1a17f03bdSSanjay Patel //===------- VectorCombine.cpp - Optimize partial vector operations -------===// 2a17f03bdSSanjay Patel // 3a17f03bdSSanjay Patel // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4a17f03bdSSanjay Patel // See https://llvm.org/LICENSE.txt for license information. 5a17f03bdSSanjay Patel // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6a17f03bdSSanjay Patel // 7a17f03bdSSanjay Patel //===----------------------------------------------------------------------===// 8a17f03bdSSanjay Patel // 9a17f03bdSSanjay Patel // This pass optimizes scalar/vector interactions using target cost models. The 10a17f03bdSSanjay Patel // transforms implemented here may not fit in traditional loop-based or SLP 11a17f03bdSSanjay Patel // vectorization passes. 12a17f03bdSSanjay Patel // 13a17f03bdSSanjay Patel //===----------------------------------------------------------------------===// 14a17f03bdSSanjay Patel 15a17f03bdSSanjay Patel #include "llvm/Transforms/Vectorize/VectorCombine.h" 16a17f03bdSSanjay Patel #include "llvm/ADT/Statistic.h" 175006e551SSimon Pilgrim #include "llvm/Analysis/BasicAliasAnalysis.h" 18a17f03bdSSanjay Patel #include "llvm/Analysis/GlobalsModRef.h" 19a17f03bdSSanjay Patel #include "llvm/Analysis/TargetTransformInfo.h" 2019b62b79SSanjay Patel #include "llvm/Analysis/ValueTracking.h" 21b6050ca1SSanjay Patel #include "llvm/Analysis/VectorUtils.h" 22a17f03bdSSanjay Patel #include "llvm/IR/Dominators.h" 23a17f03bdSSanjay Patel #include "llvm/IR/Function.h" 24a17f03bdSSanjay Patel #include "llvm/IR/IRBuilder.h" 25a17f03bdSSanjay Patel #include "llvm/IR/PatternMatch.h" 26a17f03bdSSanjay Patel #include "llvm/InitializePasses.h" 27a17f03bdSSanjay Patel #include "llvm/Pass.h" 2825c6544fSSanjay Patel #include "llvm/Support/CommandLine.h" 29a17f03bdSSanjay Patel #include "llvm/Transforms/Utils/Local.h" 305006e551SSimon Pilgrim #include "llvm/Transforms/Vectorize.h" 31a17f03bdSSanjay Patel 32a17f03bdSSanjay Patel using namespace llvm; 33a17f03bdSSanjay Patel using namespace llvm::PatternMatch; 34a17f03bdSSanjay Patel 35a17f03bdSSanjay Patel #define DEBUG_TYPE "vector-combine" 36a17f03bdSSanjay Patel STATISTIC(NumVecCmp, "Number of vector compares formed"); 3719b62b79SSanjay Patel STATISTIC(NumVecBO, "Number of vector binops formed"); 38*7aeb41b3SRoman Lebedev STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast"); 390d2a0b44SSanjay Patel STATISTIC(NumScalarBO, "Number of scalar binops formed"); 40a17f03bdSSanjay Patel 4125c6544fSSanjay Patel static cl::opt<bool> DisableVectorCombine( 4225c6544fSSanjay Patel "disable-vector-combine", cl::init(false), cl::Hidden, 4325c6544fSSanjay Patel cl::desc("Disable all vector combine transforms")); 4425c6544fSSanjay Patel 45a69158c1SSanjay Patel static cl::opt<bool> DisableBinopExtractShuffle( 46a69158c1SSanjay Patel "disable-binop-extract-shuffle", cl::init(false), cl::Hidden, 47a69158c1SSanjay Patel cl::desc("Disable binop extract to shuffle transforms")); 48a69158c1SSanjay Patel 49a69158c1SSanjay Patel 50a69158c1SSanjay Patel /// Compare the relative costs of 2 extracts followed by scalar operation vs. 51a69158c1SSanjay Patel /// vector operation(s) followed by extract. Return true if the existing 52a69158c1SSanjay Patel /// instructions are cheaper than a vector alternative. Otherwise, return false 53a69158c1SSanjay Patel /// and if one of the extracts should be transformed to a shufflevector, set 54a69158c1SSanjay Patel /// \p ConvertToShuffle to that extract instruction. 5534e34855SSanjay Patel static bool isExtractExtractCheap(Instruction *Ext0, Instruction *Ext1, 5634e34855SSanjay Patel unsigned Opcode, 57a69158c1SSanjay Patel const TargetTransformInfo &TTI, 58ce97ce3aSSanjay Patel Instruction *&ConvertToShuffle, 59ce97ce3aSSanjay Patel unsigned PreferredExtractIndex) { 604fa63fd4SAustin Kerbow assert(isa<ConstantInt>(Ext0->getOperand(1)) && 61a69158c1SSanjay Patel isa<ConstantInt>(Ext1->getOperand(1)) && 62a69158c1SSanjay Patel "Expected constant extract indexes"); 6334e34855SSanjay Patel Type *ScalarTy = Ext0->getType(); 64e3056ae9SSam Parker auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType()); 6534e34855SSanjay Patel int ScalarOpCost, VectorOpCost; 6634e34855SSanjay Patel 6734e34855SSanjay Patel // Get cost estimates for scalar and vector versions of the operation. 6834e34855SSanjay Patel bool IsBinOp = Instruction::isBinaryOp(Opcode); 6934e34855SSanjay Patel if (IsBinOp) { 7034e34855SSanjay Patel ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 7134e34855SSanjay Patel VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 7234e34855SSanjay Patel } else { 7334e34855SSanjay Patel assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 7434e34855SSanjay Patel "Expected a compare"); 7534e34855SSanjay Patel ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy, 7634e34855SSanjay Patel CmpInst::makeCmpResultType(ScalarTy)); 7734e34855SSanjay Patel VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy, 7834e34855SSanjay Patel CmpInst::makeCmpResultType(VecTy)); 7934e34855SSanjay Patel } 8034e34855SSanjay Patel 81a69158c1SSanjay Patel // Get cost estimates for the extract elements. These costs will factor into 8234e34855SSanjay Patel // both sequences. 83a69158c1SSanjay Patel unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue(); 84a69158c1SSanjay Patel unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue(); 85a69158c1SSanjay Patel 86a69158c1SSanjay Patel int Extract0Cost = TTI.getVectorInstrCost(Instruction::ExtractElement, 87a69158c1SSanjay Patel VecTy, Ext0Index); 88a69158c1SSanjay Patel int Extract1Cost = TTI.getVectorInstrCost(Instruction::ExtractElement, 89a69158c1SSanjay Patel VecTy, Ext1Index); 90a69158c1SSanjay Patel 91a69158c1SSanjay Patel // A more expensive extract will always be replaced by a splat shuffle. 92a69158c1SSanjay Patel // For example, if Ext0 is more expensive: 93a69158c1SSanjay Patel // opcode (extelt V0, Ext0), (ext V1, Ext1) --> 94a69158c1SSanjay Patel // extelt (opcode (splat V0, Ext0), V1), Ext1 95a69158c1SSanjay Patel // TODO: Evaluate whether that always results in lowest cost. Alternatively, 96a69158c1SSanjay Patel // check the cost of creating a broadcast shuffle and shuffling both 97a69158c1SSanjay Patel // operands to element 0. 98a69158c1SSanjay Patel int CheapExtractCost = std::min(Extract0Cost, Extract1Cost); 9934e34855SSanjay Patel 10034e34855SSanjay Patel // Extra uses of the extracts mean that we include those costs in the 10134e34855SSanjay Patel // vector total because those instructions will not be eliminated. 102e9c79a7aSSanjay Patel int OldCost, NewCost; 103a69158c1SSanjay Patel if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) { 104a69158c1SSanjay Patel // Handle a special case. If the 2 extracts are identical, adjust the 10534e34855SSanjay Patel // formulas to account for that. The extra use charge allows for either the 10634e34855SSanjay Patel // CSE'd pattern or an unoptimized form with identical values: 10734e34855SSanjay Patel // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C 10834e34855SSanjay Patel bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2) 10934e34855SSanjay Patel : !Ext0->hasOneUse() || !Ext1->hasOneUse(); 110a69158c1SSanjay Patel OldCost = CheapExtractCost + ScalarOpCost; 111a69158c1SSanjay Patel NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost; 11234e34855SSanjay Patel } else { 11334e34855SSanjay Patel // Handle the general case. Each extract is actually a different value: 114a69158c1SSanjay Patel // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C 115a69158c1SSanjay Patel OldCost = Extract0Cost + Extract1Cost + ScalarOpCost; 116a69158c1SSanjay Patel NewCost = VectorOpCost + CheapExtractCost + 117a69158c1SSanjay Patel !Ext0->hasOneUse() * Extract0Cost + 118a69158c1SSanjay Patel !Ext1->hasOneUse() * Extract1Cost; 11934e34855SSanjay Patel } 120a69158c1SSanjay Patel 121a69158c1SSanjay Patel if (Ext0Index == Ext1Index) { 122a69158c1SSanjay Patel // If the extract indexes are identical, no shuffle is needed. 123a69158c1SSanjay Patel ConvertToShuffle = nullptr; 124a69158c1SSanjay Patel } else { 125a69158c1SSanjay Patel if (IsBinOp && DisableBinopExtractShuffle) 126a69158c1SSanjay Patel return true; 127a69158c1SSanjay Patel 128a69158c1SSanjay Patel // If we are extracting from 2 different indexes, then one operand must be 129a69158c1SSanjay Patel // shuffled before performing the vector operation. The shuffle mask is 130a69158c1SSanjay Patel // undefined except for 1 lane that is being translated to the remaining 131a69158c1SSanjay Patel // extraction lane. Therefore, it is a splat shuffle. Ex: 132a69158c1SSanjay Patel // ShufMask = { undef, undef, 0, undef } 133a69158c1SSanjay Patel // TODO: The cost model has an option for a "broadcast" shuffle 134a69158c1SSanjay Patel // (splat-from-element-0), but no option for a more general splat. 135a69158c1SSanjay Patel NewCost += 136a69158c1SSanjay Patel TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 137a69158c1SSanjay Patel 138ce97ce3aSSanjay Patel // The more expensive extract will be replaced by a shuffle. If the costs 139ce97ce3aSSanjay Patel // are equal and there is a preferred extract index, shuffle the opposite 140ce97ce3aSSanjay Patel // operand. Otherwise, replace the extract with the higher index. 141a69158c1SSanjay Patel if (Extract0Cost > Extract1Cost) 142a69158c1SSanjay Patel ConvertToShuffle = Ext0; 143a69158c1SSanjay Patel else if (Extract1Cost > Extract0Cost) 144a69158c1SSanjay Patel ConvertToShuffle = Ext1; 145ce97ce3aSSanjay Patel else if (PreferredExtractIndex == Ext0Index) 146ce97ce3aSSanjay Patel ConvertToShuffle = Ext1; 147ce97ce3aSSanjay Patel else if (PreferredExtractIndex == Ext1Index) 148ce97ce3aSSanjay Patel ConvertToShuffle = Ext0; 149a69158c1SSanjay Patel else 150a69158c1SSanjay Patel ConvertToShuffle = Ext0Index > Ext1Index ? Ext0 : Ext1; 151a69158c1SSanjay Patel } 152a69158c1SSanjay Patel 15310ea01d8SSanjay Patel // Aggressively form a vector op if the cost is equal because the transform 15410ea01d8SSanjay Patel // may enable further optimization. 15510ea01d8SSanjay Patel // Codegen can reverse this transform (scalarize) if it was not profitable. 15610ea01d8SSanjay Patel return OldCost < NewCost; 15734e34855SSanjay Patel } 15834e34855SSanjay Patel 159fc445589SSanjay Patel /// Try to reduce extract element costs by converting scalar compares to vector 160fc445589SSanjay Patel /// compares followed by extract. 161e9c79a7aSSanjay Patel /// cmp (ext0 V0, C), (ext1 V1, C) 162e9c79a7aSSanjay Patel static void foldExtExtCmp(Instruction *Ext0, Instruction *Ext1, 163039ff29eSSanjay Patel Instruction &I) { 164fc445589SSanjay Patel assert(isa<CmpInst>(&I) && "Expected a compare"); 165a17f03bdSSanjay Patel 166a17f03bdSSanjay Patel // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C 167a17f03bdSSanjay Patel ++NumVecCmp; 168a17f03bdSSanjay Patel IRBuilder<> Builder(&I); 169fc445589SSanjay Patel CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate(); 170e9c79a7aSSanjay Patel Value *V0 = Ext0->getOperand(0), *V1 = Ext1->getOperand(0); 17134e34855SSanjay Patel Value *VecCmp = 17234e34855SSanjay Patel Ext0->getType()->isFloatingPointTy() ? Builder.CreateFCmp(Pred, V0, V1) 173a17f03bdSSanjay Patel : Builder.CreateICmp(Pred, V0, V1); 174fc445589SSanjay Patel Value *Extract = Builder.CreateExtractElement(VecCmp, Ext0->getOperand(1)); 175fc445589SSanjay Patel I.replaceAllUsesWith(Extract); 176a17f03bdSSanjay Patel } 177a17f03bdSSanjay Patel 17819b62b79SSanjay Patel /// Try to reduce extract element costs by converting scalar binops to vector 17919b62b79SSanjay Patel /// binops followed by extract. 180e9c79a7aSSanjay Patel /// bo (ext0 V0, C), (ext1 V1, C) 181e9c79a7aSSanjay Patel static void foldExtExtBinop(Instruction *Ext0, Instruction *Ext1, 182039ff29eSSanjay Patel Instruction &I) { 183fc445589SSanjay Patel assert(isa<BinaryOperator>(&I) && "Expected a binary operator"); 18419b62b79SSanjay Patel 18534e34855SSanjay Patel // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C 18619b62b79SSanjay Patel ++NumVecBO; 18719b62b79SSanjay Patel IRBuilder<> Builder(&I); 188e9c79a7aSSanjay Patel Value *V0 = Ext0->getOperand(0), *V1 = Ext1->getOperand(0); 189e9c79a7aSSanjay Patel Value *VecBO = 19034e34855SSanjay Patel Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1); 191e9c79a7aSSanjay Patel 19219b62b79SSanjay Patel // All IR flags are safe to back-propagate because any potential poison 19319b62b79SSanjay Patel // created in unused vector elements is discarded by the extract. 194e9c79a7aSSanjay Patel if (auto *VecBOInst = dyn_cast<Instruction>(VecBO)) 19519b62b79SSanjay Patel VecBOInst->copyIRFlags(&I); 196e9c79a7aSSanjay Patel 197e9c79a7aSSanjay Patel Value *Extract = Builder.CreateExtractElement(VecBO, Ext0->getOperand(1)); 19819b62b79SSanjay Patel I.replaceAllUsesWith(Extract); 19919b62b79SSanjay Patel } 20019b62b79SSanjay Patel 201fc445589SSanjay Patel /// Match an instruction with extracted vector operands. 202fc445589SSanjay Patel static bool foldExtractExtract(Instruction &I, const TargetTransformInfo &TTI) { 203e9c79a7aSSanjay Patel // It is not safe to transform things like div, urem, etc. because we may 204e9c79a7aSSanjay Patel // create undefined behavior when executing those on unknown vector elements. 205e9c79a7aSSanjay Patel if (!isSafeToSpeculativelyExecute(&I)) 206e9c79a7aSSanjay Patel return false; 207e9c79a7aSSanjay Patel 208fc445589SSanjay Patel Instruction *Ext0, *Ext1; 209fc445589SSanjay Patel CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 210fc445589SSanjay Patel if (!match(&I, m_Cmp(Pred, m_Instruction(Ext0), m_Instruction(Ext1))) && 211fc445589SSanjay Patel !match(&I, m_BinOp(m_Instruction(Ext0), m_Instruction(Ext1)))) 212fc445589SSanjay Patel return false; 213fc445589SSanjay Patel 214fc445589SSanjay Patel Value *V0, *V1; 215fc445589SSanjay Patel uint64_t C0, C1; 2167eed772aSSanjay Patel if (!match(Ext0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) || 2177eed772aSSanjay Patel !match(Ext1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) || 218fc445589SSanjay Patel V0->getType() != V1->getType()) 219fc445589SSanjay Patel return false; 220fc445589SSanjay Patel 221ce97ce3aSSanjay Patel // If the scalar value 'I' is going to be re-inserted into a vector, then try 222ce97ce3aSSanjay Patel // to create an extract to that same element. The extract/insert can be 223ce97ce3aSSanjay Patel // reduced to a "select shuffle". 224ce97ce3aSSanjay Patel // TODO: If we add a larger pattern match that starts from an insert, this 225ce97ce3aSSanjay Patel // probably becomes unnecessary. 226ce97ce3aSSanjay Patel uint64_t InsertIndex = std::numeric_limits<uint64_t>::max(); 227ce97ce3aSSanjay Patel if (I.hasOneUse()) 2287eed772aSSanjay Patel match(I.user_back(), 2297eed772aSSanjay Patel m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex))); 230ce97ce3aSSanjay Patel 231a69158c1SSanjay Patel Instruction *ConvertToShuffle; 232ce97ce3aSSanjay Patel if (isExtractExtractCheap(Ext0, Ext1, I.getOpcode(), TTI, ConvertToShuffle, 233ce97ce3aSSanjay Patel InsertIndex)) 234fc445589SSanjay Patel return false; 235e9c79a7aSSanjay Patel 236a69158c1SSanjay Patel if (ConvertToShuffle) { 237a69158c1SSanjay Patel // The shuffle mask is undefined except for 1 lane that is being translated 238a69158c1SSanjay Patel // to the cheap extraction lane. Example: 239a69158c1SSanjay Patel // ShufMask = { 2, undef, undef, undef } 240a69158c1SSanjay Patel uint64_t SplatIndex = ConvertToShuffle == Ext0 ? C0 : C1; 241a69158c1SSanjay Patel uint64_t CheapExtIndex = ConvertToShuffle == Ext0 ? C1 : C0; 2423297e9b7SChristopher Tetreault auto *VecTy = cast<VectorType>(V0->getType()); 2436f64dacaSBenjamin Kramer SmallVector<int, 32> ShufMask(VecTy->getNumElements(), -1); 2446f64dacaSBenjamin Kramer ShufMask[CheapExtIndex] = SplatIndex; 245a69158c1SSanjay Patel IRBuilder<> Builder(ConvertToShuffle); 246a69158c1SSanjay Patel 247a69158c1SSanjay Patel // extelt X, C --> extelt (splat X), C' 248a69158c1SSanjay Patel Value *Shuf = Builder.CreateShuffleVector(ConvertToShuffle->getOperand(0), 2496f64dacaSBenjamin Kramer UndefValue::get(VecTy), ShufMask); 250a69158c1SSanjay Patel Value *NewExt = Builder.CreateExtractElement(Shuf, CheapExtIndex); 251a69158c1SSanjay Patel if (ConvertToShuffle == Ext0) 252a69158c1SSanjay Patel Ext0 = cast<Instruction>(NewExt); 253a69158c1SSanjay Patel else 254a69158c1SSanjay Patel Ext1 = cast<Instruction>(NewExt); 255a69158c1SSanjay Patel } 256e9c79a7aSSanjay Patel 257e9c79a7aSSanjay Patel if (Pred != CmpInst::BAD_ICMP_PREDICATE) 258039ff29eSSanjay Patel foldExtExtCmp(Ext0, Ext1, I); 259e9c79a7aSSanjay Patel else 260039ff29eSSanjay Patel foldExtExtBinop(Ext0, Ext1, I); 261e9c79a7aSSanjay Patel 262e9c79a7aSSanjay Patel return true; 263fc445589SSanjay Patel } 264fc445589SSanjay Patel 265bef6e67eSSanjay Patel /// If this is a bitcast of a shuffle, try to bitcast the source vector to the 266bef6e67eSSanjay Patel /// destination type followed by shuffle. This can enable further transforms by 267bef6e67eSSanjay Patel /// moving bitcasts or shuffles together. 268b6050ca1SSanjay Patel static bool foldBitcastShuf(Instruction &I, const TargetTransformInfo &TTI) { 269b6050ca1SSanjay Patel Value *V; 270b6050ca1SSanjay Patel ArrayRef<int> Mask; 2717eed772aSSanjay Patel if (!match(&I, m_BitCast( 2727eed772aSSanjay Patel m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask)))))) 273b6050ca1SSanjay Patel return false; 274b6050ca1SSanjay Patel 275bef6e67eSSanjay Patel // Disallow non-vector casts and length-changing shuffles. 276bef6e67eSSanjay Patel // TODO: We could allow any shuffle. 2773297e9b7SChristopher Tetreault auto *DestTy = dyn_cast<VectorType>(I.getType()); 2783297e9b7SChristopher Tetreault auto *SrcTy = cast<VectorType>(V->getType()); 2793297e9b7SChristopher Tetreault if (!DestTy || I.getOperand(0)->getType() != SrcTy) 280b6050ca1SSanjay Patel return false; 281b6050ca1SSanjay Patel 282b6050ca1SSanjay Patel // The new shuffle must not cost more than the old shuffle. The bitcast is 283b6050ca1SSanjay Patel // moved ahead of the shuffle, so assume that it has the same cost as before. 284b6050ca1SSanjay Patel if (TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, DestTy) > 285b6050ca1SSanjay Patel TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy)) 286b6050ca1SSanjay Patel return false; 287b6050ca1SSanjay Patel 288bef6e67eSSanjay Patel unsigned DestNumElts = DestTy->getNumElements(); 289bef6e67eSSanjay Patel unsigned SrcNumElts = SrcTy->getNumElements(); 290b6050ca1SSanjay Patel SmallVector<int, 16> NewMask; 291bef6e67eSSanjay Patel if (SrcNumElts <= DestNumElts) { 292bef6e67eSSanjay Patel // The bitcast is from wide to narrow/equal elements. The shuffle mask can 293bef6e67eSSanjay Patel // always be expanded to the equivalent form choosing narrower elements. 294b6050ca1SSanjay Patel assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask"); 295b6050ca1SSanjay Patel unsigned ScaleFactor = DestNumElts / SrcNumElts; 2961318ddbcSSanjay Patel narrowShuffleMaskElts(ScaleFactor, Mask, NewMask); 297bef6e67eSSanjay Patel } else { 298bef6e67eSSanjay Patel // The bitcast is from narrow elements to wide elements. The shuffle mask 299bef6e67eSSanjay Patel // must choose consecutive elements to allow casting first. 300bef6e67eSSanjay Patel assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask"); 301bef6e67eSSanjay Patel unsigned ScaleFactor = SrcNumElts / DestNumElts; 302bef6e67eSSanjay Patel if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask)) 303bef6e67eSSanjay Patel return false; 304bef6e67eSSanjay Patel } 305bef6e67eSSanjay Patel // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC' 306*7aeb41b3SRoman Lebedev ++NumShufOfBitcast; 307bef6e67eSSanjay Patel IRBuilder<> Builder(&I); 308bef6e67eSSanjay Patel Value *CastV = Builder.CreateBitCast(V, DestTy); 3097eed772aSSanjay Patel Value *Shuf = 3107eed772aSSanjay Patel Builder.CreateShuffleVector(CastV, UndefValue::get(DestTy), NewMask); 311b6050ca1SSanjay Patel I.replaceAllUsesWith(Shuf); 312b6050ca1SSanjay Patel return true; 313b6050ca1SSanjay Patel } 314b6050ca1SSanjay Patel 3150d2a0b44SSanjay Patel /// Match a vector binop instruction with inserted scalar operands and convert 3160d2a0b44SSanjay Patel /// to scalar binop followed by insertelement. 3170d2a0b44SSanjay Patel static bool scalarizeBinop(Instruction &I, const TargetTransformInfo &TTI) { 3185dc4e7c2SSimon Pilgrim Value *Ins0, *Ins1; 3195dc4e7c2SSimon Pilgrim if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1)))) 3200d2a0b44SSanjay Patel return false; 3210d2a0b44SSanjay Patel 3225dc4e7c2SSimon Pilgrim // Match against one or both scalar values being inserted into constant 3235dc4e7c2SSimon Pilgrim // vectors: 3245dc4e7c2SSimon Pilgrim // vec_bo VecC0, (inselt VecC1, V1, Index) 3255dc4e7c2SSimon Pilgrim // vec_bo (inselt VecC0, V0, Index), VecC1 3265dc4e7c2SSimon Pilgrim // vec_bo (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) 3270d2a0b44SSanjay Patel // TODO: Deal with mismatched index constants and variable indexes? 3285dc4e7c2SSimon Pilgrim Constant *VecC0 = nullptr, *VecC1 = nullptr; 3295dc4e7c2SSimon Pilgrim Value *V0 = nullptr, *V1 = nullptr; 3305dc4e7c2SSimon Pilgrim uint64_t Index0 = 0, Index1 = 0; 3317eed772aSSanjay Patel if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0), 3325dc4e7c2SSimon Pilgrim m_ConstantInt(Index0))) && 3335dc4e7c2SSimon Pilgrim !match(Ins0, m_Constant(VecC0))) 3345dc4e7c2SSimon Pilgrim return false; 3355dc4e7c2SSimon Pilgrim if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1), 3365dc4e7c2SSimon Pilgrim m_ConstantInt(Index1))) && 3375dc4e7c2SSimon Pilgrim !match(Ins1, m_Constant(VecC1))) 3380d2a0b44SSanjay Patel return false; 3390d2a0b44SSanjay Patel 3405dc4e7c2SSimon Pilgrim bool IsConst0 = !V0; 3415dc4e7c2SSimon Pilgrim bool IsConst1 = !V1; 3425dc4e7c2SSimon Pilgrim if (IsConst0 && IsConst1) 3435dc4e7c2SSimon Pilgrim return false; 3445dc4e7c2SSimon Pilgrim if (!IsConst0 && !IsConst1 && Index0 != Index1) 3455dc4e7c2SSimon Pilgrim return false; 3465dc4e7c2SSimon Pilgrim 3475dc4e7c2SSimon Pilgrim // Bail for single insertion if it is a load. 3485dc4e7c2SSimon Pilgrim // TODO: Handle this once getVectorInstrCost can cost for load/stores. 3495dc4e7c2SSimon Pilgrim auto *I0 = dyn_cast_or_null<Instruction>(V0); 3505dc4e7c2SSimon Pilgrim auto *I1 = dyn_cast_or_null<Instruction>(V1); 3515dc4e7c2SSimon Pilgrim if ((IsConst0 && I1 && I1->mayReadFromMemory()) || 3525dc4e7c2SSimon Pilgrim (IsConst1 && I0 && I0->mayReadFromMemory())) 3535dc4e7c2SSimon Pilgrim return false; 3545dc4e7c2SSimon Pilgrim 3555dc4e7c2SSimon Pilgrim uint64_t Index = IsConst0 ? Index1 : Index0; 3565dc4e7c2SSimon Pilgrim Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType(); 3570d2a0b44SSanjay Patel Type *VecTy = I.getType(); 3585dc4e7c2SSimon Pilgrim assert(VecTy->isVectorTy() && 3595dc4e7c2SSimon Pilgrim (IsConst0 || IsConst1 || V0->getType() == V1->getType()) && 3600d2a0b44SSanjay Patel (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy()) && 3610d2a0b44SSanjay Patel "Unexpected types for insert into binop"); 3620d2a0b44SSanjay Patel 3630d2a0b44SSanjay Patel Instruction::BinaryOps Opcode = cast<BinaryOperator>(&I)->getOpcode(); 3640d2a0b44SSanjay Patel int ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 3650d2a0b44SSanjay Patel int VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 3660d2a0b44SSanjay Patel 3670d2a0b44SSanjay Patel // Get cost estimate for the insert element. This cost will factor into 3680d2a0b44SSanjay Patel // both sequences. 3690d2a0b44SSanjay Patel int InsertCost = 3700d2a0b44SSanjay Patel TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index); 3715dc4e7c2SSimon Pilgrim int OldCost = (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + 3725dc4e7c2SSimon Pilgrim VectorOpCost; 3735f730b64SSanjay Patel int NewCost = ScalarOpCost + InsertCost + 3745dc4e7c2SSimon Pilgrim (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) + 3755dc4e7c2SSimon Pilgrim (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost); 3760d2a0b44SSanjay Patel 3770d2a0b44SSanjay Patel // We want to scalarize unless the vector variant actually has lower cost. 3780d2a0b44SSanjay Patel if (OldCost < NewCost) 3790d2a0b44SSanjay Patel return false; 3800d2a0b44SSanjay Patel 3810d2a0b44SSanjay Patel // vec_bo (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) --> 3820d2a0b44SSanjay Patel // inselt NewVecC, (scalar_bo V0, V1), Index 3830d2a0b44SSanjay Patel ++NumScalarBO; 3840d2a0b44SSanjay Patel IRBuilder<> Builder(&I); 3855dc4e7c2SSimon Pilgrim 3865dc4e7c2SSimon Pilgrim // For constant cases, extract the scalar element, this should constant fold. 3875dc4e7c2SSimon Pilgrim if (IsConst0) 3885dc4e7c2SSimon Pilgrim V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index)); 3895dc4e7c2SSimon Pilgrim if (IsConst1) 3905dc4e7c2SSimon Pilgrim V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index)); 3915dc4e7c2SSimon Pilgrim 3920d2a0b44SSanjay Patel Value *Scalar = Builder.CreateBinOp(Opcode, V0, V1, I.getName() + ".scalar"); 3930d2a0b44SSanjay Patel 3940d2a0b44SSanjay Patel // All IR flags are safe to back-propagate. There is no potential for extra 3950d2a0b44SSanjay Patel // poison to be created by the scalar instruction. 3960d2a0b44SSanjay Patel if (auto *ScalarInst = dyn_cast<Instruction>(Scalar)) 3970d2a0b44SSanjay Patel ScalarInst->copyIRFlags(&I); 3980d2a0b44SSanjay Patel 3990d2a0b44SSanjay Patel // Fold the vector constants in the original vectors into a new base vector. 4000d2a0b44SSanjay Patel Constant *NewVecC = ConstantExpr::get(Opcode, VecC0, VecC1); 4010d2a0b44SSanjay Patel Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index); 4020d2a0b44SSanjay Patel I.replaceAllUsesWith(Insert); 4030d2a0b44SSanjay Patel Insert->takeName(&I); 4040d2a0b44SSanjay Patel return true; 4050d2a0b44SSanjay Patel } 4060d2a0b44SSanjay Patel 407a17f03bdSSanjay Patel /// This is the entry point for all transforms. Pass manager differences are 408a17f03bdSSanjay Patel /// handled in the callers of this function. 409a17f03bdSSanjay Patel static bool runImpl(Function &F, const TargetTransformInfo &TTI, 410a17f03bdSSanjay Patel const DominatorTree &DT) { 41125c6544fSSanjay Patel if (DisableVectorCombine) 41225c6544fSSanjay Patel return false; 41325c6544fSSanjay Patel 414a17f03bdSSanjay Patel bool MadeChange = false; 415a17f03bdSSanjay Patel for (BasicBlock &BB : F) { 416a17f03bdSSanjay Patel // Ignore unreachable basic blocks. 417a17f03bdSSanjay Patel if (!DT.isReachableFromEntry(&BB)) 418a17f03bdSSanjay Patel continue; 419a17f03bdSSanjay Patel // Do not delete instructions under here and invalidate the iterator. 42081e9ede3SSanjay Patel // Walk the block forwards to enable simple iterative chains of transforms. 421a17f03bdSSanjay Patel // TODO: It could be more efficient to remove dead instructions 422a17f03bdSSanjay Patel // iteratively in this loop rather than waiting until the end. 42381e9ede3SSanjay Patel for (Instruction &I : BB) { 424fc3cc8a4SSanjay Patel if (isa<DbgInfoIntrinsic>(I)) 425fc3cc8a4SSanjay Patel continue; 426fc445589SSanjay Patel MadeChange |= foldExtractExtract(I, TTI); 427b6050ca1SSanjay Patel MadeChange |= foldBitcastShuf(I, TTI); 4280d2a0b44SSanjay Patel MadeChange |= scalarizeBinop(I, TTI); 429a17f03bdSSanjay Patel } 430fc3cc8a4SSanjay Patel } 431a17f03bdSSanjay Patel 432a17f03bdSSanjay Patel // We're done with transforms, so remove dead instructions. 433a17f03bdSSanjay Patel if (MadeChange) 434a17f03bdSSanjay Patel for (BasicBlock &BB : F) 435a17f03bdSSanjay Patel SimplifyInstructionsInBlock(&BB); 436a17f03bdSSanjay Patel 437a17f03bdSSanjay Patel return MadeChange; 438a17f03bdSSanjay Patel } 439a17f03bdSSanjay Patel 440a17f03bdSSanjay Patel // Pass manager boilerplate below here. 441a17f03bdSSanjay Patel 442a17f03bdSSanjay Patel namespace { 443a17f03bdSSanjay Patel class VectorCombineLegacyPass : public FunctionPass { 444a17f03bdSSanjay Patel public: 445a17f03bdSSanjay Patel static char ID; 446a17f03bdSSanjay Patel VectorCombineLegacyPass() : FunctionPass(ID) { 447a17f03bdSSanjay Patel initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry()); 448a17f03bdSSanjay Patel } 449a17f03bdSSanjay Patel 450a17f03bdSSanjay Patel void getAnalysisUsage(AnalysisUsage &AU) const override { 451a17f03bdSSanjay Patel AU.addRequired<DominatorTreeWrapperPass>(); 452a17f03bdSSanjay Patel AU.addRequired<TargetTransformInfoWrapperPass>(); 453a17f03bdSSanjay Patel AU.setPreservesCFG(); 454a17f03bdSSanjay Patel AU.addPreserved<DominatorTreeWrapperPass>(); 455a17f03bdSSanjay Patel AU.addPreserved<GlobalsAAWrapperPass>(); 456024098aeSSanjay Patel AU.addPreserved<AAResultsWrapperPass>(); 457024098aeSSanjay Patel AU.addPreserved<BasicAAWrapperPass>(); 458a17f03bdSSanjay Patel FunctionPass::getAnalysisUsage(AU); 459a17f03bdSSanjay Patel } 460a17f03bdSSanjay Patel 461a17f03bdSSanjay Patel bool runOnFunction(Function &F) override { 462a17f03bdSSanjay Patel if (skipFunction(F)) 463a17f03bdSSanjay Patel return false; 464a17f03bdSSanjay Patel auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 465a17f03bdSSanjay Patel auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 466a17f03bdSSanjay Patel return runImpl(F, TTI, DT); 467a17f03bdSSanjay Patel } 468a17f03bdSSanjay Patel }; 469a17f03bdSSanjay Patel } // namespace 470a17f03bdSSanjay Patel 471a17f03bdSSanjay Patel char VectorCombineLegacyPass::ID = 0; 472a17f03bdSSanjay Patel INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine", 473a17f03bdSSanjay Patel "Optimize scalar/vector ops", false, 474a17f03bdSSanjay Patel false) 475a17f03bdSSanjay Patel INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 476a17f03bdSSanjay Patel INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine", 477a17f03bdSSanjay Patel "Optimize scalar/vector ops", false, false) 478a17f03bdSSanjay Patel Pass *llvm::createVectorCombinePass() { 479a17f03bdSSanjay Patel return new VectorCombineLegacyPass(); 480a17f03bdSSanjay Patel } 481a17f03bdSSanjay Patel 482a17f03bdSSanjay Patel PreservedAnalyses VectorCombinePass::run(Function &F, 483a17f03bdSSanjay Patel FunctionAnalysisManager &FAM) { 484a17f03bdSSanjay Patel TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); 485a17f03bdSSanjay Patel DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); 486a17f03bdSSanjay Patel if (!runImpl(F, TTI, DT)) 487a17f03bdSSanjay Patel return PreservedAnalyses::all(); 488a17f03bdSSanjay Patel PreservedAnalyses PA; 489a17f03bdSSanjay Patel PA.preserveSet<CFGAnalyses>(); 490a17f03bdSSanjay Patel PA.preserve<GlobalsAA>(); 491024098aeSSanjay Patel PA.preserve<AAManager>(); 492024098aeSSanjay Patel PA.preserve<BasicAA>(); 493a17f03bdSSanjay Patel return PA; 494a17f03bdSSanjay Patel } 495