1a17f03bdSSanjay Patel //===------- VectorCombine.cpp - Optimize partial vector operations -------===// 2a17f03bdSSanjay Patel // 3a17f03bdSSanjay Patel // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4a17f03bdSSanjay Patel // See https://llvm.org/LICENSE.txt for license information. 5a17f03bdSSanjay Patel // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6a17f03bdSSanjay Patel // 7a17f03bdSSanjay Patel //===----------------------------------------------------------------------===// 8a17f03bdSSanjay Patel // 9a17f03bdSSanjay Patel // This pass optimizes scalar/vector interactions using target cost models. The 10a17f03bdSSanjay Patel // transforms implemented here may not fit in traditional loop-based or SLP 11a17f03bdSSanjay Patel // vectorization passes. 12a17f03bdSSanjay Patel // 13a17f03bdSSanjay Patel //===----------------------------------------------------------------------===// 14a17f03bdSSanjay Patel 15a17f03bdSSanjay Patel #include "llvm/Transforms/Vectorize/VectorCombine.h" 16a17f03bdSSanjay Patel #include "llvm/ADT/Statistic.h" 17*575e2affSFlorian Hahn #include "llvm/Analysis/AssumptionCache.h" 185006e551SSimon Pilgrim #include "llvm/Analysis/BasicAliasAnalysis.h" 19a17f03bdSSanjay Patel #include "llvm/Analysis/GlobalsModRef.h" 2043bdac29SSanjay Patel #include "llvm/Analysis/Loads.h" 21a17f03bdSSanjay Patel #include "llvm/Analysis/TargetTransformInfo.h" 2219b62b79SSanjay Patel #include "llvm/Analysis/ValueTracking.h" 23b6050ca1SSanjay Patel #include "llvm/Analysis/VectorUtils.h" 24a17f03bdSSanjay Patel #include "llvm/IR/Dominators.h" 25a17f03bdSSanjay Patel #include "llvm/IR/Function.h" 26a17f03bdSSanjay Patel #include "llvm/IR/IRBuilder.h" 27a17f03bdSSanjay Patel #include "llvm/IR/PatternMatch.h" 28a17f03bdSSanjay Patel #include "llvm/InitializePasses.h" 29a17f03bdSSanjay Patel #include "llvm/Pass.h" 3025c6544fSSanjay Patel #include "llvm/Support/CommandLine.h" 31a17f03bdSSanjay Patel #include "llvm/Transforms/Utils/Local.h" 325006e551SSimon Pilgrim #include "llvm/Transforms/Vectorize.h" 33a17f03bdSSanjay Patel 34a17f03bdSSanjay Patel using namespace llvm; 35a17f03bdSSanjay Patel using namespace llvm::PatternMatch; 36a17f03bdSSanjay Patel 37a17f03bdSSanjay Patel #define DEBUG_TYPE "vector-combine" 3843bdac29SSanjay Patel STATISTIC(NumVecLoad, "Number of vector loads formed"); 39a17f03bdSSanjay Patel STATISTIC(NumVecCmp, "Number of vector compares formed"); 4019b62b79SSanjay Patel STATISTIC(NumVecBO, "Number of vector binops formed"); 41b6315aeeSSanjay Patel STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed"); 427aeb41b3SRoman Lebedev STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast"); 430d2a0b44SSanjay Patel STATISTIC(NumScalarBO, "Number of scalar binops formed"); 44ed67f5e7SSanjay Patel STATISTIC(NumScalarCmp, "Number of scalar compares formed"); 45a17f03bdSSanjay Patel 4625c6544fSSanjay Patel static cl::opt<bool> DisableVectorCombine( 4725c6544fSSanjay Patel "disable-vector-combine", cl::init(false), cl::Hidden, 4825c6544fSSanjay Patel cl::desc("Disable all vector combine transforms")); 4925c6544fSSanjay Patel 50a69158c1SSanjay Patel static cl::opt<bool> DisableBinopExtractShuffle( 51a69158c1SSanjay Patel "disable-binop-extract-shuffle", cl::init(false), cl::Hidden, 52a69158c1SSanjay Patel cl::desc("Disable binop extract to shuffle transforms")); 53a69158c1SSanjay Patel 542db4979cSQiu Chaofan static cl::opt<unsigned> MaxInstrsToScan( 552db4979cSQiu Chaofan "vector-combine-max-scan-instrs", cl::init(30), cl::Hidden, 562db4979cSQiu Chaofan cl::desc("Max number of instructions to scan for vector combining.")); 572db4979cSQiu Chaofan 58a0f96741SSanjay Patel static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max(); 59a0f96741SSanjay Patel 60b4447054SBenjamin Kramer namespace { 616bdd531aSSanjay Patel class VectorCombine { 626bdd531aSSanjay Patel public: 636bdd531aSSanjay Patel VectorCombine(Function &F, const TargetTransformInfo &TTI, 64*575e2affSFlorian Hahn const DominatorTree &DT, AAResults &AA, AssumptionCache &AC) 65*575e2affSFlorian Hahn : F(F), Builder(F.getContext()), TTI(TTI), DT(DT), AA(AA), AC(AC) {} 666bdd531aSSanjay Patel 676bdd531aSSanjay Patel bool run(); 686bdd531aSSanjay Patel 696bdd531aSSanjay Patel private: 706bdd531aSSanjay Patel Function &F; 71de65b356SSanjay Patel IRBuilder<> Builder; 726bdd531aSSanjay Patel const TargetTransformInfo &TTI; 736bdd531aSSanjay Patel const DominatorTree &DT; 742db4979cSQiu Chaofan AAResults &AA; 75*575e2affSFlorian Hahn AssumptionCache &AC; 766bdd531aSSanjay Patel 7743bdac29SSanjay Patel bool vectorizeLoadInsert(Instruction &I); 783b95d834SSanjay Patel ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0, 793b95d834SSanjay Patel ExtractElementInst *Ext1, 803b95d834SSanjay Patel unsigned PreferredExtractIndex) const; 816bdd531aSSanjay Patel bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 826bdd531aSSanjay Patel unsigned Opcode, 836bdd531aSSanjay Patel ExtractElementInst *&ConvertToShuffle, 846bdd531aSSanjay Patel unsigned PreferredExtractIndex); 85de65b356SSanjay Patel void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 86de65b356SSanjay Patel Instruction &I); 87de65b356SSanjay Patel void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 88de65b356SSanjay Patel Instruction &I); 896bdd531aSSanjay Patel bool foldExtractExtract(Instruction &I); 906bdd531aSSanjay Patel bool foldBitcastShuf(Instruction &I); 916bdd531aSSanjay Patel bool scalarizeBinopOrCmp(Instruction &I); 92b6315aeeSSanjay Patel bool foldExtractedCmps(Instruction &I); 932db4979cSQiu Chaofan bool foldSingleElementStore(Instruction &I); 944e8c28b6SFlorian Hahn bool scalarizeLoadExtract(Instruction &I); 956bdd531aSSanjay Patel }; 96b4447054SBenjamin Kramer } // namespace 97a69158c1SSanjay Patel 9898c2f4eeSSanjay Patel static void replaceValue(Value &Old, Value &New) { 9998c2f4eeSSanjay Patel Old.replaceAllUsesWith(&New); 10098c2f4eeSSanjay Patel New.takeName(&Old); 10198c2f4eeSSanjay Patel } 10298c2f4eeSSanjay Patel 10343bdac29SSanjay Patel bool VectorCombine::vectorizeLoadInsert(Instruction &I) { 104b2ef2640SSanjay Patel // Match insert into fixed vector of scalar value. 10547aaa99cSSanjay Patel // TODO: Handle non-zero insert index. 106ddd9575dSSanjay Patel auto *Ty = dyn_cast<FixedVectorType>(I.getType()); 10743bdac29SSanjay Patel Value *Scalar; 10848a23bccSSanjay Patel if (!Ty || !match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) || 10948a23bccSSanjay Patel !Scalar->hasOneUse()) 11043bdac29SSanjay Patel return false; 111ddd9575dSSanjay Patel 112b2ef2640SSanjay Patel // Optionally match an extract from another vector. 113b2ef2640SSanjay Patel Value *X; 114b2ef2640SSanjay Patel bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt())); 115b2ef2640SSanjay Patel if (!HasExtract) 116b2ef2640SSanjay Patel X = Scalar; 117b2ef2640SSanjay Patel 118b2ef2640SSanjay Patel // Match source value as load of scalar or vector. 1194452cc40SFangrui Song // Do not vectorize scalar load (widening) if atomic/volatile or under 1204452cc40SFangrui Song // asan/hwasan/memtag/tsan. The widened load may load data from dirty regions 1214452cc40SFangrui Song // or create data races non-existent in the source. 122b2ef2640SSanjay Patel auto *Load = dyn_cast<LoadInst>(X); 123b2ef2640SSanjay Patel if (!Load || !Load->isSimple() || !Load->hasOneUse() || 1244452cc40SFangrui Song Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) || 1254452cc40SFangrui Song mustSuppressSpeculation(*Load)) 12643bdac29SSanjay Patel return false; 12743bdac29SSanjay Patel 12812b684aeSSanjay Patel const DataLayout &DL = I.getModule()->getDataLayout(); 12912b684aeSSanjay Patel Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts(); 13012b684aeSSanjay Patel assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type"); 131c36c0fabSArtem Belevich 132c36c0fabSArtem Belevich // If original AS != Load's AS, we can't bitcast the original pointer and have 133c36c0fabSArtem Belevich // to use Load's operand instead. Ideally we would want to strip pointer casts 134c36c0fabSArtem Belevich // without changing AS, but there's no API to do that ATM. 13512b684aeSSanjay Patel unsigned AS = Load->getPointerAddressSpace(); 13612b684aeSSanjay Patel if (AS != SrcPtr->getType()->getPointerAddressSpace()) 13712b684aeSSanjay Patel SrcPtr = Load->getPointerOperand(); 13843bdac29SSanjay Patel 13947aaa99cSSanjay Patel // We are potentially transforming byte-sized (8-bit) memory accesses, so make 14047aaa99cSSanjay Patel // sure we have all of our type-based constraints in place for this target. 141ddd9575dSSanjay Patel Type *ScalarTy = Scalar->getType(); 14243bdac29SSanjay Patel uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits(); 143ddd9575dSSanjay Patel unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth(); 14447aaa99cSSanjay Patel if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 || 14547aaa99cSSanjay Patel ScalarSize % 8 != 0) 14643bdac29SSanjay Patel return false; 14743bdac29SSanjay Patel 14843bdac29SSanjay Patel // Check safety of replacing the scalar load with a larger vector load. 149aaaf0ec7SSanjay Patel // We use minimal alignment (maximum flexibility) because we only care about 150aaaf0ec7SSanjay Patel // the dereferenceable region. When calculating cost and creating a new op, 151aaaf0ec7SSanjay Patel // we may use a larger value based on alignment attributes. 1528fb05593SSanjay Patel unsigned MinVecNumElts = MinVectorSize / ScalarSize; 1538fb05593SSanjay Patel auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false); 15447aaa99cSSanjay Patel unsigned OffsetEltIndex = 0; 15547aaa99cSSanjay Patel Align Alignment = Load->getAlign(); 15647aaa99cSSanjay Patel if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) { 15747aaa99cSSanjay Patel // It is not safe to load directly from the pointer, but we can still peek 15847aaa99cSSanjay Patel // through gep offsets and check if it safe to load from a base address with 15947aaa99cSSanjay Patel // updated alignment. If it is, we can shuffle the element(s) into place 16047aaa99cSSanjay Patel // after loading. 16147aaa99cSSanjay Patel unsigned OffsetBitWidth = DL.getIndexTypeSizeInBits(SrcPtr->getType()); 16247aaa99cSSanjay Patel APInt Offset(OffsetBitWidth, 0); 16347aaa99cSSanjay Patel SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); 16447aaa99cSSanjay Patel 16547aaa99cSSanjay Patel // We want to shuffle the result down from a high element of a vector, so 16647aaa99cSSanjay Patel // the offset must be positive. 16747aaa99cSSanjay Patel if (Offset.isNegative()) 16847aaa99cSSanjay Patel return false; 16947aaa99cSSanjay Patel 17047aaa99cSSanjay Patel // The offset must be a multiple of the scalar element to shuffle cleanly 17147aaa99cSSanjay Patel // in the element's size. 17247aaa99cSSanjay Patel uint64_t ScalarSizeInBytes = ScalarSize / 8; 17347aaa99cSSanjay Patel if (Offset.urem(ScalarSizeInBytes) != 0) 17447aaa99cSSanjay Patel return false; 17547aaa99cSSanjay Patel 17647aaa99cSSanjay Patel // If we load MinVecNumElts, will our target element still be loaded? 17747aaa99cSSanjay Patel OffsetEltIndex = Offset.udiv(ScalarSizeInBytes).getZExtValue(); 17847aaa99cSSanjay Patel if (OffsetEltIndex >= MinVecNumElts) 17947aaa99cSSanjay Patel return false; 18047aaa99cSSanjay Patel 181aaaf0ec7SSanjay Patel if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) 18243bdac29SSanjay Patel return false; 18343bdac29SSanjay Patel 18447aaa99cSSanjay Patel // Update alignment with offset value. Note that the offset could be negated 18547aaa99cSSanjay Patel // to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but 18647aaa99cSSanjay Patel // negation does not change the result of the alignment calculation. 18747aaa99cSSanjay Patel Alignment = commonAlignment(Alignment, Offset.getZExtValue()); 18847aaa99cSSanjay Patel } 18947aaa99cSSanjay Patel 190b2ef2640SSanjay Patel // Original pattern: insertelt undef, load [free casts of] PtrOp, 0 19138ebc1a1SSanjay Patel // Use the greater of the alignment on the load or its source pointer. 19247aaa99cSSanjay Patel Alignment = std::max(SrcPtr->getPointerAlignment(DL), Alignment); 193b2ef2640SSanjay Patel Type *LoadTy = Load->getType(); 19436710c38SCaroline Concatto InstructionCost OldCost = 19536710c38SCaroline Concatto TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS); 1968fb05593SSanjay Patel APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0); 197b2ef2640SSanjay Patel OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts, 198b2ef2640SSanjay Patel /* Insert */ true, HasExtract); 19943bdac29SSanjay Patel 20043bdac29SSanjay Patel // New pattern: load VecPtr 20136710c38SCaroline Concatto InstructionCost NewCost = 20236710c38SCaroline Concatto TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS); 20347aaa99cSSanjay Patel // Optionally, we are shuffling the loaded vector element(s) into place. 204e2935dcfSDavid Green // For the mask set everything but element 0 to undef to prevent poison from 205e2935dcfSDavid Green // propagating from the extra loaded memory. This will also optionally 206e2935dcfSDavid Green // shrink/grow the vector from the loaded size to the output size. 207e2935dcfSDavid Green // We assume this operation has no cost in codegen if there was no offset. 208e2935dcfSDavid Green // Note that we could use freeze to avoid poison problems, but then we might 209e2935dcfSDavid Green // still need a shuffle to change the vector size. 210e2935dcfSDavid Green unsigned OutputNumElts = Ty->getNumElements(); 211e2935dcfSDavid Green SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem); 212e2935dcfSDavid Green assert(OffsetEltIndex < MinVecNumElts && "Address offset too big"); 213e2935dcfSDavid Green Mask[0] = OffsetEltIndex; 21447aaa99cSSanjay Patel if (OffsetEltIndex) 215e2935dcfSDavid Green NewCost += TTI.getShuffleCost(TTI::SK_PermuteSingleSrc, MinVecTy, Mask); 21643bdac29SSanjay Patel 21743bdac29SSanjay Patel // We can aggressively convert to the vector form because the backend can 21843bdac29SSanjay Patel // invert this transform if it does not result in a performance win. 21936710c38SCaroline Concatto if (OldCost < NewCost || !NewCost.isValid()) 22043bdac29SSanjay Patel return false; 22143bdac29SSanjay Patel 22243bdac29SSanjay Patel // It is safe and potentially profitable to load a vector directly: 22343bdac29SSanjay Patel // inselt undef, load Scalar, 0 --> load VecPtr 22443bdac29SSanjay Patel IRBuilder<> Builder(Load); 22512b684aeSSanjay Patel Value *CastedPtr = Builder.CreateBitCast(SrcPtr, MinVecTy->getPointerTo(AS)); 2268fb05593SSanjay Patel Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment); 2271e6b240dSSanjay Patel VecLd = Builder.CreateShuffleVector(VecLd, Mask); 228d399f870SSanjay Patel 22943bdac29SSanjay Patel replaceValue(I, *VecLd); 23043bdac29SSanjay Patel ++NumVecLoad; 23143bdac29SSanjay Patel return true; 23243bdac29SSanjay Patel } 23343bdac29SSanjay Patel 2343b95d834SSanjay Patel /// Determine which, if any, of the inputs should be replaced by a shuffle 2353b95d834SSanjay Patel /// followed by extract from a different index. 2363b95d834SSanjay Patel ExtractElementInst *VectorCombine::getShuffleExtract( 2373b95d834SSanjay Patel ExtractElementInst *Ext0, ExtractElementInst *Ext1, 2383b95d834SSanjay Patel unsigned PreferredExtractIndex = InvalidIndex) const { 2393b95d834SSanjay Patel assert(isa<ConstantInt>(Ext0->getIndexOperand()) && 2403b95d834SSanjay Patel isa<ConstantInt>(Ext1->getIndexOperand()) && 2413b95d834SSanjay Patel "Expected constant extract indexes"); 2423b95d834SSanjay Patel 2433b95d834SSanjay Patel unsigned Index0 = cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue(); 2443b95d834SSanjay Patel unsigned Index1 = cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue(); 2453b95d834SSanjay Patel 2463b95d834SSanjay Patel // If the extract indexes are identical, no shuffle is needed. 2473b95d834SSanjay Patel if (Index0 == Index1) 2483b95d834SSanjay Patel return nullptr; 2493b95d834SSanjay Patel 2503b95d834SSanjay Patel Type *VecTy = Ext0->getVectorOperand()->getType(); 2513b95d834SSanjay Patel assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types"); 25236710c38SCaroline Concatto InstructionCost Cost0 = 25336710c38SCaroline Concatto TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 25436710c38SCaroline Concatto InstructionCost Cost1 = 25536710c38SCaroline Concatto TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 25636710c38SCaroline Concatto 25736710c38SCaroline Concatto // If both costs are invalid no shuffle is needed 25836710c38SCaroline Concatto if (!Cost0.isValid() && !Cost1.isValid()) 25936710c38SCaroline Concatto return nullptr; 2603b95d834SSanjay Patel 2613b95d834SSanjay Patel // We are extracting from 2 different indexes, so one operand must be shuffled 2623b95d834SSanjay Patel // before performing a vector operation and/or extract. The more expensive 2633b95d834SSanjay Patel // extract will be replaced by a shuffle. 2643b95d834SSanjay Patel if (Cost0 > Cost1) 2653b95d834SSanjay Patel return Ext0; 2663b95d834SSanjay Patel if (Cost1 > Cost0) 2673b95d834SSanjay Patel return Ext1; 2683b95d834SSanjay Patel 2693b95d834SSanjay Patel // If the costs are equal and there is a preferred extract index, shuffle the 2703b95d834SSanjay Patel // opposite operand. 2713b95d834SSanjay Patel if (PreferredExtractIndex == Index0) 2723b95d834SSanjay Patel return Ext1; 2733b95d834SSanjay Patel if (PreferredExtractIndex == Index1) 2743b95d834SSanjay Patel return Ext0; 2753b95d834SSanjay Patel 2763b95d834SSanjay Patel // Otherwise, replace the extract with the higher index. 2773b95d834SSanjay Patel return Index0 > Index1 ? Ext0 : Ext1; 2783b95d834SSanjay Patel } 2793b95d834SSanjay Patel 280a69158c1SSanjay Patel /// Compare the relative costs of 2 extracts followed by scalar operation vs. 281a69158c1SSanjay Patel /// vector operation(s) followed by extract. Return true if the existing 282a69158c1SSanjay Patel /// instructions are cheaper than a vector alternative. Otherwise, return false 283a69158c1SSanjay Patel /// and if one of the extracts should be transformed to a shufflevector, set 284a69158c1SSanjay Patel /// \p ConvertToShuffle to that extract instruction. 2856bdd531aSSanjay Patel bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0, 2866bdd531aSSanjay Patel ExtractElementInst *Ext1, 2876bdd531aSSanjay Patel unsigned Opcode, 288216a37bbSSanjay Patel ExtractElementInst *&ConvertToShuffle, 289ce97ce3aSSanjay Patel unsigned PreferredExtractIndex) { 2904fa63fd4SAustin Kerbow assert(isa<ConstantInt>(Ext0->getOperand(1)) && 291a69158c1SSanjay Patel isa<ConstantInt>(Ext1->getOperand(1)) && 292a69158c1SSanjay Patel "Expected constant extract indexes"); 29334e34855SSanjay Patel Type *ScalarTy = Ext0->getType(); 294e3056ae9SSam Parker auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType()); 29536710c38SCaroline Concatto InstructionCost ScalarOpCost, VectorOpCost; 29634e34855SSanjay Patel 29734e34855SSanjay Patel // Get cost estimates for scalar and vector versions of the operation. 29834e34855SSanjay Patel bool IsBinOp = Instruction::isBinaryOp(Opcode); 29934e34855SSanjay Patel if (IsBinOp) { 30034e34855SSanjay Patel ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 30134e34855SSanjay Patel VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 30234e34855SSanjay Patel } else { 30334e34855SSanjay Patel assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 30434e34855SSanjay Patel "Expected a compare"); 30534e34855SSanjay Patel ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy, 30634e34855SSanjay Patel CmpInst::makeCmpResultType(ScalarTy)); 30734e34855SSanjay Patel VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy, 30834e34855SSanjay Patel CmpInst::makeCmpResultType(VecTy)); 30934e34855SSanjay Patel } 31034e34855SSanjay Patel 311a69158c1SSanjay Patel // Get cost estimates for the extract elements. These costs will factor into 31234e34855SSanjay Patel // both sequences. 313a69158c1SSanjay Patel unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue(); 314a69158c1SSanjay Patel unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue(); 315a69158c1SSanjay Patel 31636710c38SCaroline Concatto InstructionCost Extract0Cost = 3176bdd531aSSanjay Patel TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index); 31836710c38SCaroline Concatto InstructionCost Extract1Cost = 3196bdd531aSSanjay Patel TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index); 320a69158c1SSanjay Patel 321a69158c1SSanjay Patel // A more expensive extract will always be replaced by a splat shuffle. 322a69158c1SSanjay Patel // For example, if Ext0 is more expensive: 323a69158c1SSanjay Patel // opcode (extelt V0, Ext0), (ext V1, Ext1) --> 324a69158c1SSanjay Patel // extelt (opcode (splat V0, Ext0), V1), Ext1 325a69158c1SSanjay Patel // TODO: Evaluate whether that always results in lowest cost. Alternatively, 326a69158c1SSanjay Patel // check the cost of creating a broadcast shuffle and shuffling both 327a69158c1SSanjay Patel // operands to element 0. 32836710c38SCaroline Concatto InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost); 32934e34855SSanjay Patel 33034e34855SSanjay Patel // Extra uses of the extracts mean that we include those costs in the 33134e34855SSanjay Patel // vector total because those instructions will not be eliminated. 33236710c38SCaroline Concatto InstructionCost OldCost, NewCost; 333a69158c1SSanjay Patel if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) { 334a69158c1SSanjay Patel // Handle a special case. If the 2 extracts are identical, adjust the 33534e34855SSanjay Patel // formulas to account for that. The extra use charge allows for either the 33634e34855SSanjay Patel // CSE'd pattern or an unoptimized form with identical values: 33734e34855SSanjay Patel // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C 33834e34855SSanjay Patel bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2) 33934e34855SSanjay Patel : !Ext0->hasOneUse() || !Ext1->hasOneUse(); 340a69158c1SSanjay Patel OldCost = CheapExtractCost + ScalarOpCost; 341a69158c1SSanjay Patel NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost; 34234e34855SSanjay Patel } else { 34334e34855SSanjay Patel // Handle the general case. Each extract is actually a different value: 344a69158c1SSanjay Patel // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C 345a69158c1SSanjay Patel OldCost = Extract0Cost + Extract1Cost + ScalarOpCost; 346a69158c1SSanjay Patel NewCost = VectorOpCost + CheapExtractCost + 347a69158c1SSanjay Patel !Ext0->hasOneUse() * Extract0Cost + 348a69158c1SSanjay Patel !Ext1->hasOneUse() * Extract1Cost; 34934e34855SSanjay Patel } 350a69158c1SSanjay Patel 3513b95d834SSanjay Patel ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex); 3523b95d834SSanjay Patel if (ConvertToShuffle) { 353a69158c1SSanjay Patel if (IsBinOp && DisableBinopExtractShuffle) 354a69158c1SSanjay Patel return true; 355a69158c1SSanjay Patel 356a69158c1SSanjay Patel // If we are extracting from 2 different indexes, then one operand must be 357a69158c1SSanjay Patel // shuffled before performing the vector operation. The shuffle mask is 358a69158c1SSanjay Patel // undefined except for 1 lane that is being translated to the remaining 359a69158c1SSanjay Patel // extraction lane. Therefore, it is a splat shuffle. Ex: 360a69158c1SSanjay Patel // ShufMask = { undef, undef, 0, undef } 361a69158c1SSanjay Patel // TODO: The cost model has an option for a "broadcast" shuffle 362a69158c1SSanjay Patel // (splat-from-element-0), but no option for a more general splat. 363a69158c1SSanjay Patel NewCost += 364a69158c1SSanjay Patel TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 365a69158c1SSanjay Patel } 366a69158c1SSanjay Patel 36710ea01d8SSanjay Patel // Aggressively form a vector op if the cost is equal because the transform 36810ea01d8SSanjay Patel // may enable further optimization. 36910ea01d8SSanjay Patel // Codegen can reverse this transform (scalarize) if it was not profitable. 37010ea01d8SSanjay Patel return OldCost < NewCost; 37134e34855SSanjay Patel } 37234e34855SSanjay Patel 3739934cc54SSanjay Patel /// Create a shuffle that translates (shifts) 1 element from the input vector 3749934cc54SSanjay Patel /// to a new element location. 3759934cc54SSanjay Patel static Value *createShiftShuffle(Value *Vec, unsigned OldIndex, 3769934cc54SSanjay Patel unsigned NewIndex, IRBuilder<> &Builder) { 3779934cc54SSanjay Patel // The shuffle mask is undefined except for 1 lane that is being translated 3789934cc54SSanjay Patel // to the new element index. Example for OldIndex == 2 and NewIndex == 0: 3799934cc54SSanjay Patel // ShufMask = { 2, undef, undef, undef } 3809934cc54SSanjay Patel auto *VecTy = cast<FixedVectorType>(Vec->getType()); 38154143e2bSSanjay Patel SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem); 3829934cc54SSanjay Patel ShufMask[NewIndex] = OldIndex; 3831e6b240dSSanjay Patel return Builder.CreateShuffleVector(Vec, ShufMask, "shift"); 3849934cc54SSanjay Patel } 3859934cc54SSanjay Patel 386216a37bbSSanjay Patel /// Given an extract element instruction with constant index operand, shuffle 387216a37bbSSanjay Patel /// the source vector (shift the scalar element) to a NewIndex for extraction. 388216a37bbSSanjay Patel /// Return null if the input can be constant folded, so that we are not creating 389216a37bbSSanjay Patel /// unnecessary instructions. 3909934cc54SSanjay Patel static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt, 3919934cc54SSanjay Patel unsigned NewIndex, 3929934cc54SSanjay Patel IRBuilder<> &Builder) { 393216a37bbSSanjay Patel // If the extract can be constant-folded, this code is unsimplified. Defer 394216a37bbSSanjay Patel // to other passes to handle that. 395216a37bbSSanjay Patel Value *X = ExtElt->getVectorOperand(); 396216a37bbSSanjay Patel Value *C = ExtElt->getIndexOperand(); 397de65b356SSanjay Patel assert(isa<ConstantInt>(C) && "Expected a constant index operand"); 398216a37bbSSanjay Patel if (isa<Constant>(X)) 399216a37bbSSanjay Patel return nullptr; 400216a37bbSSanjay Patel 4019934cc54SSanjay Patel Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(), 4029934cc54SSanjay Patel NewIndex, Builder); 403216a37bbSSanjay Patel return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex)); 404216a37bbSSanjay Patel } 405216a37bbSSanjay Patel 406fc445589SSanjay Patel /// Try to reduce extract element costs by converting scalar compares to vector 407fc445589SSanjay Patel /// compares followed by extract. 408e9c79a7aSSanjay Patel /// cmp (ext0 V0, C), (ext1 V1, C) 409de65b356SSanjay Patel void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0, 410de65b356SSanjay Patel ExtractElementInst *Ext1, Instruction &I) { 411fc445589SSanjay Patel assert(isa<CmpInst>(&I) && "Expected a compare"); 412216a37bbSSanjay Patel assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 413216a37bbSSanjay Patel cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 414216a37bbSSanjay Patel "Expected matching constant extract indexes"); 415a17f03bdSSanjay Patel 416a17f03bdSSanjay Patel // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C 417a17f03bdSSanjay Patel ++NumVecCmp; 418fc445589SSanjay Patel CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate(); 419216a37bbSSanjay Patel Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 42046a285adSSanjay Patel Value *VecCmp = Builder.CreateCmp(Pred, V0, V1); 421216a37bbSSanjay Patel Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand()); 42298c2f4eeSSanjay Patel replaceValue(I, *NewExt); 423a17f03bdSSanjay Patel } 424a17f03bdSSanjay Patel 42519b62b79SSanjay Patel /// Try to reduce extract element costs by converting scalar binops to vector 42619b62b79SSanjay Patel /// binops followed by extract. 427e9c79a7aSSanjay Patel /// bo (ext0 V0, C), (ext1 V1, C) 428de65b356SSanjay Patel void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0, 429de65b356SSanjay Patel ExtractElementInst *Ext1, Instruction &I) { 430fc445589SSanjay Patel assert(isa<BinaryOperator>(&I) && "Expected a binary operator"); 431216a37bbSSanjay Patel assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 432216a37bbSSanjay Patel cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 433216a37bbSSanjay Patel "Expected matching constant extract indexes"); 43419b62b79SSanjay Patel 43534e34855SSanjay Patel // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C 43619b62b79SSanjay Patel ++NumVecBO; 437216a37bbSSanjay Patel Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 438e9c79a7aSSanjay Patel Value *VecBO = 43934e34855SSanjay Patel Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1); 440e9c79a7aSSanjay Patel 44119b62b79SSanjay Patel // All IR flags are safe to back-propagate because any potential poison 44219b62b79SSanjay Patel // created in unused vector elements is discarded by the extract. 443e9c79a7aSSanjay Patel if (auto *VecBOInst = dyn_cast<Instruction>(VecBO)) 44419b62b79SSanjay Patel VecBOInst->copyIRFlags(&I); 445e9c79a7aSSanjay Patel 446216a37bbSSanjay Patel Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand()); 44798c2f4eeSSanjay Patel replaceValue(I, *NewExt); 44819b62b79SSanjay Patel } 44919b62b79SSanjay Patel 450fc445589SSanjay Patel /// Match an instruction with extracted vector operands. 4516bdd531aSSanjay Patel bool VectorCombine::foldExtractExtract(Instruction &I) { 452e9c79a7aSSanjay Patel // It is not safe to transform things like div, urem, etc. because we may 453e9c79a7aSSanjay Patel // create undefined behavior when executing those on unknown vector elements. 454e9c79a7aSSanjay Patel if (!isSafeToSpeculativelyExecute(&I)) 455e9c79a7aSSanjay Patel return false; 456e9c79a7aSSanjay Patel 457216a37bbSSanjay Patel Instruction *I0, *I1; 458fc445589SSanjay Patel CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 459216a37bbSSanjay Patel if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) && 460216a37bbSSanjay Patel !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1)))) 461fc445589SSanjay Patel return false; 462fc445589SSanjay Patel 463fc445589SSanjay Patel Value *V0, *V1; 464fc445589SSanjay Patel uint64_t C0, C1; 465216a37bbSSanjay Patel if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) || 466216a37bbSSanjay Patel !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) || 467fc445589SSanjay Patel V0->getType() != V1->getType()) 468fc445589SSanjay Patel return false; 469fc445589SSanjay Patel 470ce97ce3aSSanjay Patel // If the scalar value 'I' is going to be re-inserted into a vector, then try 471ce97ce3aSSanjay Patel // to create an extract to that same element. The extract/insert can be 472ce97ce3aSSanjay Patel // reduced to a "select shuffle". 473ce97ce3aSSanjay Patel // TODO: If we add a larger pattern match that starts from an insert, this 474ce97ce3aSSanjay Patel // probably becomes unnecessary. 475216a37bbSSanjay Patel auto *Ext0 = cast<ExtractElementInst>(I0); 476216a37bbSSanjay Patel auto *Ext1 = cast<ExtractElementInst>(I1); 477a0f96741SSanjay Patel uint64_t InsertIndex = InvalidIndex; 478ce97ce3aSSanjay Patel if (I.hasOneUse()) 4797eed772aSSanjay Patel match(I.user_back(), 4807eed772aSSanjay Patel m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex))); 481ce97ce3aSSanjay Patel 482216a37bbSSanjay Patel ExtractElementInst *ExtractToChange; 4836bdd531aSSanjay Patel if (isExtractExtractCheap(Ext0, Ext1, I.getOpcode(), ExtractToChange, 484ce97ce3aSSanjay Patel InsertIndex)) 485fc445589SSanjay Patel return false; 486e9c79a7aSSanjay Patel 487216a37bbSSanjay Patel if (ExtractToChange) { 488216a37bbSSanjay Patel unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0; 489216a37bbSSanjay Patel ExtractElementInst *NewExtract = 4909934cc54SSanjay Patel translateExtract(ExtractToChange, CheapExtractIdx, Builder); 491216a37bbSSanjay Patel if (!NewExtract) 4926d864097SSanjay Patel return false; 493216a37bbSSanjay Patel if (ExtractToChange == Ext0) 494216a37bbSSanjay Patel Ext0 = NewExtract; 495a69158c1SSanjay Patel else 496216a37bbSSanjay Patel Ext1 = NewExtract; 497a69158c1SSanjay Patel } 498e9c79a7aSSanjay Patel 499e9c79a7aSSanjay Patel if (Pred != CmpInst::BAD_ICMP_PREDICATE) 500039ff29eSSanjay Patel foldExtExtCmp(Ext0, Ext1, I); 501e9c79a7aSSanjay Patel else 502039ff29eSSanjay Patel foldExtExtBinop(Ext0, Ext1, I); 503e9c79a7aSSanjay Patel 504e9c79a7aSSanjay Patel return true; 505fc445589SSanjay Patel } 506fc445589SSanjay Patel 507bef6e67eSSanjay Patel /// If this is a bitcast of a shuffle, try to bitcast the source vector to the 508bef6e67eSSanjay Patel /// destination type followed by shuffle. This can enable further transforms by 509bef6e67eSSanjay Patel /// moving bitcasts or shuffles together. 5106bdd531aSSanjay Patel bool VectorCombine::foldBitcastShuf(Instruction &I) { 511b6050ca1SSanjay Patel Value *V; 512b6050ca1SSanjay Patel ArrayRef<int> Mask; 5137eed772aSSanjay Patel if (!match(&I, m_BitCast( 5147eed772aSSanjay Patel m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask)))))) 515b6050ca1SSanjay Patel return false; 516b6050ca1SSanjay Patel 517b4f04d71SHuihui Zhang // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for 518b4f04d71SHuihui Zhang // scalable type is unknown; Second, we cannot reason if the narrowed shuffle 519b4f04d71SHuihui Zhang // mask for scalable type is a splat or not. 520b4f04d71SHuihui Zhang // 2) Disallow non-vector casts and length-changing shuffles. 521bef6e67eSSanjay Patel // TODO: We could allow any shuffle. 522b4f04d71SHuihui Zhang auto *DestTy = dyn_cast<FixedVectorType>(I.getType()); 523b4f04d71SHuihui Zhang auto *SrcTy = dyn_cast<FixedVectorType>(V->getType()); 524b4f04d71SHuihui Zhang if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy) 525b6050ca1SSanjay Patel return false; 526b6050ca1SSanjay Patel 527b4f04d71SHuihui Zhang unsigned DestNumElts = DestTy->getNumElements(); 528b4f04d71SHuihui Zhang unsigned SrcNumElts = SrcTy->getNumElements(); 529b6050ca1SSanjay Patel SmallVector<int, 16> NewMask; 530bef6e67eSSanjay Patel if (SrcNumElts <= DestNumElts) { 531bef6e67eSSanjay Patel // The bitcast is from wide to narrow/equal elements. The shuffle mask can 532bef6e67eSSanjay Patel // always be expanded to the equivalent form choosing narrower elements. 533b6050ca1SSanjay Patel assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask"); 534b6050ca1SSanjay Patel unsigned ScaleFactor = DestNumElts / SrcNumElts; 5351318ddbcSSanjay Patel narrowShuffleMaskElts(ScaleFactor, Mask, NewMask); 536bef6e67eSSanjay Patel } else { 537bef6e67eSSanjay Patel // The bitcast is from narrow elements to wide elements. The shuffle mask 538bef6e67eSSanjay Patel // must choose consecutive elements to allow casting first. 539bef6e67eSSanjay Patel assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask"); 540bef6e67eSSanjay Patel unsigned ScaleFactor = SrcNumElts / DestNumElts; 541bef6e67eSSanjay Patel if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask)) 542bef6e67eSSanjay Patel return false; 543bef6e67eSSanjay Patel } 544e2935dcfSDavid Green 545e2935dcfSDavid Green // The new shuffle must not cost more than the old shuffle. The bitcast is 546e2935dcfSDavid Green // moved ahead of the shuffle, so assume that it has the same cost as before. 547e2935dcfSDavid Green InstructionCost DestCost = TTI.getShuffleCost( 548e2935dcfSDavid Green TargetTransformInfo::SK_PermuteSingleSrc, DestTy, NewMask); 549e2935dcfSDavid Green InstructionCost SrcCost = 550e2935dcfSDavid Green TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy, Mask); 551e2935dcfSDavid Green if (DestCost > SrcCost || !DestCost.isValid()) 552e2935dcfSDavid Green return false; 553e2935dcfSDavid Green 554bef6e67eSSanjay Patel // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC' 5557aeb41b3SRoman Lebedev ++NumShufOfBitcast; 556bef6e67eSSanjay Patel Value *CastV = Builder.CreateBitCast(V, DestTy); 5571e6b240dSSanjay Patel Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask); 55898c2f4eeSSanjay Patel replaceValue(I, *Shuf); 559b6050ca1SSanjay Patel return true; 560b6050ca1SSanjay Patel } 561b6050ca1SSanjay Patel 562ed67f5e7SSanjay Patel /// Match a vector binop or compare instruction with at least one inserted 563ed67f5e7SSanjay Patel /// scalar operand and convert to scalar binop/cmp followed by insertelement. 5646bdd531aSSanjay Patel bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) { 565ed67f5e7SSanjay Patel CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 5665dc4e7c2SSimon Pilgrim Value *Ins0, *Ins1; 567ed67f5e7SSanjay Patel if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) && 568ed67f5e7SSanjay Patel !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1)))) 569ed67f5e7SSanjay Patel return false; 570ed67f5e7SSanjay Patel 571ed67f5e7SSanjay Patel // Do not convert the vector condition of a vector select into a scalar 572ed67f5e7SSanjay Patel // condition. That may cause problems for codegen because of differences in 573ed67f5e7SSanjay Patel // boolean formats and register-file transfers. 574ed67f5e7SSanjay Patel // TODO: Can we account for that in the cost model? 575ed67f5e7SSanjay Patel bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE; 576ed67f5e7SSanjay Patel if (IsCmp) 577ed67f5e7SSanjay Patel for (User *U : I.users()) 578ed67f5e7SSanjay Patel if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value()))) 5790d2a0b44SSanjay Patel return false; 5800d2a0b44SSanjay Patel 5815dc4e7c2SSimon Pilgrim // Match against one or both scalar values being inserted into constant 5825dc4e7c2SSimon Pilgrim // vectors: 583ed67f5e7SSanjay Patel // vec_op VecC0, (inselt VecC1, V1, Index) 584ed67f5e7SSanjay Patel // vec_op (inselt VecC0, V0, Index), VecC1 585ed67f5e7SSanjay Patel // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) 5860d2a0b44SSanjay Patel // TODO: Deal with mismatched index constants and variable indexes? 5875dc4e7c2SSimon Pilgrim Constant *VecC0 = nullptr, *VecC1 = nullptr; 5885dc4e7c2SSimon Pilgrim Value *V0 = nullptr, *V1 = nullptr; 5895dc4e7c2SSimon Pilgrim uint64_t Index0 = 0, Index1 = 0; 5907eed772aSSanjay Patel if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0), 5915dc4e7c2SSimon Pilgrim m_ConstantInt(Index0))) && 5925dc4e7c2SSimon Pilgrim !match(Ins0, m_Constant(VecC0))) 5935dc4e7c2SSimon Pilgrim return false; 5945dc4e7c2SSimon Pilgrim if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1), 5955dc4e7c2SSimon Pilgrim m_ConstantInt(Index1))) && 5965dc4e7c2SSimon Pilgrim !match(Ins1, m_Constant(VecC1))) 5970d2a0b44SSanjay Patel return false; 5980d2a0b44SSanjay Patel 5995dc4e7c2SSimon Pilgrim bool IsConst0 = !V0; 6005dc4e7c2SSimon Pilgrim bool IsConst1 = !V1; 6015dc4e7c2SSimon Pilgrim if (IsConst0 && IsConst1) 6025dc4e7c2SSimon Pilgrim return false; 6035dc4e7c2SSimon Pilgrim if (!IsConst0 && !IsConst1 && Index0 != Index1) 6045dc4e7c2SSimon Pilgrim return false; 6055dc4e7c2SSimon Pilgrim 6065dc4e7c2SSimon Pilgrim // Bail for single insertion if it is a load. 6075dc4e7c2SSimon Pilgrim // TODO: Handle this once getVectorInstrCost can cost for load/stores. 6085dc4e7c2SSimon Pilgrim auto *I0 = dyn_cast_or_null<Instruction>(V0); 6095dc4e7c2SSimon Pilgrim auto *I1 = dyn_cast_or_null<Instruction>(V1); 6105dc4e7c2SSimon Pilgrim if ((IsConst0 && I1 && I1->mayReadFromMemory()) || 6115dc4e7c2SSimon Pilgrim (IsConst1 && I0 && I0->mayReadFromMemory())) 6125dc4e7c2SSimon Pilgrim return false; 6135dc4e7c2SSimon Pilgrim 6145dc4e7c2SSimon Pilgrim uint64_t Index = IsConst0 ? Index1 : Index0; 6155dc4e7c2SSimon Pilgrim Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType(); 6160d2a0b44SSanjay Patel Type *VecTy = I.getType(); 6175dc4e7c2SSimon Pilgrim assert(VecTy->isVectorTy() && 6185dc4e7c2SSimon Pilgrim (IsConst0 || IsConst1 || V0->getType() == V1->getType()) && 619741e20f3SSanjay Patel (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() || 620741e20f3SSanjay Patel ScalarTy->isPointerTy()) && 621741e20f3SSanjay Patel "Unexpected types for insert element into binop or cmp"); 6220d2a0b44SSanjay Patel 623ed67f5e7SSanjay Patel unsigned Opcode = I.getOpcode(); 62436710c38SCaroline Concatto InstructionCost ScalarOpCost, VectorOpCost; 625ed67f5e7SSanjay Patel if (IsCmp) { 626ed67f5e7SSanjay Patel ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy); 627ed67f5e7SSanjay Patel VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy); 628ed67f5e7SSanjay Patel } else { 629ed67f5e7SSanjay Patel ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 630ed67f5e7SSanjay Patel VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 631ed67f5e7SSanjay Patel } 6320d2a0b44SSanjay Patel 6330d2a0b44SSanjay Patel // Get cost estimate for the insert element. This cost will factor into 6340d2a0b44SSanjay Patel // both sequences. 63536710c38SCaroline Concatto InstructionCost InsertCost = 6360d2a0b44SSanjay Patel TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index); 63736710c38SCaroline Concatto InstructionCost OldCost = 63836710c38SCaroline Concatto (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + VectorOpCost; 63936710c38SCaroline Concatto InstructionCost NewCost = ScalarOpCost + InsertCost + 6405dc4e7c2SSimon Pilgrim (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) + 6415dc4e7c2SSimon Pilgrim (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost); 6420d2a0b44SSanjay Patel 6430d2a0b44SSanjay Patel // We want to scalarize unless the vector variant actually has lower cost. 64436710c38SCaroline Concatto if (OldCost < NewCost || !NewCost.isValid()) 6450d2a0b44SSanjay Patel return false; 6460d2a0b44SSanjay Patel 647ed67f5e7SSanjay Patel // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) --> 648ed67f5e7SSanjay Patel // inselt NewVecC, (scalar_op V0, V1), Index 649ed67f5e7SSanjay Patel if (IsCmp) 650ed67f5e7SSanjay Patel ++NumScalarCmp; 651ed67f5e7SSanjay Patel else 6520d2a0b44SSanjay Patel ++NumScalarBO; 6535dc4e7c2SSimon Pilgrim 6545dc4e7c2SSimon Pilgrim // For constant cases, extract the scalar element, this should constant fold. 6555dc4e7c2SSimon Pilgrim if (IsConst0) 6565dc4e7c2SSimon Pilgrim V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index)); 6575dc4e7c2SSimon Pilgrim if (IsConst1) 6585dc4e7c2SSimon Pilgrim V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index)); 6595dc4e7c2SSimon Pilgrim 660ed67f5e7SSanjay Patel Value *Scalar = 66146a285adSSanjay Patel IsCmp ? Builder.CreateCmp(Pred, V0, V1) 662ed67f5e7SSanjay Patel : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1); 663ed67f5e7SSanjay Patel 664ed67f5e7SSanjay Patel Scalar->setName(I.getName() + ".scalar"); 6650d2a0b44SSanjay Patel 6660d2a0b44SSanjay Patel // All IR flags are safe to back-propagate. There is no potential for extra 6670d2a0b44SSanjay Patel // poison to be created by the scalar instruction. 6680d2a0b44SSanjay Patel if (auto *ScalarInst = dyn_cast<Instruction>(Scalar)) 6690d2a0b44SSanjay Patel ScalarInst->copyIRFlags(&I); 6700d2a0b44SSanjay Patel 6710d2a0b44SSanjay Patel // Fold the vector constants in the original vectors into a new base vector. 672ed67f5e7SSanjay Patel Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1) 673ed67f5e7SSanjay Patel : ConstantExpr::get(Opcode, VecC0, VecC1); 6740d2a0b44SSanjay Patel Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index); 67598c2f4eeSSanjay Patel replaceValue(I, *Insert); 6760d2a0b44SSanjay Patel return true; 6770d2a0b44SSanjay Patel } 6780d2a0b44SSanjay Patel 679b6315aeeSSanjay Patel /// Try to combine a scalar binop + 2 scalar compares of extracted elements of 680b6315aeeSSanjay Patel /// a vector into vector operations followed by extract. Note: The SLP pass 681b6315aeeSSanjay Patel /// may miss this pattern because of implementation problems. 682b6315aeeSSanjay Patel bool VectorCombine::foldExtractedCmps(Instruction &I) { 683b6315aeeSSanjay Patel // We are looking for a scalar binop of booleans. 684b6315aeeSSanjay Patel // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1) 685b6315aeeSSanjay Patel if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1)) 686b6315aeeSSanjay Patel return false; 687b6315aeeSSanjay Patel 688b6315aeeSSanjay Patel // The compare predicates should match, and each compare should have a 689b6315aeeSSanjay Patel // constant operand. 690b6315aeeSSanjay Patel // TODO: Relax the one-use constraints. 691b6315aeeSSanjay Patel Value *B0 = I.getOperand(0), *B1 = I.getOperand(1); 692b6315aeeSSanjay Patel Instruction *I0, *I1; 693b6315aeeSSanjay Patel Constant *C0, *C1; 694b6315aeeSSanjay Patel CmpInst::Predicate P0, P1; 695b6315aeeSSanjay Patel if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) || 696b6315aeeSSanjay Patel !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) || 697b6315aeeSSanjay Patel P0 != P1) 698b6315aeeSSanjay Patel return false; 699b6315aeeSSanjay Patel 700b6315aeeSSanjay Patel // The compare operands must be extracts of the same vector with constant 701b6315aeeSSanjay Patel // extract indexes. 702b6315aeeSSanjay Patel // TODO: Relax the one-use constraints. 703b6315aeeSSanjay Patel Value *X; 704b6315aeeSSanjay Patel uint64_t Index0, Index1; 705b6315aeeSSanjay Patel if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) || 706b6315aeeSSanjay Patel !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1))))) 707b6315aeeSSanjay Patel return false; 708b6315aeeSSanjay Patel 709b6315aeeSSanjay Patel auto *Ext0 = cast<ExtractElementInst>(I0); 710b6315aeeSSanjay Patel auto *Ext1 = cast<ExtractElementInst>(I1); 711b6315aeeSSanjay Patel ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1); 712b6315aeeSSanjay Patel if (!ConvertToShuf) 713b6315aeeSSanjay Patel return false; 714b6315aeeSSanjay Patel 715b6315aeeSSanjay Patel // The original scalar pattern is: 716b6315aeeSSanjay Patel // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1) 717b6315aeeSSanjay Patel CmpInst::Predicate Pred = P0; 718b6315aeeSSanjay Patel unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp 719b6315aeeSSanjay Patel : Instruction::ICmp; 720b6315aeeSSanjay Patel auto *VecTy = dyn_cast<FixedVectorType>(X->getType()); 721b6315aeeSSanjay Patel if (!VecTy) 722b6315aeeSSanjay Patel return false; 723b6315aeeSSanjay Patel 72436710c38SCaroline Concatto InstructionCost OldCost = 72536710c38SCaroline Concatto TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 726b6315aeeSSanjay Patel OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 727b6315aeeSSanjay Patel OldCost += TTI.getCmpSelInstrCost(CmpOpcode, I0->getType()) * 2; 728b6315aeeSSanjay Patel OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType()); 729b6315aeeSSanjay Patel 730b6315aeeSSanjay Patel // The proposed vector pattern is: 731b6315aeeSSanjay Patel // vcmp = cmp Pred X, VecC 732b6315aeeSSanjay Patel // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0 733b6315aeeSSanjay Patel int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0; 734b6315aeeSSanjay Patel int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1; 735b6315aeeSSanjay Patel auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType())); 73636710c38SCaroline Concatto InstructionCost NewCost = TTI.getCmpSelInstrCost(CmpOpcode, X->getType()); 737e2935dcfSDavid Green SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem); 738e2935dcfSDavid Green ShufMask[CheapIndex] = ExpensiveIndex; 739e2935dcfSDavid Green NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy, 740e2935dcfSDavid Green ShufMask); 741b6315aeeSSanjay Patel NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy); 742b6315aeeSSanjay Patel NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex); 743b6315aeeSSanjay Patel 744b6315aeeSSanjay Patel // Aggressively form vector ops if the cost is equal because the transform 745b6315aeeSSanjay Patel // may enable further optimization. 746b6315aeeSSanjay Patel // Codegen can reverse this transform (scalarize) if it was not profitable. 74736710c38SCaroline Concatto if (OldCost < NewCost || !NewCost.isValid()) 748b6315aeeSSanjay Patel return false; 749b6315aeeSSanjay Patel 750b6315aeeSSanjay Patel // Create a vector constant from the 2 scalar constants. 751b6315aeeSSanjay Patel SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(), 752b6315aeeSSanjay Patel UndefValue::get(VecTy->getElementType())); 753b6315aeeSSanjay Patel CmpC[Index0] = C0; 754b6315aeeSSanjay Patel CmpC[Index1] = C1; 755b6315aeeSSanjay Patel Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC)); 756b6315aeeSSanjay Patel 757b6315aeeSSanjay Patel Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder); 758b6315aeeSSanjay Patel Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(), 759b6315aeeSSanjay Patel VCmp, Shuf); 760b6315aeeSSanjay Patel Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex); 761b6315aeeSSanjay Patel replaceValue(I, *NewExt); 762b6315aeeSSanjay Patel ++NumVecCmpBO; 763b6315aeeSSanjay Patel return true; 764b6315aeeSSanjay Patel } 765b6315aeeSSanjay Patel 7662db4979cSQiu Chaofan // Check if memory loc modified between two instrs in the same BB 7672db4979cSQiu Chaofan static bool isMemModifiedBetween(BasicBlock::iterator Begin, 7682db4979cSQiu Chaofan BasicBlock::iterator End, 7692db4979cSQiu Chaofan const MemoryLocation &Loc, AAResults &AA) { 7702db4979cSQiu Chaofan unsigned NumScanned = 0; 7712db4979cSQiu Chaofan return std::any_of(Begin, End, [&](const Instruction &Instr) { 7722db4979cSQiu Chaofan return isModSet(AA.getModRefInfo(&Instr, Loc)) || 7732db4979cSQiu Chaofan ++NumScanned > MaxInstrsToScan; 7742db4979cSQiu Chaofan }); 7752db4979cSQiu Chaofan } 7762db4979cSQiu Chaofan 7774e8c28b6SFlorian Hahn /// Check if it is legal to scalarize a memory access to \p VecTy at index \p 7784e8c28b6SFlorian Hahn /// Idx. \p Idx must access a valid vector element. 779*575e2affSFlorian Hahn static bool canScalarizeAccess(FixedVectorType *VecTy, Value *Idx, 780*575e2affSFlorian Hahn Instruction *CtxI, AssumptionCache &AC) { 781*575e2affSFlorian Hahn if (auto *C = dyn_cast<ConstantInt>(Idx)) 782*575e2affSFlorian Hahn return C->getValue().ult(VecTy->getNumElements()); 783*575e2affSFlorian Hahn 784*575e2affSFlorian Hahn APInt Zero(Idx->getType()->getScalarSizeInBits(), 0); 785*575e2affSFlorian Hahn APInt MaxElts(Idx->getType()->getScalarSizeInBits(), VecTy->getNumElements()); 786*575e2affSFlorian Hahn ConstantRange ValidIndices(Zero, MaxElts); 787*575e2affSFlorian Hahn ConstantRange IdxRange = computeConstantRange(Idx, true, &AC, CtxI, 0); 788*575e2affSFlorian Hahn return ValidIndices.contains(IdxRange); 7894e8c28b6SFlorian Hahn } 7904e8c28b6SFlorian Hahn 7912db4979cSQiu Chaofan // Combine patterns like: 7922db4979cSQiu Chaofan // %0 = load <4 x i32>, <4 x i32>* %a 7932db4979cSQiu Chaofan // %1 = insertelement <4 x i32> %0, i32 %b, i32 1 7942db4979cSQiu Chaofan // store <4 x i32> %1, <4 x i32>* %a 7952db4979cSQiu Chaofan // to: 7962db4979cSQiu Chaofan // %0 = bitcast <4 x i32>* %a to i32* 7972db4979cSQiu Chaofan // %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1 7982db4979cSQiu Chaofan // store i32 %b, i32* %1 7992db4979cSQiu Chaofan bool VectorCombine::foldSingleElementStore(Instruction &I) { 8002db4979cSQiu Chaofan StoreInst *SI = dyn_cast<StoreInst>(&I); 8016d2df181SQiu Chaofan if (!SI || !SI->isSimple() || 8026d2df181SQiu Chaofan !isa<FixedVectorType>(SI->getValueOperand()->getType())) 8032db4979cSQiu Chaofan return false; 8042db4979cSQiu Chaofan 8052db4979cSQiu Chaofan // TODO: Combine more complicated patterns (multiple insert) by referencing 8062db4979cSQiu Chaofan // TargetTransformInfo. 8072db4979cSQiu Chaofan Instruction *Source; 8086d2df181SQiu Chaofan Value *NewElement; 809*575e2affSFlorian Hahn Value *Idx; 8102db4979cSQiu Chaofan if (!match(SI->getValueOperand(), 8112db4979cSQiu Chaofan m_InsertElt(m_Instruction(Source), m_Value(NewElement), 812*575e2affSFlorian Hahn m_Value(Idx)))) 8132db4979cSQiu Chaofan return false; 8142db4979cSQiu Chaofan 8152db4979cSQiu Chaofan if (auto *Load = dyn_cast<LoadInst>(Source)) { 8166d2df181SQiu Chaofan auto VecTy = cast<FixedVectorType>(SI->getValueOperand()->getType()); 8172db4979cSQiu Chaofan const DataLayout &DL = I.getModule()->getDataLayout(); 8182db4979cSQiu Chaofan Value *SrcAddr = Load->getPointerOperand()->stripPointerCasts(); 8196d2df181SQiu Chaofan // Don't optimize for atomic/volatile load or store. Ensure memory is not 8206d2df181SQiu Chaofan // modified between, vector type matches store size, and index is inbounds. 8212db4979cSQiu Chaofan if (!Load->isSimple() || Load->getParent() != SI->getParent() || 8222db4979cSQiu Chaofan !DL.typeSizeEqualsStoreSize(Load->getType()) || 823*575e2affSFlorian Hahn !canScalarizeAccess(VecTy, Idx, Load, AC) || 8242db4979cSQiu Chaofan SrcAddr != SI->getPointerOperand()->stripPointerCasts() || 8252db4979cSQiu Chaofan isMemModifiedBetween(Load->getIterator(), SI->getIterator(), 8262db4979cSQiu Chaofan MemoryLocation::get(SI), AA)) 8272db4979cSQiu Chaofan return false; 8282db4979cSQiu Chaofan 8292db4979cSQiu Chaofan Value *GEP = GetElementPtrInst::CreateInBounds( 8302db4979cSQiu Chaofan SI->getPointerOperand(), {ConstantInt::get(Idx->getType(), 0), Idx}); 8312db4979cSQiu Chaofan Builder.Insert(GEP); 8322db4979cSQiu Chaofan StoreInst *NSI = Builder.CreateStore(NewElement, GEP); 8332db4979cSQiu Chaofan NSI->copyMetadata(*SI); 8342db4979cSQiu Chaofan if (SI->getAlign() < NSI->getAlign()) 8352db4979cSQiu Chaofan NSI->setAlignment(SI->getAlign()); 8362db4979cSQiu Chaofan replaceValue(I, *NSI); 8372db4979cSQiu Chaofan // Need erasing the store manually. 8382db4979cSQiu Chaofan I.eraseFromParent(); 8392db4979cSQiu Chaofan return true; 8402db4979cSQiu Chaofan } 8412db4979cSQiu Chaofan 8422db4979cSQiu Chaofan return false; 8432db4979cSQiu Chaofan } 8442db4979cSQiu Chaofan 8454e8c28b6SFlorian Hahn /// Try to scalarize vector loads feeding extractelement instructions. 8464e8c28b6SFlorian Hahn bool VectorCombine::scalarizeLoadExtract(Instruction &I) { 8474e8c28b6SFlorian Hahn Value *Ptr; 848*575e2affSFlorian Hahn Value *Idx; 849*575e2affSFlorian Hahn if (!match(&I, m_ExtractElt(m_Load(m_Value(Ptr)), m_Value(Idx)))) 8504e8c28b6SFlorian Hahn return false; 8514e8c28b6SFlorian Hahn 8524e8c28b6SFlorian Hahn auto *LI = cast<LoadInst>(I.getOperand(0)); 8534e8c28b6SFlorian Hahn const DataLayout &DL = I.getModule()->getDataLayout(); 8544e8c28b6SFlorian Hahn if (LI->isVolatile() || !DL.typeSizeEqualsStoreSize(LI->getType())) 8554e8c28b6SFlorian Hahn return false; 8564e8c28b6SFlorian Hahn 8574e8c28b6SFlorian Hahn auto *FixedVT = dyn_cast<FixedVectorType>(LI->getType()); 8584e8c28b6SFlorian Hahn if (!FixedVT) 8594e8c28b6SFlorian Hahn return false; 8604e8c28b6SFlorian Hahn 861*575e2affSFlorian Hahn if (!canScalarizeAccess(FixedVT, Idx, &I, AC)) 8624e8c28b6SFlorian Hahn return false; 8634e8c28b6SFlorian Hahn 8644e8c28b6SFlorian Hahn InstructionCost OriginalCost = TTI.getMemoryOpCost( 8654e8c28b6SFlorian Hahn Instruction::Load, LI->getType(), Align(LI->getAlignment()), 8664e8c28b6SFlorian Hahn LI->getPointerAddressSpace()); 8674e8c28b6SFlorian Hahn InstructionCost ScalarizedCost = 0; 8684e8c28b6SFlorian Hahn 8694e8c28b6SFlorian Hahn Instruction *LastCheckedInst = LI; 8704e8c28b6SFlorian Hahn unsigned NumInstChecked = 0; 8714e8c28b6SFlorian Hahn // Check if all users of the load are extracts with no memory modifications 8724e8c28b6SFlorian Hahn // between the load and the extract. Compute the cost of both the original 8734e8c28b6SFlorian Hahn // code and the scalarized version. 8744e8c28b6SFlorian Hahn for (User *U : LI->users()) { 8754e8c28b6SFlorian Hahn auto *UI = dyn_cast<ExtractElementInst>(U); 8764e8c28b6SFlorian Hahn if (!UI || UI->getParent() != LI->getParent()) 8774e8c28b6SFlorian Hahn return false; 8784e8c28b6SFlorian Hahn 8794e8c28b6SFlorian Hahn // Check if any instruction between the load and the extract may modify 8804e8c28b6SFlorian Hahn // memory. 8814e8c28b6SFlorian Hahn if (LastCheckedInst->comesBefore(UI)) { 8824e8c28b6SFlorian Hahn for (Instruction &I : 8834e8c28b6SFlorian Hahn make_range(std::next(LI->getIterator()), UI->getIterator())) { 8844e8c28b6SFlorian Hahn // Bail out if we reached the check limit or the instruction may write 8854e8c28b6SFlorian Hahn // to memory. 8864e8c28b6SFlorian Hahn if (NumInstChecked == MaxInstrsToScan || I.mayWriteToMemory()) 8874e8c28b6SFlorian Hahn return false; 8884e8c28b6SFlorian Hahn NumInstChecked++; 8894e8c28b6SFlorian Hahn } 8904e8c28b6SFlorian Hahn } 8914e8c28b6SFlorian Hahn 8924e8c28b6SFlorian Hahn if (!LastCheckedInst) 8934e8c28b6SFlorian Hahn LastCheckedInst = UI; 8944e8c28b6SFlorian Hahn else if (LastCheckedInst->comesBefore(UI)) 8954e8c28b6SFlorian Hahn LastCheckedInst = UI; 8964e8c28b6SFlorian Hahn 8974e8c28b6SFlorian Hahn auto *Index = dyn_cast<ConstantInt>(UI->getOperand(1)); 8984e8c28b6SFlorian Hahn OriginalCost += 8994e8c28b6SFlorian Hahn TTI.getVectorInstrCost(Instruction::ExtractElement, LI->getType(), 9004e8c28b6SFlorian Hahn Index ? Index->getZExtValue() : -1); 9014e8c28b6SFlorian Hahn ScalarizedCost += 9024e8c28b6SFlorian Hahn TTI.getMemoryOpCost(Instruction::Load, FixedVT->getElementType(), 9034e8c28b6SFlorian Hahn Align(1), LI->getPointerAddressSpace()); 9044e8c28b6SFlorian Hahn ScalarizedCost += TTI.getAddressComputationCost(FixedVT->getElementType()); 9054e8c28b6SFlorian Hahn } 9064e8c28b6SFlorian Hahn 9074e8c28b6SFlorian Hahn if (ScalarizedCost >= OriginalCost) 9084e8c28b6SFlorian Hahn return false; 9094e8c28b6SFlorian Hahn 9104e8c28b6SFlorian Hahn // Replace extracts with narrow scalar loads. 9114e8c28b6SFlorian Hahn for (User *U : LI->users()) { 9124e8c28b6SFlorian Hahn auto *EI = cast<ExtractElementInst>(U); 9134e8c28b6SFlorian Hahn IRBuilder<>::InsertPointGuard Guard(Builder); 9144e8c28b6SFlorian Hahn Builder.SetInsertPoint(EI); 9154e8c28b6SFlorian Hahn Value *GEP = Builder.CreateInBoundsGEP( 9164e8c28b6SFlorian Hahn FixedVT, Ptr, {Builder.getInt32(0), EI->getOperand(1)}); 9174e8c28b6SFlorian Hahn auto *NewLoad = cast<LoadInst>(Builder.CreateLoad( 9184e8c28b6SFlorian Hahn FixedVT->getElementType(), GEP, EI->getName() + ".scalar")); 9194e8c28b6SFlorian Hahn 9204e8c28b6SFlorian Hahn // Set the alignment for the new load. For index 0, we can use the original 9214e8c28b6SFlorian Hahn // alignment. Otherwise choose the common alignment of the load's align and 9224e8c28b6SFlorian Hahn // the alignment for the scalar type. 9234e8c28b6SFlorian Hahn auto *ConstIdx = dyn_cast<ConstantInt>(EI->getOperand(1)); 9244e8c28b6SFlorian Hahn if (ConstIdx && ConstIdx->isNullValue()) 9254e8c28b6SFlorian Hahn NewLoad->setAlignment(LI->getAlign()); 9264e8c28b6SFlorian Hahn else 9274e8c28b6SFlorian Hahn NewLoad->setAlignment(commonAlignment( 9284e8c28b6SFlorian Hahn DL.getABITypeAlign(NewLoad->getType()), LI->getAlign())); 9294e8c28b6SFlorian Hahn replaceValue(*EI, *NewLoad); 9304e8c28b6SFlorian Hahn } 9314e8c28b6SFlorian Hahn 9324e8c28b6SFlorian Hahn return true; 9334e8c28b6SFlorian Hahn } 9344e8c28b6SFlorian Hahn 935a17f03bdSSanjay Patel /// This is the entry point for all transforms. Pass manager differences are 936a17f03bdSSanjay Patel /// handled in the callers of this function. 9376bdd531aSSanjay Patel bool VectorCombine::run() { 93825c6544fSSanjay Patel if (DisableVectorCombine) 93925c6544fSSanjay Patel return false; 94025c6544fSSanjay Patel 941cc892fd9SSanjay Patel // Don't attempt vectorization if the target does not support vectors. 942cc892fd9SSanjay Patel if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true))) 943cc892fd9SSanjay Patel return false; 944cc892fd9SSanjay Patel 945a17f03bdSSanjay Patel bool MadeChange = false; 946a17f03bdSSanjay Patel for (BasicBlock &BB : F) { 947a17f03bdSSanjay Patel // Ignore unreachable basic blocks. 948a17f03bdSSanjay Patel if (!DT.isReachableFromEntry(&BB)) 949a17f03bdSSanjay Patel continue; 9502db4979cSQiu Chaofan // Use early increment range so that we can erase instructions in loop. 9512db4979cSQiu Chaofan for (Instruction &I : make_early_inc_range(BB)) { 952fc3cc8a4SSanjay Patel if (isa<DbgInfoIntrinsic>(I)) 953fc3cc8a4SSanjay Patel continue; 954de65b356SSanjay Patel Builder.SetInsertPoint(&I); 95543bdac29SSanjay Patel MadeChange |= vectorizeLoadInsert(I); 9566bdd531aSSanjay Patel MadeChange |= foldExtractExtract(I); 9576bdd531aSSanjay Patel MadeChange |= foldBitcastShuf(I); 9586bdd531aSSanjay Patel MadeChange |= scalarizeBinopOrCmp(I); 959b6315aeeSSanjay Patel MadeChange |= foldExtractedCmps(I); 9604e8c28b6SFlorian Hahn MadeChange |= scalarizeLoadExtract(I); 9612db4979cSQiu Chaofan MadeChange |= foldSingleElementStore(I); 962a17f03bdSSanjay Patel } 963fc3cc8a4SSanjay Patel } 964a17f03bdSSanjay Patel 965a17f03bdSSanjay Patel // We're done with transforms, so remove dead instructions. 966a17f03bdSSanjay Patel if (MadeChange) 967a17f03bdSSanjay Patel for (BasicBlock &BB : F) 968a17f03bdSSanjay Patel SimplifyInstructionsInBlock(&BB); 969a17f03bdSSanjay Patel 970a17f03bdSSanjay Patel return MadeChange; 971a17f03bdSSanjay Patel } 972a17f03bdSSanjay Patel 973a17f03bdSSanjay Patel // Pass manager boilerplate below here. 974a17f03bdSSanjay Patel 975a17f03bdSSanjay Patel namespace { 976a17f03bdSSanjay Patel class VectorCombineLegacyPass : public FunctionPass { 977a17f03bdSSanjay Patel public: 978a17f03bdSSanjay Patel static char ID; 979a17f03bdSSanjay Patel VectorCombineLegacyPass() : FunctionPass(ID) { 980a17f03bdSSanjay Patel initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry()); 981a17f03bdSSanjay Patel } 982a17f03bdSSanjay Patel 983a17f03bdSSanjay Patel void getAnalysisUsage(AnalysisUsage &AU) const override { 984*575e2affSFlorian Hahn AU.addRequired<AssumptionCacheTracker>(); 985a17f03bdSSanjay Patel AU.addRequired<DominatorTreeWrapperPass>(); 986a17f03bdSSanjay Patel AU.addRequired<TargetTransformInfoWrapperPass>(); 9872db4979cSQiu Chaofan AU.addRequired<AAResultsWrapperPass>(); 988a17f03bdSSanjay Patel AU.setPreservesCFG(); 989a17f03bdSSanjay Patel AU.addPreserved<DominatorTreeWrapperPass>(); 990a17f03bdSSanjay Patel AU.addPreserved<GlobalsAAWrapperPass>(); 991024098aeSSanjay Patel AU.addPreserved<AAResultsWrapperPass>(); 992024098aeSSanjay Patel AU.addPreserved<BasicAAWrapperPass>(); 993a17f03bdSSanjay Patel FunctionPass::getAnalysisUsage(AU); 994a17f03bdSSanjay Patel } 995a17f03bdSSanjay Patel 996a17f03bdSSanjay Patel bool runOnFunction(Function &F) override { 997a17f03bdSSanjay Patel if (skipFunction(F)) 998a17f03bdSSanjay Patel return false; 999*575e2affSFlorian Hahn auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1000a17f03bdSSanjay Patel auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1001a17f03bdSSanjay Patel auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 10022db4979cSQiu Chaofan auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 1003*575e2affSFlorian Hahn VectorCombine Combiner(F, TTI, DT, AA, AC); 10046bdd531aSSanjay Patel return Combiner.run(); 1005a17f03bdSSanjay Patel } 1006a17f03bdSSanjay Patel }; 1007a17f03bdSSanjay Patel } // namespace 1008a17f03bdSSanjay Patel 1009a17f03bdSSanjay Patel char VectorCombineLegacyPass::ID = 0; 1010a17f03bdSSanjay Patel INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine", 1011a17f03bdSSanjay Patel "Optimize scalar/vector ops", false, 1012a17f03bdSSanjay Patel false) 1013*575e2affSFlorian Hahn INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1014a17f03bdSSanjay Patel INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1015a17f03bdSSanjay Patel INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine", 1016a17f03bdSSanjay Patel "Optimize scalar/vector ops", false, false) 1017a17f03bdSSanjay Patel Pass *llvm::createVectorCombinePass() { 1018a17f03bdSSanjay Patel return new VectorCombineLegacyPass(); 1019a17f03bdSSanjay Patel } 1020a17f03bdSSanjay Patel 1021a17f03bdSSanjay Patel PreservedAnalyses VectorCombinePass::run(Function &F, 1022a17f03bdSSanjay Patel FunctionAnalysisManager &FAM) { 1023*575e2affSFlorian Hahn auto &AC = FAM.getResult<AssumptionAnalysis>(F); 1024a17f03bdSSanjay Patel TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); 1025a17f03bdSSanjay Patel DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); 10262db4979cSQiu Chaofan AAResults &AA = FAM.getResult<AAManager>(F); 1027*575e2affSFlorian Hahn VectorCombine Combiner(F, TTI, DT, AA, AC); 10286bdd531aSSanjay Patel if (!Combiner.run()) 1029a17f03bdSSanjay Patel return PreservedAnalyses::all(); 1030a17f03bdSSanjay Patel PreservedAnalyses PA; 1031a17f03bdSSanjay Patel PA.preserveSet<CFGAnalyses>(); 1032a17f03bdSSanjay Patel return PA; 1033a17f03bdSSanjay Patel } 1034