1a17f03bdSSanjay Patel //===------- VectorCombine.cpp - Optimize partial vector operations -------===// 2a17f03bdSSanjay Patel // 3a17f03bdSSanjay Patel // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4a17f03bdSSanjay Patel // See https://llvm.org/LICENSE.txt for license information. 5a17f03bdSSanjay Patel // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6a17f03bdSSanjay Patel // 7a17f03bdSSanjay Patel //===----------------------------------------------------------------------===// 8a17f03bdSSanjay Patel // 9a17f03bdSSanjay Patel // This pass optimizes scalar/vector interactions using target cost models. The 10a17f03bdSSanjay Patel // transforms implemented here may not fit in traditional loop-based or SLP 11a17f03bdSSanjay Patel // vectorization passes. 12a17f03bdSSanjay Patel // 13a17f03bdSSanjay Patel //===----------------------------------------------------------------------===// 14a17f03bdSSanjay Patel 15a17f03bdSSanjay Patel #include "llvm/Transforms/Vectorize/VectorCombine.h" 16a17f03bdSSanjay Patel #include "llvm/ADT/Statistic.h" 175006e551SSimon Pilgrim #include "llvm/Analysis/BasicAliasAnalysis.h" 18a17f03bdSSanjay Patel #include "llvm/Analysis/GlobalsModRef.h" 1943bdac29SSanjay Patel #include "llvm/Analysis/Loads.h" 20a17f03bdSSanjay Patel #include "llvm/Analysis/TargetTransformInfo.h" 2119b62b79SSanjay Patel #include "llvm/Analysis/ValueTracking.h" 22b6050ca1SSanjay Patel #include "llvm/Analysis/VectorUtils.h" 23a17f03bdSSanjay Patel #include "llvm/IR/Dominators.h" 24a17f03bdSSanjay Patel #include "llvm/IR/Function.h" 25a17f03bdSSanjay Patel #include "llvm/IR/IRBuilder.h" 26a17f03bdSSanjay Patel #include "llvm/IR/PatternMatch.h" 27a17f03bdSSanjay Patel #include "llvm/InitializePasses.h" 28a17f03bdSSanjay Patel #include "llvm/Pass.h" 2925c6544fSSanjay Patel #include "llvm/Support/CommandLine.h" 30a17f03bdSSanjay Patel #include "llvm/Transforms/Utils/Local.h" 315006e551SSimon Pilgrim #include "llvm/Transforms/Vectorize.h" 32a17f03bdSSanjay Patel 33a17f03bdSSanjay Patel using namespace llvm; 34a17f03bdSSanjay Patel using namespace llvm::PatternMatch; 35a17f03bdSSanjay Patel 36a17f03bdSSanjay Patel #define DEBUG_TYPE "vector-combine" 3743bdac29SSanjay Patel STATISTIC(NumVecLoad, "Number of vector loads formed"); 38a17f03bdSSanjay Patel STATISTIC(NumVecCmp, "Number of vector compares formed"); 3919b62b79SSanjay Patel STATISTIC(NumVecBO, "Number of vector binops formed"); 40b6315aeeSSanjay Patel STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed"); 417aeb41b3SRoman Lebedev STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast"); 420d2a0b44SSanjay Patel STATISTIC(NumScalarBO, "Number of scalar binops formed"); 43ed67f5e7SSanjay Patel STATISTIC(NumScalarCmp, "Number of scalar compares formed"); 44a17f03bdSSanjay Patel 4525c6544fSSanjay Patel static cl::opt<bool> DisableVectorCombine( 4625c6544fSSanjay Patel "disable-vector-combine", cl::init(false), cl::Hidden, 4725c6544fSSanjay Patel cl::desc("Disable all vector combine transforms")); 4825c6544fSSanjay Patel 49a69158c1SSanjay Patel static cl::opt<bool> DisableBinopExtractShuffle( 50a69158c1SSanjay Patel "disable-binop-extract-shuffle", cl::init(false), cl::Hidden, 51a69158c1SSanjay Patel cl::desc("Disable binop extract to shuffle transforms")); 52a69158c1SSanjay Patel 532db4979cSQiu Chaofan static cl::opt<unsigned> MaxInstrsToScan( 542db4979cSQiu Chaofan "vector-combine-max-scan-instrs", cl::init(30), cl::Hidden, 552db4979cSQiu Chaofan cl::desc("Max number of instructions to scan for vector combining.")); 562db4979cSQiu Chaofan 57a0f96741SSanjay Patel static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max(); 58a0f96741SSanjay Patel 59b4447054SBenjamin Kramer namespace { 606bdd531aSSanjay Patel class VectorCombine { 616bdd531aSSanjay Patel public: 626bdd531aSSanjay Patel VectorCombine(Function &F, const TargetTransformInfo &TTI, 632db4979cSQiu Chaofan const DominatorTree &DT, AAResults &AA) 642db4979cSQiu Chaofan : F(F), Builder(F.getContext()), TTI(TTI), DT(DT), AA(AA) {} 656bdd531aSSanjay Patel 666bdd531aSSanjay Patel bool run(); 676bdd531aSSanjay Patel 686bdd531aSSanjay Patel private: 696bdd531aSSanjay Patel Function &F; 70de65b356SSanjay Patel IRBuilder<> Builder; 716bdd531aSSanjay Patel const TargetTransformInfo &TTI; 726bdd531aSSanjay Patel const DominatorTree &DT; 732db4979cSQiu Chaofan AAResults &AA; 746bdd531aSSanjay Patel 7543bdac29SSanjay Patel bool vectorizeLoadInsert(Instruction &I); 763b95d834SSanjay Patel ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0, 773b95d834SSanjay Patel ExtractElementInst *Ext1, 783b95d834SSanjay Patel unsigned PreferredExtractIndex) const; 796bdd531aSSanjay Patel bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 806bdd531aSSanjay Patel unsigned Opcode, 816bdd531aSSanjay Patel ExtractElementInst *&ConvertToShuffle, 826bdd531aSSanjay Patel unsigned PreferredExtractIndex); 83de65b356SSanjay Patel void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 84de65b356SSanjay Patel Instruction &I); 85de65b356SSanjay Patel void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 86de65b356SSanjay Patel Instruction &I); 876bdd531aSSanjay Patel bool foldExtractExtract(Instruction &I); 886bdd531aSSanjay Patel bool foldBitcastShuf(Instruction &I); 896bdd531aSSanjay Patel bool scalarizeBinopOrCmp(Instruction &I); 90b6315aeeSSanjay Patel bool foldExtractedCmps(Instruction &I); 912db4979cSQiu Chaofan bool foldSingleElementStore(Instruction &I); 926bdd531aSSanjay Patel }; 93b4447054SBenjamin Kramer } // namespace 94a69158c1SSanjay Patel 9598c2f4eeSSanjay Patel static void replaceValue(Value &Old, Value &New) { 9698c2f4eeSSanjay Patel Old.replaceAllUsesWith(&New); 9798c2f4eeSSanjay Patel New.takeName(&Old); 9898c2f4eeSSanjay Patel } 9998c2f4eeSSanjay Patel 10043bdac29SSanjay Patel bool VectorCombine::vectorizeLoadInsert(Instruction &I) { 101b2ef2640SSanjay Patel // Match insert into fixed vector of scalar value. 10247aaa99cSSanjay Patel // TODO: Handle non-zero insert index. 103ddd9575dSSanjay Patel auto *Ty = dyn_cast<FixedVectorType>(I.getType()); 10443bdac29SSanjay Patel Value *Scalar; 10548a23bccSSanjay Patel if (!Ty || !match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) || 10648a23bccSSanjay Patel !Scalar->hasOneUse()) 10743bdac29SSanjay Patel return false; 108ddd9575dSSanjay Patel 109b2ef2640SSanjay Patel // Optionally match an extract from another vector. 110b2ef2640SSanjay Patel Value *X; 111b2ef2640SSanjay Patel bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt())); 112b2ef2640SSanjay Patel if (!HasExtract) 113b2ef2640SSanjay Patel X = Scalar; 114b2ef2640SSanjay Patel 115b2ef2640SSanjay Patel // Match source value as load of scalar or vector. 1164452cc40SFangrui Song // Do not vectorize scalar load (widening) if atomic/volatile or under 1174452cc40SFangrui Song // asan/hwasan/memtag/tsan. The widened load may load data from dirty regions 1184452cc40SFangrui Song // or create data races non-existent in the source. 119b2ef2640SSanjay Patel auto *Load = dyn_cast<LoadInst>(X); 120b2ef2640SSanjay Patel if (!Load || !Load->isSimple() || !Load->hasOneUse() || 1214452cc40SFangrui Song Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) || 1224452cc40SFangrui Song mustSuppressSpeculation(*Load)) 12343bdac29SSanjay Patel return false; 12443bdac29SSanjay Patel 12512b684aeSSanjay Patel const DataLayout &DL = I.getModule()->getDataLayout(); 12612b684aeSSanjay Patel Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts(); 12712b684aeSSanjay Patel assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type"); 128c36c0fabSArtem Belevich 129c36c0fabSArtem Belevich // If original AS != Load's AS, we can't bitcast the original pointer and have 130c36c0fabSArtem Belevich // to use Load's operand instead. Ideally we would want to strip pointer casts 131c36c0fabSArtem Belevich // without changing AS, but there's no API to do that ATM. 13212b684aeSSanjay Patel unsigned AS = Load->getPointerAddressSpace(); 13312b684aeSSanjay Patel if (AS != SrcPtr->getType()->getPointerAddressSpace()) 13412b684aeSSanjay Patel SrcPtr = Load->getPointerOperand(); 13543bdac29SSanjay Patel 13647aaa99cSSanjay Patel // We are potentially transforming byte-sized (8-bit) memory accesses, so make 13747aaa99cSSanjay Patel // sure we have all of our type-based constraints in place for this target. 138ddd9575dSSanjay Patel Type *ScalarTy = Scalar->getType(); 13943bdac29SSanjay Patel uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits(); 140ddd9575dSSanjay Patel unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth(); 14147aaa99cSSanjay Patel if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 || 14247aaa99cSSanjay Patel ScalarSize % 8 != 0) 14343bdac29SSanjay Patel return false; 14443bdac29SSanjay Patel 14543bdac29SSanjay Patel // Check safety of replacing the scalar load with a larger vector load. 146aaaf0ec7SSanjay Patel // We use minimal alignment (maximum flexibility) because we only care about 147aaaf0ec7SSanjay Patel // the dereferenceable region. When calculating cost and creating a new op, 148aaaf0ec7SSanjay Patel // we may use a larger value based on alignment attributes. 1498fb05593SSanjay Patel unsigned MinVecNumElts = MinVectorSize / ScalarSize; 1508fb05593SSanjay Patel auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false); 15147aaa99cSSanjay Patel unsigned OffsetEltIndex = 0; 15247aaa99cSSanjay Patel Align Alignment = Load->getAlign(); 15347aaa99cSSanjay Patel if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) { 15447aaa99cSSanjay Patel // It is not safe to load directly from the pointer, but we can still peek 15547aaa99cSSanjay Patel // through gep offsets and check if it safe to load from a base address with 15647aaa99cSSanjay Patel // updated alignment. If it is, we can shuffle the element(s) into place 15747aaa99cSSanjay Patel // after loading. 15847aaa99cSSanjay Patel unsigned OffsetBitWidth = DL.getIndexTypeSizeInBits(SrcPtr->getType()); 15947aaa99cSSanjay Patel APInt Offset(OffsetBitWidth, 0); 16047aaa99cSSanjay Patel SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); 16147aaa99cSSanjay Patel 16247aaa99cSSanjay Patel // We want to shuffle the result down from a high element of a vector, so 16347aaa99cSSanjay Patel // the offset must be positive. 16447aaa99cSSanjay Patel if (Offset.isNegative()) 16547aaa99cSSanjay Patel return false; 16647aaa99cSSanjay Patel 16747aaa99cSSanjay Patel // The offset must be a multiple of the scalar element to shuffle cleanly 16847aaa99cSSanjay Patel // in the element's size. 16947aaa99cSSanjay Patel uint64_t ScalarSizeInBytes = ScalarSize / 8; 17047aaa99cSSanjay Patel if (Offset.urem(ScalarSizeInBytes) != 0) 17147aaa99cSSanjay Patel return false; 17247aaa99cSSanjay Patel 17347aaa99cSSanjay Patel // If we load MinVecNumElts, will our target element still be loaded? 17447aaa99cSSanjay Patel OffsetEltIndex = Offset.udiv(ScalarSizeInBytes).getZExtValue(); 17547aaa99cSSanjay Patel if (OffsetEltIndex >= MinVecNumElts) 17647aaa99cSSanjay Patel return false; 17747aaa99cSSanjay Patel 178aaaf0ec7SSanjay Patel if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) 17943bdac29SSanjay Patel return false; 18043bdac29SSanjay Patel 18147aaa99cSSanjay Patel // Update alignment with offset value. Note that the offset could be negated 18247aaa99cSSanjay Patel // to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but 18347aaa99cSSanjay Patel // negation does not change the result of the alignment calculation. 18447aaa99cSSanjay Patel Alignment = commonAlignment(Alignment, Offset.getZExtValue()); 18547aaa99cSSanjay Patel } 18647aaa99cSSanjay Patel 187b2ef2640SSanjay Patel // Original pattern: insertelt undef, load [free casts of] PtrOp, 0 18838ebc1a1SSanjay Patel // Use the greater of the alignment on the load or its source pointer. 18947aaa99cSSanjay Patel Alignment = std::max(SrcPtr->getPointerAlignment(DL), Alignment); 190b2ef2640SSanjay Patel Type *LoadTy = Load->getType(); 19136710c38SCaroline Concatto InstructionCost OldCost = 19236710c38SCaroline Concatto TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS); 1938fb05593SSanjay Patel APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0); 194b2ef2640SSanjay Patel OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts, 195b2ef2640SSanjay Patel /* Insert */ true, HasExtract); 19643bdac29SSanjay Patel 19743bdac29SSanjay Patel // New pattern: load VecPtr 19836710c38SCaroline Concatto InstructionCost NewCost = 19936710c38SCaroline Concatto TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS); 20047aaa99cSSanjay Patel // Optionally, we are shuffling the loaded vector element(s) into place. 201e2935dcfSDavid Green // For the mask set everything but element 0 to undef to prevent poison from 202e2935dcfSDavid Green // propagating from the extra loaded memory. This will also optionally 203e2935dcfSDavid Green // shrink/grow the vector from the loaded size to the output size. 204e2935dcfSDavid Green // We assume this operation has no cost in codegen if there was no offset. 205e2935dcfSDavid Green // Note that we could use freeze to avoid poison problems, but then we might 206e2935dcfSDavid Green // still need a shuffle to change the vector size. 207e2935dcfSDavid Green unsigned OutputNumElts = Ty->getNumElements(); 208e2935dcfSDavid Green SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem); 209e2935dcfSDavid Green assert(OffsetEltIndex < MinVecNumElts && "Address offset too big"); 210e2935dcfSDavid Green Mask[0] = OffsetEltIndex; 21147aaa99cSSanjay Patel if (OffsetEltIndex) 212e2935dcfSDavid Green NewCost += TTI.getShuffleCost(TTI::SK_PermuteSingleSrc, MinVecTy, Mask); 21343bdac29SSanjay Patel 21443bdac29SSanjay Patel // We can aggressively convert to the vector form because the backend can 21543bdac29SSanjay Patel // invert this transform if it does not result in a performance win. 21636710c38SCaroline Concatto if (OldCost < NewCost || !NewCost.isValid()) 21743bdac29SSanjay Patel return false; 21843bdac29SSanjay Patel 21943bdac29SSanjay Patel // It is safe and potentially profitable to load a vector directly: 22043bdac29SSanjay Patel // inselt undef, load Scalar, 0 --> load VecPtr 22143bdac29SSanjay Patel IRBuilder<> Builder(Load); 22212b684aeSSanjay Patel Value *CastedPtr = Builder.CreateBitCast(SrcPtr, MinVecTy->getPointerTo(AS)); 2238fb05593SSanjay Patel Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment); 2241e6b240dSSanjay Patel VecLd = Builder.CreateShuffleVector(VecLd, Mask); 225d399f870SSanjay Patel 22643bdac29SSanjay Patel replaceValue(I, *VecLd); 22743bdac29SSanjay Patel ++NumVecLoad; 22843bdac29SSanjay Patel return true; 22943bdac29SSanjay Patel } 23043bdac29SSanjay Patel 2313b95d834SSanjay Patel /// Determine which, if any, of the inputs should be replaced by a shuffle 2323b95d834SSanjay Patel /// followed by extract from a different index. 2333b95d834SSanjay Patel ExtractElementInst *VectorCombine::getShuffleExtract( 2343b95d834SSanjay Patel ExtractElementInst *Ext0, ExtractElementInst *Ext1, 2353b95d834SSanjay Patel unsigned PreferredExtractIndex = InvalidIndex) const { 2363b95d834SSanjay Patel assert(isa<ConstantInt>(Ext0->getIndexOperand()) && 2373b95d834SSanjay Patel isa<ConstantInt>(Ext1->getIndexOperand()) && 2383b95d834SSanjay Patel "Expected constant extract indexes"); 2393b95d834SSanjay Patel 2403b95d834SSanjay Patel unsigned Index0 = cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue(); 2413b95d834SSanjay Patel unsigned Index1 = cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue(); 2423b95d834SSanjay Patel 2433b95d834SSanjay Patel // If the extract indexes are identical, no shuffle is needed. 2443b95d834SSanjay Patel if (Index0 == Index1) 2453b95d834SSanjay Patel return nullptr; 2463b95d834SSanjay Patel 2473b95d834SSanjay Patel Type *VecTy = Ext0->getVectorOperand()->getType(); 2483b95d834SSanjay Patel assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types"); 24936710c38SCaroline Concatto InstructionCost Cost0 = 25036710c38SCaroline Concatto TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 25136710c38SCaroline Concatto InstructionCost Cost1 = 25236710c38SCaroline Concatto TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 25336710c38SCaroline Concatto 25436710c38SCaroline Concatto // If both costs are invalid no shuffle is needed 25536710c38SCaroline Concatto if (!Cost0.isValid() && !Cost1.isValid()) 25636710c38SCaroline Concatto return nullptr; 2573b95d834SSanjay Patel 2583b95d834SSanjay Patel // We are extracting from 2 different indexes, so one operand must be shuffled 2593b95d834SSanjay Patel // before performing a vector operation and/or extract. The more expensive 2603b95d834SSanjay Patel // extract will be replaced by a shuffle. 2613b95d834SSanjay Patel if (Cost0 > Cost1) 2623b95d834SSanjay Patel return Ext0; 2633b95d834SSanjay Patel if (Cost1 > Cost0) 2643b95d834SSanjay Patel return Ext1; 2653b95d834SSanjay Patel 2663b95d834SSanjay Patel // If the costs are equal and there is a preferred extract index, shuffle the 2673b95d834SSanjay Patel // opposite operand. 2683b95d834SSanjay Patel if (PreferredExtractIndex == Index0) 2693b95d834SSanjay Patel return Ext1; 2703b95d834SSanjay Patel if (PreferredExtractIndex == Index1) 2713b95d834SSanjay Patel return Ext0; 2723b95d834SSanjay Patel 2733b95d834SSanjay Patel // Otherwise, replace the extract with the higher index. 2743b95d834SSanjay Patel return Index0 > Index1 ? Ext0 : Ext1; 2753b95d834SSanjay Patel } 2763b95d834SSanjay Patel 277a69158c1SSanjay Patel /// Compare the relative costs of 2 extracts followed by scalar operation vs. 278a69158c1SSanjay Patel /// vector operation(s) followed by extract. Return true if the existing 279a69158c1SSanjay Patel /// instructions are cheaper than a vector alternative. Otherwise, return false 280a69158c1SSanjay Patel /// and if one of the extracts should be transformed to a shufflevector, set 281a69158c1SSanjay Patel /// \p ConvertToShuffle to that extract instruction. 2826bdd531aSSanjay Patel bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0, 2836bdd531aSSanjay Patel ExtractElementInst *Ext1, 2846bdd531aSSanjay Patel unsigned Opcode, 285216a37bbSSanjay Patel ExtractElementInst *&ConvertToShuffle, 286ce97ce3aSSanjay Patel unsigned PreferredExtractIndex) { 2874fa63fd4SAustin Kerbow assert(isa<ConstantInt>(Ext0->getOperand(1)) && 288a69158c1SSanjay Patel isa<ConstantInt>(Ext1->getOperand(1)) && 289a69158c1SSanjay Patel "Expected constant extract indexes"); 29034e34855SSanjay Patel Type *ScalarTy = Ext0->getType(); 291e3056ae9SSam Parker auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType()); 29236710c38SCaroline Concatto InstructionCost ScalarOpCost, VectorOpCost; 29334e34855SSanjay Patel 29434e34855SSanjay Patel // Get cost estimates for scalar and vector versions of the operation. 29534e34855SSanjay Patel bool IsBinOp = Instruction::isBinaryOp(Opcode); 29634e34855SSanjay Patel if (IsBinOp) { 29734e34855SSanjay Patel ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 29834e34855SSanjay Patel VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 29934e34855SSanjay Patel } else { 30034e34855SSanjay Patel assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 30134e34855SSanjay Patel "Expected a compare"); 30234e34855SSanjay Patel ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy, 30334e34855SSanjay Patel CmpInst::makeCmpResultType(ScalarTy)); 30434e34855SSanjay Patel VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy, 30534e34855SSanjay Patel CmpInst::makeCmpResultType(VecTy)); 30634e34855SSanjay Patel } 30734e34855SSanjay Patel 308a69158c1SSanjay Patel // Get cost estimates for the extract elements. These costs will factor into 30934e34855SSanjay Patel // both sequences. 310a69158c1SSanjay Patel unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue(); 311a69158c1SSanjay Patel unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue(); 312a69158c1SSanjay Patel 31336710c38SCaroline Concatto InstructionCost Extract0Cost = 3146bdd531aSSanjay Patel TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index); 31536710c38SCaroline Concatto InstructionCost Extract1Cost = 3166bdd531aSSanjay Patel TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index); 317a69158c1SSanjay Patel 318a69158c1SSanjay Patel // A more expensive extract will always be replaced by a splat shuffle. 319a69158c1SSanjay Patel // For example, if Ext0 is more expensive: 320a69158c1SSanjay Patel // opcode (extelt V0, Ext0), (ext V1, Ext1) --> 321a69158c1SSanjay Patel // extelt (opcode (splat V0, Ext0), V1), Ext1 322a69158c1SSanjay Patel // TODO: Evaluate whether that always results in lowest cost. Alternatively, 323a69158c1SSanjay Patel // check the cost of creating a broadcast shuffle and shuffling both 324a69158c1SSanjay Patel // operands to element 0. 32536710c38SCaroline Concatto InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost); 32634e34855SSanjay Patel 32734e34855SSanjay Patel // Extra uses of the extracts mean that we include those costs in the 32834e34855SSanjay Patel // vector total because those instructions will not be eliminated. 32936710c38SCaroline Concatto InstructionCost OldCost, NewCost; 330a69158c1SSanjay Patel if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) { 331a69158c1SSanjay Patel // Handle a special case. If the 2 extracts are identical, adjust the 33234e34855SSanjay Patel // formulas to account for that. The extra use charge allows for either the 33334e34855SSanjay Patel // CSE'd pattern or an unoptimized form with identical values: 33434e34855SSanjay Patel // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C 33534e34855SSanjay Patel bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2) 33634e34855SSanjay Patel : !Ext0->hasOneUse() || !Ext1->hasOneUse(); 337a69158c1SSanjay Patel OldCost = CheapExtractCost + ScalarOpCost; 338a69158c1SSanjay Patel NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost; 33934e34855SSanjay Patel } else { 34034e34855SSanjay Patel // Handle the general case. Each extract is actually a different value: 341a69158c1SSanjay Patel // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C 342a69158c1SSanjay Patel OldCost = Extract0Cost + Extract1Cost + ScalarOpCost; 343a69158c1SSanjay Patel NewCost = VectorOpCost + CheapExtractCost + 344a69158c1SSanjay Patel !Ext0->hasOneUse() * Extract0Cost + 345a69158c1SSanjay Patel !Ext1->hasOneUse() * Extract1Cost; 34634e34855SSanjay Patel } 347a69158c1SSanjay Patel 3483b95d834SSanjay Patel ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex); 3493b95d834SSanjay Patel if (ConvertToShuffle) { 350a69158c1SSanjay Patel if (IsBinOp && DisableBinopExtractShuffle) 351a69158c1SSanjay Patel return true; 352a69158c1SSanjay Patel 353a69158c1SSanjay Patel // If we are extracting from 2 different indexes, then one operand must be 354a69158c1SSanjay Patel // shuffled before performing the vector operation. The shuffle mask is 355a69158c1SSanjay Patel // undefined except for 1 lane that is being translated to the remaining 356a69158c1SSanjay Patel // extraction lane. Therefore, it is a splat shuffle. Ex: 357a69158c1SSanjay Patel // ShufMask = { undef, undef, 0, undef } 358a69158c1SSanjay Patel // TODO: The cost model has an option for a "broadcast" shuffle 359a69158c1SSanjay Patel // (splat-from-element-0), but no option for a more general splat. 360a69158c1SSanjay Patel NewCost += 361a69158c1SSanjay Patel TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 362a69158c1SSanjay Patel } 363a69158c1SSanjay Patel 36410ea01d8SSanjay Patel // Aggressively form a vector op if the cost is equal because the transform 36510ea01d8SSanjay Patel // may enable further optimization. 36610ea01d8SSanjay Patel // Codegen can reverse this transform (scalarize) if it was not profitable. 36710ea01d8SSanjay Patel return OldCost < NewCost; 36834e34855SSanjay Patel } 36934e34855SSanjay Patel 3709934cc54SSanjay Patel /// Create a shuffle that translates (shifts) 1 element from the input vector 3719934cc54SSanjay Patel /// to a new element location. 3729934cc54SSanjay Patel static Value *createShiftShuffle(Value *Vec, unsigned OldIndex, 3739934cc54SSanjay Patel unsigned NewIndex, IRBuilder<> &Builder) { 3749934cc54SSanjay Patel // The shuffle mask is undefined except for 1 lane that is being translated 3759934cc54SSanjay Patel // to the new element index. Example for OldIndex == 2 and NewIndex == 0: 3769934cc54SSanjay Patel // ShufMask = { 2, undef, undef, undef } 3779934cc54SSanjay Patel auto *VecTy = cast<FixedVectorType>(Vec->getType()); 37854143e2bSSanjay Patel SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem); 3799934cc54SSanjay Patel ShufMask[NewIndex] = OldIndex; 3801e6b240dSSanjay Patel return Builder.CreateShuffleVector(Vec, ShufMask, "shift"); 3819934cc54SSanjay Patel } 3829934cc54SSanjay Patel 383216a37bbSSanjay Patel /// Given an extract element instruction with constant index operand, shuffle 384216a37bbSSanjay Patel /// the source vector (shift the scalar element) to a NewIndex for extraction. 385216a37bbSSanjay Patel /// Return null if the input can be constant folded, so that we are not creating 386216a37bbSSanjay Patel /// unnecessary instructions. 3879934cc54SSanjay Patel static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt, 3889934cc54SSanjay Patel unsigned NewIndex, 3899934cc54SSanjay Patel IRBuilder<> &Builder) { 390216a37bbSSanjay Patel // If the extract can be constant-folded, this code is unsimplified. Defer 391216a37bbSSanjay Patel // to other passes to handle that. 392216a37bbSSanjay Patel Value *X = ExtElt->getVectorOperand(); 393216a37bbSSanjay Patel Value *C = ExtElt->getIndexOperand(); 394de65b356SSanjay Patel assert(isa<ConstantInt>(C) && "Expected a constant index operand"); 395216a37bbSSanjay Patel if (isa<Constant>(X)) 396216a37bbSSanjay Patel return nullptr; 397216a37bbSSanjay Patel 3989934cc54SSanjay Patel Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(), 3999934cc54SSanjay Patel NewIndex, Builder); 400216a37bbSSanjay Patel return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex)); 401216a37bbSSanjay Patel } 402216a37bbSSanjay Patel 403fc445589SSanjay Patel /// Try to reduce extract element costs by converting scalar compares to vector 404fc445589SSanjay Patel /// compares followed by extract. 405e9c79a7aSSanjay Patel /// cmp (ext0 V0, C), (ext1 V1, C) 406de65b356SSanjay Patel void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0, 407de65b356SSanjay Patel ExtractElementInst *Ext1, Instruction &I) { 408fc445589SSanjay Patel assert(isa<CmpInst>(&I) && "Expected a compare"); 409216a37bbSSanjay Patel assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 410216a37bbSSanjay Patel cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 411216a37bbSSanjay Patel "Expected matching constant extract indexes"); 412a17f03bdSSanjay Patel 413a17f03bdSSanjay Patel // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C 414a17f03bdSSanjay Patel ++NumVecCmp; 415fc445589SSanjay Patel CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate(); 416216a37bbSSanjay Patel Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 41746a285adSSanjay Patel Value *VecCmp = Builder.CreateCmp(Pred, V0, V1); 418216a37bbSSanjay Patel Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand()); 41998c2f4eeSSanjay Patel replaceValue(I, *NewExt); 420a17f03bdSSanjay Patel } 421a17f03bdSSanjay Patel 42219b62b79SSanjay Patel /// Try to reduce extract element costs by converting scalar binops to vector 42319b62b79SSanjay Patel /// binops followed by extract. 424e9c79a7aSSanjay Patel /// bo (ext0 V0, C), (ext1 V1, C) 425de65b356SSanjay Patel void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0, 426de65b356SSanjay Patel ExtractElementInst *Ext1, Instruction &I) { 427fc445589SSanjay Patel assert(isa<BinaryOperator>(&I) && "Expected a binary operator"); 428216a37bbSSanjay Patel assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 429216a37bbSSanjay Patel cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 430216a37bbSSanjay Patel "Expected matching constant extract indexes"); 43119b62b79SSanjay Patel 43234e34855SSanjay Patel // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C 43319b62b79SSanjay Patel ++NumVecBO; 434216a37bbSSanjay Patel Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 435e9c79a7aSSanjay Patel Value *VecBO = 43634e34855SSanjay Patel Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1); 437e9c79a7aSSanjay Patel 43819b62b79SSanjay Patel // All IR flags are safe to back-propagate because any potential poison 43919b62b79SSanjay Patel // created in unused vector elements is discarded by the extract. 440e9c79a7aSSanjay Patel if (auto *VecBOInst = dyn_cast<Instruction>(VecBO)) 44119b62b79SSanjay Patel VecBOInst->copyIRFlags(&I); 442e9c79a7aSSanjay Patel 443216a37bbSSanjay Patel Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand()); 44498c2f4eeSSanjay Patel replaceValue(I, *NewExt); 44519b62b79SSanjay Patel } 44619b62b79SSanjay Patel 447fc445589SSanjay Patel /// Match an instruction with extracted vector operands. 4486bdd531aSSanjay Patel bool VectorCombine::foldExtractExtract(Instruction &I) { 449e9c79a7aSSanjay Patel // It is not safe to transform things like div, urem, etc. because we may 450e9c79a7aSSanjay Patel // create undefined behavior when executing those on unknown vector elements. 451e9c79a7aSSanjay Patel if (!isSafeToSpeculativelyExecute(&I)) 452e9c79a7aSSanjay Patel return false; 453e9c79a7aSSanjay Patel 454216a37bbSSanjay Patel Instruction *I0, *I1; 455fc445589SSanjay Patel CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 456216a37bbSSanjay Patel if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) && 457216a37bbSSanjay Patel !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1)))) 458fc445589SSanjay Patel return false; 459fc445589SSanjay Patel 460fc445589SSanjay Patel Value *V0, *V1; 461fc445589SSanjay Patel uint64_t C0, C1; 462216a37bbSSanjay Patel if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) || 463216a37bbSSanjay Patel !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) || 464fc445589SSanjay Patel V0->getType() != V1->getType()) 465fc445589SSanjay Patel return false; 466fc445589SSanjay Patel 467ce97ce3aSSanjay Patel // If the scalar value 'I' is going to be re-inserted into a vector, then try 468ce97ce3aSSanjay Patel // to create an extract to that same element. The extract/insert can be 469ce97ce3aSSanjay Patel // reduced to a "select shuffle". 470ce97ce3aSSanjay Patel // TODO: If we add a larger pattern match that starts from an insert, this 471ce97ce3aSSanjay Patel // probably becomes unnecessary. 472216a37bbSSanjay Patel auto *Ext0 = cast<ExtractElementInst>(I0); 473216a37bbSSanjay Patel auto *Ext1 = cast<ExtractElementInst>(I1); 474a0f96741SSanjay Patel uint64_t InsertIndex = InvalidIndex; 475ce97ce3aSSanjay Patel if (I.hasOneUse()) 4767eed772aSSanjay Patel match(I.user_back(), 4777eed772aSSanjay Patel m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex))); 478ce97ce3aSSanjay Patel 479216a37bbSSanjay Patel ExtractElementInst *ExtractToChange; 4806bdd531aSSanjay Patel if (isExtractExtractCheap(Ext0, Ext1, I.getOpcode(), ExtractToChange, 481ce97ce3aSSanjay Patel InsertIndex)) 482fc445589SSanjay Patel return false; 483e9c79a7aSSanjay Patel 484216a37bbSSanjay Patel if (ExtractToChange) { 485216a37bbSSanjay Patel unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0; 486216a37bbSSanjay Patel ExtractElementInst *NewExtract = 4879934cc54SSanjay Patel translateExtract(ExtractToChange, CheapExtractIdx, Builder); 488216a37bbSSanjay Patel if (!NewExtract) 4896d864097SSanjay Patel return false; 490216a37bbSSanjay Patel if (ExtractToChange == Ext0) 491216a37bbSSanjay Patel Ext0 = NewExtract; 492a69158c1SSanjay Patel else 493216a37bbSSanjay Patel Ext1 = NewExtract; 494a69158c1SSanjay Patel } 495e9c79a7aSSanjay Patel 496e9c79a7aSSanjay Patel if (Pred != CmpInst::BAD_ICMP_PREDICATE) 497039ff29eSSanjay Patel foldExtExtCmp(Ext0, Ext1, I); 498e9c79a7aSSanjay Patel else 499039ff29eSSanjay Patel foldExtExtBinop(Ext0, Ext1, I); 500e9c79a7aSSanjay Patel 501e9c79a7aSSanjay Patel return true; 502fc445589SSanjay Patel } 503fc445589SSanjay Patel 504bef6e67eSSanjay Patel /// If this is a bitcast of a shuffle, try to bitcast the source vector to the 505bef6e67eSSanjay Patel /// destination type followed by shuffle. This can enable further transforms by 506bef6e67eSSanjay Patel /// moving bitcasts or shuffles together. 5076bdd531aSSanjay Patel bool VectorCombine::foldBitcastShuf(Instruction &I) { 508b6050ca1SSanjay Patel Value *V; 509b6050ca1SSanjay Patel ArrayRef<int> Mask; 5107eed772aSSanjay Patel if (!match(&I, m_BitCast( 5117eed772aSSanjay Patel m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask)))))) 512b6050ca1SSanjay Patel return false; 513b6050ca1SSanjay Patel 514b4f04d71SHuihui Zhang // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for 515b4f04d71SHuihui Zhang // scalable type is unknown; Second, we cannot reason if the narrowed shuffle 516b4f04d71SHuihui Zhang // mask for scalable type is a splat or not. 517b4f04d71SHuihui Zhang // 2) Disallow non-vector casts and length-changing shuffles. 518bef6e67eSSanjay Patel // TODO: We could allow any shuffle. 519b4f04d71SHuihui Zhang auto *DestTy = dyn_cast<FixedVectorType>(I.getType()); 520b4f04d71SHuihui Zhang auto *SrcTy = dyn_cast<FixedVectorType>(V->getType()); 521b4f04d71SHuihui Zhang if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy) 522b6050ca1SSanjay Patel return false; 523b6050ca1SSanjay Patel 524b4f04d71SHuihui Zhang unsigned DestNumElts = DestTy->getNumElements(); 525b4f04d71SHuihui Zhang unsigned SrcNumElts = SrcTy->getNumElements(); 526b6050ca1SSanjay Patel SmallVector<int, 16> NewMask; 527bef6e67eSSanjay Patel if (SrcNumElts <= DestNumElts) { 528bef6e67eSSanjay Patel // The bitcast is from wide to narrow/equal elements. The shuffle mask can 529bef6e67eSSanjay Patel // always be expanded to the equivalent form choosing narrower elements. 530b6050ca1SSanjay Patel assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask"); 531b6050ca1SSanjay Patel unsigned ScaleFactor = DestNumElts / SrcNumElts; 5321318ddbcSSanjay Patel narrowShuffleMaskElts(ScaleFactor, Mask, NewMask); 533bef6e67eSSanjay Patel } else { 534bef6e67eSSanjay Patel // The bitcast is from narrow elements to wide elements. The shuffle mask 535bef6e67eSSanjay Patel // must choose consecutive elements to allow casting first. 536bef6e67eSSanjay Patel assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask"); 537bef6e67eSSanjay Patel unsigned ScaleFactor = SrcNumElts / DestNumElts; 538bef6e67eSSanjay Patel if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask)) 539bef6e67eSSanjay Patel return false; 540bef6e67eSSanjay Patel } 541e2935dcfSDavid Green 542e2935dcfSDavid Green // The new shuffle must not cost more than the old shuffle. The bitcast is 543e2935dcfSDavid Green // moved ahead of the shuffle, so assume that it has the same cost as before. 544e2935dcfSDavid Green InstructionCost DestCost = TTI.getShuffleCost( 545e2935dcfSDavid Green TargetTransformInfo::SK_PermuteSingleSrc, DestTy, NewMask); 546e2935dcfSDavid Green InstructionCost SrcCost = 547e2935dcfSDavid Green TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy, Mask); 548e2935dcfSDavid Green if (DestCost > SrcCost || !DestCost.isValid()) 549e2935dcfSDavid Green return false; 550e2935dcfSDavid Green 551bef6e67eSSanjay Patel // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC' 5527aeb41b3SRoman Lebedev ++NumShufOfBitcast; 553bef6e67eSSanjay Patel Value *CastV = Builder.CreateBitCast(V, DestTy); 5541e6b240dSSanjay Patel Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask); 55598c2f4eeSSanjay Patel replaceValue(I, *Shuf); 556b6050ca1SSanjay Patel return true; 557b6050ca1SSanjay Patel } 558b6050ca1SSanjay Patel 559ed67f5e7SSanjay Patel /// Match a vector binop or compare instruction with at least one inserted 560ed67f5e7SSanjay Patel /// scalar operand and convert to scalar binop/cmp followed by insertelement. 5616bdd531aSSanjay Patel bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) { 562ed67f5e7SSanjay Patel CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 5635dc4e7c2SSimon Pilgrim Value *Ins0, *Ins1; 564ed67f5e7SSanjay Patel if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) && 565ed67f5e7SSanjay Patel !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1)))) 566ed67f5e7SSanjay Patel return false; 567ed67f5e7SSanjay Patel 568ed67f5e7SSanjay Patel // Do not convert the vector condition of a vector select into a scalar 569ed67f5e7SSanjay Patel // condition. That may cause problems for codegen because of differences in 570ed67f5e7SSanjay Patel // boolean formats and register-file transfers. 571ed67f5e7SSanjay Patel // TODO: Can we account for that in the cost model? 572ed67f5e7SSanjay Patel bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE; 573ed67f5e7SSanjay Patel if (IsCmp) 574ed67f5e7SSanjay Patel for (User *U : I.users()) 575ed67f5e7SSanjay Patel if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value()))) 5760d2a0b44SSanjay Patel return false; 5770d2a0b44SSanjay Patel 5785dc4e7c2SSimon Pilgrim // Match against one or both scalar values being inserted into constant 5795dc4e7c2SSimon Pilgrim // vectors: 580ed67f5e7SSanjay Patel // vec_op VecC0, (inselt VecC1, V1, Index) 581ed67f5e7SSanjay Patel // vec_op (inselt VecC0, V0, Index), VecC1 582ed67f5e7SSanjay Patel // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) 5830d2a0b44SSanjay Patel // TODO: Deal with mismatched index constants and variable indexes? 5845dc4e7c2SSimon Pilgrim Constant *VecC0 = nullptr, *VecC1 = nullptr; 5855dc4e7c2SSimon Pilgrim Value *V0 = nullptr, *V1 = nullptr; 5865dc4e7c2SSimon Pilgrim uint64_t Index0 = 0, Index1 = 0; 5877eed772aSSanjay Patel if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0), 5885dc4e7c2SSimon Pilgrim m_ConstantInt(Index0))) && 5895dc4e7c2SSimon Pilgrim !match(Ins0, m_Constant(VecC0))) 5905dc4e7c2SSimon Pilgrim return false; 5915dc4e7c2SSimon Pilgrim if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1), 5925dc4e7c2SSimon Pilgrim m_ConstantInt(Index1))) && 5935dc4e7c2SSimon Pilgrim !match(Ins1, m_Constant(VecC1))) 5940d2a0b44SSanjay Patel return false; 5950d2a0b44SSanjay Patel 5965dc4e7c2SSimon Pilgrim bool IsConst0 = !V0; 5975dc4e7c2SSimon Pilgrim bool IsConst1 = !V1; 5985dc4e7c2SSimon Pilgrim if (IsConst0 && IsConst1) 5995dc4e7c2SSimon Pilgrim return false; 6005dc4e7c2SSimon Pilgrim if (!IsConst0 && !IsConst1 && Index0 != Index1) 6015dc4e7c2SSimon Pilgrim return false; 6025dc4e7c2SSimon Pilgrim 6035dc4e7c2SSimon Pilgrim // Bail for single insertion if it is a load. 6045dc4e7c2SSimon Pilgrim // TODO: Handle this once getVectorInstrCost can cost for load/stores. 6055dc4e7c2SSimon Pilgrim auto *I0 = dyn_cast_or_null<Instruction>(V0); 6065dc4e7c2SSimon Pilgrim auto *I1 = dyn_cast_or_null<Instruction>(V1); 6075dc4e7c2SSimon Pilgrim if ((IsConst0 && I1 && I1->mayReadFromMemory()) || 6085dc4e7c2SSimon Pilgrim (IsConst1 && I0 && I0->mayReadFromMemory())) 6095dc4e7c2SSimon Pilgrim return false; 6105dc4e7c2SSimon Pilgrim 6115dc4e7c2SSimon Pilgrim uint64_t Index = IsConst0 ? Index1 : Index0; 6125dc4e7c2SSimon Pilgrim Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType(); 6130d2a0b44SSanjay Patel Type *VecTy = I.getType(); 6145dc4e7c2SSimon Pilgrim assert(VecTy->isVectorTy() && 6155dc4e7c2SSimon Pilgrim (IsConst0 || IsConst1 || V0->getType() == V1->getType()) && 616741e20f3SSanjay Patel (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() || 617741e20f3SSanjay Patel ScalarTy->isPointerTy()) && 618741e20f3SSanjay Patel "Unexpected types for insert element into binop or cmp"); 6190d2a0b44SSanjay Patel 620ed67f5e7SSanjay Patel unsigned Opcode = I.getOpcode(); 62136710c38SCaroline Concatto InstructionCost ScalarOpCost, VectorOpCost; 622ed67f5e7SSanjay Patel if (IsCmp) { 623ed67f5e7SSanjay Patel ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy); 624ed67f5e7SSanjay Patel VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy); 625ed67f5e7SSanjay Patel } else { 626ed67f5e7SSanjay Patel ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 627ed67f5e7SSanjay Patel VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 628ed67f5e7SSanjay Patel } 6290d2a0b44SSanjay Patel 6300d2a0b44SSanjay Patel // Get cost estimate for the insert element. This cost will factor into 6310d2a0b44SSanjay Patel // both sequences. 63236710c38SCaroline Concatto InstructionCost InsertCost = 6330d2a0b44SSanjay Patel TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index); 63436710c38SCaroline Concatto InstructionCost OldCost = 63536710c38SCaroline Concatto (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + VectorOpCost; 63636710c38SCaroline Concatto InstructionCost NewCost = ScalarOpCost + InsertCost + 6375dc4e7c2SSimon Pilgrim (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) + 6385dc4e7c2SSimon Pilgrim (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost); 6390d2a0b44SSanjay Patel 6400d2a0b44SSanjay Patel // We want to scalarize unless the vector variant actually has lower cost. 64136710c38SCaroline Concatto if (OldCost < NewCost || !NewCost.isValid()) 6420d2a0b44SSanjay Patel return false; 6430d2a0b44SSanjay Patel 644ed67f5e7SSanjay Patel // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) --> 645ed67f5e7SSanjay Patel // inselt NewVecC, (scalar_op V0, V1), Index 646ed67f5e7SSanjay Patel if (IsCmp) 647ed67f5e7SSanjay Patel ++NumScalarCmp; 648ed67f5e7SSanjay Patel else 6490d2a0b44SSanjay Patel ++NumScalarBO; 6505dc4e7c2SSimon Pilgrim 6515dc4e7c2SSimon Pilgrim // For constant cases, extract the scalar element, this should constant fold. 6525dc4e7c2SSimon Pilgrim if (IsConst0) 6535dc4e7c2SSimon Pilgrim V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index)); 6545dc4e7c2SSimon Pilgrim if (IsConst1) 6555dc4e7c2SSimon Pilgrim V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index)); 6565dc4e7c2SSimon Pilgrim 657ed67f5e7SSanjay Patel Value *Scalar = 65846a285adSSanjay Patel IsCmp ? Builder.CreateCmp(Pred, V0, V1) 659ed67f5e7SSanjay Patel : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1); 660ed67f5e7SSanjay Patel 661ed67f5e7SSanjay Patel Scalar->setName(I.getName() + ".scalar"); 6620d2a0b44SSanjay Patel 6630d2a0b44SSanjay Patel // All IR flags are safe to back-propagate. There is no potential for extra 6640d2a0b44SSanjay Patel // poison to be created by the scalar instruction. 6650d2a0b44SSanjay Patel if (auto *ScalarInst = dyn_cast<Instruction>(Scalar)) 6660d2a0b44SSanjay Patel ScalarInst->copyIRFlags(&I); 6670d2a0b44SSanjay Patel 6680d2a0b44SSanjay Patel // Fold the vector constants in the original vectors into a new base vector. 669ed67f5e7SSanjay Patel Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1) 670ed67f5e7SSanjay Patel : ConstantExpr::get(Opcode, VecC0, VecC1); 6710d2a0b44SSanjay Patel Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index); 67298c2f4eeSSanjay Patel replaceValue(I, *Insert); 6730d2a0b44SSanjay Patel return true; 6740d2a0b44SSanjay Patel } 6750d2a0b44SSanjay Patel 676b6315aeeSSanjay Patel /// Try to combine a scalar binop + 2 scalar compares of extracted elements of 677b6315aeeSSanjay Patel /// a vector into vector operations followed by extract. Note: The SLP pass 678b6315aeeSSanjay Patel /// may miss this pattern because of implementation problems. 679b6315aeeSSanjay Patel bool VectorCombine::foldExtractedCmps(Instruction &I) { 680b6315aeeSSanjay Patel // We are looking for a scalar binop of booleans. 681b6315aeeSSanjay Patel // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1) 682b6315aeeSSanjay Patel if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1)) 683b6315aeeSSanjay Patel return false; 684b6315aeeSSanjay Patel 685b6315aeeSSanjay Patel // The compare predicates should match, and each compare should have a 686b6315aeeSSanjay Patel // constant operand. 687b6315aeeSSanjay Patel // TODO: Relax the one-use constraints. 688b6315aeeSSanjay Patel Value *B0 = I.getOperand(0), *B1 = I.getOperand(1); 689b6315aeeSSanjay Patel Instruction *I0, *I1; 690b6315aeeSSanjay Patel Constant *C0, *C1; 691b6315aeeSSanjay Patel CmpInst::Predicate P0, P1; 692b6315aeeSSanjay Patel if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) || 693b6315aeeSSanjay Patel !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) || 694b6315aeeSSanjay Patel P0 != P1) 695b6315aeeSSanjay Patel return false; 696b6315aeeSSanjay Patel 697b6315aeeSSanjay Patel // The compare operands must be extracts of the same vector with constant 698b6315aeeSSanjay Patel // extract indexes. 699b6315aeeSSanjay Patel // TODO: Relax the one-use constraints. 700b6315aeeSSanjay Patel Value *X; 701b6315aeeSSanjay Patel uint64_t Index0, Index1; 702b6315aeeSSanjay Patel if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) || 703b6315aeeSSanjay Patel !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1))))) 704b6315aeeSSanjay Patel return false; 705b6315aeeSSanjay Patel 706b6315aeeSSanjay Patel auto *Ext0 = cast<ExtractElementInst>(I0); 707b6315aeeSSanjay Patel auto *Ext1 = cast<ExtractElementInst>(I1); 708b6315aeeSSanjay Patel ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1); 709b6315aeeSSanjay Patel if (!ConvertToShuf) 710b6315aeeSSanjay Patel return false; 711b6315aeeSSanjay Patel 712b6315aeeSSanjay Patel // The original scalar pattern is: 713b6315aeeSSanjay Patel // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1) 714b6315aeeSSanjay Patel CmpInst::Predicate Pred = P0; 715b6315aeeSSanjay Patel unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp 716b6315aeeSSanjay Patel : Instruction::ICmp; 717b6315aeeSSanjay Patel auto *VecTy = dyn_cast<FixedVectorType>(X->getType()); 718b6315aeeSSanjay Patel if (!VecTy) 719b6315aeeSSanjay Patel return false; 720b6315aeeSSanjay Patel 72136710c38SCaroline Concatto InstructionCost OldCost = 72236710c38SCaroline Concatto TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 723b6315aeeSSanjay Patel OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 724b6315aeeSSanjay Patel OldCost += TTI.getCmpSelInstrCost(CmpOpcode, I0->getType()) * 2; 725b6315aeeSSanjay Patel OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType()); 726b6315aeeSSanjay Patel 727b6315aeeSSanjay Patel // The proposed vector pattern is: 728b6315aeeSSanjay Patel // vcmp = cmp Pred X, VecC 729b6315aeeSSanjay Patel // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0 730b6315aeeSSanjay Patel int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0; 731b6315aeeSSanjay Patel int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1; 732b6315aeeSSanjay Patel auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType())); 73336710c38SCaroline Concatto InstructionCost NewCost = TTI.getCmpSelInstrCost(CmpOpcode, X->getType()); 734e2935dcfSDavid Green SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem); 735e2935dcfSDavid Green ShufMask[CheapIndex] = ExpensiveIndex; 736e2935dcfSDavid Green NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy, 737e2935dcfSDavid Green ShufMask); 738b6315aeeSSanjay Patel NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy); 739b6315aeeSSanjay Patel NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex); 740b6315aeeSSanjay Patel 741b6315aeeSSanjay Patel // Aggressively form vector ops if the cost is equal because the transform 742b6315aeeSSanjay Patel // may enable further optimization. 743b6315aeeSSanjay Patel // Codegen can reverse this transform (scalarize) if it was not profitable. 74436710c38SCaroline Concatto if (OldCost < NewCost || !NewCost.isValid()) 745b6315aeeSSanjay Patel return false; 746b6315aeeSSanjay Patel 747b6315aeeSSanjay Patel // Create a vector constant from the 2 scalar constants. 748b6315aeeSSanjay Patel SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(), 749b6315aeeSSanjay Patel UndefValue::get(VecTy->getElementType())); 750b6315aeeSSanjay Patel CmpC[Index0] = C0; 751b6315aeeSSanjay Patel CmpC[Index1] = C1; 752b6315aeeSSanjay Patel Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC)); 753b6315aeeSSanjay Patel 754b6315aeeSSanjay Patel Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder); 755b6315aeeSSanjay Patel Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(), 756b6315aeeSSanjay Patel VCmp, Shuf); 757b6315aeeSSanjay Patel Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex); 758b6315aeeSSanjay Patel replaceValue(I, *NewExt); 759b6315aeeSSanjay Patel ++NumVecCmpBO; 760b6315aeeSSanjay Patel return true; 761b6315aeeSSanjay Patel } 762b6315aeeSSanjay Patel 7632db4979cSQiu Chaofan // Check if memory loc modified between two instrs in the same BB 7642db4979cSQiu Chaofan static bool isMemModifiedBetween(BasicBlock::iterator Begin, 7652db4979cSQiu Chaofan BasicBlock::iterator End, 7662db4979cSQiu Chaofan const MemoryLocation &Loc, AAResults &AA) { 7672db4979cSQiu Chaofan unsigned NumScanned = 0; 7682db4979cSQiu Chaofan return std::any_of(Begin, End, [&](const Instruction &Instr) { 7692db4979cSQiu Chaofan return isModSet(AA.getModRefInfo(&Instr, Loc)) || 7702db4979cSQiu Chaofan ++NumScanned > MaxInstrsToScan; 7712db4979cSQiu Chaofan }); 7722db4979cSQiu Chaofan } 7732db4979cSQiu Chaofan 7742db4979cSQiu Chaofan // Combine patterns like: 7752db4979cSQiu Chaofan // %0 = load <4 x i32>, <4 x i32>* %a 7762db4979cSQiu Chaofan // %1 = insertelement <4 x i32> %0, i32 %b, i32 1 7772db4979cSQiu Chaofan // store <4 x i32> %1, <4 x i32>* %a 7782db4979cSQiu Chaofan // to: 7792db4979cSQiu Chaofan // %0 = bitcast <4 x i32>* %a to i32* 7802db4979cSQiu Chaofan // %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1 7812db4979cSQiu Chaofan // store i32 %b, i32* %1 7822db4979cSQiu Chaofan bool VectorCombine::foldSingleElementStore(Instruction &I) { 7832db4979cSQiu Chaofan StoreInst *SI = dyn_cast<StoreInst>(&I); 784*6d2df181SQiu Chaofan if (!SI || !SI->isSimple() || 785*6d2df181SQiu Chaofan !isa<FixedVectorType>(SI->getValueOperand()->getType())) 7862db4979cSQiu Chaofan return false; 7872db4979cSQiu Chaofan 7882db4979cSQiu Chaofan // TODO: Combine more complicated patterns (multiple insert) by referencing 7892db4979cSQiu Chaofan // TargetTransformInfo. 7902db4979cSQiu Chaofan Instruction *Source; 791*6d2df181SQiu Chaofan Value *NewElement; 792*6d2df181SQiu Chaofan ConstantInt *Idx; 7932db4979cSQiu Chaofan if (!match(SI->getValueOperand(), 7942db4979cSQiu Chaofan m_InsertElt(m_Instruction(Source), m_Value(NewElement), 795*6d2df181SQiu Chaofan m_ConstantInt(Idx)))) 7962db4979cSQiu Chaofan return false; 7972db4979cSQiu Chaofan 7982db4979cSQiu Chaofan if (auto *Load = dyn_cast<LoadInst>(Source)) { 799*6d2df181SQiu Chaofan auto VecTy = cast<FixedVectorType>(SI->getValueOperand()->getType()); 8002db4979cSQiu Chaofan const DataLayout &DL = I.getModule()->getDataLayout(); 8012db4979cSQiu Chaofan Value *SrcAddr = Load->getPointerOperand()->stripPointerCasts(); 802*6d2df181SQiu Chaofan // Don't optimize for atomic/volatile load or store. Ensure memory is not 803*6d2df181SQiu Chaofan // modified between, vector type matches store size, and index is inbounds. 8042db4979cSQiu Chaofan if (!Load->isSimple() || Load->getParent() != SI->getParent() || 8052db4979cSQiu Chaofan !DL.typeSizeEqualsStoreSize(Load->getType()) || 806*6d2df181SQiu Chaofan Idx->uge(VecTy->getNumElements()) || 8072db4979cSQiu Chaofan SrcAddr != SI->getPointerOperand()->stripPointerCasts() || 8082db4979cSQiu Chaofan isMemModifiedBetween(Load->getIterator(), SI->getIterator(), 8092db4979cSQiu Chaofan MemoryLocation::get(SI), AA)) 8102db4979cSQiu Chaofan return false; 8112db4979cSQiu Chaofan 8122db4979cSQiu Chaofan Value *GEP = GetElementPtrInst::CreateInBounds( 8132db4979cSQiu Chaofan SI->getPointerOperand(), {ConstantInt::get(Idx->getType(), 0), Idx}); 8142db4979cSQiu Chaofan Builder.Insert(GEP); 8152db4979cSQiu Chaofan StoreInst *NSI = Builder.CreateStore(NewElement, GEP); 8162db4979cSQiu Chaofan NSI->copyMetadata(*SI); 8172db4979cSQiu Chaofan if (SI->getAlign() < NSI->getAlign()) 8182db4979cSQiu Chaofan NSI->setAlignment(SI->getAlign()); 8192db4979cSQiu Chaofan replaceValue(I, *NSI); 8202db4979cSQiu Chaofan // Need erasing the store manually. 8212db4979cSQiu Chaofan I.eraseFromParent(); 8222db4979cSQiu Chaofan return true; 8232db4979cSQiu Chaofan } 8242db4979cSQiu Chaofan 8252db4979cSQiu Chaofan return false; 8262db4979cSQiu Chaofan } 8272db4979cSQiu Chaofan 828a17f03bdSSanjay Patel /// This is the entry point for all transforms. Pass manager differences are 829a17f03bdSSanjay Patel /// handled in the callers of this function. 8306bdd531aSSanjay Patel bool VectorCombine::run() { 83125c6544fSSanjay Patel if (DisableVectorCombine) 83225c6544fSSanjay Patel return false; 83325c6544fSSanjay Patel 834cc892fd9SSanjay Patel // Don't attempt vectorization if the target does not support vectors. 835cc892fd9SSanjay Patel if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true))) 836cc892fd9SSanjay Patel return false; 837cc892fd9SSanjay Patel 838a17f03bdSSanjay Patel bool MadeChange = false; 839a17f03bdSSanjay Patel for (BasicBlock &BB : F) { 840a17f03bdSSanjay Patel // Ignore unreachable basic blocks. 841a17f03bdSSanjay Patel if (!DT.isReachableFromEntry(&BB)) 842a17f03bdSSanjay Patel continue; 8432db4979cSQiu Chaofan // Use early increment range so that we can erase instructions in loop. 8442db4979cSQiu Chaofan for (Instruction &I : make_early_inc_range(BB)) { 845fc3cc8a4SSanjay Patel if (isa<DbgInfoIntrinsic>(I)) 846fc3cc8a4SSanjay Patel continue; 847de65b356SSanjay Patel Builder.SetInsertPoint(&I); 84843bdac29SSanjay Patel MadeChange |= vectorizeLoadInsert(I); 8496bdd531aSSanjay Patel MadeChange |= foldExtractExtract(I); 8506bdd531aSSanjay Patel MadeChange |= foldBitcastShuf(I); 8516bdd531aSSanjay Patel MadeChange |= scalarizeBinopOrCmp(I); 852b6315aeeSSanjay Patel MadeChange |= foldExtractedCmps(I); 8532db4979cSQiu Chaofan MadeChange |= foldSingleElementStore(I); 854a17f03bdSSanjay Patel } 855fc3cc8a4SSanjay Patel } 856a17f03bdSSanjay Patel 857a17f03bdSSanjay Patel // We're done with transforms, so remove dead instructions. 858a17f03bdSSanjay Patel if (MadeChange) 859a17f03bdSSanjay Patel for (BasicBlock &BB : F) 860a17f03bdSSanjay Patel SimplifyInstructionsInBlock(&BB); 861a17f03bdSSanjay Patel 862a17f03bdSSanjay Patel return MadeChange; 863a17f03bdSSanjay Patel } 864a17f03bdSSanjay Patel 865a17f03bdSSanjay Patel // Pass manager boilerplate below here. 866a17f03bdSSanjay Patel 867a17f03bdSSanjay Patel namespace { 868a17f03bdSSanjay Patel class VectorCombineLegacyPass : public FunctionPass { 869a17f03bdSSanjay Patel public: 870a17f03bdSSanjay Patel static char ID; 871a17f03bdSSanjay Patel VectorCombineLegacyPass() : FunctionPass(ID) { 872a17f03bdSSanjay Patel initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry()); 873a17f03bdSSanjay Patel } 874a17f03bdSSanjay Patel 875a17f03bdSSanjay Patel void getAnalysisUsage(AnalysisUsage &AU) const override { 876a17f03bdSSanjay Patel AU.addRequired<DominatorTreeWrapperPass>(); 877a17f03bdSSanjay Patel AU.addRequired<TargetTransformInfoWrapperPass>(); 8782db4979cSQiu Chaofan AU.addRequired<AAResultsWrapperPass>(); 879a17f03bdSSanjay Patel AU.setPreservesCFG(); 880a17f03bdSSanjay Patel AU.addPreserved<DominatorTreeWrapperPass>(); 881a17f03bdSSanjay Patel AU.addPreserved<GlobalsAAWrapperPass>(); 882024098aeSSanjay Patel AU.addPreserved<AAResultsWrapperPass>(); 883024098aeSSanjay Patel AU.addPreserved<BasicAAWrapperPass>(); 884a17f03bdSSanjay Patel FunctionPass::getAnalysisUsage(AU); 885a17f03bdSSanjay Patel } 886a17f03bdSSanjay Patel 887a17f03bdSSanjay Patel bool runOnFunction(Function &F) override { 888a17f03bdSSanjay Patel if (skipFunction(F)) 889a17f03bdSSanjay Patel return false; 890a17f03bdSSanjay Patel auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 891a17f03bdSSanjay Patel auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8922db4979cSQiu Chaofan auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 8932db4979cSQiu Chaofan VectorCombine Combiner(F, TTI, DT, AA); 8946bdd531aSSanjay Patel return Combiner.run(); 895a17f03bdSSanjay Patel } 896a17f03bdSSanjay Patel }; 897a17f03bdSSanjay Patel } // namespace 898a17f03bdSSanjay Patel 899a17f03bdSSanjay Patel char VectorCombineLegacyPass::ID = 0; 900a17f03bdSSanjay Patel INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine", 901a17f03bdSSanjay Patel "Optimize scalar/vector ops", false, 902a17f03bdSSanjay Patel false) 903a17f03bdSSanjay Patel INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 904a17f03bdSSanjay Patel INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine", 905a17f03bdSSanjay Patel "Optimize scalar/vector ops", false, false) 906a17f03bdSSanjay Patel Pass *llvm::createVectorCombinePass() { 907a17f03bdSSanjay Patel return new VectorCombineLegacyPass(); 908a17f03bdSSanjay Patel } 909a17f03bdSSanjay Patel 910a17f03bdSSanjay Patel PreservedAnalyses VectorCombinePass::run(Function &F, 911a17f03bdSSanjay Patel FunctionAnalysisManager &FAM) { 912a17f03bdSSanjay Patel TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); 913a17f03bdSSanjay Patel DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); 9142db4979cSQiu Chaofan AAResults &AA = FAM.getResult<AAManager>(F); 9152db4979cSQiu Chaofan VectorCombine Combiner(F, TTI, DT, AA); 9166bdd531aSSanjay Patel if (!Combiner.run()) 917a17f03bdSSanjay Patel return PreservedAnalyses::all(); 918a17f03bdSSanjay Patel PreservedAnalyses PA; 919a17f03bdSSanjay Patel PA.preserveSet<CFGAnalyses>(); 920a17f03bdSSanjay Patel PA.preserve<GlobalsAA>(); 921024098aeSSanjay Patel PA.preserve<AAManager>(); 922024098aeSSanjay Patel PA.preserve<BasicAA>(); 923a17f03bdSSanjay Patel return PA; 924a17f03bdSSanjay Patel } 925