1a17f03bdSSanjay Patel //===------- VectorCombine.cpp - Optimize partial vector operations -------===// 2a17f03bdSSanjay Patel // 3a17f03bdSSanjay Patel // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4a17f03bdSSanjay Patel // See https://llvm.org/LICENSE.txt for license information. 5a17f03bdSSanjay Patel // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6a17f03bdSSanjay Patel // 7a17f03bdSSanjay Patel //===----------------------------------------------------------------------===// 8a17f03bdSSanjay Patel // 9a17f03bdSSanjay Patel // This pass optimizes scalar/vector interactions using target cost models. The 10a17f03bdSSanjay Patel // transforms implemented here may not fit in traditional loop-based or SLP 11a17f03bdSSanjay Patel // vectorization passes. 12a17f03bdSSanjay Patel // 13a17f03bdSSanjay Patel //===----------------------------------------------------------------------===// 14a17f03bdSSanjay Patel 15a17f03bdSSanjay Patel #include "llvm/Transforms/Vectorize/VectorCombine.h" 16a17f03bdSSanjay Patel #include "llvm/ADT/Statistic.h" 175006e551SSimon Pilgrim #include "llvm/Analysis/BasicAliasAnalysis.h" 18a17f03bdSSanjay Patel #include "llvm/Analysis/GlobalsModRef.h" 1943bdac29SSanjay Patel #include "llvm/Analysis/Loads.h" 20a17f03bdSSanjay Patel #include "llvm/Analysis/TargetTransformInfo.h" 2119b62b79SSanjay Patel #include "llvm/Analysis/ValueTracking.h" 22b6050ca1SSanjay Patel #include "llvm/Analysis/VectorUtils.h" 23a17f03bdSSanjay Patel #include "llvm/IR/Dominators.h" 24a17f03bdSSanjay Patel #include "llvm/IR/Function.h" 25a17f03bdSSanjay Patel #include "llvm/IR/IRBuilder.h" 26a17f03bdSSanjay Patel #include "llvm/IR/PatternMatch.h" 27a17f03bdSSanjay Patel #include "llvm/InitializePasses.h" 28a17f03bdSSanjay Patel #include "llvm/Pass.h" 2925c6544fSSanjay Patel #include "llvm/Support/CommandLine.h" 30a17f03bdSSanjay Patel #include "llvm/Transforms/Utils/Local.h" 315006e551SSimon Pilgrim #include "llvm/Transforms/Vectorize.h" 32a17f03bdSSanjay Patel 33a17f03bdSSanjay Patel using namespace llvm; 34a17f03bdSSanjay Patel using namespace llvm::PatternMatch; 35a17f03bdSSanjay Patel 36a17f03bdSSanjay Patel #define DEBUG_TYPE "vector-combine" 3743bdac29SSanjay Patel STATISTIC(NumVecLoad, "Number of vector loads formed"); 38a17f03bdSSanjay Patel STATISTIC(NumVecCmp, "Number of vector compares formed"); 3919b62b79SSanjay Patel STATISTIC(NumVecBO, "Number of vector binops formed"); 40b6315aeeSSanjay Patel STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed"); 417aeb41b3SRoman Lebedev STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast"); 420d2a0b44SSanjay Patel STATISTIC(NumScalarBO, "Number of scalar binops formed"); 43ed67f5e7SSanjay Patel STATISTIC(NumScalarCmp, "Number of scalar compares formed"); 44a17f03bdSSanjay Patel 4525c6544fSSanjay Patel static cl::opt<bool> DisableVectorCombine( 4625c6544fSSanjay Patel "disable-vector-combine", cl::init(false), cl::Hidden, 4725c6544fSSanjay Patel cl::desc("Disable all vector combine transforms")); 4825c6544fSSanjay Patel 49a69158c1SSanjay Patel static cl::opt<bool> DisableBinopExtractShuffle( 50a69158c1SSanjay Patel "disable-binop-extract-shuffle", cl::init(false), cl::Hidden, 51a69158c1SSanjay Patel cl::desc("Disable binop extract to shuffle transforms")); 52a69158c1SSanjay Patel 53a0f96741SSanjay Patel static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max(); 54a0f96741SSanjay Patel 55b4447054SBenjamin Kramer namespace { 566bdd531aSSanjay Patel class VectorCombine { 576bdd531aSSanjay Patel public: 586bdd531aSSanjay Patel VectorCombine(Function &F, const TargetTransformInfo &TTI, 596bdd531aSSanjay Patel const DominatorTree &DT) 60de65b356SSanjay Patel : F(F), Builder(F.getContext()), TTI(TTI), DT(DT) {} 616bdd531aSSanjay Patel 626bdd531aSSanjay Patel bool run(); 636bdd531aSSanjay Patel 646bdd531aSSanjay Patel private: 656bdd531aSSanjay Patel Function &F; 66de65b356SSanjay Patel IRBuilder<> Builder; 676bdd531aSSanjay Patel const TargetTransformInfo &TTI; 686bdd531aSSanjay Patel const DominatorTree &DT; 696bdd531aSSanjay Patel 7043bdac29SSanjay Patel bool vectorizeLoadInsert(Instruction &I); 713b95d834SSanjay Patel ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0, 723b95d834SSanjay Patel ExtractElementInst *Ext1, 733b95d834SSanjay Patel unsigned PreferredExtractIndex) const; 746bdd531aSSanjay Patel bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 756bdd531aSSanjay Patel unsigned Opcode, 766bdd531aSSanjay Patel ExtractElementInst *&ConvertToShuffle, 776bdd531aSSanjay Patel unsigned PreferredExtractIndex); 78de65b356SSanjay Patel void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 79de65b356SSanjay Patel Instruction &I); 80de65b356SSanjay Patel void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 81de65b356SSanjay Patel Instruction &I); 826bdd531aSSanjay Patel bool foldExtractExtract(Instruction &I); 836bdd531aSSanjay Patel bool foldBitcastShuf(Instruction &I); 846bdd531aSSanjay Patel bool scalarizeBinopOrCmp(Instruction &I); 85b6315aeeSSanjay Patel bool foldExtractedCmps(Instruction &I); 866bdd531aSSanjay Patel }; 87b4447054SBenjamin Kramer } // namespace 88a69158c1SSanjay Patel 8998c2f4eeSSanjay Patel static void replaceValue(Value &Old, Value &New) { 9098c2f4eeSSanjay Patel Old.replaceAllUsesWith(&New); 9198c2f4eeSSanjay Patel New.takeName(&Old); 9298c2f4eeSSanjay Patel } 9398c2f4eeSSanjay Patel 9443bdac29SSanjay Patel bool VectorCombine::vectorizeLoadInsert(Instruction &I) { 95b2ef2640SSanjay Patel // Match insert into fixed vector of scalar value. 96ddd9575dSSanjay Patel auto *Ty = dyn_cast<FixedVectorType>(I.getType()); 9743bdac29SSanjay Patel Value *Scalar; 9848a23bccSSanjay Patel if (!Ty || !match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) || 9948a23bccSSanjay Patel !Scalar->hasOneUse()) 10043bdac29SSanjay Patel return false; 101ddd9575dSSanjay Patel 102b2ef2640SSanjay Patel // Optionally match an extract from another vector. 103b2ef2640SSanjay Patel Value *X; 104b2ef2640SSanjay Patel bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt())); 105b2ef2640SSanjay Patel if (!HasExtract) 106b2ef2640SSanjay Patel X = Scalar; 107b2ef2640SSanjay Patel 108b2ef2640SSanjay Patel // Match source value as load of scalar or vector. 1094452cc40SFangrui Song // Do not vectorize scalar load (widening) if atomic/volatile or under 1104452cc40SFangrui Song // asan/hwasan/memtag/tsan. The widened load may load data from dirty regions 1114452cc40SFangrui Song // or create data races non-existent in the source. 112b2ef2640SSanjay Patel auto *Load = dyn_cast<LoadInst>(X); 113b2ef2640SSanjay Patel if (!Load || !Load->isSimple() || !Load->hasOneUse() || 1144452cc40SFangrui Song Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) || 1154452cc40SFangrui Song mustSuppressSpeculation(*Load)) 11643bdac29SSanjay Patel return false; 11743bdac29SSanjay Patel 11843bdac29SSanjay Patel // TODO: Extend this to match GEP with constant offsets. 11912b684aeSSanjay Patel const DataLayout &DL = I.getModule()->getDataLayout(); 12012b684aeSSanjay Patel Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts(); 12112b684aeSSanjay Patel assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type"); 122c36c0fabSArtem Belevich 123c36c0fabSArtem Belevich // If original AS != Load's AS, we can't bitcast the original pointer and have 124c36c0fabSArtem Belevich // to use Load's operand instead. Ideally we would want to strip pointer casts 125c36c0fabSArtem Belevich // without changing AS, but there's no API to do that ATM. 12612b684aeSSanjay Patel unsigned AS = Load->getPointerAddressSpace(); 12712b684aeSSanjay Patel if (AS != SrcPtr->getType()->getPointerAddressSpace()) 12812b684aeSSanjay Patel SrcPtr = Load->getPointerOperand(); 12943bdac29SSanjay Patel 130ddd9575dSSanjay Patel Type *ScalarTy = Scalar->getType(); 13143bdac29SSanjay Patel uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits(); 132ddd9575dSSanjay Patel unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth(); 1338fb05593SSanjay Patel if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0) 13443bdac29SSanjay Patel return false; 13543bdac29SSanjay Patel 13643bdac29SSanjay Patel // Check safety of replacing the scalar load with a larger vector load. 137*aaaf0ec7SSanjay Patel // We use minimal alignment (maximum flexibility) because we only care about 138*aaaf0ec7SSanjay Patel // the dereferenceable region. When calculating cost and creating a new op, 139*aaaf0ec7SSanjay Patel // we may use a larger value based on alignment attributes. 1408fb05593SSanjay Patel unsigned MinVecNumElts = MinVectorSize / ScalarSize; 1418fb05593SSanjay Patel auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false); 142*aaaf0ec7SSanjay Patel if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) 14343bdac29SSanjay Patel return false; 14443bdac29SSanjay Patel 145b2ef2640SSanjay Patel // Original pattern: insertelt undef, load [free casts of] PtrOp, 0 146*aaaf0ec7SSanjay Patel Align Alignment = Load->getAlign(); 147b2ef2640SSanjay Patel Type *LoadTy = Load->getType(); 148b2ef2640SSanjay Patel int OldCost = TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS); 1498fb05593SSanjay Patel APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0); 150b2ef2640SSanjay Patel OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts, 151b2ef2640SSanjay Patel /* Insert */ true, HasExtract); 15243bdac29SSanjay Patel 15343bdac29SSanjay Patel // New pattern: load VecPtr 1548fb05593SSanjay Patel int NewCost = TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS); 15543bdac29SSanjay Patel 15643bdac29SSanjay Patel // We can aggressively convert to the vector form because the backend can 15743bdac29SSanjay Patel // invert this transform if it does not result in a performance win. 15843bdac29SSanjay Patel if (OldCost < NewCost) 15943bdac29SSanjay Patel return false; 16043bdac29SSanjay Patel 16143bdac29SSanjay Patel // It is safe and potentially profitable to load a vector directly: 16243bdac29SSanjay Patel // inselt undef, load Scalar, 0 --> load VecPtr 16343bdac29SSanjay Patel IRBuilder<> Builder(Load); 16412b684aeSSanjay Patel Value *CastedPtr = Builder.CreateBitCast(SrcPtr, MinVecTy->getPointerTo(AS)); 1658fb05593SSanjay Patel Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment); 1668fb05593SSanjay Patel 167d399f870SSanjay Patel // Set everything but element 0 to undef to prevent poison from propagating 168d399f870SSanjay Patel // from the extra loaded memory. This will also optionally shrink/grow the 169d399f870SSanjay Patel // vector from the loaded size to the output size. 170d399f870SSanjay Patel // We assume this operation has no cost in codegen. 171d399f870SSanjay Patel // Note that we could use freeze to avoid poison problems, but then we might 172d399f870SSanjay Patel // still need a shuffle to change the vector size. 1738fb05593SSanjay Patel unsigned OutputNumElts = Ty->getNumElements(); 1748fb05593SSanjay Patel SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem); 175d399f870SSanjay Patel Mask[0] = 0; 1761e6b240dSSanjay Patel VecLd = Builder.CreateShuffleVector(VecLd, Mask); 177d399f870SSanjay Patel 17843bdac29SSanjay Patel replaceValue(I, *VecLd); 17943bdac29SSanjay Patel ++NumVecLoad; 18043bdac29SSanjay Patel return true; 18143bdac29SSanjay Patel } 18243bdac29SSanjay Patel 1833b95d834SSanjay Patel /// Determine which, if any, of the inputs should be replaced by a shuffle 1843b95d834SSanjay Patel /// followed by extract from a different index. 1853b95d834SSanjay Patel ExtractElementInst *VectorCombine::getShuffleExtract( 1863b95d834SSanjay Patel ExtractElementInst *Ext0, ExtractElementInst *Ext1, 1873b95d834SSanjay Patel unsigned PreferredExtractIndex = InvalidIndex) const { 1883b95d834SSanjay Patel assert(isa<ConstantInt>(Ext0->getIndexOperand()) && 1893b95d834SSanjay Patel isa<ConstantInt>(Ext1->getIndexOperand()) && 1903b95d834SSanjay Patel "Expected constant extract indexes"); 1913b95d834SSanjay Patel 1923b95d834SSanjay Patel unsigned Index0 = cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue(); 1933b95d834SSanjay Patel unsigned Index1 = cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue(); 1943b95d834SSanjay Patel 1953b95d834SSanjay Patel // If the extract indexes are identical, no shuffle is needed. 1963b95d834SSanjay Patel if (Index0 == Index1) 1973b95d834SSanjay Patel return nullptr; 1983b95d834SSanjay Patel 1993b95d834SSanjay Patel Type *VecTy = Ext0->getVectorOperand()->getType(); 2003b95d834SSanjay Patel assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types"); 2013b95d834SSanjay Patel int Cost0 = TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 2023b95d834SSanjay Patel int Cost1 = TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 2033b95d834SSanjay Patel 2043b95d834SSanjay Patel // We are extracting from 2 different indexes, so one operand must be shuffled 2053b95d834SSanjay Patel // before performing a vector operation and/or extract. The more expensive 2063b95d834SSanjay Patel // extract will be replaced by a shuffle. 2073b95d834SSanjay Patel if (Cost0 > Cost1) 2083b95d834SSanjay Patel return Ext0; 2093b95d834SSanjay Patel if (Cost1 > Cost0) 2103b95d834SSanjay Patel return Ext1; 2113b95d834SSanjay Patel 2123b95d834SSanjay Patel // If the costs are equal and there is a preferred extract index, shuffle the 2133b95d834SSanjay Patel // opposite operand. 2143b95d834SSanjay Patel if (PreferredExtractIndex == Index0) 2153b95d834SSanjay Patel return Ext1; 2163b95d834SSanjay Patel if (PreferredExtractIndex == Index1) 2173b95d834SSanjay Patel return Ext0; 2183b95d834SSanjay Patel 2193b95d834SSanjay Patel // Otherwise, replace the extract with the higher index. 2203b95d834SSanjay Patel return Index0 > Index1 ? Ext0 : Ext1; 2213b95d834SSanjay Patel } 2223b95d834SSanjay Patel 223a69158c1SSanjay Patel /// Compare the relative costs of 2 extracts followed by scalar operation vs. 224a69158c1SSanjay Patel /// vector operation(s) followed by extract. Return true if the existing 225a69158c1SSanjay Patel /// instructions are cheaper than a vector alternative. Otherwise, return false 226a69158c1SSanjay Patel /// and if one of the extracts should be transformed to a shufflevector, set 227a69158c1SSanjay Patel /// \p ConvertToShuffle to that extract instruction. 2286bdd531aSSanjay Patel bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0, 2296bdd531aSSanjay Patel ExtractElementInst *Ext1, 2306bdd531aSSanjay Patel unsigned Opcode, 231216a37bbSSanjay Patel ExtractElementInst *&ConvertToShuffle, 232ce97ce3aSSanjay Patel unsigned PreferredExtractIndex) { 2334fa63fd4SAustin Kerbow assert(isa<ConstantInt>(Ext0->getOperand(1)) && 234a69158c1SSanjay Patel isa<ConstantInt>(Ext1->getOperand(1)) && 235a69158c1SSanjay Patel "Expected constant extract indexes"); 23634e34855SSanjay Patel Type *ScalarTy = Ext0->getType(); 237e3056ae9SSam Parker auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType()); 23834e34855SSanjay Patel int ScalarOpCost, VectorOpCost; 23934e34855SSanjay Patel 24034e34855SSanjay Patel // Get cost estimates for scalar and vector versions of the operation. 24134e34855SSanjay Patel bool IsBinOp = Instruction::isBinaryOp(Opcode); 24234e34855SSanjay Patel if (IsBinOp) { 24334e34855SSanjay Patel ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 24434e34855SSanjay Patel VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 24534e34855SSanjay Patel } else { 24634e34855SSanjay Patel assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 24734e34855SSanjay Patel "Expected a compare"); 24834e34855SSanjay Patel ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy, 24934e34855SSanjay Patel CmpInst::makeCmpResultType(ScalarTy)); 25034e34855SSanjay Patel VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy, 25134e34855SSanjay Patel CmpInst::makeCmpResultType(VecTy)); 25234e34855SSanjay Patel } 25334e34855SSanjay Patel 254a69158c1SSanjay Patel // Get cost estimates for the extract elements. These costs will factor into 25534e34855SSanjay Patel // both sequences. 256a69158c1SSanjay Patel unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue(); 257a69158c1SSanjay Patel unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue(); 258a69158c1SSanjay Patel 2596bdd531aSSanjay Patel int Extract0Cost = 2606bdd531aSSanjay Patel TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index); 2616bdd531aSSanjay Patel int Extract1Cost = 2626bdd531aSSanjay Patel TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index); 263a69158c1SSanjay Patel 264a69158c1SSanjay Patel // A more expensive extract will always be replaced by a splat shuffle. 265a69158c1SSanjay Patel // For example, if Ext0 is more expensive: 266a69158c1SSanjay Patel // opcode (extelt V0, Ext0), (ext V1, Ext1) --> 267a69158c1SSanjay Patel // extelt (opcode (splat V0, Ext0), V1), Ext1 268a69158c1SSanjay Patel // TODO: Evaluate whether that always results in lowest cost. Alternatively, 269a69158c1SSanjay Patel // check the cost of creating a broadcast shuffle and shuffling both 270a69158c1SSanjay Patel // operands to element 0. 271a69158c1SSanjay Patel int CheapExtractCost = std::min(Extract0Cost, Extract1Cost); 27234e34855SSanjay Patel 27334e34855SSanjay Patel // Extra uses of the extracts mean that we include those costs in the 27434e34855SSanjay Patel // vector total because those instructions will not be eliminated. 275e9c79a7aSSanjay Patel int OldCost, NewCost; 276a69158c1SSanjay Patel if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) { 277a69158c1SSanjay Patel // Handle a special case. If the 2 extracts are identical, adjust the 27834e34855SSanjay Patel // formulas to account for that. The extra use charge allows for either the 27934e34855SSanjay Patel // CSE'd pattern or an unoptimized form with identical values: 28034e34855SSanjay Patel // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C 28134e34855SSanjay Patel bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2) 28234e34855SSanjay Patel : !Ext0->hasOneUse() || !Ext1->hasOneUse(); 283a69158c1SSanjay Patel OldCost = CheapExtractCost + ScalarOpCost; 284a69158c1SSanjay Patel NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost; 28534e34855SSanjay Patel } else { 28634e34855SSanjay Patel // Handle the general case. Each extract is actually a different value: 287a69158c1SSanjay Patel // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C 288a69158c1SSanjay Patel OldCost = Extract0Cost + Extract1Cost + ScalarOpCost; 289a69158c1SSanjay Patel NewCost = VectorOpCost + CheapExtractCost + 290a69158c1SSanjay Patel !Ext0->hasOneUse() * Extract0Cost + 291a69158c1SSanjay Patel !Ext1->hasOneUse() * Extract1Cost; 29234e34855SSanjay Patel } 293a69158c1SSanjay Patel 2943b95d834SSanjay Patel ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex); 2953b95d834SSanjay Patel if (ConvertToShuffle) { 296a69158c1SSanjay Patel if (IsBinOp && DisableBinopExtractShuffle) 297a69158c1SSanjay Patel return true; 298a69158c1SSanjay Patel 299a69158c1SSanjay Patel // If we are extracting from 2 different indexes, then one operand must be 300a69158c1SSanjay Patel // shuffled before performing the vector operation. The shuffle mask is 301a69158c1SSanjay Patel // undefined except for 1 lane that is being translated to the remaining 302a69158c1SSanjay Patel // extraction lane. Therefore, it is a splat shuffle. Ex: 303a69158c1SSanjay Patel // ShufMask = { undef, undef, 0, undef } 304a69158c1SSanjay Patel // TODO: The cost model has an option for a "broadcast" shuffle 305a69158c1SSanjay Patel // (splat-from-element-0), but no option for a more general splat. 306a69158c1SSanjay Patel NewCost += 307a69158c1SSanjay Patel TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 308a69158c1SSanjay Patel } 309a69158c1SSanjay Patel 31010ea01d8SSanjay Patel // Aggressively form a vector op if the cost is equal because the transform 31110ea01d8SSanjay Patel // may enable further optimization. 31210ea01d8SSanjay Patel // Codegen can reverse this transform (scalarize) if it was not profitable. 31310ea01d8SSanjay Patel return OldCost < NewCost; 31434e34855SSanjay Patel } 31534e34855SSanjay Patel 3169934cc54SSanjay Patel /// Create a shuffle that translates (shifts) 1 element from the input vector 3179934cc54SSanjay Patel /// to a new element location. 3189934cc54SSanjay Patel static Value *createShiftShuffle(Value *Vec, unsigned OldIndex, 3199934cc54SSanjay Patel unsigned NewIndex, IRBuilder<> &Builder) { 3209934cc54SSanjay Patel // The shuffle mask is undefined except for 1 lane that is being translated 3219934cc54SSanjay Patel // to the new element index. Example for OldIndex == 2 and NewIndex == 0: 3229934cc54SSanjay Patel // ShufMask = { 2, undef, undef, undef } 3239934cc54SSanjay Patel auto *VecTy = cast<FixedVectorType>(Vec->getType()); 32454143e2bSSanjay Patel SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem); 3259934cc54SSanjay Patel ShufMask[NewIndex] = OldIndex; 3261e6b240dSSanjay Patel return Builder.CreateShuffleVector(Vec, ShufMask, "shift"); 3279934cc54SSanjay Patel } 3289934cc54SSanjay Patel 329216a37bbSSanjay Patel /// Given an extract element instruction with constant index operand, shuffle 330216a37bbSSanjay Patel /// the source vector (shift the scalar element) to a NewIndex for extraction. 331216a37bbSSanjay Patel /// Return null if the input can be constant folded, so that we are not creating 332216a37bbSSanjay Patel /// unnecessary instructions. 3339934cc54SSanjay Patel static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt, 3349934cc54SSanjay Patel unsigned NewIndex, 3359934cc54SSanjay Patel IRBuilder<> &Builder) { 336216a37bbSSanjay Patel // If the extract can be constant-folded, this code is unsimplified. Defer 337216a37bbSSanjay Patel // to other passes to handle that. 338216a37bbSSanjay Patel Value *X = ExtElt->getVectorOperand(); 339216a37bbSSanjay Patel Value *C = ExtElt->getIndexOperand(); 340de65b356SSanjay Patel assert(isa<ConstantInt>(C) && "Expected a constant index operand"); 341216a37bbSSanjay Patel if (isa<Constant>(X)) 342216a37bbSSanjay Patel return nullptr; 343216a37bbSSanjay Patel 3449934cc54SSanjay Patel Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(), 3459934cc54SSanjay Patel NewIndex, Builder); 346216a37bbSSanjay Patel return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex)); 347216a37bbSSanjay Patel } 348216a37bbSSanjay Patel 349fc445589SSanjay Patel /// Try to reduce extract element costs by converting scalar compares to vector 350fc445589SSanjay Patel /// compares followed by extract. 351e9c79a7aSSanjay Patel /// cmp (ext0 V0, C), (ext1 V1, C) 352de65b356SSanjay Patel void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0, 353de65b356SSanjay Patel ExtractElementInst *Ext1, Instruction &I) { 354fc445589SSanjay Patel assert(isa<CmpInst>(&I) && "Expected a compare"); 355216a37bbSSanjay Patel assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 356216a37bbSSanjay Patel cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 357216a37bbSSanjay Patel "Expected matching constant extract indexes"); 358a17f03bdSSanjay Patel 359a17f03bdSSanjay Patel // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C 360a17f03bdSSanjay Patel ++NumVecCmp; 361fc445589SSanjay Patel CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate(); 362216a37bbSSanjay Patel Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 36346a285adSSanjay Patel Value *VecCmp = Builder.CreateCmp(Pred, V0, V1); 364216a37bbSSanjay Patel Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand()); 36598c2f4eeSSanjay Patel replaceValue(I, *NewExt); 366a17f03bdSSanjay Patel } 367a17f03bdSSanjay Patel 36819b62b79SSanjay Patel /// Try to reduce extract element costs by converting scalar binops to vector 36919b62b79SSanjay Patel /// binops followed by extract. 370e9c79a7aSSanjay Patel /// bo (ext0 V0, C), (ext1 V1, C) 371de65b356SSanjay Patel void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0, 372de65b356SSanjay Patel ExtractElementInst *Ext1, Instruction &I) { 373fc445589SSanjay Patel assert(isa<BinaryOperator>(&I) && "Expected a binary operator"); 374216a37bbSSanjay Patel assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 375216a37bbSSanjay Patel cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 376216a37bbSSanjay Patel "Expected matching constant extract indexes"); 37719b62b79SSanjay Patel 37834e34855SSanjay Patel // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C 37919b62b79SSanjay Patel ++NumVecBO; 380216a37bbSSanjay Patel Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 381e9c79a7aSSanjay Patel Value *VecBO = 38234e34855SSanjay Patel Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1); 383e9c79a7aSSanjay Patel 38419b62b79SSanjay Patel // All IR flags are safe to back-propagate because any potential poison 38519b62b79SSanjay Patel // created in unused vector elements is discarded by the extract. 386e9c79a7aSSanjay Patel if (auto *VecBOInst = dyn_cast<Instruction>(VecBO)) 38719b62b79SSanjay Patel VecBOInst->copyIRFlags(&I); 388e9c79a7aSSanjay Patel 389216a37bbSSanjay Patel Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand()); 39098c2f4eeSSanjay Patel replaceValue(I, *NewExt); 39119b62b79SSanjay Patel } 39219b62b79SSanjay Patel 393fc445589SSanjay Patel /// Match an instruction with extracted vector operands. 3946bdd531aSSanjay Patel bool VectorCombine::foldExtractExtract(Instruction &I) { 395e9c79a7aSSanjay Patel // It is not safe to transform things like div, urem, etc. because we may 396e9c79a7aSSanjay Patel // create undefined behavior when executing those on unknown vector elements. 397e9c79a7aSSanjay Patel if (!isSafeToSpeculativelyExecute(&I)) 398e9c79a7aSSanjay Patel return false; 399e9c79a7aSSanjay Patel 400216a37bbSSanjay Patel Instruction *I0, *I1; 401fc445589SSanjay Patel CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 402216a37bbSSanjay Patel if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) && 403216a37bbSSanjay Patel !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1)))) 404fc445589SSanjay Patel return false; 405fc445589SSanjay Patel 406fc445589SSanjay Patel Value *V0, *V1; 407fc445589SSanjay Patel uint64_t C0, C1; 408216a37bbSSanjay Patel if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) || 409216a37bbSSanjay Patel !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) || 410fc445589SSanjay Patel V0->getType() != V1->getType()) 411fc445589SSanjay Patel return false; 412fc445589SSanjay Patel 413ce97ce3aSSanjay Patel // If the scalar value 'I' is going to be re-inserted into a vector, then try 414ce97ce3aSSanjay Patel // to create an extract to that same element. The extract/insert can be 415ce97ce3aSSanjay Patel // reduced to a "select shuffle". 416ce97ce3aSSanjay Patel // TODO: If we add a larger pattern match that starts from an insert, this 417ce97ce3aSSanjay Patel // probably becomes unnecessary. 418216a37bbSSanjay Patel auto *Ext0 = cast<ExtractElementInst>(I0); 419216a37bbSSanjay Patel auto *Ext1 = cast<ExtractElementInst>(I1); 420a0f96741SSanjay Patel uint64_t InsertIndex = InvalidIndex; 421ce97ce3aSSanjay Patel if (I.hasOneUse()) 4227eed772aSSanjay Patel match(I.user_back(), 4237eed772aSSanjay Patel m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex))); 424ce97ce3aSSanjay Patel 425216a37bbSSanjay Patel ExtractElementInst *ExtractToChange; 4266bdd531aSSanjay Patel if (isExtractExtractCheap(Ext0, Ext1, I.getOpcode(), ExtractToChange, 427ce97ce3aSSanjay Patel InsertIndex)) 428fc445589SSanjay Patel return false; 429e9c79a7aSSanjay Patel 430216a37bbSSanjay Patel if (ExtractToChange) { 431216a37bbSSanjay Patel unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0; 432216a37bbSSanjay Patel ExtractElementInst *NewExtract = 4339934cc54SSanjay Patel translateExtract(ExtractToChange, CheapExtractIdx, Builder); 434216a37bbSSanjay Patel if (!NewExtract) 4356d864097SSanjay Patel return false; 436216a37bbSSanjay Patel if (ExtractToChange == Ext0) 437216a37bbSSanjay Patel Ext0 = NewExtract; 438a69158c1SSanjay Patel else 439216a37bbSSanjay Patel Ext1 = NewExtract; 440a69158c1SSanjay Patel } 441e9c79a7aSSanjay Patel 442e9c79a7aSSanjay Patel if (Pred != CmpInst::BAD_ICMP_PREDICATE) 443039ff29eSSanjay Patel foldExtExtCmp(Ext0, Ext1, I); 444e9c79a7aSSanjay Patel else 445039ff29eSSanjay Patel foldExtExtBinop(Ext0, Ext1, I); 446e9c79a7aSSanjay Patel 447e9c79a7aSSanjay Patel return true; 448fc445589SSanjay Patel } 449fc445589SSanjay Patel 450bef6e67eSSanjay Patel /// If this is a bitcast of a shuffle, try to bitcast the source vector to the 451bef6e67eSSanjay Patel /// destination type followed by shuffle. This can enable further transforms by 452bef6e67eSSanjay Patel /// moving bitcasts or shuffles together. 4536bdd531aSSanjay Patel bool VectorCombine::foldBitcastShuf(Instruction &I) { 454b6050ca1SSanjay Patel Value *V; 455b6050ca1SSanjay Patel ArrayRef<int> Mask; 4567eed772aSSanjay Patel if (!match(&I, m_BitCast( 4577eed772aSSanjay Patel m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask)))))) 458b6050ca1SSanjay Patel return false; 459b6050ca1SSanjay Patel 460b4f04d71SHuihui Zhang // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for 461b4f04d71SHuihui Zhang // scalable type is unknown; Second, we cannot reason if the narrowed shuffle 462b4f04d71SHuihui Zhang // mask for scalable type is a splat or not. 463b4f04d71SHuihui Zhang // 2) Disallow non-vector casts and length-changing shuffles. 464bef6e67eSSanjay Patel // TODO: We could allow any shuffle. 465b4f04d71SHuihui Zhang auto *DestTy = dyn_cast<FixedVectorType>(I.getType()); 466b4f04d71SHuihui Zhang auto *SrcTy = dyn_cast<FixedVectorType>(V->getType()); 467b4f04d71SHuihui Zhang if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy) 468b6050ca1SSanjay Patel return false; 469b6050ca1SSanjay Patel 470b6050ca1SSanjay Patel // The new shuffle must not cost more than the old shuffle. The bitcast is 471b6050ca1SSanjay Patel // moved ahead of the shuffle, so assume that it has the same cost as before. 472b6050ca1SSanjay Patel if (TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, DestTy) > 473b6050ca1SSanjay Patel TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy)) 474b6050ca1SSanjay Patel return false; 475b6050ca1SSanjay Patel 476b4f04d71SHuihui Zhang unsigned DestNumElts = DestTy->getNumElements(); 477b4f04d71SHuihui Zhang unsigned SrcNumElts = SrcTy->getNumElements(); 478b6050ca1SSanjay Patel SmallVector<int, 16> NewMask; 479bef6e67eSSanjay Patel if (SrcNumElts <= DestNumElts) { 480bef6e67eSSanjay Patel // The bitcast is from wide to narrow/equal elements. The shuffle mask can 481bef6e67eSSanjay Patel // always be expanded to the equivalent form choosing narrower elements. 482b6050ca1SSanjay Patel assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask"); 483b6050ca1SSanjay Patel unsigned ScaleFactor = DestNumElts / SrcNumElts; 4841318ddbcSSanjay Patel narrowShuffleMaskElts(ScaleFactor, Mask, NewMask); 485bef6e67eSSanjay Patel } else { 486bef6e67eSSanjay Patel // The bitcast is from narrow elements to wide elements. The shuffle mask 487bef6e67eSSanjay Patel // must choose consecutive elements to allow casting first. 488bef6e67eSSanjay Patel assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask"); 489bef6e67eSSanjay Patel unsigned ScaleFactor = SrcNumElts / DestNumElts; 490bef6e67eSSanjay Patel if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask)) 491bef6e67eSSanjay Patel return false; 492bef6e67eSSanjay Patel } 493bef6e67eSSanjay Patel // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC' 4947aeb41b3SRoman Lebedev ++NumShufOfBitcast; 495bef6e67eSSanjay Patel Value *CastV = Builder.CreateBitCast(V, DestTy); 4961e6b240dSSanjay Patel Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask); 49798c2f4eeSSanjay Patel replaceValue(I, *Shuf); 498b6050ca1SSanjay Patel return true; 499b6050ca1SSanjay Patel } 500b6050ca1SSanjay Patel 501ed67f5e7SSanjay Patel /// Match a vector binop or compare instruction with at least one inserted 502ed67f5e7SSanjay Patel /// scalar operand and convert to scalar binop/cmp followed by insertelement. 5036bdd531aSSanjay Patel bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) { 504ed67f5e7SSanjay Patel CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 5055dc4e7c2SSimon Pilgrim Value *Ins0, *Ins1; 506ed67f5e7SSanjay Patel if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) && 507ed67f5e7SSanjay Patel !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1)))) 508ed67f5e7SSanjay Patel return false; 509ed67f5e7SSanjay Patel 510ed67f5e7SSanjay Patel // Do not convert the vector condition of a vector select into a scalar 511ed67f5e7SSanjay Patel // condition. That may cause problems for codegen because of differences in 512ed67f5e7SSanjay Patel // boolean formats and register-file transfers. 513ed67f5e7SSanjay Patel // TODO: Can we account for that in the cost model? 514ed67f5e7SSanjay Patel bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE; 515ed67f5e7SSanjay Patel if (IsCmp) 516ed67f5e7SSanjay Patel for (User *U : I.users()) 517ed67f5e7SSanjay Patel if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value()))) 5180d2a0b44SSanjay Patel return false; 5190d2a0b44SSanjay Patel 5205dc4e7c2SSimon Pilgrim // Match against one or both scalar values being inserted into constant 5215dc4e7c2SSimon Pilgrim // vectors: 522ed67f5e7SSanjay Patel // vec_op VecC0, (inselt VecC1, V1, Index) 523ed67f5e7SSanjay Patel // vec_op (inselt VecC0, V0, Index), VecC1 524ed67f5e7SSanjay Patel // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) 5250d2a0b44SSanjay Patel // TODO: Deal with mismatched index constants and variable indexes? 5265dc4e7c2SSimon Pilgrim Constant *VecC0 = nullptr, *VecC1 = nullptr; 5275dc4e7c2SSimon Pilgrim Value *V0 = nullptr, *V1 = nullptr; 5285dc4e7c2SSimon Pilgrim uint64_t Index0 = 0, Index1 = 0; 5297eed772aSSanjay Patel if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0), 5305dc4e7c2SSimon Pilgrim m_ConstantInt(Index0))) && 5315dc4e7c2SSimon Pilgrim !match(Ins0, m_Constant(VecC0))) 5325dc4e7c2SSimon Pilgrim return false; 5335dc4e7c2SSimon Pilgrim if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1), 5345dc4e7c2SSimon Pilgrim m_ConstantInt(Index1))) && 5355dc4e7c2SSimon Pilgrim !match(Ins1, m_Constant(VecC1))) 5360d2a0b44SSanjay Patel return false; 5370d2a0b44SSanjay Patel 5385dc4e7c2SSimon Pilgrim bool IsConst0 = !V0; 5395dc4e7c2SSimon Pilgrim bool IsConst1 = !V1; 5405dc4e7c2SSimon Pilgrim if (IsConst0 && IsConst1) 5415dc4e7c2SSimon Pilgrim return false; 5425dc4e7c2SSimon Pilgrim if (!IsConst0 && !IsConst1 && Index0 != Index1) 5435dc4e7c2SSimon Pilgrim return false; 5445dc4e7c2SSimon Pilgrim 5455dc4e7c2SSimon Pilgrim // Bail for single insertion if it is a load. 5465dc4e7c2SSimon Pilgrim // TODO: Handle this once getVectorInstrCost can cost for load/stores. 5475dc4e7c2SSimon Pilgrim auto *I0 = dyn_cast_or_null<Instruction>(V0); 5485dc4e7c2SSimon Pilgrim auto *I1 = dyn_cast_or_null<Instruction>(V1); 5495dc4e7c2SSimon Pilgrim if ((IsConst0 && I1 && I1->mayReadFromMemory()) || 5505dc4e7c2SSimon Pilgrim (IsConst1 && I0 && I0->mayReadFromMemory())) 5515dc4e7c2SSimon Pilgrim return false; 5525dc4e7c2SSimon Pilgrim 5535dc4e7c2SSimon Pilgrim uint64_t Index = IsConst0 ? Index1 : Index0; 5545dc4e7c2SSimon Pilgrim Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType(); 5550d2a0b44SSanjay Patel Type *VecTy = I.getType(); 5565dc4e7c2SSimon Pilgrim assert(VecTy->isVectorTy() && 5575dc4e7c2SSimon Pilgrim (IsConst0 || IsConst1 || V0->getType() == V1->getType()) && 558741e20f3SSanjay Patel (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() || 559741e20f3SSanjay Patel ScalarTy->isPointerTy()) && 560741e20f3SSanjay Patel "Unexpected types for insert element into binop or cmp"); 5610d2a0b44SSanjay Patel 562ed67f5e7SSanjay Patel unsigned Opcode = I.getOpcode(); 563ed67f5e7SSanjay Patel int ScalarOpCost, VectorOpCost; 564ed67f5e7SSanjay Patel if (IsCmp) { 565ed67f5e7SSanjay Patel ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy); 566ed67f5e7SSanjay Patel VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy); 567ed67f5e7SSanjay Patel } else { 568ed67f5e7SSanjay Patel ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 569ed67f5e7SSanjay Patel VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 570ed67f5e7SSanjay Patel } 5710d2a0b44SSanjay Patel 5720d2a0b44SSanjay Patel // Get cost estimate for the insert element. This cost will factor into 5730d2a0b44SSanjay Patel // both sequences. 5740d2a0b44SSanjay Patel int InsertCost = 5750d2a0b44SSanjay Patel TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index); 5765dc4e7c2SSimon Pilgrim int OldCost = (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + 5775dc4e7c2SSimon Pilgrim VectorOpCost; 5785f730b64SSanjay Patel int NewCost = ScalarOpCost + InsertCost + 5795dc4e7c2SSimon Pilgrim (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) + 5805dc4e7c2SSimon Pilgrim (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost); 5810d2a0b44SSanjay Patel 5820d2a0b44SSanjay Patel // We want to scalarize unless the vector variant actually has lower cost. 5830d2a0b44SSanjay Patel if (OldCost < NewCost) 5840d2a0b44SSanjay Patel return false; 5850d2a0b44SSanjay Patel 586ed67f5e7SSanjay Patel // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) --> 587ed67f5e7SSanjay Patel // inselt NewVecC, (scalar_op V0, V1), Index 588ed67f5e7SSanjay Patel if (IsCmp) 589ed67f5e7SSanjay Patel ++NumScalarCmp; 590ed67f5e7SSanjay Patel else 5910d2a0b44SSanjay Patel ++NumScalarBO; 5925dc4e7c2SSimon Pilgrim 5935dc4e7c2SSimon Pilgrim // For constant cases, extract the scalar element, this should constant fold. 5945dc4e7c2SSimon Pilgrim if (IsConst0) 5955dc4e7c2SSimon Pilgrim V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index)); 5965dc4e7c2SSimon Pilgrim if (IsConst1) 5975dc4e7c2SSimon Pilgrim V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index)); 5985dc4e7c2SSimon Pilgrim 599ed67f5e7SSanjay Patel Value *Scalar = 60046a285adSSanjay Patel IsCmp ? Builder.CreateCmp(Pred, V0, V1) 601ed67f5e7SSanjay Patel : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1); 602ed67f5e7SSanjay Patel 603ed67f5e7SSanjay Patel Scalar->setName(I.getName() + ".scalar"); 6040d2a0b44SSanjay Patel 6050d2a0b44SSanjay Patel // All IR flags are safe to back-propagate. There is no potential for extra 6060d2a0b44SSanjay Patel // poison to be created by the scalar instruction. 6070d2a0b44SSanjay Patel if (auto *ScalarInst = dyn_cast<Instruction>(Scalar)) 6080d2a0b44SSanjay Patel ScalarInst->copyIRFlags(&I); 6090d2a0b44SSanjay Patel 6100d2a0b44SSanjay Patel // Fold the vector constants in the original vectors into a new base vector. 611ed67f5e7SSanjay Patel Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1) 612ed67f5e7SSanjay Patel : ConstantExpr::get(Opcode, VecC0, VecC1); 6130d2a0b44SSanjay Patel Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index); 61498c2f4eeSSanjay Patel replaceValue(I, *Insert); 6150d2a0b44SSanjay Patel return true; 6160d2a0b44SSanjay Patel } 6170d2a0b44SSanjay Patel 618b6315aeeSSanjay Patel /// Try to combine a scalar binop + 2 scalar compares of extracted elements of 619b6315aeeSSanjay Patel /// a vector into vector operations followed by extract. Note: The SLP pass 620b6315aeeSSanjay Patel /// may miss this pattern because of implementation problems. 621b6315aeeSSanjay Patel bool VectorCombine::foldExtractedCmps(Instruction &I) { 622b6315aeeSSanjay Patel // We are looking for a scalar binop of booleans. 623b6315aeeSSanjay Patel // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1) 624b6315aeeSSanjay Patel if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1)) 625b6315aeeSSanjay Patel return false; 626b6315aeeSSanjay Patel 627b6315aeeSSanjay Patel // The compare predicates should match, and each compare should have a 628b6315aeeSSanjay Patel // constant operand. 629b6315aeeSSanjay Patel // TODO: Relax the one-use constraints. 630b6315aeeSSanjay Patel Value *B0 = I.getOperand(0), *B1 = I.getOperand(1); 631b6315aeeSSanjay Patel Instruction *I0, *I1; 632b6315aeeSSanjay Patel Constant *C0, *C1; 633b6315aeeSSanjay Patel CmpInst::Predicate P0, P1; 634b6315aeeSSanjay Patel if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) || 635b6315aeeSSanjay Patel !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) || 636b6315aeeSSanjay Patel P0 != P1) 637b6315aeeSSanjay Patel return false; 638b6315aeeSSanjay Patel 639b6315aeeSSanjay Patel // The compare operands must be extracts of the same vector with constant 640b6315aeeSSanjay Patel // extract indexes. 641b6315aeeSSanjay Patel // TODO: Relax the one-use constraints. 642b6315aeeSSanjay Patel Value *X; 643b6315aeeSSanjay Patel uint64_t Index0, Index1; 644b6315aeeSSanjay Patel if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) || 645b6315aeeSSanjay Patel !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1))))) 646b6315aeeSSanjay Patel return false; 647b6315aeeSSanjay Patel 648b6315aeeSSanjay Patel auto *Ext0 = cast<ExtractElementInst>(I0); 649b6315aeeSSanjay Patel auto *Ext1 = cast<ExtractElementInst>(I1); 650b6315aeeSSanjay Patel ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1); 651b6315aeeSSanjay Patel if (!ConvertToShuf) 652b6315aeeSSanjay Patel return false; 653b6315aeeSSanjay Patel 654b6315aeeSSanjay Patel // The original scalar pattern is: 655b6315aeeSSanjay Patel // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1) 656b6315aeeSSanjay Patel CmpInst::Predicate Pred = P0; 657b6315aeeSSanjay Patel unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp 658b6315aeeSSanjay Patel : Instruction::ICmp; 659b6315aeeSSanjay Patel auto *VecTy = dyn_cast<FixedVectorType>(X->getType()); 660b6315aeeSSanjay Patel if (!VecTy) 661b6315aeeSSanjay Patel return false; 662b6315aeeSSanjay Patel 663b6315aeeSSanjay Patel int OldCost = TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 664b6315aeeSSanjay Patel OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 665b6315aeeSSanjay Patel OldCost += TTI.getCmpSelInstrCost(CmpOpcode, I0->getType()) * 2; 666b6315aeeSSanjay Patel OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType()); 667b6315aeeSSanjay Patel 668b6315aeeSSanjay Patel // The proposed vector pattern is: 669b6315aeeSSanjay Patel // vcmp = cmp Pred X, VecC 670b6315aeeSSanjay Patel // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0 671b6315aeeSSanjay Patel int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0; 672b6315aeeSSanjay Patel int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1; 673b6315aeeSSanjay Patel auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType())); 674b6315aeeSSanjay Patel int NewCost = TTI.getCmpSelInstrCost(CmpOpcode, X->getType()); 675b6315aeeSSanjay Patel NewCost += 676b6315aeeSSanjay Patel TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy); 677b6315aeeSSanjay Patel NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy); 678b6315aeeSSanjay Patel NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex); 679b6315aeeSSanjay Patel 680b6315aeeSSanjay Patel // Aggressively form vector ops if the cost is equal because the transform 681b6315aeeSSanjay Patel // may enable further optimization. 682b6315aeeSSanjay Patel // Codegen can reverse this transform (scalarize) if it was not profitable. 683b6315aeeSSanjay Patel if (OldCost < NewCost) 684b6315aeeSSanjay Patel return false; 685b6315aeeSSanjay Patel 686b6315aeeSSanjay Patel // Create a vector constant from the 2 scalar constants. 687b6315aeeSSanjay Patel SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(), 688b6315aeeSSanjay Patel UndefValue::get(VecTy->getElementType())); 689b6315aeeSSanjay Patel CmpC[Index0] = C0; 690b6315aeeSSanjay Patel CmpC[Index1] = C1; 691b6315aeeSSanjay Patel Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC)); 692b6315aeeSSanjay Patel 693b6315aeeSSanjay Patel Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder); 694b6315aeeSSanjay Patel Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(), 695b6315aeeSSanjay Patel VCmp, Shuf); 696b6315aeeSSanjay Patel Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex); 697b6315aeeSSanjay Patel replaceValue(I, *NewExt); 698b6315aeeSSanjay Patel ++NumVecCmpBO; 699b6315aeeSSanjay Patel return true; 700b6315aeeSSanjay Patel } 701b6315aeeSSanjay Patel 702a17f03bdSSanjay Patel /// This is the entry point for all transforms. Pass manager differences are 703a17f03bdSSanjay Patel /// handled in the callers of this function. 7046bdd531aSSanjay Patel bool VectorCombine::run() { 70525c6544fSSanjay Patel if (DisableVectorCombine) 70625c6544fSSanjay Patel return false; 70725c6544fSSanjay Patel 708cc892fd9SSanjay Patel // Don't attempt vectorization if the target does not support vectors. 709cc892fd9SSanjay Patel if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true))) 710cc892fd9SSanjay Patel return false; 711cc892fd9SSanjay Patel 712a17f03bdSSanjay Patel bool MadeChange = false; 713a17f03bdSSanjay Patel for (BasicBlock &BB : F) { 714a17f03bdSSanjay Patel // Ignore unreachable basic blocks. 715a17f03bdSSanjay Patel if (!DT.isReachableFromEntry(&BB)) 716a17f03bdSSanjay Patel continue; 717a17f03bdSSanjay Patel // Do not delete instructions under here and invalidate the iterator. 71881e9ede3SSanjay Patel // Walk the block forwards to enable simple iterative chains of transforms. 719a17f03bdSSanjay Patel // TODO: It could be more efficient to remove dead instructions 720a17f03bdSSanjay Patel // iteratively in this loop rather than waiting until the end. 72181e9ede3SSanjay Patel for (Instruction &I : BB) { 722fc3cc8a4SSanjay Patel if (isa<DbgInfoIntrinsic>(I)) 723fc3cc8a4SSanjay Patel continue; 724de65b356SSanjay Patel Builder.SetInsertPoint(&I); 72543bdac29SSanjay Patel MadeChange |= vectorizeLoadInsert(I); 7266bdd531aSSanjay Patel MadeChange |= foldExtractExtract(I); 7276bdd531aSSanjay Patel MadeChange |= foldBitcastShuf(I); 7286bdd531aSSanjay Patel MadeChange |= scalarizeBinopOrCmp(I); 729b6315aeeSSanjay Patel MadeChange |= foldExtractedCmps(I); 730a17f03bdSSanjay Patel } 731fc3cc8a4SSanjay Patel } 732a17f03bdSSanjay Patel 733a17f03bdSSanjay Patel // We're done with transforms, so remove dead instructions. 734a17f03bdSSanjay Patel if (MadeChange) 735a17f03bdSSanjay Patel for (BasicBlock &BB : F) 736a17f03bdSSanjay Patel SimplifyInstructionsInBlock(&BB); 737a17f03bdSSanjay Patel 738a17f03bdSSanjay Patel return MadeChange; 739a17f03bdSSanjay Patel } 740a17f03bdSSanjay Patel 741a17f03bdSSanjay Patel // Pass manager boilerplate below here. 742a17f03bdSSanjay Patel 743a17f03bdSSanjay Patel namespace { 744a17f03bdSSanjay Patel class VectorCombineLegacyPass : public FunctionPass { 745a17f03bdSSanjay Patel public: 746a17f03bdSSanjay Patel static char ID; 747a17f03bdSSanjay Patel VectorCombineLegacyPass() : FunctionPass(ID) { 748a17f03bdSSanjay Patel initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry()); 749a17f03bdSSanjay Patel } 750a17f03bdSSanjay Patel 751a17f03bdSSanjay Patel void getAnalysisUsage(AnalysisUsage &AU) const override { 752a17f03bdSSanjay Patel AU.addRequired<DominatorTreeWrapperPass>(); 753a17f03bdSSanjay Patel AU.addRequired<TargetTransformInfoWrapperPass>(); 754a17f03bdSSanjay Patel AU.setPreservesCFG(); 755a17f03bdSSanjay Patel AU.addPreserved<DominatorTreeWrapperPass>(); 756a17f03bdSSanjay Patel AU.addPreserved<GlobalsAAWrapperPass>(); 757024098aeSSanjay Patel AU.addPreserved<AAResultsWrapperPass>(); 758024098aeSSanjay Patel AU.addPreserved<BasicAAWrapperPass>(); 759a17f03bdSSanjay Patel FunctionPass::getAnalysisUsage(AU); 760a17f03bdSSanjay Patel } 761a17f03bdSSanjay Patel 762a17f03bdSSanjay Patel bool runOnFunction(Function &F) override { 763a17f03bdSSanjay Patel if (skipFunction(F)) 764a17f03bdSSanjay Patel return false; 765a17f03bdSSanjay Patel auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 766a17f03bdSSanjay Patel auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 7676bdd531aSSanjay Patel VectorCombine Combiner(F, TTI, DT); 7686bdd531aSSanjay Patel return Combiner.run(); 769a17f03bdSSanjay Patel } 770a17f03bdSSanjay Patel }; 771a17f03bdSSanjay Patel } // namespace 772a17f03bdSSanjay Patel 773a17f03bdSSanjay Patel char VectorCombineLegacyPass::ID = 0; 774a17f03bdSSanjay Patel INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine", 775a17f03bdSSanjay Patel "Optimize scalar/vector ops", false, 776a17f03bdSSanjay Patel false) 777a17f03bdSSanjay Patel INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 778a17f03bdSSanjay Patel INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine", 779a17f03bdSSanjay Patel "Optimize scalar/vector ops", false, false) 780a17f03bdSSanjay Patel Pass *llvm::createVectorCombinePass() { 781a17f03bdSSanjay Patel return new VectorCombineLegacyPass(); 782a17f03bdSSanjay Patel } 783a17f03bdSSanjay Patel 784a17f03bdSSanjay Patel PreservedAnalyses VectorCombinePass::run(Function &F, 785a17f03bdSSanjay Patel FunctionAnalysisManager &FAM) { 786a17f03bdSSanjay Patel TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); 787a17f03bdSSanjay Patel DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); 7886bdd531aSSanjay Patel VectorCombine Combiner(F, TTI, DT); 7896bdd531aSSanjay Patel if (!Combiner.run()) 790a17f03bdSSanjay Patel return PreservedAnalyses::all(); 791a17f03bdSSanjay Patel PreservedAnalyses PA; 792a17f03bdSSanjay Patel PA.preserveSet<CFGAnalyses>(); 793a17f03bdSSanjay Patel PA.preserve<GlobalsAA>(); 794024098aeSSanjay Patel PA.preserve<AAManager>(); 795024098aeSSanjay Patel PA.preserve<BasicAA>(); 796a17f03bdSSanjay Patel return PA; 797a17f03bdSSanjay Patel } 798