
457216a37bbSSanjay Patel              cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
458216a37bbSSanjay Patel          "Expected matching constant extract indexes");
45919b62b79SSanjay Patel 
46034e34855SSanjay Patel   // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C
46119b62b79SSanjay Patel   ++NumVecBO;
462216a37bbSSanjay Patel   Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
463e9c79a7aSSanjay Patel   Value *VecBO =
46434e34855SSanjay Patel       Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1);
465e9c79a7aSSanjay Patel 
46619b62b79SSanjay Patel   // All IR flags are safe to back-propagate because any potential poison
46719b62b79SSanjay Patel   // created in unused vector elements is discarded by the extract.
468e9c79a7aSSanjay Patel   if (auto *VecBOInst = dyn_cast<Instruction>(VecBO))
46919b62b79SSanjay Patel     VecBOInst->copyIRFlags(&I);
470e9c79a7aSSanjay Patel 
471216a37bbSSanjay Patel   Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand());
47298c2f4eeSSanjay Patel   replaceValue(I, *NewExt);
47319b62b79SSanjay Patel }
47419b62b79SSanjay Patel 
475fc445589SSanjay Patel /// Match an instruction with extracted vector operands.
4766bdd531aSSanjay Patel bool VectorCombine::foldExtractExtract(Instruction &I) {
477e9c79a7aSSanjay Patel   // It is not safe to transform things like div, urem, etc. because we may
478e9c79a7aSSanjay Patel   // create undefined behavior when executing those on unknown vector elements.
479e9c79a7aSSanjay Patel   if (!isSafeToSpeculativelyExecute(&I))
480e9c79a7aSSanjay Patel     return false;
481e9c79a7aSSanjay Patel 
482216a37bbSSanjay Patel   Instruction *I0, *I1;
483fc445589SSanjay Patel   CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
484216a37bbSSanjay Patel   if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) &&
485216a37bbSSanjay Patel       !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1))))
486fc445589SSanjay Patel     return false;
487fc445589SSanjay Patel 
488fc445589SSanjay Patel   Value *V0, *V1;
489fc445589SSanjay Patel   uint64_t C0, C1;
490216a37bbSSanjay Patel   if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) ||
491216a37bbSSanjay Patel       !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) ||
492fc445589SSanjay Patel       V0->getType() != V1->getType())
493fc445589SSanjay Patel     return false;
494fc445589SSanjay Patel 
495ce97ce3aSSanjay Patel   // If the scalar value 'I' is going to be re-inserted into a vector, then try
496ce97ce3aSSanjay Patel   // to create an extract to that same element. The extract/insert can be
497ce97ce3aSSanjay Patel   // reduced to a "select shuffle".
498ce97ce3aSSanjay Patel   // TODO: If we add a larger pattern match that starts from an insert, this
499ce97ce3aSSanjay Patel   //       probably becomes unnecessary.
500216a37bbSSanjay Patel   auto *Ext0 = cast<ExtractElementInst>(I0);
501216a37bbSSanjay Patel   auto *Ext1 = cast<ExtractElementInst>(I1);
502a0f96741SSanjay Patel   uint64_t InsertIndex = InvalidIndex;
503ce97ce3aSSanjay Patel   if (I.hasOneUse())
5047eed772aSSanjay Patel     match(I.user_back(),
5057eed772aSSanjay Patel           m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex)));
506ce97ce3aSSanjay Patel 
507216a37bbSSanjay Patel   ExtractElementInst *ExtractToChange;
5080dcd2b40SSimon Pilgrim   if (isExtractExtractCheap(Ext0, Ext1, I, ExtractToChange, InsertIndex))
509fc445589SSanjay Patel     return false;
510e9c79a7aSSanjay Patel 
511216a37bbSSanjay Patel   if (ExtractToChange) {
512216a37bbSSanjay Patel     unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0;
513216a37bbSSanjay Patel     ExtractElementInst *NewExtract =
5149934cc54SSanjay Patel         translateExtract(ExtractToChange, CheapExtractIdx, Builder);
515216a37bbSSanjay Patel     if (!NewExtract)
5166d864097SSanjay Patel       return false;
517216a37bbSSanjay Patel     if (ExtractToChange == Ext0)
518216a37bbSSanjay Patel       Ext0 = NewExtract;
519a69158c1SSanjay Patel     else
520216a37bbSSanjay Patel       Ext1 = NewExtract;
521a69158c1SSanjay Patel   }
522e9c79a7aSSanjay Patel 
523e9c79a7aSSanjay Patel   if (Pred != CmpInst::BAD_ICMP_PREDICATE)
524039ff29eSSanjay Patel     foldExtExtCmp(Ext0, Ext1, I);
525e9c79a7aSSanjay Patel   else
526039ff29eSSanjay Patel     foldExtExtBinop(Ext0, Ext1, I);
527e9c79a7aSSanjay Patel 
528300870a9SFlorian Hahn   Worklist.push(Ext0);
529300870a9SFlorian Hahn   Worklist.push(Ext1);
530e9c79a7aSSanjay Patel   return true;
531fc445589SSanjay Patel }
532fc445589SSanjay Patel 
533bef6e67eSSanjay Patel /// If this is a bitcast of a shuffle, try to bitcast the source vector to the
534bef6e67eSSanjay Patel /// destination type followed by shuffle. This can enable further transforms by
535bef6e67eSSanjay Patel /// moving bitcasts or shuffles together.
5366bdd531aSSanjay Patel bool VectorCombine::foldBitcastShuf(Instruction &I) {
537b6050ca1SSanjay Patel   Value *V;
538b6050ca1SSanjay Patel   ArrayRef<int> Mask;
5397eed772aSSanjay Patel   if (!match(&I, m_BitCast(
5407eed772aSSanjay Patel                      m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))))))
541b6050ca1SSanjay Patel     return false;
542b6050ca1SSanjay Patel 
543b4f04d71SHuihui Zhang   // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for
544b4f04d71SHuihui Zhang   // scalable type is unknown; Second, we cannot reason if the narrowed shuffle
545b4f04d71SHuihui Zhang   // mask for scalable type is a splat or not.
546b4f04d71SHuihui Zhang   // 2) Disallow non-vector casts and length-changing shuffles.
547bef6e67eSSanjay Patel   // TODO: We could allow any shuffle.
548b4f04d71SHuihui Zhang   auto *DestTy = dyn_cast<FixedVectorType>(I.getType());
549b4f04d71SHuihui Zhang   auto *SrcTy = dyn_cast<FixedVectorType>(V->getType());
550b4f04d71SHuihui Zhang   if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy)
551b6050ca1SSanjay Patel     return false;
552b6050ca1SSanjay Patel 
553b4f04d71SHuihui Zhang   unsigned DestNumElts = DestTy->getNumElements();
554b4f04d71SHuihui Zhang   unsigned SrcNumElts = SrcTy->getNumElements();
555b6050ca1SSanjay Patel   SmallVector<int, 16> NewMask;
556bef6e67eSSanjay Patel   if (SrcNumElts <= DestNumElts) {
557bef6e67eSSanjay Patel     // The bitcast is from wide to narrow/equal elements. The shuffle mask can
558bef6e67eSSanjay Patel     // always be expanded to the equivalent form choosing narrower elements.
559b6050ca1SSanjay Patel     assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask");
560b6050ca1SSanjay Patel     unsigned ScaleFactor = DestNumElts / SrcNumElts;
5611318ddbcSSanjay Patel     narrowShuffleMaskElts(ScaleFactor, Mask, NewMask);
562bef6e67eSSanjay Patel   } else {
563bef6e67eSSanjay Patel     // The bitcast is from narrow elements to wide elements. The shuffle mask
564bef6e67eSSanjay Patel     // must choose consecutive elements to allow casting first.
565bef6e67eSSanjay Patel     assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask");
566bef6e67eSSanjay Patel     unsigned ScaleFactor = SrcNumElts / DestNumElts;
567bef6e67eSSanjay Patel     if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask))
568bef6e67eSSanjay Patel       return false;
569bef6e67eSSanjay Patel   }
570e2935dcfSDavid Green 
571e2935dcfSDavid Green   // The new shuffle must not cost more than the old shuffle. The bitcast is
572e2935dcfSDavid Green   // moved ahead of the shuffle, so assume that it has the same cost as before.
573e2935dcfSDavid Green   InstructionCost DestCost = TTI.getShuffleCost(
574e2935dcfSDavid Green       TargetTransformInfo::SK_PermuteSingleSrc, DestTy, NewMask);
575e2935dcfSDavid Green   InstructionCost SrcCost =
576e2935dcfSDavid Green       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy, Mask);
577e2935dcfSDavid Green   if (DestCost > SrcCost || !DestCost.isValid())
578e2935dcfSDavid Green     return false;
579e2935dcfSDavid Green 
580bef6e67eSSanjay Patel   // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC'
5817aeb41b3SRoman Lebedev   ++NumShufOfBitcast;
582bef6e67eSSanjay Patel   Value *CastV = Builder.CreateBitCast(V, DestTy);
5831e6b240dSSanjay Patel   Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask);
58498c2f4eeSSanjay Patel   replaceValue(I, *Shuf);
585b6050ca1SSanjay Patel   return true;
586b6050ca1SSanjay Patel }
587b6050ca1SSanjay Patel 
588ed67f5e7SSanjay Patel /// Match a vector binop or compare instruction with at least one inserted
589ed67f5e7SSanjay Patel /// scalar operand and convert to scalar binop/cmp followed by insertelement.
5906bdd531aSSanjay Patel bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) {
591ed67f5e7SSanjay Patel   CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
5925dc4e7c2SSimon Pilgrim   Value *Ins0, *Ins1;
593ed67f5e7SSanjay Patel   if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) &&
594ed67f5e7SSanjay Patel       !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1))))
595ed67f5e7SSanjay Patel     return false;
596ed67f5e7SSanjay Patel 
597ed67f5e7SSanjay Patel   // Do not convert the vector condition of a vector select into a scalar
598ed67f5e7SSanjay Patel   // condition. That may cause problems for codegen because of differences in
599ed67f5e7SSanjay Patel   // boolean formats and register-file transfers.
600ed67f5e7SSanjay Patel   // TODO: Can we account for that in the cost model?
601ed67f5e7SSanjay Patel   bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE;
602ed67f5e7SSanjay Patel   if (IsCmp)
603ed67f5e7SSanjay Patel     for (User *U : I.users())
604ed67f5e7SSanjay Patel       if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value())))
6050d2a0b44SSanjay Patel         return false;
6060d2a0b44SSanjay Patel 
6075dc4e7c2SSimon Pilgrim   // Match against one or both scalar values being inserted into constant
6085dc4e7c2SSimon Pilgrim   // vectors:
609ed67f5e7SSanjay Patel   // vec_op VecC0, (inselt VecC1, V1, Index)
610ed67f5e7SSanjay Patel   // vec_op (inselt VecC0, V0, Index), VecC1
611ed67f5e7SSanjay Patel   // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index)
6120d2a0b44SSanjay Patel   // TODO: Deal with mismatched index constants and variable indexes?
6135dc4e7c2SSimon Pilgrim   Constant *VecC0 = nullptr, *VecC1 = nullptr;
6145dc4e7c2SSimon Pilgrim   Value *V0 = nullptr, *V1 = nullptr;
6155dc4e7c2SSimon Pilgrim   uint64_t Index0 = 0, Index1 = 0;
6167eed772aSSanjay Patel   if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0),
6175dc4e7c2SSimon Pilgrim                                m_ConstantInt(Index0))) &&
6185dc4e7c2SSimon Pilgrim       !match(Ins0, m_Constant(VecC0)))
6195dc4e7c2SSimon Pilgrim     return false;
6205dc4e7c2SSimon Pilgrim   if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1),
6215dc4e7c2SSimon Pilgrim                                m_ConstantInt(Index1))) &&
6225dc4e7c2SSimon Pilgrim       !match(Ins1, m_Constant(VecC1)))
6230d2a0b44SSanjay Patel     return false;
6240d2a0b44SSanjay Patel 
6255dc4e7c2SSimon Pilgrim   bool IsConst0 = !V0;
6265dc4e7c2SSimon Pilgrim   bool IsConst1 = !V1;
6275dc4e7c2SSimon Pilgrim   if (IsConst0 && IsConst1)
6285dc4e7c2SSimon Pilgrim     return false;
6295dc4e7c2SSimon Pilgrim   if (!IsConst0 && !IsConst1 && Index0 != Index1)
6305dc4e7c2SSimon Pilgrim     return false;
6315dc4e7c2SSimon Pilgrim 
6325dc4e7c2SSimon Pilgrim   // Bail for single insertion if it is a load.
6335dc4e7c2SSimon Pilgrim   // TODO: Handle this once getVectorInstrCost can cost for load/stores.
6345dc4e7c2SSimon Pilgrim   auto *I0 = dyn_cast_or_null<Instruction>(V0);
6355dc4e7c2SSimon Pilgrim   auto *I1 = dyn_cast_or_null<Instruction>(V1);
6365dc4e7c2SSimon Pilgrim   if ((IsConst0 && I1 && I1->mayReadFromMemory()) ||
6375dc4e7c2SSimon Pilgrim       (IsConst1 && I0 && I0->mayReadFromMemory()))
6385dc4e7c2SSimon Pilgrim     return false;
6395dc4e7c2SSimon Pilgrim 
6405dc4e7c2SSimon Pilgrim   uint64_t Index = IsConst0 ? Index1 : Index0;
6415dc4e7c2SSimon Pilgrim   Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType();
6420d2a0b44SSanjay Patel   Type *VecTy = I.getType();
6435dc4e7c2SSimon Pilgrim   assert(VecTy->isVectorTy() &&
6445dc4e7c2SSimon Pilgrim          (IsConst0 || IsConst1 || V0->getType() == V1->getType()) &&
645741e20f3SSanjay Patel          (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() ||
646741e20f3SSanjay Patel           ScalarTy->isPointerTy()) &&
647741e20f3SSanjay Patel          "Unexpected types for insert element into binop or cmp");
6480d2a0b44SSanjay Patel 
649ed67f5e7SSanjay Patel   unsigned Opcode = I.getOpcode();
65036710c38SCaroline Concatto   InstructionCost ScalarOpCost, VectorOpCost;
651ed67f5e7SSanjay Patel   if (IsCmp) {
6520dcd2b40SSimon Pilgrim     CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate();
6530dcd2b40SSimon Pilgrim     ScalarOpCost = TTI.getCmpSelInstrCost(
6540dcd2b40SSimon Pilgrim         Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred);
6550dcd2b40SSimon Pilgrim     VectorOpCost = TTI.getCmpSelInstrCost(
6560dcd2b40SSimon Pilgrim         Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred);
657ed67f5e7SSanjay Patel   } else {
658ed67f5e7SSanjay Patel     ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
659ed67f5e7SSanjay Patel     VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
660ed67f5e7SSanjay Patel   }
6610d2a0b44SSanjay Patel 
6620d2a0b44SSanjay Patel   // Get cost estimate for the insert element. This cost will factor into
6630d2a0b44SSanjay Patel   // both sequences.
66436710c38SCaroline Concatto   InstructionCost InsertCost =
6650d2a0b44SSanjay Patel       TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index);
66636710c38SCaroline Concatto   InstructionCost OldCost =
66736710c38SCaroline Concatto       (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + VectorOpCost;
66836710c38SCaroline Concatto   InstructionCost NewCost = ScalarOpCost + InsertCost +
6695dc4e7c2SSimon Pilgrim                             (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) +
6705dc4e7c2SSimon Pilgrim                             (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost);
6710d2a0b44SSanjay Patel 
6720d2a0b44SSanjay Patel   // We want to scalarize unless the vector variant actually has lower cost.
67336710c38SCaroline Concatto   if (OldCost < NewCost || !NewCost.isValid())
6740d2a0b44SSanjay Patel     return false;
6750d2a0b44SSanjay Patel 
676ed67f5e7SSanjay Patel   // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) -->
677ed67f5e7SSanjay Patel   // inselt NewVecC, (scalar_op V0, V1), Index
678ed67f5e7SSanjay Patel   if (IsCmp)
679ed67f5e7SSanjay Patel     ++NumScalarCmp;
680ed67f5e7SSanjay Patel   else
6810d2a0b44SSanjay Patel     ++NumScalarBO;
6825dc4e7c2SSimon Pilgrim 
6835dc4e7c2SSimon Pilgrim   // For constant cases, extract the scalar element, this should constant fold.
6845dc4e7c2SSimon Pilgrim   if (IsConst0)
6855dc4e7c2SSimon Pilgrim     V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index));
6865dc4e7c2SSimon Pilgrim   if (IsConst1)
6875dc4e7c2SSimon Pilgrim     V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index));
6885dc4e7c2SSimon Pilgrim 
689ed67f5e7SSanjay Patel   Value *Scalar =
69046a285adSSanjay Patel       IsCmp ? Builder.CreateCmp(Pred, V0, V1)
691ed67f5e7SSanjay Patel             : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1);
692ed67f5e7SSanjay Patel 
693ed67f5e7SSanjay Patel   Scalar->setName(I.getName() + ".scalar");
6940d2a0b44SSanjay Patel 
6950d2a0b44SSanjay Patel   // All IR flags are safe to back-propagate. There is no potential for extra
6960d2a0b44SSanjay Patel   // poison to be created by the scalar instruction.
6970d2a0b44SSanjay Patel   if (auto *ScalarInst = dyn_cast<Instruction>(Scalar))
6980d2a0b44SSanjay Patel     ScalarInst->copyIRFlags(&I);
6990d2a0b44SSanjay Patel 
7000d2a0b44SSanjay Patel   // Fold the vector constants in the original vectors into a new base vector.
701ed67f5e7SSanjay Patel   Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1)
702ed67f5e7SSanjay Patel                             : ConstantExpr::get(Opcode, VecC0, VecC1);
7030d2a0b44SSanjay Patel   Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index);
70498c2f4eeSSanjay Patel   replaceValue(I, *Insert);
7050d2a0b44SSanjay Patel   return true;
7060d2a0b44SSanjay Patel }
7070d2a0b44SSanjay Patel 
708b6315aeeSSanjay Patel /// Try to combine a scalar binop + 2 scalar compares of extracted elements of
709b6315aeeSSanjay Patel /// a vector into vector operations followed by extract. Note: The SLP pass
710b6315aeeSSanjay Patel /// may miss this pattern because of implementation problems.
711b6315aeeSSanjay Patel bool VectorCombine::foldExtractedCmps(Instruction &I) {
712b6315aeeSSanjay Patel   // We are looking for a scalar binop of booleans.
713b6315aeeSSanjay Patel   // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1)
714b6315aeeSSanjay Patel   if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1))
715b6315aeeSSanjay Patel     return false;
716b6315aeeSSanjay Patel 
717b6315aeeSSanjay Patel   // The compare predicates should match, and each compare should have a
718b6315aeeSSanjay Patel   // constant operand.
719b6315aeeSSanjay Patel   // TODO: Relax the one-use constraints.
720b6315aeeSSanjay Patel   Value *B0 = I.getOperand(0), *B1 = I.getOperand(1);
721b6315aeeSSanjay Patel   Instruction *I0, *I1;
722b6315aeeSSanjay Patel   Constant *C0, *C1;
723b6315aeeSSanjay Patel   CmpInst::Predicate P0, P1;
724b6315aeeSSanjay Patel   if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) ||
725b6315aeeSSanjay Patel       !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) ||
726b6315aeeSSanjay Patel       P0 != P1)
727b6315aeeSSanjay Patel     return false;
728b6315aeeSSanjay Patel 
729b6315aeeSSanjay Patel   // The compare operands must be extracts of the same vector with constant
730b6315aeeSSanjay Patel   // extract indexes.
731b6315aeeSSanjay Patel   // TODO: Relax the one-use constraints.
732b6315aeeSSanjay Patel   Value *X;
733b6315aeeSSanjay Patel   uint64_t Index0, Index1;
734b6315aeeSSanjay Patel   if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) ||
735b6315aeeSSanjay Patel       !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1)))))
736b6315aeeSSanjay Patel     return false;
737b6315aeeSSanjay Patel 
738b6315aeeSSanjay Patel   auto *Ext0 = cast<ExtractElementInst>(I0);
739b6315aeeSSanjay Patel   auto *Ext1 = cast<ExtractElementInst>(I1);
740b6315aeeSSanjay Patel   ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1);
741b6315aeeSSanjay Patel   if (!ConvertToShuf)
742b6315aeeSSanjay Patel     return false;
743b6315aeeSSanjay Patel 
744b6315aeeSSanjay Patel   // The original scalar pattern is:
745b6315aeeSSanjay Patel   // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1)
746b6315aeeSSanjay Patel   CmpInst::Predicate Pred = P0;
747b6315aeeSSanjay Patel   unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp
748b6315aeeSSanjay Patel                                                     : Instruction::ICmp;
749b6315aeeSSanjay Patel   auto *VecTy = dyn_cast<FixedVectorType>(X->getType());
750b6315aeeSSanjay Patel   if (!VecTy)
751b6315aeeSSanjay Patel     return false;
752b6315aeeSSanjay Patel 
75336710c38SCaroline Concatto   InstructionCost OldCost =
75436710c38SCaroline Concatto       TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
755b6315aeeSSanjay Patel   OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);
7560dcd2b40SSimon Pilgrim   OldCost +=
7570dcd2b40SSimon Pilgrim       TTI.getCmpSelInstrCost(CmpOpcode, I0->getType(),
7580dcd2b40SSimon Pilgrim                              CmpInst::makeCmpResultType(I0->getType()), Pred) *
7590dcd2b40SSimon Pilgrim       2;
760b6315aeeSSanjay Patel   OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType());
761b6315aeeSSanjay Patel 
762b6315aeeSSanjay Patel   // The proposed vector pattern is:
763b6315aeeSSanjay Patel   // vcmp = cmp Pred X, VecC
764b6315aeeSSanjay Patel   // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0
765b6315aeeSSanjay Patel   int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0;
766b6315aeeSSanjay Patel   int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1;
767b6315aeeSSanjay Patel   auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType()));
7680dcd2b40SSimon Pilgrim   InstructionCost NewCost = TTI.getCmpSelInstrCost(
7690dcd2b40SSimon Pilgrim       CmpOpcode, X->getType(), CmpInst::makeCmpResultType(X->getType()), Pred);
770e2935dcfSDavid Green   SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem);
771e2935dcfSDavid Green   ShufMask[CheapIndex] = ExpensiveIndex;
772e2935dcfSDavid Green   NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy,
773e2935dcfSDavid Green                                 ShufMask);
774b6315aeeSSanjay Patel   NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy);
775b6315aeeSSanjay Patel   NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex);
776b6315aeeSSanjay Patel 
777b6315aeeSSanjay Patel   // Aggressively form vector ops if the cost is equal because the transform
778b6315aeeSSanjay Patel   // may enable further optimization.
779b6315aeeSSanjay Patel   // Codegen can reverse this transform (scalarize) if it was not profitable.
78036710c38SCaroline Concatto   if (OldCost < NewCost || !NewCost.isValid())
781b6315aeeSSanjay Patel     return false;
782b6315aeeSSanjay Patel 
783b6315aeeSSanjay Patel   // Create a vector constant from the 2 scalar constants.
784b6315aeeSSanjay Patel   SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(),
785b6315aeeSSanjay Patel                                    UndefValue::get(VecTy->getElementType()));
786b6315aeeSSanjay Patel   CmpC[Index0] = C0;
787b6315aeeSSanjay Patel   CmpC[Index1] = C1;
788b6315aeeSSanjay Patel   Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC));
789b6315aeeSSanjay Patel 
790b6315aeeSSanjay Patel   Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder);
791b6315aeeSSanjay Patel   Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
792b6315aeeSSanjay Patel                                         VCmp, Shuf);
793b6315aeeSSanjay Patel   Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex);
794b6315aeeSSanjay Patel   replaceValue(I, *NewExt);
795b6315aeeSSanjay Patel   ++NumVecCmpBO;
796b6315aeeSSanjay Patel   return true;
797b6315aeeSSanjay Patel }
798b6315aeeSSanjay Patel 
7992db4979cSQiu Chaofan // Check if memory loc modified between two instrs in the same BB
8002db4979cSQiu Chaofan static bool isMemModifiedBetween(BasicBlock::iterator Begin,
8012db4979cSQiu Chaofan                                  BasicBlock::iterator End,
8022db4979cSQiu Chaofan                                  const MemoryLocation &Loc, AAResults &AA) {
8032db4979cSQiu Chaofan   unsigned NumScanned = 0;
8042db4979cSQiu Chaofan   return std::any_of(Begin, End, [&](const Instruction &Instr) {
8052db4979cSQiu Chaofan     return isModSet(AA.getModRefInfo(&Instr, Loc)) ||
8062db4979cSQiu Chaofan            ++NumScanned > MaxInstrsToScan;
8072db4979cSQiu Chaofan   });
8082db4979cSQiu Chaofan }
8092db4979cSQiu Chaofan 
810c24fc37eSFlorian Hahn /// Helper class to indicate whether a vector index can be safely scalarized and
811c24fc37eSFlorian Hahn /// if a freeze needs to be inserted.
812c24fc37eSFlorian Hahn class ScalarizationResult {
813c24fc37eSFlorian Hahn   enum class StatusTy { Unsafe, Safe, SafeWithFreeze };
814c24fc37eSFlorian Hahn 
815c24fc37eSFlorian Hahn   StatusTy Status;
816c24fc37eSFlorian Hahn   Value *ToFreeze;
817c24fc37eSFlorian Hahn 
818c24fc37eSFlorian Hahn   ScalarizationResult(StatusTy Status, Value *ToFreeze = nullptr)
819c24fc37eSFlorian Hahn       : Status(Status), ToFreeze(ToFreeze) {}
820c24fc37eSFlorian Hahn 
821c24fc37eSFlorian Hahn public:
822c24fc37eSFlorian Hahn   ScalarizationResult(const ScalarizationResult &Other) = default;
823c24fc37eSFlorian Hahn   ~ScalarizationResult() {
824c24fc37eSFlorian Hahn     assert(!ToFreeze && "freeze() not called with ToFreeze being set");
825c24fc37eSFlorian Hahn   }
826c24fc37eSFlorian Hahn 
827c24fc37eSFlorian Hahn   static ScalarizationResult unsafe() { return {StatusTy::Unsafe}; }
828c24fc37eSFlorian Hahn   static ScalarizationResult safe() { return {StatusTy::Safe}; }
829c24fc37eSFlorian Hahn   static ScalarizationResult safeWithFreeze(Value *ToFreeze) {
830c24fc37eSFlorian Hahn     return {StatusTy::SafeWithFreeze, ToFreeze};
831c24fc37eSFlorian Hahn   }
832c24fc37eSFlorian Hahn 
833c24fc37eSFlorian Hahn   /// Returns true if the index can be scalarize without requiring a freeze.
834c24fc37eSFlorian Hahn   bool isSafe() const { return Status == StatusTy::Safe; }
835c24fc37eSFlorian Hahn   /// Returns true if the index cannot be scalarized.
836c24fc37eSFlorian Hahn   bool isUnsafe() const { return Status == StatusTy::Unsafe; }
837c24fc37eSFlorian Hahn   /// Returns true if the index can be scalarize, but requires inserting a
838c24fc37eSFlorian Hahn   /// freeze.
839c24fc37eSFlorian Hahn   bool isSafeWithFreeze() const { return Status == StatusTy::SafeWithFreeze; }
840c24fc37eSFlorian Hahn 
841e2f6290eSFlorian Hahn   /// Reset the state of Unsafe and clear ToFreze if set.
842e2f6290eSFlorian Hahn   void discard() {
843e2f6290eSFlorian Hahn     ToFreeze = nullptr;
844e2f6290eSFlorian Hahn     Status = StatusTy::Unsafe;
845e2f6290eSFlorian Hahn   }
846e2f6290eSFlorian Hahn 
847c24fc37eSFlorian Hahn   /// Freeze the ToFreeze and update the use in \p User to use it.
848c24fc37eSFlorian Hahn   void freeze(IRBuilder<> &Builder, Instruction &UserI) {
849c24fc37eSFlorian Hahn     assert(isSafeWithFreeze() &&
850c24fc37eSFlorian Hahn            "should only be used when freezing is required");
851c24fc37eSFlorian Hahn     assert(is_contained(ToFreeze->users(), &UserI) &&
852c24fc37eSFlorian Hahn            "UserI must be a user of ToFreeze");
853c24fc37eSFlorian Hahn     IRBuilder<>::InsertPointGuard Guard(Builder);
854c24fc37eSFlorian Hahn     Builder.SetInsertPoint(cast<Instruction>(&UserI));
855c24fc37eSFlorian Hahn     Value *Frozen =
856c24fc37eSFlorian Hahn         Builder.CreateFreeze(ToFreeze, ToFreeze->getName() + ".frozen");
857c24fc37eSFlorian Hahn     for (Use &U : make_early_inc_range((UserI.operands())))
858c24fc37eSFlorian Hahn       if (U.get() == ToFreeze)
859c24fc37eSFlorian Hahn         U.set(Frozen);
860c24fc37eSFlorian Hahn 
861c24fc37eSFlorian Hahn     ToFreeze = nullptr;
862c24fc37eSFlorian Hahn   }
863c24fc37eSFlorian Hahn };
864c24fc37eSFlorian Hahn 
8654e8c28b6SFlorian Hahn /// Check if it is legal to scalarize a memory access to \p VecTy at index \p
8664e8c28b6SFlorian Hahn /// Idx. \p Idx must access a valid vector element.
867c24fc37eSFlorian Hahn static ScalarizationResult canScalarizeAccess(FixedVectorType *VecTy,
868c24fc37eSFlorian Hahn                                               Value *Idx, Instruction *CtxI,
8695131037eSFlorian Hahn                                               AssumptionCache &AC,
8705131037eSFlorian Hahn                                               const DominatorTree &DT) {
871c24fc37eSFlorian Hahn   if (auto *C = dyn_cast<ConstantInt>(Idx)) {
872c24fc37eSFlorian Hahn     if (C->getValue().ult(VecTy->getNumElements()))
873c24fc37eSFlorian Hahn       return ScalarizationResult::safe();
874c24fc37eSFlorian Hahn     return ScalarizationResult::unsafe();
875c24fc37eSFlorian Hahn   }
876575e2affSFlorian Hahn 
877c24fc37eSFlorian Hahn   unsigned IntWidth = Idx->getType()->getScalarSizeInBits();
878c24fc37eSFlorian Hahn   APInt Zero(IntWidth, 0);
879c24fc37eSFlorian Hahn   APInt MaxElts(IntWidth, VecTy->getNumElements());
880575e2affSFlorian Hahn   ConstantRange ValidIndices(Zero, MaxElts);
881c24fc37eSFlorian Hahn   ConstantRange IdxRange(IntWidth, true);
882c24fc37eSFlorian Hahn 
883c24fc37eSFlorian Hahn   if (isGuaranteedNotToBePoison(Idx, &AC)) {
8840edf9995SSanjay Patel     if (ValidIndices.contains(computeConstantRange(Idx, /* ForSigned */ false,
8850edf9995SSanjay Patel                                                    true, &AC, CtxI, &DT)))
886c24fc37eSFlorian Hahn       return ScalarizationResult::safe();
887c24fc37eSFlorian Hahn     return ScalarizationResult::unsafe();
888c24fc37eSFlorian Hahn   }
889c24fc37eSFlorian Hahn 
890c24fc37eSFlorian Hahn   // If the index may be poison, check if we can insert a freeze before the
891c24fc37eSFlorian Hahn   // range of the index is restricted.
892c24fc37eSFlorian Hahn   Value *IdxBase;
893c24fc37eSFlorian Hahn   ConstantInt *CI;
894c24fc37eSFlorian Hahn   if (match(Idx, m_And(m_Value(IdxBase), m_ConstantInt(CI)))) {
895c24fc37eSFlorian Hahn     IdxRange = IdxRange.binaryAnd(CI->getValue());
896c24fc37eSFlorian Hahn   } else if (match(Idx, m_URem(m_Value(IdxBase), m_ConstantInt(CI)))) {
897c24fc37eSFlorian Hahn     IdxRange = IdxRange.urem(CI->getValue());
898c24fc37eSFlorian Hahn   }
899c24fc37eSFlorian Hahn 
900c24fc37eSFlorian Hahn   if (ValidIndices.contains(IdxRange))
901c24fc37eSFlorian Hahn     return ScalarizationResult::safeWithFreeze(IdxBase);
902c24fc37eSFlorian Hahn   return ScalarizationResult::unsafe();
9034e8c28b6SFlorian Hahn }
9044e8c28b6SFlorian Hahn 
905abc0e012SRoman Lebedev /// The memory operation on a vector of \p ScalarType had alignment of
906abc0e012SRoman Lebedev /// \p VectorAlignment. Compute the maximal, but conservatively correct,
907abc0e012SRoman Lebedev /// alignment that will be valid for the memory operation on a single scalar
908abc0e012SRoman Lebedev /// element of the same type with index \p Idx.
909abc0e012SRoman Lebedev static Align computeAlignmentAfterScalarization(Align VectorAlignment,
910abc0e012SRoman Lebedev                                                 Type *ScalarType, Value *Idx,
911abc0e012SRoman Lebedev                                                 const DataLayout &DL) {
912abc0e012SRoman Lebedev   if (auto *C = dyn_cast<ConstantInt>(Idx))
913abc0e012SRoman Lebedev     return commonAlignment(VectorAlignment,
914abc0e012SRoman Lebedev                            C->getZExtValue() * DL.getTypeStoreSize(ScalarType));
915abc0e012SRoman Lebedev   return commonAlignment(VectorAlignment, DL.getTypeStoreSize(ScalarType));
916abc0e012SRoman Lebedev }
917abc0e012SRoman Lebedev 
9182db4979cSQiu Chaofan // Combine patterns like:
9192db4979cSQiu Chaofan //   %0 = load <4 x i32>, <4 x i32>* %a
9202db4979cSQiu Chaofan //   %1 = insertelement <4 x i32> %0, i32 %b, i32 1
9212db4979cSQiu Chaofan //   store <4 x i32> %1, <4 x i32>* %a
9222db4979cSQiu Chaofan // to:
9232db4979cSQiu Chaofan //   %0 = bitcast <4 x i32>* %a to i32*
9242db4979cSQiu Chaofan //   %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1
9252db4979cSQiu Chaofan //   store i32 %b, i32* %1
9262db4979cSQiu Chaofan bool VectorCombine::foldSingleElementStore(Instruction &I) {
9272db4979cSQiu Chaofan   StoreInst *SI = dyn_cast<StoreInst>(&I);
9286d2df181SQiu Chaofan   if (!SI || !SI->isSimple() ||
9296d2df181SQiu Chaofan       !isa<FixedVectorType>(SI->getValueOperand()->getType()))
9302db4979cSQiu Chaofan     return false;
9312db4979cSQiu Chaofan 
9322db4979cSQiu Chaofan   // TODO: Combine more complicated patterns (multiple insert) by referencing
9332db4979cSQiu Chaofan   // TargetTransformInfo.
9342db4979cSQiu Chaofan   Instruction *Source;
9356d2df181SQiu Chaofan   Value *NewElement;
936575e2affSFlorian Hahn   Value *Idx;
9372db4979cSQiu Chaofan   if (!match(SI->getValueOperand(),
9382db4979cSQiu Chaofan              m_InsertElt(m_Instruction(Source), m_Value(NewElement),
939575e2affSFlorian Hahn                          m_Value(Idx))))
9402db4979cSQiu Chaofan     return false;
9412db4979cSQiu Chaofan 
9422db4979cSQiu Chaofan   if (auto *Load = dyn_cast<LoadInst>(Source)) {
9436d2df181SQiu Chaofan     auto VecTy = cast<FixedVectorType>(SI->getValueOperand()->getType());
9442db4979cSQiu Chaofan     const DataLayout &DL = I.getModule()->getDataLayout();
9452db4979cSQiu Chaofan     Value *SrcAddr = Load->getPointerOperand()->stripPointerCasts();
9466d2df181SQiu Chaofan     // Don't optimize for atomic/volatile load or store. Ensure memory is not
9476d2df181SQiu Chaofan     // modified between, vector type matches store size, and index is inbounds.
9482db4979cSQiu Chaofan     if (!Load->isSimple() || Load->getParent() != SI->getParent() ||
9492db4979cSQiu Chaofan         !DL.typeSizeEqualsStoreSize(Load->getType()) ||
950c24fc37eSFlorian Hahn         SrcAddr != SI->getPointerOperand()->stripPointerCasts())
951c24fc37eSFlorian Hahn       return false;
952c24fc37eSFlorian Hahn 
9535131037eSFlorian Hahn     auto ScalarizableIdx = canScalarizeAccess(VecTy, Idx, Load, AC, DT);
954c24fc37eSFlorian Hahn     if (ScalarizableIdx.isUnsafe() ||
9552db4979cSQiu Chaofan         isMemModifiedBetween(Load->getIterator(), SI->getIterator(),
9562db4979cSQiu Chaofan                              MemoryLocation::get(SI), AA))
9572db4979cSQiu Chaofan       return false;
9582db4979cSQiu Chaofan 
959c24fc37eSFlorian Hahn     if (ScalarizableIdx.isSafeWithFreeze())
960c24fc37eSFlorian Hahn       ScalarizableIdx.freeze(Builder, *cast<Instruction>(Idx));
961a213f735SNikita Popov     Value *GEP = Builder.CreateInBoundsGEP(
962a213f735SNikita Popov         SI->getValueOperand()->getType(), SI->getPointerOperand(),
963a213f735SNikita Popov         {ConstantInt::get(Idx->getType(), 0), Idx});
9642db4979cSQiu Chaofan     StoreInst *NSI = Builder.CreateStore(NewElement, GEP);
9652db4979cSQiu Chaofan     NSI->copyMetadata(*SI);
966abc0e012SRoman Lebedev     Align ScalarOpAlignment = computeAlignmentAfterScalarization(
967abc0e012SRoman Lebedev         std::max(SI->getAlign(), Load->getAlign()), NewElement->getType(), Idx,
968abc0e012SRoman Lebedev         DL);
969abc0e012SRoman Lebedev     NSI->setAlignment(ScalarOpAlignment);
9702db4979cSQiu Chaofan     replaceValue(I, *NSI);
971300870a9SFlorian Hahn     eraseInstruction(I);
9722db4979cSQiu Chaofan     return true;
9732db4979cSQiu Chaofan   }
9742db4979cSQiu Chaofan 
9752db4979cSQiu Chaofan   return false;
9762db4979cSQiu Chaofan }
9772db4979cSQiu Chaofan 
9784e8c28b6SFlorian Hahn /// Try to scalarize vector loads feeding extractelement instructions.
9794e8c28b6SFlorian Hahn bool VectorCombine::scalarizeLoadExtract(Instruction &I) {
9804e8c28b6SFlorian Hahn   Value *Ptr;
981300870a9SFlorian Hahn   if (!match(&I, m_Load(m_Value(Ptr))))
9824e8c28b6SFlorian Hahn     return false;
9834e8c28b6SFlorian Hahn 
984300870a9SFlorian Hahn   auto *LI = cast<LoadInst>(&I);
9854e8c28b6SFlorian Hahn   const DataLayout &DL = I.getModule()->getDataLayout();
9864e8c28b6SFlorian Hahn   if (LI->isVolatile() || !DL.typeSizeEqualsStoreSize(LI->getType()))
9874e8c28b6SFlorian Hahn     return false;
9884e8c28b6SFlorian Hahn 
9894e8c28b6SFlorian Hahn   auto *FixedVT = dyn_cast<FixedVectorType>(LI->getType());
9904e8c28b6SFlorian Hahn   if (!FixedVT)
9914e8c28b6SFlorian Hahn     return false;
9924e8c28b6SFlorian Hahn 
9935a81a603SArthur Eubanks   InstructionCost OriginalCost =
9945a81a603SArthur Eubanks       TTI.getMemoryOpCost(Instruction::Load, LI->getType(), LI->getAlign(),
9954e8c28b6SFlorian Hahn                           LI->getPointerAddressSpace());
9964e8c28b6SFlorian Hahn   InstructionCost ScalarizedCost = 0;
9974e8c28b6SFlorian Hahn 
9984e8c28b6SFlorian Hahn   Instruction *LastCheckedInst = LI;
9994e8c28b6SFlorian Hahn   unsigned NumInstChecked = 0;
10004e8c28b6SFlorian Hahn   // Check if all users of the load are extracts with no memory modifications
10014e8c28b6SFlorian Hahn   // between the load and the extract. Compute the cost of both the original
10024e8c28b6SFlorian Hahn   // code and the scalarized version.
10034e8c28b6SFlorian Hahn   for (User *U : LI->users()) {
10044e8c28b6SFlorian Hahn     auto *UI = dyn_cast<ExtractElementInst>(U);
10054e8c28b6SFlorian Hahn     if (!UI || UI->getParent() != LI->getParent())
10064e8c28b6SFlorian Hahn       return false;
10074e8c28b6SFlorian Hahn 
100896ca0349SFlorian Hahn     if (!isGuaranteedNotToBePoison(UI->getOperand(1), &AC, LI, &DT))
100996ca0349SFlorian Hahn       return false;
101096ca0349SFlorian Hahn 
10114e8c28b6SFlorian Hahn     // Check if any instruction between the load and the extract may modify
10124e8c28b6SFlorian Hahn     // memory.
10134e8c28b6SFlorian Hahn     if (LastCheckedInst->comesBefore(UI)) {
10144e8c28b6SFlorian Hahn       for (Instruction &I :
10154e8c28b6SFlorian Hahn            make_range(std::next(LI->getIterator()), UI->getIterator())) {
10164e8c28b6SFlorian Hahn         // Bail out if we reached the check limit or the instruction may write
10174e8c28b6SFlorian Hahn         // to memory.
10184e8c28b6SFlorian Hahn         if (NumInstChecked == MaxInstrsToScan || I.mayWriteToMemory())
10194e8c28b6SFlorian Hahn           return false;
10204e8c28b6SFlorian Hahn         NumInstChecked++;
10214e8c28b6SFlorian Hahn       }
1022*c141d158SFlorian Hahn       LastCheckedInst = UI;
10234e8c28b6SFlorian Hahn     }
10244e8c28b6SFlorian Hahn 
10255131037eSFlorian Hahn     auto ScalarIdx = canScalarizeAccess(FixedVT, UI->getOperand(1), &I, AC, DT);
1026c24fc37eSFlorian Hahn     if (!ScalarIdx.isSafe()) {
1027c24fc37eSFlorian Hahn       // TODO: Freeze index if it is safe to do so.
1028e2f6290eSFlorian Hahn       ScalarIdx.discard();
1029007f268cSFlorian Hahn       return false;
1030c24fc37eSFlorian Hahn     }
1031007f268cSFlorian Hahn 
10324e8c28b6SFlorian Hahn     auto *Index = dyn_cast<ConstantInt>(UI->getOperand(1));
10334e8c28b6SFlorian Hahn     OriginalCost +=
10344e8c28b6SFlorian Hahn         TTI.getVectorInstrCost(Instruction::ExtractElement, LI->getType(),
10354e8c28b6SFlorian Hahn                                Index ? Index->getZExtValue() : -1);
10364e8c28b6SFlorian Hahn     ScalarizedCost +=
10374e8c28b6SFlorian Hahn         TTI.getMemoryOpCost(Instruction::Load, FixedVT->getElementType(),
10384e8c28b6SFlorian Hahn                             Align(1), LI->getPointerAddressSpace());
10394e8c28b6SFlorian Hahn     ScalarizedCost += TTI.getAddressComputationCost(FixedVT->getElementType());
10404e8c28b6SFlorian Hahn   }
10414e8c28b6SFlorian Hahn 
10424e8c28b6SFlorian Hahn   if (ScalarizedCost >= OriginalCost)
10434e8c28b6SFlorian Hahn     return false;
10444e8c28b6SFlorian Hahn 
10454e8c28b6SFlorian Hahn   // Replace extracts with narrow scalar loads.
10464e8c28b6SFlorian Hahn   for (User *U : LI->users()) {
10474e8c28b6SFlorian Hahn     auto *EI = cast<ExtractElementInst>(U);
10484e8c28b6SFlorian Hahn     Builder.SetInsertPoint(EI);
1049d4c070d8SFlorian Hahn 
1050d4c070d8SFlorian Hahn     Value *Idx = EI->getOperand(1);
1051d4c070d8SFlorian Hahn     Value *GEP =
1052d4c070d8SFlorian Hahn         Builder.CreateInBoundsGEP(FixedVT, Ptr, {Builder.getInt32(0), Idx});
10534e8c28b6SFlorian Hahn     auto *NewLoad = cast<LoadInst>(Builder.CreateLoad(
10544e8c28b6SFlorian Hahn         FixedVT->getElementType(), GEP, EI->getName() + ".scalar"));
10554e8c28b6SFlorian Hahn 
105620542b47SRoman Lebedev     Align ScalarOpAlignment = computeAlignmentAfterScalarization(
105720542b47SRoman Lebedev         LI->getAlign(), FixedVT->getElementType(), Idx, DL);
105820542b47SRoman Lebedev     NewLoad->setAlignment(ScalarOpAlignment);
105920542b47SRoman Lebedev 
10604e8c28b6SFlorian Hahn     replaceValue(*EI, *NewLoad);
10614e8c28b6SFlorian Hahn   }
10624e8c28b6SFlorian Hahn 
10634e8c28b6SFlorian Hahn   return true;
10644e8c28b6SFlorian Hahn }
10654e8c28b6SFlorian Hahn 
106666d22b4dSSanjay Patel /// Try to convert "shuffle (binop), (binop)" with a shared binop operand into
106766d22b4dSSanjay Patel /// "binop (shuffle), (shuffle)".
106866d22b4dSSanjay Patel bool VectorCombine::foldShuffleOfBinops(Instruction &I) {
106966d22b4dSSanjay Patel   auto *VecTy = dyn_cast<FixedVectorType>(I.getType());
107066d22b4dSSanjay Patel   if (!VecTy)
107166d22b4dSSanjay Patel     return false;
107266d22b4dSSanjay Patel 
107366d22b4dSSanjay Patel   BinaryOperator *B0, *B1;
107466d22b4dSSanjay Patel   ArrayRef<int> Mask;
107566d22b4dSSanjay Patel   if (!match(&I, m_Shuffle(m_OneUse(m_BinOp(B0)), m_OneUse(m_BinOp(B1)),
107666d22b4dSSanjay Patel                            m_Mask(Mask))) ||
107766d22b4dSSanjay Patel       B0->getOpcode() != B1->getOpcode() || B0->getType() != VecTy)
107866d22b4dSSanjay Patel     return false;
107966d22b4dSSanjay Patel 
108066d22b4dSSanjay Patel   // Try to replace a binop with a shuffle if the shuffle is not costly.
108166d22b4dSSanjay Patel   // The new shuffle will choose from a single, common operand, so it may be
108266d22b4dSSanjay Patel   // cheaper than the existing two-operand shuffle.
108366d22b4dSSanjay Patel   SmallVector<int> UnaryMask = createUnaryMask(Mask, Mask.size());
108466d22b4dSSanjay Patel   Instruction::BinaryOps Opcode = B0->getOpcode();
108566d22b4dSSanjay Patel   InstructionCost BinopCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
108666d22b4dSSanjay Patel   InstructionCost ShufCost = TTI.getShuffleCost(
108766d22b4dSSanjay Patel       TargetTransformInfo::SK_PermuteSingleSrc, VecTy, UnaryMask);
108866d22b4dSSanjay Patel   if (ShufCost > BinopCost)
108966d22b4dSSanjay Patel     return false;
109066d22b4dSSanjay Patel 
109166d22b4dSSanjay Patel   // If we have something like "add X, Y" and "add Z, X", swap ops to match.
109266d22b4dSSanjay Patel   Value *X = B0->getOperand(0), *Y = B0->getOperand(1);
109366d22b4dSSanjay Patel   Value *Z = B1->getOperand(0), *W = B1->getOperand(1);
109466d22b4dSSanjay Patel   if (BinaryOperator::isCommutative(Opcode) && X != Z && Y != W)
109566d22b4dSSanjay Patel     std::swap(X, Y);
109666d22b4dSSanjay Patel 
109766d22b4dSSanjay Patel   Value *Shuf0, *Shuf1;
109866d22b4dSSanjay Patel   if (X == Z) {
109966d22b4dSSanjay Patel     // shuf (bo X, Y), (bo X, W) --> bo (shuf X), (shuf Y, W)
110066d22b4dSSanjay Patel     Shuf0 = Builder.CreateShuffleVector(X, UnaryMask);
110166d22b4dSSanjay Patel     Shuf1 = Builder.CreateShuffleVector(Y, W, Mask);
110266d22b4dSSanjay Patel   } else if (Y == W) {
110366d22b4dSSanjay Patel     // shuf (bo X, Y), (bo Z, Y) --> bo (shuf X, Z), (shuf Y)
110466d22b4dSSanjay Patel     Shuf0 = Builder.CreateShuffleVector(X, Z, Mask);
110566d22b4dSSanjay Patel     Shuf1 = Builder.CreateShuffleVector(Y, UnaryMask);
110666d22b4dSSanjay Patel   } else {
110766d22b4dSSanjay Patel     return false;
110866d22b4dSSanjay Patel   }
110966d22b4dSSanjay Patel 
111066d22b4dSSanjay Patel   Value *NewBO = Builder.CreateBinOp(Opcode, Shuf0, Shuf1);
111166d22b4dSSanjay Patel   // Intersect flags from the old binops.
111266d22b4dSSanjay Patel   if (auto *NewInst = dyn_cast<Instruction>(NewBO)) {
111366d22b4dSSanjay Patel     NewInst->copyIRFlags(B0);
111466d22b4dSSanjay Patel     NewInst->andIRFlags(B1);
111566d22b4dSSanjay Patel   }
111666d22b4dSSanjay Patel   replaceValue(I, *NewBO);
111766d22b4dSSanjay Patel   return true;
111866d22b4dSSanjay Patel }
111966d22b4dSSanjay Patel 
1120a17f03bdSSanjay Patel /// This is the entry point for all transforms. Pass manager differences are
1121a17f03bdSSanjay Patel /// handled in the callers of this function.
11226bdd531aSSanjay Patel bool VectorCombine::run() {
112325c6544fSSanjay Patel   if (DisableVectorCombine)
112425c6544fSSanjay Patel     return false;
112525c6544fSSanjay Patel 
1126cc892fd9SSanjay Patel   // Don't attempt vectorization if the target does not support vectors.
1127cc892fd9SSanjay Patel   if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true)))
1128cc892fd9SSanjay Patel     return false;
1129cc892fd9SSanjay Patel 
1130a17f03bdSSanjay Patel   bool MadeChange = false;
1131300870a9SFlorian Hahn   auto FoldInst = [this, &MadeChange](Instruction &I) {
1132de65b356SSanjay Patel     Builder.SetInsertPoint(&I);
11334a1d63d7SFlorian Hahn     if (!ScalarizationOnly) {
113443bdac29SSanjay Patel       MadeChange |= vectorizeLoadInsert(I);
11356bdd531aSSanjay Patel       MadeChange |= foldExtractExtract(I);
11366bdd531aSSanjay Patel       MadeChange |= foldBitcastShuf(I);
1137b6315aeeSSanjay Patel       MadeChange |= foldExtractedCmps(I);
113866d22b4dSSanjay Patel       MadeChange |= foldShuffleOfBinops(I);
11394a1d63d7SFlorian Hahn     }
11404a1d63d7SFlorian Hahn     MadeChange |= scalarizeBinopOrCmp(I);
11414e8c28b6SFlorian Hahn     MadeChange |= scalarizeLoadExtract(I);
11422db4979cSQiu Chaofan     MadeChange |= foldSingleElementStore(I);
1143300870a9SFlorian Hahn   };
1144300870a9SFlorian Hahn   for (BasicBlock &BB : F) {
1145300870a9SFlorian Hahn     // Ignore unreachable basic blocks.
1146300870a9SFlorian Hahn     if (!DT.isReachableFromEntry(&BB))
1147300870a9SFlorian Hahn       continue;
1148300870a9SFlorian Hahn     // Use early increment range so that we can erase instructions in loop.
1149300870a9SFlorian Hahn     for (Instruction &I : make_early_inc_range(BB)) {
1150098a0d8fSHongtao Yu       if (I.isDebugOrPseudoInst())
1151300870a9SFlorian Hahn         continue;
1152300870a9SFlorian Hahn       FoldInst(I);
1153a17f03bdSSanjay Patel     }
1154fc3cc8a4SSanjay Patel   }
1155a17f03bdSSanjay Patel 
1156300870a9SFlorian Hahn   while (!Worklist.isEmpty()) {
1157300870a9SFlorian Hahn     Instruction *I = Worklist.removeOne();
1158300870a9SFlorian Hahn     if (!I)
1159300870a9SFlorian Hahn       continue;
1160300870a9SFlorian Hahn 
1161300870a9SFlorian Hahn     if (isInstructionTriviallyDead(I)) {
1162300870a9SFlorian Hahn       eraseInstruction(*I);
1163300870a9SFlorian Hahn       continue;
1164300870a9SFlorian Hahn     }
1165300870a9SFlorian Hahn 
1166300870a9SFlorian Hahn     FoldInst(*I);
1167300870a9SFlorian Hahn   }
1168a17f03bdSSanjay Patel 
1169a17f03bdSSanjay Patel   return MadeChange;
1170a17f03bdSSanjay Patel }
1171a17f03bdSSanjay Patel 
1172a17f03bdSSanjay Patel // Pass manager boilerplate below here.
1173a17f03bdSSanjay Patel 
1174a17f03bdSSanjay Patel namespace {
1175a17f03bdSSanjay Patel class VectorCombineLegacyPass : public FunctionPass {
1176a17f03bdSSanjay Patel public:
1177a17f03bdSSanjay Patel   static char ID;
1178a17f03bdSSanjay Patel   VectorCombineLegacyPass() : FunctionPass(ID) {
1179a17f03bdSSanjay Patel     initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry());
1180a17f03bdSSanjay Patel   }
1181a17f03bdSSanjay Patel 
1182a17f03bdSSanjay Patel   void getAnalysisUsage(AnalysisUsage &AU) const override {
1183575e2affSFlorian Hahn     AU.addRequired<AssumptionCacheTracker>();
1184a17f03bdSSanjay Patel     AU.addRequired<DominatorTreeWrapperPass>();
1185a17f03bdSSanjay Patel     AU.addRequired<TargetTransformInfoWrapperPass>();
11862db4979cSQiu Chaofan     AU.addRequired<AAResultsWrapperPass>();
1187a17f03bdSSanjay Patel     AU.setPreservesCFG();
1188a17f03bdSSanjay Patel     AU.addPreserved<DominatorTreeWrapperPass>();
1189a17f03bdSSanjay Patel     AU.addPreserved<GlobalsAAWrapperPass>();
1190024098aeSSanjay Patel     AU.addPreserved<AAResultsWrapperPass>();
1191024098aeSSanjay Patel     AU.addPreserved<BasicAAWrapperPass>();
1192a17f03bdSSanjay Patel     FunctionPass::getAnalysisUsage(AU);
1193a17f03bdSSanjay Patel   }
1194a17f03bdSSanjay Patel 
1195a17f03bdSSanjay Patel   bool runOnFunction(Function &F) override {
1196a17f03bdSSanjay Patel     if (skipFunction(F))
1197a17f03bdSSanjay Patel       return false;
1198575e2affSFlorian Hahn     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1199a17f03bdSSanjay Patel     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1200a17f03bdSSanjay Patel     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
12012db4979cSQiu Chaofan     auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
12024a1d63d7SFlorian Hahn     VectorCombine Combiner(F, TTI, DT, AA, AC, false);
12036bdd531aSSanjay Patel     return Combiner.run();
1204a17f03bdSSanjay Patel   }
1205a17f03bdSSanjay Patel };
1206a17f03bdSSanjay Patel } // namespace
1207a17f03bdSSanjay Patel 
1208a17f03bdSSanjay Patel char VectorCombineLegacyPass::ID = 0;
1209a17f03bdSSanjay Patel INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine",
1210a17f03bdSSanjay Patel                       "Optimize scalar/vector ops", false,
1211a17f03bdSSanjay Patel                       false)
1212575e2affSFlorian Hahn INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1213a17f03bdSSanjay Patel INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1214a17f03bdSSanjay Patel INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine",
1215a17f03bdSSanjay Patel                     "Optimize scalar/vector ops", false, false)
1216a17f03bdSSanjay Patel Pass *llvm::createVectorCombinePass() {
1217a17f03bdSSanjay Patel   return new VectorCombineLegacyPass();
1218a17f03bdSSanjay Patel }
1219a17f03bdSSanjay Patel 
1220a17f03bdSSanjay Patel PreservedAnalyses VectorCombinePass::run(Function &F,
1221a17f03bdSSanjay Patel                                          FunctionAnalysisManager &FAM) {
1222575e2affSFlorian Hahn   auto &AC = FAM.getResult<AssumptionAnalysis>(F);
1223a17f03bdSSanjay Patel   TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
1224a17f03bdSSanjay Patel   DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
12252db4979cSQiu Chaofan   AAResults &AA = FAM.getResult<AAManager>(F);
12264a1d63d7SFlorian Hahn   VectorCombine Combiner(F, TTI, DT, AA, AC, ScalarizationOnly);
12276bdd531aSSanjay Patel   if (!Combiner.run())
1228a17f03bdSSanjay Patel     return PreservedAnalyses::all();
1229a17f03bdSSanjay Patel   PreservedAnalyses PA;
1230a17f03bdSSanjay Patel   PA.preserveSet<CFGAnalyses>();
1231a17f03bdSSanjay Patel   return PA;
1232a17f03bdSSanjay Patel }
1233