1a17f03bdSSanjay Patel //===------- VectorCombine.cpp - Optimize partial vector operations -------===// 2a17f03bdSSanjay Patel // 3a17f03bdSSanjay Patel // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4a17f03bdSSanjay Patel // See https://llvm.org/LICENSE.txt for license information. 5a17f03bdSSanjay Patel // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6a17f03bdSSanjay Patel // 7a17f03bdSSanjay Patel //===----------------------------------------------------------------------===// 8a17f03bdSSanjay Patel // 9a17f03bdSSanjay Patel // This pass optimizes scalar/vector interactions using target cost models. The 10a17f03bdSSanjay Patel // transforms implemented here may not fit in traditional loop-based or SLP 11a17f03bdSSanjay Patel // vectorization passes. 12a17f03bdSSanjay Patel // 13a17f03bdSSanjay Patel //===----------------------------------------------------------------------===// 14a17f03bdSSanjay Patel 15a17f03bdSSanjay Patel #include "llvm/Transforms/Vectorize/VectorCombine.h" 16a17f03bdSSanjay Patel #include "llvm/ADT/Statistic.h" 175006e551SSimon Pilgrim #include "llvm/Analysis/BasicAliasAnalysis.h" 18a17f03bdSSanjay Patel #include "llvm/Analysis/GlobalsModRef.h" 1943bdac29SSanjay Patel #include "llvm/Analysis/Loads.h" 20a17f03bdSSanjay Patel #include "llvm/Analysis/TargetTransformInfo.h" 2119b62b79SSanjay Patel #include "llvm/Analysis/ValueTracking.h" 22b6050ca1SSanjay Patel #include "llvm/Analysis/VectorUtils.h" 23a17f03bdSSanjay Patel #include "llvm/IR/Dominators.h" 24a17f03bdSSanjay Patel #include "llvm/IR/Function.h" 25a17f03bdSSanjay Patel #include "llvm/IR/IRBuilder.h" 26a17f03bdSSanjay Patel #include "llvm/IR/PatternMatch.h" 27a17f03bdSSanjay Patel #include "llvm/InitializePasses.h" 28a17f03bdSSanjay Patel #include "llvm/Pass.h" 2925c6544fSSanjay Patel #include "llvm/Support/CommandLine.h" 30a17f03bdSSanjay Patel #include "llvm/Transforms/Utils/Local.h" 315006e551SSimon Pilgrim #include "llvm/Transforms/Vectorize.h" 32a17f03bdSSanjay Patel 33a17f03bdSSanjay Patel using namespace llvm; 34a17f03bdSSanjay Patel using namespace llvm::PatternMatch; 35a17f03bdSSanjay Patel 36a17f03bdSSanjay Patel #define DEBUG_TYPE "vector-combine" 3743bdac29SSanjay Patel STATISTIC(NumVecLoad, "Number of vector loads formed"); 38a17f03bdSSanjay Patel STATISTIC(NumVecCmp, "Number of vector compares formed"); 3919b62b79SSanjay Patel STATISTIC(NumVecBO, "Number of vector binops formed"); 40b6315aeeSSanjay Patel STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed"); 417aeb41b3SRoman Lebedev STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast"); 420d2a0b44SSanjay Patel STATISTIC(NumScalarBO, "Number of scalar binops formed"); 43ed67f5e7SSanjay Patel STATISTIC(NumScalarCmp, "Number of scalar compares formed"); 44a17f03bdSSanjay Patel 4525c6544fSSanjay Patel static cl::opt<bool> DisableVectorCombine( 4625c6544fSSanjay Patel "disable-vector-combine", cl::init(false), cl::Hidden, 4725c6544fSSanjay Patel cl::desc("Disable all vector combine transforms")); 4825c6544fSSanjay Patel 49a69158c1SSanjay Patel static cl::opt<bool> DisableBinopExtractShuffle( 50a69158c1SSanjay Patel "disable-binop-extract-shuffle", cl::init(false), cl::Hidden, 51a69158c1SSanjay Patel cl::desc("Disable binop extract to shuffle transforms")); 52a69158c1SSanjay Patel 53a0f96741SSanjay Patel static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max(); 54a0f96741SSanjay Patel 55b4447054SBenjamin Kramer namespace { 566bdd531aSSanjay Patel class VectorCombine { 576bdd531aSSanjay Patel public: 586bdd531aSSanjay Patel VectorCombine(Function &F, const TargetTransformInfo &TTI, 596bdd531aSSanjay Patel const DominatorTree &DT) 60de65b356SSanjay Patel : F(F), Builder(F.getContext()), TTI(TTI), DT(DT) {} 616bdd531aSSanjay Patel 626bdd531aSSanjay Patel bool run(); 636bdd531aSSanjay Patel 646bdd531aSSanjay Patel private: 656bdd531aSSanjay Patel Function &F; 66de65b356SSanjay Patel IRBuilder<> Builder; 676bdd531aSSanjay Patel const TargetTransformInfo &TTI; 686bdd531aSSanjay Patel const DominatorTree &DT; 696bdd531aSSanjay Patel 7043bdac29SSanjay Patel bool vectorizeLoadInsert(Instruction &I); 713b95d834SSanjay Patel ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0, 723b95d834SSanjay Patel ExtractElementInst *Ext1, 733b95d834SSanjay Patel unsigned PreferredExtractIndex) const; 746bdd531aSSanjay Patel bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 756bdd531aSSanjay Patel unsigned Opcode, 766bdd531aSSanjay Patel ExtractElementInst *&ConvertToShuffle, 776bdd531aSSanjay Patel unsigned PreferredExtractIndex); 78de65b356SSanjay Patel void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 79de65b356SSanjay Patel Instruction &I); 80de65b356SSanjay Patel void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 81de65b356SSanjay Patel Instruction &I); 826bdd531aSSanjay Patel bool foldExtractExtract(Instruction &I); 836bdd531aSSanjay Patel bool foldBitcastShuf(Instruction &I); 846bdd531aSSanjay Patel bool scalarizeBinopOrCmp(Instruction &I); 85b6315aeeSSanjay Patel bool foldExtractedCmps(Instruction &I); 866bdd531aSSanjay Patel }; 87b4447054SBenjamin Kramer } // namespace 88a69158c1SSanjay Patel 8998c2f4eeSSanjay Patel static void replaceValue(Value &Old, Value &New) { 9098c2f4eeSSanjay Patel Old.replaceAllUsesWith(&New); 9198c2f4eeSSanjay Patel New.takeName(&Old); 9298c2f4eeSSanjay Patel } 9398c2f4eeSSanjay Patel 9443bdac29SSanjay Patel bool VectorCombine::vectorizeLoadInsert(Instruction &I) { 9543bdac29SSanjay Patel // Match insert of scalar load. 9643bdac29SSanjay Patel Value *Scalar; 9743bdac29SSanjay Patel if (!match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt()))) 9843bdac29SSanjay Patel return false; 9943bdac29SSanjay Patel auto *Load = dyn_cast<LoadInst>(Scalar); 10043bdac29SSanjay Patel Type *ScalarTy = Scalar->getType(); 10143bdac29SSanjay Patel if (!Load || !Load->isSimple()) 10243bdac29SSanjay Patel return false; 1038fb05593SSanjay Patel auto *Ty = dyn_cast<FixedVectorType>(I.getType()); 1048fb05593SSanjay Patel if (!Ty) 1058fb05593SSanjay Patel return false; 10643bdac29SSanjay Patel 10743bdac29SSanjay Patel // TODO: Extend this to match GEP with constant offsets. 10843bdac29SSanjay Patel Value *PtrOp = Load->getPointerOperand()->stripPointerCasts(); 10943bdac29SSanjay Patel assert(isa<PointerType>(PtrOp->getType()) && "Expected a pointer type"); 11043bdac29SSanjay Patel 1118fb05593SSanjay Patel unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth(); 11243bdac29SSanjay Patel uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits(); 1138fb05593SSanjay Patel if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0) 11443bdac29SSanjay Patel return false; 11543bdac29SSanjay Patel 11643bdac29SSanjay Patel // Check safety of replacing the scalar load with a larger vector load. 1178fb05593SSanjay Patel unsigned MinVecNumElts = MinVectorSize / ScalarSize; 1188fb05593SSanjay Patel auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false); 11943bdac29SSanjay Patel Align Alignment = Load->getAlign(); 12043bdac29SSanjay Patel const DataLayout &DL = I.getModule()->getDataLayout(); 1218fb05593SSanjay Patel if (!isSafeToLoadUnconditionally(PtrOp, MinVecTy, Alignment, DL, Load, &DT)) 12243bdac29SSanjay Patel return false; 12343bdac29SSanjay Patel 12411446b02SBjorn Pettersson unsigned AS = Load->getPointerAddressSpace(); 12511446b02SBjorn Pettersson 12643bdac29SSanjay Patel // Original pattern: insertelt undef, load [free casts of] ScalarPtr, 0 12711446b02SBjorn Pettersson int OldCost = TTI.getMemoryOpCost(Instruction::Load, ScalarTy, Alignment, AS); 1288fb05593SSanjay Patel APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0); 1298fb05593SSanjay Patel OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts, true, false); 13043bdac29SSanjay Patel 13143bdac29SSanjay Patel // New pattern: load VecPtr 1328fb05593SSanjay Patel int NewCost = TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS); 13343bdac29SSanjay Patel 13443bdac29SSanjay Patel // We can aggressively convert to the vector form because the backend can 13543bdac29SSanjay Patel // invert this transform if it does not result in a performance win. 13643bdac29SSanjay Patel if (OldCost < NewCost) 13743bdac29SSanjay Patel return false; 13843bdac29SSanjay Patel 13943bdac29SSanjay Patel // It is safe and potentially profitable to load a vector directly: 14043bdac29SSanjay Patel // inselt undef, load Scalar, 0 --> load VecPtr 14143bdac29SSanjay Patel IRBuilder<> Builder(Load); 1428fb05593SSanjay Patel Value *CastedPtr = Builder.CreateBitCast(PtrOp, MinVecTy->getPointerTo(AS)); 1438fb05593SSanjay Patel Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment); 1448fb05593SSanjay Patel 1458fb05593SSanjay Patel // If the insert type does not match the target's minimum vector type, 1468fb05593SSanjay Patel // use an identity shuffle to shrink/grow the vector. 1478fb05593SSanjay Patel if (Ty != MinVecTy) { 1488fb05593SSanjay Patel unsigned OutputNumElts = Ty->getNumElements(); 1498fb05593SSanjay Patel SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem); 1508fb05593SSanjay Patel for (unsigned i = 0; i < OutputNumElts && i < MinVecNumElts; ++i) 1518fb05593SSanjay Patel Mask[i] = i; 1528fb05593SSanjay Patel VecLd = Builder.CreateShuffleVector(VecLd, UndefValue::get(MinVecTy), Mask); 1538fb05593SSanjay Patel } 15443bdac29SSanjay Patel replaceValue(I, *VecLd); 15543bdac29SSanjay Patel ++NumVecLoad; 15643bdac29SSanjay Patel return true; 15743bdac29SSanjay Patel } 15843bdac29SSanjay Patel 1593b95d834SSanjay Patel /// Determine which, if any, of the inputs should be replaced by a shuffle 1603b95d834SSanjay Patel /// followed by extract from a different index. 1613b95d834SSanjay Patel ExtractElementInst *VectorCombine::getShuffleExtract( 1623b95d834SSanjay Patel ExtractElementInst *Ext0, ExtractElementInst *Ext1, 1633b95d834SSanjay Patel unsigned PreferredExtractIndex = InvalidIndex) const { 1643b95d834SSanjay Patel assert(isa<ConstantInt>(Ext0->getIndexOperand()) && 1653b95d834SSanjay Patel isa<ConstantInt>(Ext1->getIndexOperand()) && 1663b95d834SSanjay Patel "Expected constant extract indexes"); 1673b95d834SSanjay Patel 1683b95d834SSanjay Patel unsigned Index0 = cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue(); 1693b95d834SSanjay Patel unsigned Index1 = cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue(); 1703b95d834SSanjay Patel 1713b95d834SSanjay Patel // If the extract indexes are identical, no shuffle is needed. 1723b95d834SSanjay Patel if (Index0 == Index1) 1733b95d834SSanjay Patel return nullptr; 1743b95d834SSanjay Patel 1753b95d834SSanjay Patel Type *VecTy = Ext0->getVectorOperand()->getType(); 1763b95d834SSanjay Patel assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types"); 1773b95d834SSanjay Patel int Cost0 = TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 1783b95d834SSanjay Patel int Cost1 = TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 1793b95d834SSanjay Patel 1803b95d834SSanjay Patel // We are extracting from 2 different indexes, so one operand must be shuffled 1813b95d834SSanjay Patel // before performing a vector operation and/or extract. The more expensive 1823b95d834SSanjay Patel // extract will be replaced by a shuffle. 1833b95d834SSanjay Patel if (Cost0 > Cost1) 1843b95d834SSanjay Patel return Ext0; 1853b95d834SSanjay Patel if (Cost1 > Cost0) 1863b95d834SSanjay Patel return Ext1; 1873b95d834SSanjay Patel 1883b95d834SSanjay Patel // If the costs are equal and there is a preferred extract index, shuffle the 1893b95d834SSanjay Patel // opposite operand. 1903b95d834SSanjay Patel if (PreferredExtractIndex == Index0) 1913b95d834SSanjay Patel return Ext1; 1923b95d834SSanjay Patel if (PreferredExtractIndex == Index1) 1933b95d834SSanjay Patel return Ext0; 1943b95d834SSanjay Patel 1953b95d834SSanjay Patel // Otherwise, replace the extract with the higher index. 1963b95d834SSanjay Patel return Index0 > Index1 ? Ext0 : Ext1; 1973b95d834SSanjay Patel } 1983b95d834SSanjay Patel 199a69158c1SSanjay Patel /// Compare the relative costs of 2 extracts followed by scalar operation vs. 200a69158c1SSanjay Patel /// vector operation(s) followed by extract. Return true if the existing 201a69158c1SSanjay Patel /// instructions are cheaper than a vector alternative. Otherwise, return false 202a69158c1SSanjay Patel /// and if one of the extracts should be transformed to a shufflevector, set 203a69158c1SSanjay Patel /// \p ConvertToShuffle to that extract instruction. 2046bdd531aSSanjay Patel bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0, 2056bdd531aSSanjay Patel ExtractElementInst *Ext1, 2066bdd531aSSanjay Patel unsigned Opcode, 207216a37bbSSanjay Patel ExtractElementInst *&ConvertToShuffle, 208ce97ce3aSSanjay Patel unsigned PreferredExtractIndex) { 2094fa63fd4SAustin Kerbow assert(isa<ConstantInt>(Ext0->getOperand(1)) && 210a69158c1SSanjay Patel isa<ConstantInt>(Ext1->getOperand(1)) && 211a69158c1SSanjay Patel "Expected constant extract indexes"); 21234e34855SSanjay Patel Type *ScalarTy = Ext0->getType(); 213e3056ae9SSam Parker auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType()); 21434e34855SSanjay Patel int ScalarOpCost, VectorOpCost; 21534e34855SSanjay Patel 21634e34855SSanjay Patel // Get cost estimates for scalar and vector versions of the operation. 21734e34855SSanjay Patel bool IsBinOp = Instruction::isBinaryOp(Opcode); 21834e34855SSanjay Patel if (IsBinOp) { 21934e34855SSanjay Patel ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 22034e34855SSanjay Patel VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 22134e34855SSanjay Patel } else { 22234e34855SSanjay Patel assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 22334e34855SSanjay Patel "Expected a compare"); 22434e34855SSanjay Patel ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy, 22534e34855SSanjay Patel CmpInst::makeCmpResultType(ScalarTy)); 22634e34855SSanjay Patel VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy, 22734e34855SSanjay Patel CmpInst::makeCmpResultType(VecTy)); 22834e34855SSanjay Patel } 22934e34855SSanjay Patel 230a69158c1SSanjay Patel // Get cost estimates for the extract elements. These costs will factor into 23134e34855SSanjay Patel // both sequences. 232a69158c1SSanjay Patel unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue(); 233a69158c1SSanjay Patel unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue(); 234a69158c1SSanjay Patel 2356bdd531aSSanjay Patel int Extract0Cost = 2366bdd531aSSanjay Patel TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index); 2376bdd531aSSanjay Patel int Extract1Cost = 2386bdd531aSSanjay Patel TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index); 239a69158c1SSanjay Patel 240a69158c1SSanjay Patel // A more expensive extract will always be replaced by a splat shuffle. 241a69158c1SSanjay Patel // For example, if Ext0 is more expensive: 242a69158c1SSanjay Patel // opcode (extelt V0, Ext0), (ext V1, Ext1) --> 243a69158c1SSanjay Patel // extelt (opcode (splat V0, Ext0), V1), Ext1 244a69158c1SSanjay Patel // TODO: Evaluate whether that always results in lowest cost. Alternatively, 245a69158c1SSanjay Patel // check the cost of creating a broadcast shuffle and shuffling both 246a69158c1SSanjay Patel // operands to element 0. 247a69158c1SSanjay Patel int CheapExtractCost = std::min(Extract0Cost, Extract1Cost); 24834e34855SSanjay Patel 24934e34855SSanjay Patel // Extra uses of the extracts mean that we include those costs in the 25034e34855SSanjay Patel // vector total because those instructions will not be eliminated. 251e9c79a7aSSanjay Patel int OldCost, NewCost; 252a69158c1SSanjay Patel if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) { 253a69158c1SSanjay Patel // Handle a special case. If the 2 extracts are identical, adjust the 25434e34855SSanjay Patel // formulas to account for that. The extra use charge allows for either the 25534e34855SSanjay Patel // CSE'd pattern or an unoptimized form with identical values: 25634e34855SSanjay Patel // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C 25734e34855SSanjay Patel bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2) 25834e34855SSanjay Patel : !Ext0->hasOneUse() || !Ext1->hasOneUse(); 259a69158c1SSanjay Patel OldCost = CheapExtractCost + ScalarOpCost; 260a69158c1SSanjay Patel NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost; 26134e34855SSanjay Patel } else { 26234e34855SSanjay Patel // Handle the general case. Each extract is actually a different value: 263a69158c1SSanjay Patel // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C 264a69158c1SSanjay Patel OldCost = Extract0Cost + Extract1Cost + ScalarOpCost; 265a69158c1SSanjay Patel NewCost = VectorOpCost + CheapExtractCost + 266a69158c1SSanjay Patel !Ext0->hasOneUse() * Extract0Cost + 267a69158c1SSanjay Patel !Ext1->hasOneUse() * Extract1Cost; 26834e34855SSanjay Patel } 269a69158c1SSanjay Patel 2703b95d834SSanjay Patel ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex); 2713b95d834SSanjay Patel if (ConvertToShuffle) { 272a69158c1SSanjay Patel if (IsBinOp && DisableBinopExtractShuffle) 273a69158c1SSanjay Patel return true; 274a69158c1SSanjay Patel 275a69158c1SSanjay Patel // If we are extracting from 2 different indexes, then one operand must be 276a69158c1SSanjay Patel // shuffled before performing the vector operation. The shuffle mask is 277a69158c1SSanjay Patel // undefined except for 1 lane that is being translated to the remaining 278a69158c1SSanjay Patel // extraction lane. Therefore, it is a splat shuffle. Ex: 279a69158c1SSanjay Patel // ShufMask = { undef, undef, 0, undef } 280a69158c1SSanjay Patel // TODO: The cost model has an option for a "broadcast" shuffle 281a69158c1SSanjay Patel // (splat-from-element-0), but no option for a more general splat. 282a69158c1SSanjay Patel NewCost += 283a69158c1SSanjay Patel TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 284a69158c1SSanjay Patel } 285a69158c1SSanjay Patel 28610ea01d8SSanjay Patel // Aggressively form a vector op if the cost is equal because the transform 28710ea01d8SSanjay Patel // may enable further optimization. 28810ea01d8SSanjay Patel // Codegen can reverse this transform (scalarize) if it was not profitable. 28910ea01d8SSanjay Patel return OldCost < NewCost; 29034e34855SSanjay Patel } 29134e34855SSanjay Patel 2929934cc54SSanjay Patel /// Create a shuffle that translates (shifts) 1 element from the input vector 2939934cc54SSanjay Patel /// to a new element location. 2949934cc54SSanjay Patel static Value *createShiftShuffle(Value *Vec, unsigned OldIndex, 2959934cc54SSanjay Patel unsigned NewIndex, IRBuilder<> &Builder) { 2969934cc54SSanjay Patel // The shuffle mask is undefined except for 1 lane that is being translated 2979934cc54SSanjay Patel // to the new element index. Example for OldIndex == 2 and NewIndex == 0: 2989934cc54SSanjay Patel // ShufMask = { 2, undef, undef, undef } 2999934cc54SSanjay Patel auto *VecTy = cast<FixedVectorType>(Vec->getType()); 30054143e2bSSanjay Patel SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem); 3019934cc54SSanjay Patel ShufMask[NewIndex] = OldIndex; 3029934cc54SSanjay Patel Value *Undef = UndefValue::get(VecTy); 3039934cc54SSanjay Patel return Builder.CreateShuffleVector(Vec, Undef, ShufMask, "shift"); 3049934cc54SSanjay Patel } 3059934cc54SSanjay Patel 306216a37bbSSanjay Patel /// Given an extract element instruction with constant index operand, shuffle 307216a37bbSSanjay Patel /// the source vector (shift the scalar element) to a NewIndex for extraction. 308216a37bbSSanjay Patel /// Return null if the input can be constant folded, so that we are not creating 309216a37bbSSanjay Patel /// unnecessary instructions. 3109934cc54SSanjay Patel static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt, 3119934cc54SSanjay Patel unsigned NewIndex, 3129934cc54SSanjay Patel IRBuilder<> &Builder) { 313216a37bbSSanjay Patel // If the extract can be constant-folded, this code is unsimplified. Defer 314216a37bbSSanjay Patel // to other passes to handle that. 315216a37bbSSanjay Patel Value *X = ExtElt->getVectorOperand(); 316216a37bbSSanjay Patel Value *C = ExtElt->getIndexOperand(); 317de65b356SSanjay Patel assert(isa<ConstantInt>(C) && "Expected a constant index operand"); 318216a37bbSSanjay Patel if (isa<Constant>(X)) 319216a37bbSSanjay Patel return nullptr; 320216a37bbSSanjay Patel 3219934cc54SSanjay Patel Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(), 3229934cc54SSanjay Patel NewIndex, Builder); 323216a37bbSSanjay Patel return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex)); 324216a37bbSSanjay Patel } 325216a37bbSSanjay Patel 326fc445589SSanjay Patel /// Try to reduce extract element costs by converting scalar compares to vector 327fc445589SSanjay Patel /// compares followed by extract. 328e9c79a7aSSanjay Patel /// cmp (ext0 V0, C), (ext1 V1, C) 329de65b356SSanjay Patel void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0, 330de65b356SSanjay Patel ExtractElementInst *Ext1, Instruction &I) { 331fc445589SSanjay Patel assert(isa<CmpInst>(&I) && "Expected a compare"); 332216a37bbSSanjay Patel assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 333216a37bbSSanjay Patel cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 334216a37bbSSanjay Patel "Expected matching constant extract indexes"); 335a17f03bdSSanjay Patel 336a17f03bdSSanjay Patel // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C 337a17f03bdSSanjay Patel ++NumVecCmp; 338fc445589SSanjay Patel CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate(); 339216a37bbSSanjay Patel Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 34046a285adSSanjay Patel Value *VecCmp = Builder.CreateCmp(Pred, V0, V1); 341216a37bbSSanjay Patel Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand()); 34298c2f4eeSSanjay Patel replaceValue(I, *NewExt); 343a17f03bdSSanjay Patel } 344a17f03bdSSanjay Patel 34519b62b79SSanjay Patel /// Try to reduce extract element costs by converting scalar binops to vector 34619b62b79SSanjay Patel /// binops followed by extract. 347e9c79a7aSSanjay Patel /// bo (ext0 V0, C), (ext1 V1, C) 348de65b356SSanjay Patel void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0, 349de65b356SSanjay Patel ExtractElementInst *Ext1, Instruction &I) { 350fc445589SSanjay Patel assert(isa<BinaryOperator>(&I) && "Expected a binary operator"); 351216a37bbSSanjay Patel assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 352216a37bbSSanjay Patel cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 353216a37bbSSanjay Patel "Expected matching constant extract indexes"); 35419b62b79SSanjay Patel 35534e34855SSanjay Patel // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C 35619b62b79SSanjay Patel ++NumVecBO; 357216a37bbSSanjay Patel Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 358e9c79a7aSSanjay Patel Value *VecBO = 35934e34855SSanjay Patel Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1); 360e9c79a7aSSanjay Patel 36119b62b79SSanjay Patel // All IR flags are safe to back-propagate because any potential poison 36219b62b79SSanjay Patel // created in unused vector elements is discarded by the extract. 363e9c79a7aSSanjay Patel if (auto *VecBOInst = dyn_cast<Instruction>(VecBO)) 36419b62b79SSanjay Patel VecBOInst->copyIRFlags(&I); 365e9c79a7aSSanjay Patel 366216a37bbSSanjay Patel Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand()); 36798c2f4eeSSanjay Patel replaceValue(I, *NewExt); 36819b62b79SSanjay Patel } 36919b62b79SSanjay Patel 370fc445589SSanjay Patel /// Match an instruction with extracted vector operands. 3716bdd531aSSanjay Patel bool VectorCombine::foldExtractExtract(Instruction &I) { 372e9c79a7aSSanjay Patel // It is not safe to transform things like div, urem, etc. because we may 373e9c79a7aSSanjay Patel // create undefined behavior when executing those on unknown vector elements. 374e9c79a7aSSanjay Patel if (!isSafeToSpeculativelyExecute(&I)) 375e9c79a7aSSanjay Patel return false; 376e9c79a7aSSanjay Patel 377216a37bbSSanjay Patel Instruction *I0, *I1; 378fc445589SSanjay Patel CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 379216a37bbSSanjay Patel if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) && 380216a37bbSSanjay Patel !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1)))) 381fc445589SSanjay Patel return false; 382fc445589SSanjay Patel 383fc445589SSanjay Patel Value *V0, *V1; 384fc445589SSanjay Patel uint64_t C0, C1; 385216a37bbSSanjay Patel if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) || 386216a37bbSSanjay Patel !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) || 387fc445589SSanjay Patel V0->getType() != V1->getType()) 388fc445589SSanjay Patel return false; 389fc445589SSanjay Patel 390ce97ce3aSSanjay Patel // If the scalar value 'I' is going to be re-inserted into a vector, then try 391ce97ce3aSSanjay Patel // to create an extract to that same element. The extract/insert can be 392ce97ce3aSSanjay Patel // reduced to a "select shuffle". 393ce97ce3aSSanjay Patel // TODO: If we add a larger pattern match that starts from an insert, this 394ce97ce3aSSanjay Patel // probably becomes unnecessary. 395216a37bbSSanjay Patel auto *Ext0 = cast<ExtractElementInst>(I0); 396216a37bbSSanjay Patel auto *Ext1 = cast<ExtractElementInst>(I1); 397a0f96741SSanjay Patel uint64_t InsertIndex = InvalidIndex; 398ce97ce3aSSanjay Patel if (I.hasOneUse()) 3997eed772aSSanjay Patel match(I.user_back(), 4007eed772aSSanjay Patel m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex))); 401ce97ce3aSSanjay Patel 402216a37bbSSanjay Patel ExtractElementInst *ExtractToChange; 4036bdd531aSSanjay Patel if (isExtractExtractCheap(Ext0, Ext1, I.getOpcode(), ExtractToChange, 404ce97ce3aSSanjay Patel InsertIndex)) 405fc445589SSanjay Patel return false; 406e9c79a7aSSanjay Patel 407216a37bbSSanjay Patel if (ExtractToChange) { 408216a37bbSSanjay Patel unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0; 409216a37bbSSanjay Patel ExtractElementInst *NewExtract = 4109934cc54SSanjay Patel translateExtract(ExtractToChange, CheapExtractIdx, Builder); 411216a37bbSSanjay Patel if (!NewExtract) 4126d864097SSanjay Patel return false; 413216a37bbSSanjay Patel if (ExtractToChange == Ext0) 414216a37bbSSanjay Patel Ext0 = NewExtract; 415a69158c1SSanjay Patel else 416216a37bbSSanjay Patel Ext1 = NewExtract; 417a69158c1SSanjay Patel } 418e9c79a7aSSanjay Patel 419e9c79a7aSSanjay Patel if (Pred != CmpInst::BAD_ICMP_PREDICATE) 420039ff29eSSanjay Patel foldExtExtCmp(Ext0, Ext1, I); 421e9c79a7aSSanjay Patel else 422039ff29eSSanjay Patel foldExtExtBinop(Ext0, Ext1, I); 423e9c79a7aSSanjay Patel 424e9c79a7aSSanjay Patel return true; 425fc445589SSanjay Patel } 426fc445589SSanjay Patel 427bef6e67eSSanjay Patel /// If this is a bitcast of a shuffle, try to bitcast the source vector to the 428bef6e67eSSanjay Patel /// destination type followed by shuffle. This can enable further transforms by 429bef6e67eSSanjay Patel /// moving bitcasts or shuffles together. 4306bdd531aSSanjay Patel bool VectorCombine::foldBitcastShuf(Instruction &I) { 431b6050ca1SSanjay Patel Value *V; 432b6050ca1SSanjay Patel ArrayRef<int> Mask; 4337eed772aSSanjay Patel if (!match(&I, m_BitCast( 4347eed772aSSanjay Patel m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask)))))) 435b6050ca1SSanjay Patel return false; 436b6050ca1SSanjay Patel 437*b4f04d71SHuihui Zhang // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for 438*b4f04d71SHuihui Zhang // scalable type is unknown; Second, we cannot reason if the narrowed shuffle 439*b4f04d71SHuihui Zhang // mask for scalable type is a splat or not. 440*b4f04d71SHuihui Zhang // 2) Disallow non-vector casts and length-changing shuffles. 441bef6e67eSSanjay Patel // TODO: We could allow any shuffle. 442*b4f04d71SHuihui Zhang auto *DestTy = dyn_cast<FixedVectorType>(I.getType()); 443*b4f04d71SHuihui Zhang auto *SrcTy = dyn_cast<FixedVectorType>(V->getType()); 444*b4f04d71SHuihui Zhang if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy) 445b6050ca1SSanjay Patel return false; 446b6050ca1SSanjay Patel 447b6050ca1SSanjay Patel // The new shuffle must not cost more than the old shuffle. The bitcast is 448b6050ca1SSanjay Patel // moved ahead of the shuffle, so assume that it has the same cost as before. 449b6050ca1SSanjay Patel if (TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, DestTy) > 450b6050ca1SSanjay Patel TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy)) 451b6050ca1SSanjay Patel return false; 452b6050ca1SSanjay Patel 453*b4f04d71SHuihui Zhang unsigned DestNumElts = DestTy->getNumElements(); 454*b4f04d71SHuihui Zhang unsigned SrcNumElts = SrcTy->getNumElements(); 455b6050ca1SSanjay Patel SmallVector<int, 16> NewMask; 456bef6e67eSSanjay Patel if (SrcNumElts <= DestNumElts) { 457bef6e67eSSanjay Patel // The bitcast is from wide to narrow/equal elements. The shuffle mask can 458bef6e67eSSanjay Patel // always be expanded to the equivalent form choosing narrower elements. 459b6050ca1SSanjay Patel assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask"); 460b6050ca1SSanjay Patel unsigned ScaleFactor = DestNumElts / SrcNumElts; 4611318ddbcSSanjay Patel narrowShuffleMaskElts(ScaleFactor, Mask, NewMask); 462bef6e67eSSanjay Patel } else { 463bef6e67eSSanjay Patel // The bitcast is from narrow elements to wide elements. The shuffle mask 464bef6e67eSSanjay Patel // must choose consecutive elements to allow casting first. 465bef6e67eSSanjay Patel assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask"); 466bef6e67eSSanjay Patel unsigned ScaleFactor = SrcNumElts / DestNumElts; 467bef6e67eSSanjay Patel if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask)) 468bef6e67eSSanjay Patel return false; 469bef6e67eSSanjay Patel } 470bef6e67eSSanjay Patel // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC' 4717aeb41b3SRoman Lebedev ++NumShufOfBitcast; 472bef6e67eSSanjay Patel Value *CastV = Builder.CreateBitCast(V, DestTy); 4737eed772aSSanjay Patel Value *Shuf = 4747eed772aSSanjay Patel Builder.CreateShuffleVector(CastV, UndefValue::get(DestTy), NewMask); 47598c2f4eeSSanjay Patel replaceValue(I, *Shuf); 476b6050ca1SSanjay Patel return true; 477b6050ca1SSanjay Patel } 478b6050ca1SSanjay Patel 479ed67f5e7SSanjay Patel /// Match a vector binop or compare instruction with at least one inserted 480ed67f5e7SSanjay Patel /// scalar operand and convert to scalar binop/cmp followed by insertelement. 4816bdd531aSSanjay Patel bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) { 482ed67f5e7SSanjay Patel CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 4835dc4e7c2SSimon Pilgrim Value *Ins0, *Ins1; 484ed67f5e7SSanjay Patel if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) && 485ed67f5e7SSanjay Patel !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1)))) 486ed67f5e7SSanjay Patel return false; 487ed67f5e7SSanjay Patel 488ed67f5e7SSanjay Patel // Do not convert the vector condition of a vector select into a scalar 489ed67f5e7SSanjay Patel // condition. That may cause problems for codegen because of differences in 490ed67f5e7SSanjay Patel // boolean formats and register-file transfers. 491ed67f5e7SSanjay Patel // TODO: Can we account for that in the cost model? 492ed67f5e7SSanjay Patel bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE; 493ed67f5e7SSanjay Patel if (IsCmp) 494ed67f5e7SSanjay Patel for (User *U : I.users()) 495ed67f5e7SSanjay Patel if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value()))) 4960d2a0b44SSanjay Patel return false; 4970d2a0b44SSanjay Patel 4985dc4e7c2SSimon Pilgrim // Match against one or both scalar values being inserted into constant 4995dc4e7c2SSimon Pilgrim // vectors: 500ed67f5e7SSanjay Patel // vec_op VecC0, (inselt VecC1, V1, Index) 501ed67f5e7SSanjay Patel // vec_op (inselt VecC0, V0, Index), VecC1 502ed67f5e7SSanjay Patel // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) 5030d2a0b44SSanjay Patel // TODO: Deal with mismatched index constants and variable indexes? 5045dc4e7c2SSimon Pilgrim Constant *VecC0 = nullptr, *VecC1 = nullptr; 5055dc4e7c2SSimon Pilgrim Value *V0 = nullptr, *V1 = nullptr; 5065dc4e7c2SSimon Pilgrim uint64_t Index0 = 0, Index1 = 0; 5077eed772aSSanjay Patel if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0), 5085dc4e7c2SSimon Pilgrim m_ConstantInt(Index0))) && 5095dc4e7c2SSimon Pilgrim !match(Ins0, m_Constant(VecC0))) 5105dc4e7c2SSimon Pilgrim return false; 5115dc4e7c2SSimon Pilgrim if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1), 5125dc4e7c2SSimon Pilgrim m_ConstantInt(Index1))) && 5135dc4e7c2SSimon Pilgrim !match(Ins1, m_Constant(VecC1))) 5140d2a0b44SSanjay Patel return false; 5150d2a0b44SSanjay Patel 5165dc4e7c2SSimon Pilgrim bool IsConst0 = !V0; 5175dc4e7c2SSimon Pilgrim bool IsConst1 = !V1; 5185dc4e7c2SSimon Pilgrim if (IsConst0 && IsConst1) 5195dc4e7c2SSimon Pilgrim return false; 5205dc4e7c2SSimon Pilgrim if (!IsConst0 && !IsConst1 && Index0 != Index1) 5215dc4e7c2SSimon Pilgrim return false; 5225dc4e7c2SSimon Pilgrim 5235dc4e7c2SSimon Pilgrim // Bail for single insertion if it is a load. 5245dc4e7c2SSimon Pilgrim // TODO: Handle this once getVectorInstrCost can cost for load/stores. 5255dc4e7c2SSimon Pilgrim auto *I0 = dyn_cast_or_null<Instruction>(V0); 5265dc4e7c2SSimon Pilgrim auto *I1 = dyn_cast_or_null<Instruction>(V1); 5275dc4e7c2SSimon Pilgrim if ((IsConst0 && I1 && I1->mayReadFromMemory()) || 5285dc4e7c2SSimon Pilgrim (IsConst1 && I0 && I0->mayReadFromMemory())) 5295dc4e7c2SSimon Pilgrim return false; 5305dc4e7c2SSimon Pilgrim 5315dc4e7c2SSimon Pilgrim uint64_t Index = IsConst0 ? Index1 : Index0; 5325dc4e7c2SSimon Pilgrim Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType(); 5330d2a0b44SSanjay Patel Type *VecTy = I.getType(); 5345dc4e7c2SSimon Pilgrim assert(VecTy->isVectorTy() && 5355dc4e7c2SSimon Pilgrim (IsConst0 || IsConst1 || V0->getType() == V1->getType()) && 536741e20f3SSanjay Patel (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() || 537741e20f3SSanjay Patel ScalarTy->isPointerTy()) && 538741e20f3SSanjay Patel "Unexpected types for insert element into binop or cmp"); 5390d2a0b44SSanjay Patel 540ed67f5e7SSanjay Patel unsigned Opcode = I.getOpcode(); 541ed67f5e7SSanjay Patel int ScalarOpCost, VectorOpCost; 542ed67f5e7SSanjay Patel if (IsCmp) { 543ed67f5e7SSanjay Patel ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy); 544ed67f5e7SSanjay Patel VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy); 545ed67f5e7SSanjay Patel } else { 546ed67f5e7SSanjay Patel ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 547ed67f5e7SSanjay Patel VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 548ed67f5e7SSanjay Patel } 5490d2a0b44SSanjay Patel 5500d2a0b44SSanjay Patel // Get cost estimate for the insert element. This cost will factor into 5510d2a0b44SSanjay Patel // both sequences. 5520d2a0b44SSanjay Patel int InsertCost = 5530d2a0b44SSanjay Patel TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index); 5545dc4e7c2SSimon Pilgrim int OldCost = (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + 5555dc4e7c2SSimon Pilgrim VectorOpCost; 5565f730b64SSanjay Patel int NewCost = ScalarOpCost + InsertCost + 5575dc4e7c2SSimon Pilgrim (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) + 5585dc4e7c2SSimon Pilgrim (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost); 5590d2a0b44SSanjay Patel 5600d2a0b44SSanjay Patel // We want to scalarize unless the vector variant actually has lower cost. 5610d2a0b44SSanjay Patel if (OldCost < NewCost) 5620d2a0b44SSanjay Patel return false; 5630d2a0b44SSanjay Patel 564ed67f5e7SSanjay Patel // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) --> 565ed67f5e7SSanjay Patel // inselt NewVecC, (scalar_op V0, V1), Index 566ed67f5e7SSanjay Patel if (IsCmp) 567ed67f5e7SSanjay Patel ++NumScalarCmp; 568ed67f5e7SSanjay Patel else 5690d2a0b44SSanjay Patel ++NumScalarBO; 5705dc4e7c2SSimon Pilgrim 5715dc4e7c2SSimon Pilgrim // For constant cases, extract the scalar element, this should constant fold. 5725dc4e7c2SSimon Pilgrim if (IsConst0) 5735dc4e7c2SSimon Pilgrim V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index)); 5745dc4e7c2SSimon Pilgrim if (IsConst1) 5755dc4e7c2SSimon Pilgrim V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index)); 5765dc4e7c2SSimon Pilgrim 577ed67f5e7SSanjay Patel Value *Scalar = 57846a285adSSanjay Patel IsCmp ? Builder.CreateCmp(Pred, V0, V1) 579ed67f5e7SSanjay Patel : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1); 580ed67f5e7SSanjay Patel 581ed67f5e7SSanjay Patel Scalar->setName(I.getName() + ".scalar"); 5820d2a0b44SSanjay Patel 5830d2a0b44SSanjay Patel // All IR flags are safe to back-propagate. There is no potential for extra 5840d2a0b44SSanjay Patel // poison to be created by the scalar instruction. 5850d2a0b44SSanjay Patel if (auto *ScalarInst = dyn_cast<Instruction>(Scalar)) 5860d2a0b44SSanjay Patel ScalarInst->copyIRFlags(&I); 5870d2a0b44SSanjay Patel 5880d2a0b44SSanjay Patel // Fold the vector constants in the original vectors into a new base vector. 589ed67f5e7SSanjay Patel Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1) 590ed67f5e7SSanjay Patel : ConstantExpr::get(Opcode, VecC0, VecC1); 5910d2a0b44SSanjay Patel Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index); 59298c2f4eeSSanjay Patel replaceValue(I, *Insert); 5930d2a0b44SSanjay Patel return true; 5940d2a0b44SSanjay Patel } 5950d2a0b44SSanjay Patel 596b6315aeeSSanjay Patel /// Try to combine a scalar binop + 2 scalar compares of extracted elements of 597b6315aeeSSanjay Patel /// a vector into vector operations followed by extract. Note: The SLP pass 598b6315aeeSSanjay Patel /// may miss this pattern because of implementation problems. 599b6315aeeSSanjay Patel bool VectorCombine::foldExtractedCmps(Instruction &I) { 600b6315aeeSSanjay Patel // We are looking for a scalar binop of booleans. 601b6315aeeSSanjay Patel // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1) 602b6315aeeSSanjay Patel if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1)) 603b6315aeeSSanjay Patel return false; 604b6315aeeSSanjay Patel 605b6315aeeSSanjay Patel // The compare predicates should match, and each compare should have a 606b6315aeeSSanjay Patel // constant operand. 607b6315aeeSSanjay Patel // TODO: Relax the one-use constraints. 608b6315aeeSSanjay Patel Value *B0 = I.getOperand(0), *B1 = I.getOperand(1); 609b6315aeeSSanjay Patel Instruction *I0, *I1; 610b6315aeeSSanjay Patel Constant *C0, *C1; 611b6315aeeSSanjay Patel CmpInst::Predicate P0, P1; 612b6315aeeSSanjay Patel if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) || 613b6315aeeSSanjay Patel !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) || 614b6315aeeSSanjay Patel P0 != P1) 615b6315aeeSSanjay Patel return false; 616b6315aeeSSanjay Patel 617b6315aeeSSanjay Patel // The compare operands must be extracts of the same vector with constant 618b6315aeeSSanjay Patel // extract indexes. 619b6315aeeSSanjay Patel // TODO: Relax the one-use constraints. 620b6315aeeSSanjay Patel Value *X; 621b6315aeeSSanjay Patel uint64_t Index0, Index1; 622b6315aeeSSanjay Patel if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) || 623b6315aeeSSanjay Patel !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1))))) 624b6315aeeSSanjay Patel return false; 625b6315aeeSSanjay Patel 626b6315aeeSSanjay Patel auto *Ext0 = cast<ExtractElementInst>(I0); 627b6315aeeSSanjay Patel auto *Ext1 = cast<ExtractElementInst>(I1); 628b6315aeeSSanjay Patel ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1); 629b6315aeeSSanjay Patel if (!ConvertToShuf) 630b6315aeeSSanjay Patel return false; 631b6315aeeSSanjay Patel 632b6315aeeSSanjay Patel // The original scalar pattern is: 633b6315aeeSSanjay Patel // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1) 634b6315aeeSSanjay Patel CmpInst::Predicate Pred = P0; 635b6315aeeSSanjay Patel unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp 636b6315aeeSSanjay Patel : Instruction::ICmp; 637b6315aeeSSanjay Patel auto *VecTy = dyn_cast<FixedVectorType>(X->getType()); 638b6315aeeSSanjay Patel if (!VecTy) 639b6315aeeSSanjay Patel return false; 640b6315aeeSSanjay Patel 641b6315aeeSSanjay Patel int OldCost = TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 642b6315aeeSSanjay Patel OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 643b6315aeeSSanjay Patel OldCost += TTI.getCmpSelInstrCost(CmpOpcode, I0->getType()) * 2; 644b6315aeeSSanjay Patel OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType()); 645b6315aeeSSanjay Patel 646b6315aeeSSanjay Patel // The proposed vector pattern is: 647b6315aeeSSanjay Patel // vcmp = cmp Pred X, VecC 648b6315aeeSSanjay Patel // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0 649b6315aeeSSanjay Patel int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0; 650b6315aeeSSanjay Patel int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1; 651b6315aeeSSanjay Patel auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType())); 652b6315aeeSSanjay Patel int NewCost = TTI.getCmpSelInstrCost(CmpOpcode, X->getType()); 653b6315aeeSSanjay Patel NewCost += 654b6315aeeSSanjay Patel TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy); 655b6315aeeSSanjay Patel NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy); 656b6315aeeSSanjay Patel NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex); 657b6315aeeSSanjay Patel 658b6315aeeSSanjay Patel // Aggressively form vector ops if the cost is equal because the transform 659b6315aeeSSanjay Patel // may enable further optimization. 660b6315aeeSSanjay Patel // Codegen can reverse this transform (scalarize) if it was not profitable. 661b6315aeeSSanjay Patel if (OldCost < NewCost) 662b6315aeeSSanjay Patel return false; 663b6315aeeSSanjay Patel 664b6315aeeSSanjay Patel // Create a vector constant from the 2 scalar constants. 665b6315aeeSSanjay Patel SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(), 666b6315aeeSSanjay Patel UndefValue::get(VecTy->getElementType())); 667b6315aeeSSanjay Patel CmpC[Index0] = C0; 668b6315aeeSSanjay Patel CmpC[Index1] = C1; 669b6315aeeSSanjay Patel Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC)); 670b6315aeeSSanjay Patel 671b6315aeeSSanjay Patel Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder); 672b6315aeeSSanjay Patel Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(), 673b6315aeeSSanjay Patel VCmp, Shuf); 674b6315aeeSSanjay Patel Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex); 675b6315aeeSSanjay Patel replaceValue(I, *NewExt); 676b6315aeeSSanjay Patel ++NumVecCmpBO; 677b6315aeeSSanjay Patel return true; 678b6315aeeSSanjay Patel } 679b6315aeeSSanjay Patel 680a17f03bdSSanjay Patel /// This is the entry point for all transforms. Pass manager differences are 681a17f03bdSSanjay Patel /// handled in the callers of this function. 6826bdd531aSSanjay Patel bool VectorCombine::run() { 68325c6544fSSanjay Patel if (DisableVectorCombine) 68425c6544fSSanjay Patel return false; 68525c6544fSSanjay Patel 686cc892fd9SSanjay Patel // Don't attempt vectorization if the target does not support vectors. 687cc892fd9SSanjay Patel if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true))) 688cc892fd9SSanjay Patel return false; 689cc892fd9SSanjay Patel 690a17f03bdSSanjay Patel bool MadeChange = false; 691a17f03bdSSanjay Patel for (BasicBlock &BB : F) { 692a17f03bdSSanjay Patel // Ignore unreachable basic blocks. 693a17f03bdSSanjay Patel if (!DT.isReachableFromEntry(&BB)) 694a17f03bdSSanjay Patel continue; 695a17f03bdSSanjay Patel // Do not delete instructions under here and invalidate the iterator. 69681e9ede3SSanjay Patel // Walk the block forwards to enable simple iterative chains of transforms. 697a17f03bdSSanjay Patel // TODO: It could be more efficient to remove dead instructions 698a17f03bdSSanjay Patel // iteratively in this loop rather than waiting until the end. 69981e9ede3SSanjay Patel for (Instruction &I : BB) { 700fc3cc8a4SSanjay Patel if (isa<DbgInfoIntrinsic>(I)) 701fc3cc8a4SSanjay Patel continue; 702de65b356SSanjay Patel Builder.SetInsertPoint(&I); 70343bdac29SSanjay Patel MadeChange |= vectorizeLoadInsert(I); 7046bdd531aSSanjay Patel MadeChange |= foldExtractExtract(I); 7056bdd531aSSanjay Patel MadeChange |= foldBitcastShuf(I); 7066bdd531aSSanjay Patel MadeChange |= scalarizeBinopOrCmp(I); 707b6315aeeSSanjay Patel MadeChange |= foldExtractedCmps(I); 708a17f03bdSSanjay Patel } 709fc3cc8a4SSanjay Patel } 710a17f03bdSSanjay Patel 711a17f03bdSSanjay Patel // We're done with transforms, so remove dead instructions. 712a17f03bdSSanjay Patel if (MadeChange) 713a17f03bdSSanjay Patel for (BasicBlock &BB : F) 714a17f03bdSSanjay Patel SimplifyInstructionsInBlock(&BB); 715a17f03bdSSanjay Patel 716a17f03bdSSanjay Patel return MadeChange; 717a17f03bdSSanjay Patel } 718a17f03bdSSanjay Patel 719a17f03bdSSanjay Patel // Pass manager boilerplate below here. 720a17f03bdSSanjay Patel 721a17f03bdSSanjay Patel namespace { 722a17f03bdSSanjay Patel class VectorCombineLegacyPass : public FunctionPass { 723a17f03bdSSanjay Patel public: 724a17f03bdSSanjay Patel static char ID; 725a17f03bdSSanjay Patel VectorCombineLegacyPass() : FunctionPass(ID) { 726a17f03bdSSanjay Patel initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry()); 727a17f03bdSSanjay Patel } 728a17f03bdSSanjay Patel 729a17f03bdSSanjay Patel void getAnalysisUsage(AnalysisUsage &AU) const override { 730a17f03bdSSanjay Patel AU.addRequired<DominatorTreeWrapperPass>(); 731a17f03bdSSanjay Patel AU.addRequired<TargetTransformInfoWrapperPass>(); 732a17f03bdSSanjay Patel AU.setPreservesCFG(); 733a17f03bdSSanjay Patel AU.addPreserved<DominatorTreeWrapperPass>(); 734a17f03bdSSanjay Patel AU.addPreserved<GlobalsAAWrapperPass>(); 735024098aeSSanjay Patel AU.addPreserved<AAResultsWrapperPass>(); 736024098aeSSanjay Patel AU.addPreserved<BasicAAWrapperPass>(); 737a17f03bdSSanjay Patel FunctionPass::getAnalysisUsage(AU); 738a17f03bdSSanjay Patel } 739a17f03bdSSanjay Patel 740a17f03bdSSanjay Patel bool runOnFunction(Function &F) override { 741a17f03bdSSanjay Patel if (skipFunction(F)) 742a17f03bdSSanjay Patel return false; 743a17f03bdSSanjay Patel auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 744a17f03bdSSanjay Patel auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 7456bdd531aSSanjay Patel VectorCombine Combiner(F, TTI, DT); 7466bdd531aSSanjay Patel return Combiner.run(); 747a17f03bdSSanjay Patel } 748a17f03bdSSanjay Patel }; 749a17f03bdSSanjay Patel } // namespace 750a17f03bdSSanjay Patel 751a17f03bdSSanjay Patel char VectorCombineLegacyPass::ID = 0; 752a17f03bdSSanjay Patel INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine", 753a17f03bdSSanjay Patel "Optimize scalar/vector ops", false, 754a17f03bdSSanjay Patel false) 755a17f03bdSSanjay Patel INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 756a17f03bdSSanjay Patel INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine", 757a17f03bdSSanjay Patel "Optimize scalar/vector ops", false, false) 758a17f03bdSSanjay Patel Pass *llvm::createVectorCombinePass() { 759a17f03bdSSanjay Patel return new VectorCombineLegacyPass(); 760a17f03bdSSanjay Patel } 761a17f03bdSSanjay Patel 762a17f03bdSSanjay Patel PreservedAnalyses VectorCombinePass::run(Function &F, 763a17f03bdSSanjay Patel FunctionAnalysisManager &FAM) { 764a17f03bdSSanjay Patel TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); 765a17f03bdSSanjay Patel DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); 7666bdd531aSSanjay Patel VectorCombine Combiner(F, TTI, DT); 7676bdd531aSSanjay Patel if (!Combiner.run()) 768a17f03bdSSanjay Patel return PreservedAnalyses::all(); 769a17f03bdSSanjay Patel PreservedAnalyses PA; 770a17f03bdSSanjay Patel PA.preserveSet<CFGAnalyses>(); 771a17f03bdSSanjay Patel PA.preserve<GlobalsAA>(); 772024098aeSSanjay Patel PA.preserve<AAManager>(); 773024098aeSSanjay Patel PA.preserve<BasicAA>(); 774a17f03bdSSanjay Patel return PA; 775a17f03bdSSanjay Patel } 776