1a17f03bdSSanjay Patel //===------- VectorCombine.cpp - Optimize partial vector operations -------===// 2a17f03bdSSanjay Patel // 3a17f03bdSSanjay Patel // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4a17f03bdSSanjay Patel // See https://llvm.org/LICENSE.txt for license information. 5a17f03bdSSanjay Patel // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6a17f03bdSSanjay Patel // 7a17f03bdSSanjay Patel //===----------------------------------------------------------------------===// 8a17f03bdSSanjay Patel // 9a17f03bdSSanjay Patel // This pass optimizes scalar/vector interactions using target cost models. The 10a17f03bdSSanjay Patel // transforms implemented here may not fit in traditional loop-based or SLP 11a17f03bdSSanjay Patel // vectorization passes. 12a17f03bdSSanjay Patel // 13a17f03bdSSanjay Patel //===----------------------------------------------------------------------===// 14a17f03bdSSanjay Patel 15a17f03bdSSanjay Patel #include "llvm/Transforms/Vectorize/VectorCombine.h" 16a17f03bdSSanjay Patel #include "llvm/ADT/Statistic.h" 17575e2affSFlorian Hahn #include "llvm/Analysis/AssumptionCache.h" 185006e551SSimon Pilgrim #include "llvm/Analysis/BasicAliasAnalysis.h" 19a17f03bdSSanjay Patel #include "llvm/Analysis/GlobalsModRef.h" 2043bdac29SSanjay Patel #include "llvm/Analysis/Loads.h" 21a17f03bdSSanjay Patel #include "llvm/Analysis/TargetTransformInfo.h" 2219b62b79SSanjay Patel #include "llvm/Analysis/ValueTracking.h" 23b6050ca1SSanjay Patel #include "llvm/Analysis/VectorUtils.h" 24a17f03bdSSanjay Patel #include "llvm/IR/Dominators.h" 25a17f03bdSSanjay Patel #include "llvm/IR/Function.h" 26a17f03bdSSanjay Patel #include "llvm/IR/IRBuilder.h" 27a17f03bdSSanjay Patel #include "llvm/IR/PatternMatch.h" 28a17f03bdSSanjay Patel #include "llvm/InitializePasses.h" 29a17f03bdSSanjay Patel #include "llvm/Pass.h" 3025c6544fSSanjay Patel #include "llvm/Support/CommandLine.h" 31a17f03bdSSanjay Patel #include "llvm/Transforms/Utils/Local.h" 325006e551SSimon Pilgrim #include "llvm/Transforms/Vectorize.h" 33a17f03bdSSanjay Patel 34300870a9SFlorian Hahn #define DEBUG_TYPE "vector-combine" 35300870a9SFlorian Hahn #include "llvm/Transforms/Utils/InstructionWorklist.h" 36300870a9SFlorian Hahn 37a17f03bdSSanjay Patel using namespace llvm; 38a17f03bdSSanjay Patel using namespace llvm::PatternMatch; 39a17f03bdSSanjay Patel 4043bdac29SSanjay Patel STATISTIC(NumVecLoad, "Number of vector loads formed"); 41a17f03bdSSanjay Patel STATISTIC(NumVecCmp, "Number of vector compares formed"); 4219b62b79SSanjay Patel STATISTIC(NumVecBO, "Number of vector binops formed"); 43b6315aeeSSanjay Patel STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed"); 447aeb41b3SRoman Lebedev STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast"); 450d2a0b44SSanjay Patel STATISTIC(NumScalarBO, "Number of scalar binops formed"); 46ed67f5e7SSanjay Patel STATISTIC(NumScalarCmp, "Number of scalar compares formed"); 47a17f03bdSSanjay Patel 4825c6544fSSanjay Patel static cl::opt<bool> DisableVectorCombine( 4925c6544fSSanjay Patel "disable-vector-combine", cl::init(false), cl::Hidden, 5025c6544fSSanjay Patel cl::desc("Disable all vector combine transforms")); 5125c6544fSSanjay Patel 52a69158c1SSanjay Patel static cl::opt<bool> DisableBinopExtractShuffle( 53a69158c1SSanjay Patel "disable-binop-extract-shuffle", cl::init(false), cl::Hidden, 54a69158c1SSanjay Patel cl::desc("Disable binop extract to shuffle transforms")); 55a69158c1SSanjay Patel 562db4979cSQiu Chaofan static cl::opt<unsigned> MaxInstrsToScan( 572db4979cSQiu Chaofan "vector-combine-max-scan-instrs", cl::init(30), cl::Hidden, 582db4979cSQiu Chaofan cl::desc("Max number of instructions to scan for vector combining.")); 592db4979cSQiu Chaofan 60a0f96741SSanjay Patel static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max(); 61a0f96741SSanjay Patel 62b4447054SBenjamin Kramer namespace { 636bdd531aSSanjay Patel class VectorCombine { 646bdd531aSSanjay Patel public: 656bdd531aSSanjay Patel VectorCombine(Function &F, const TargetTransformInfo &TTI, 664a1d63d7SFlorian Hahn const DominatorTree &DT, AAResults &AA, AssumptionCache &AC, 674a1d63d7SFlorian Hahn bool ScalarizationOnly) 684a1d63d7SFlorian Hahn : F(F), Builder(F.getContext()), TTI(TTI), DT(DT), AA(AA), AC(AC), 694a1d63d7SFlorian Hahn ScalarizationOnly(ScalarizationOnly) {} 706bdd531aSSanjay Patel 716bdd531aSSanjay Patel bool run(); 726bdd531aSSanjay Patel 736bdd531aSSanjay Patel private: 746bdd531aSSanjay Patel Function &F; 75de65b356SSanjay Patel IRBuilder<> Builder; 766bdd531aSSanjay Patel const TargetTransformInfo &TTI; 776bdd531aSSanjay Patel const DominatorTree &DT; 782db4979cSQiu Chaofan AAResults &AA; 79575e2affSFlorian Hahn AssumptionCache &AC; 804a1d63d7SFlorian Hahn 814a1d63d7SFlorian Hahn /// If true only perform scalarization combines and do not introduce new 824a1d63d7SFlorian Hahn /// vector operations. 834a1d63d7SFlorian Hahn bool ScalarizationOnly; 844a1d63d7SFlorian Hahn 85300870a9SFlorian Hahn InstructionWorklist Worklist; 866bdd531aSSanjay Patel 8743bdac29SSanjay Patel bool vectorizeLoadInsert(Instruction &I); 883b95d834SSanjay Patel ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0, 893b95d834SSanjay Patel ExtractElementInst *Ext1, 903b95d834SSanjay Patel unsigned PreferredExtractIndex) const; 916bdd531aSSanjay Patel bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 920dcd2b40SSimon Pilgrim const Instruction &I, 936bdd531aSSanjay Patel ExtractElementInst *&ConvertToShuffle, 946bdd531aSSanjay Patel unsigned PreferredExtractIndex); 95de65b356SSanjay Patel void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 96de65b356SSanjay Patel Instruction &I); 97de65b356SSanjay Patel void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 98de65b356SSanjay Patel Instruction &I); 996bdd531aSSanjay Patel bool foldExtractExtract(Instruction &I); 1006bdd531aSSanjay Patel bool foldBitcastShuf(Instruction &I); 1016bdd531aSSanjay Patel bool scalarizeBinopOrCmp(Instruction &I); 102b6315aeeSSanjay Patel bool foldExtractedCmps(Instruction &I); 1032db4979cSQiu Chaofan bool foldSingleElementStore(Instruction &I); 1044e8c28b6SFlorian Hahn bool scalarizeLoadExtract(Instruction &I); 10566d22b4dSSanjay Patel bool foldShuffleOfBinops(Instruction &I); 106a69158c1SSanjay Patel 107300870a9SFlorian Hahn void replaceValue(Value &Old, Value &New) { 10898c2f4eeSSanjay Patel Old.replaceAllUsesWith(&New); 10998c2f4eeSSanjay Patel New.takeName(&Old); 110300870a9SFlorian Hahn if (auto *NewI = dyn_cast<Instruction>(&New)) { 111300870a9SFlorian Hahn Worklist.pushUsersToWorkList(*NewI); 112300870a9SFlorian Hahn Worklist.pushValue(NewI); 11398c2f4eeSSanjay Patel } 114300870a9SFlorian Hahn Worklist.pushValue(&Old); 115300870a9SFlorian Hahn } 116300870a9SFlorian Hahn 117300870a9SFlorian Hahn void eraseInstruction(Instruction &I) { 118300870a9SFlorian Hahn for (Value *Op : I.operands()) 119300870a9SFlorian Hahn Worklist.pushValue(Op); 120300870a9SFlorian Hahn Worklist.remove(&I); 121300870a9SFlorian Hahn I.eraseFromParent(); 122300870a9SFlorian Hahn } 123300870a9SFlorian Hahn }; 124300870a9SFlorian Hahn } // namespace 12598c2f4eeSSanjay Patel 12643bdac29SSanjay Patel bool VectorCombine::vectorizeLoadInsert(Instruction &I) { 127b2ef2640SSanjay Patel // Match insert into fixed vector of scalar value. 12847aaa99cSSanjay Patel // TODO: Handle non-zero insert index. 129ddd9575dSSanjay Patel auto *Ty = dyn_cast<FixedVectorType>(I.getType()); 13043bdac29SSanjay Patel Value *Scalar; 13148a23bccSSanjay Patel if (!Ty || !match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) || 13248a23bccSSanjay Patel !Scalar->hasOneUse()) 13343bdac29SSanjay Patel return false; 134ddd9575dSSanjay Patel 135b2ef2640SSanjay Patel // Optionally match an extract from another vector. 136b2ef2640SSanjay Patel Value *X; 137b2ef2640SSanjay Patel bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt())); 138b2ef2640SSanjay Patel if (!HasExtract) 139b2ef2640SSanjay Patel X = Scalar; 140b2ef2640SSanjay Patel 141b2ef2640SSanjay Patel // Match source value as load of scalar or vector. 1424452cc40SFangrui Song // Do not vectorize scalar load (widening) if atomic/volatile or under 1434452cc40SFangrui Song // asan/hwasan/memtag/tsan. The widened load may load data from dirty regions 1444452cc40SFangrui Song // or create data races non-existent in the source. 145b2ef2640SSanjay Patel auto *Load = dyn_cast<LoadInst>(X); 146b2ef2640SSanjay Patel if (!Load || !Load->isSimple() || !Load->hasOneUse() || 1474452cc40SFangrui Song Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) || 1484452cc40SFangrui Song mustSuppressSpeculation(*Load)) 14943bdac29SSanjay Patel return false; 15043bdac29SSanjay Patel 15112b684aeSSanjay Patel const DataLayout &DL = I.getModule()->getDataLayout(); 15212b684aeSSanjay Patel Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts(); 15312b684aeSSanjay Patel assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type"); 154c36c0fabSArtem Belevich 15512b684aeSSanjay Patel unsigned AS = Load->getPointerAddressSpace(); 15643bdac29SSanjay Patel 15747aaa99cSSanjay Patel // We are potentially transforming byte-sized (8-bit) memory accesses, so make 15847aaa99cSSanjay Patel // sure we have all of our type-based constraints in place for this target. 159ddd9575dSSanjay Patel Type *ScalarTy = Scalar->getType(); 16043bdac29SSanjay Patel uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits(); 161ddd9575dSSanjay Patel unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth(); 16247aaa99cSSanjay Patel if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 || 16347aaa99cSSanjay Patel ScalarSize % 8 != 0) 16443bdac29SSanjay Patel return false; 16543bdac29SSanjay Patel 16643bdac29SSanjay Patel // Check safety of replacing the scalar load with a larger vector load. 167aaaf0ec7SSanjay Patel // We use minimal alignment (maximum flexibility) because we only care about 168aaaf0ec7SSanjay Patel // the dereferenceable region. When calculating cost and creating a new op, 169aaaf0ec7SSanjay Patel // we may use a larger value based on alignment attributes. 1708fb05593SSanjay Patel unsigned MinVecNumElts = MinVectorSize / ScalarSize; 1718fb05593SSanjay Patel auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false); 17247aaa99cSSanjay Patel unsigned OffsetEltIndex = 0; 17347aaa99cSSanjay Patel Align Alignment = Load->getAlign(); 17447aaa99cSSanjay Patel if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) { 17547aaa99cSSanjay Patel // It is not safe to load directly from the pointer, but we can still peek 17647aaa99cSSanjay Patel // through gep offsets and check if it safe to load from a base address with 17747aaa99cSSanjay Patel // updated alignment. If it is, we can shuffle the element(s) into place 17847aaa99cSSanjay Patel // after loading. 17947aaa99cSSanjay Patel unsigned OffsetBitWidth = DL.getIndexTypeSizeInBits(SrcPtr->getType()); 18047aaa99cSSanjay Patel APInt Offset(OffsetBitWidth, 0); 18147aaa99cSSanjay Patel SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); 18247aaa99cSSanjay Patel 18347aaa99cSSanjay Patel // We want to shuffle the result down from a high element of a vector, so 18447aaa99cSSanjay Patel // the offset must be positive. 18547aaa99cSSanjay Patel if (Offset.isNegative()) 18647aaa99cSSanjay Patel return false; 18747aaa99cSSanjay Patel 18847aaa99cSSanjay Patel // The offset must be a multiple of the scalar element to shuffle cleanly 18947aaa99cSSanjay Patel // in the element's size. 19047aaa99cSSanjay Patel uint64_t ScalarSizeInBytes = ScalarSize / 8; 19147aaa99cSSanjay Patel if (Offset.urem(ScalarSizeInBytes) != 0) 19247aaa99cSSanjay Patel return false; 19347aaa99cSSanjay Patel 19447aaa99cSSanjay Patel // If we load MinVecNumElts, will our target element still be loaded? 19547aaa99cSSanjay Patel OffsetEltIndex = Offset.udiv(ScalarSizeInBytes).getZExtValue(); 19647aaa99cSSanjay Patel if (OffsetEltIndex >= MinVecNumElts) 19747aaa99cSSanjay Patel return false; 19847aaa99cSSanjay Patel 199aaaf0ec7SSanjay Patel if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) 20043bdac29SSanjay Patel return false; 20143bdac29SSanjay Patel 20247aaa99cSSanjay Patel // Update alignment with offset value. Note that the offset could be negated 20347aaa99cSSanjay Patel // to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but 20447aaa99cSSanjay Patel // negation does not change the result of the alignment calculation. 20547aaa99cSSanjay Patel Alignment = commonAlignment(Alignment, Offset.getZExtValue()); 20647aaa99cSSanjay Patel } 20747aaa99cSSanjay Patel 208b2ef2640SSanjay Patel // Original pattern: insertelt undef, load [free casts of] PtrOp, 0 20938ebc1a1SSanjay Patel // Use the greater of the alignment on the load or its source pointer. 21047aaa99cSSanjay Patel Alignment = std::max(SrcPtr->getPointerAlignment(DL), Alignment); 211b2ef2640SSanjay Patel Type *LoadTy = Load->getType(); 21236710c38SCaroline Concatto InstructionCost OldCost = 21336710c38SCaroline Concatto TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS); 2148fb05593SSanjay Patel APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0); 215b2ef2640SSanjay Patel OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts, 216b2ef2640SSanjay Patel /* Insert */ true, HasExtract); 21743bdac29SSanjay Patel 21843bdac29SSanjay Patel // New pattern: load VecPtr 21936710c38SCaroline Concatto InstructionCost NewCost = 22036710c38SCaroline Concatto TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS); 22147aaa99cSSanjay Patel // Optionally, we are shuffling the loaded vector element(s) into place. 222e2935dcfSDavid Green // For the mask set everything but element 0 to undef to prevent poison from 223e2935dcfSDavid Green // propagating from the extra loaded memory. This will also optionally 224e2935dcfSDavid Green // shrink/grow the vector from the loaded size to the output size. 225e2935dcfSDavid Green // We assume this operation has no cost in codegen if there was no offset. 226e2935dcfSDavid Green // Note that we could use freeze to avoid poison problems, but then we might 227e2935dcfSDavid Green // still need a shuffle to change the vector size. 228e2935dcfSDavid Green unsigned OutputNumElts = Ty->getNumElements(); 229e2935dcfSDavid Green SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem); 230e2935dcfSDavid Green assert(OffsetEltIndex < MinVecNumElts && "Address offset too big"); 231e2935dcfSDavid Green Mask[0] = OffsetEltIndex; 23247aaa99cSSanjay Patel if (OffsetEltIndex) 233e2935dcfSDavid Green NewCost += TTI.getShuffleCost(TTI::SK_PermuteSingleSrc, MinVecTy, Mask); 23443bdac29SSanjay Patel 23543bdac29SSanjay Patel // We can aggressively convert to the vector form because the backend can 23643bdac29SSanjay Patel // invert this transform if it does not result in a performance win. 23736710c38SCaroline Concatto if (OldCost < NewCost || !NewCost.isValid()) 23843bdac29SSanjay Patel return false; 23943bdac29SSanjay Patel 24043bdac29SSanjay Patel // It is safe and potentially profitable to load a vector directly: 24143bdac29SSanjay Patel // inselt undef, load Scalar, 0 --> load VecPtr 24243bdac29SSanjay Patel IRBuilder<> Builder(Load); 243*2e44b787SFraser Cormack Value *CastedPtr = Builder.CreatePointerBitCastOrAddrSpaceCast( 244*2e44b787SFraser Cormack SrcPtr, MinVecTy->getPointerTo(AS)); 2458fb05593SSanjay Patel Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment); 2461e6b240dSSanjay Patel VecLd = Builder.CreateShuffleVector(VecLd, Mask); 247d399f870SSanjay Patel 24843bdac29SSanjay Patel replaceValue(I, *VecLd); 24943bdac29SSanjay Patel ++NumVecLoad; 25043bdac29SSanjay Patel return true; 25143bdac29SSanjay Patel } 25243bdac29SSanjay Patel 2533b95d834SSanjay Patel /// Determine which, if any, of the inputs should be replaced by a shuffle 2543b95d834SSanjay Patel /// followed by extract from a different index. 2553b95d834SSanjay Patel ExtractElementInst *VectorCombine::getShuffleExtract( 2563b95d834SSanjay Patel ExtractElementInst *Ext0, ExtractElementInst *Ext1, 2573b95d834SSanjay Patel unsigned PreferredExtractIndex = InvalidIndex) const { 2583b95d834SSanjay Patel assert(isa<ConstantInt>(Ext0->getIndexOperand()) && 2593b95d834SSanjay Patel isa<ConstantInt>(Ext1->getIndexOperand()) && 2603b95d834SSanjay Patel "Expected constant extract indexes"); 2613b95d834SSanjay Patel 2623b95d834SSanjay Patel unsigned Index0 = cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue(); 2633b95d834SSanjay Patel unsigned Index1 = cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue(); 2643b95d834SSanjay Patel 2653b95d834SSanjay Patel // If the extract indexes are identical, no shuffle is needed. 2663b95d834SSanjay Patel if (Index0 == Index1) 2673b95d834SSanjay Patel return nullptr; 2683b95d834SSanjay Patel 2693b95d834SSanjay Patel Type *VecTy = Ext0->getVectorOperand()->getType(); 2703b95d834SSanjay Patel assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types"); 27136710c38SCaroline Concatto InstructionCost Cost0 = 27236710c38SCaroline Concatto TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 27336710c38SCaroline Concatto InstructionCost Cost1 = 27436710c38SCaroline Concatto TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 27536710c38SCaroline Concatto 27636710c38SCaroline Concatto // If both costs are invalid no shuffle is needed 27736710c38SCaroline Concatto if (!Cost0.isValid() && !Cost1.isValid()) 27836710c38SCaroline Concatto return nullptr; 2793b95d834SSanjay Patel 2803b95d834SSanjay Patel // We are extracting from 2 different indexes, so one operand must be shuffled 2813b95d834SSanjay Patel // before performing a vector operation and/or extract. The more expensive 2823b95d834SSanjay Patel // extract will be replaced by a shuffle. 2833b95d834SSanjay Patel if (Cost0 > Cost1) 2843b95d834SSanjay Patel return Ext0; 2853b95d834SSanjay Patel if (Cost1 > Cost0) 2863b95d834SSanjay Patel return Ext1; 2873b95d834SSanjay Patel 2883b95d834SSanjay Patel // If the costs are equal and there is a preferred extract index, shuffle the 2893b95d834SSanjay Patel // opposite operand. 2903b95d834SSanjay Patel if (PreferredExtractIndex == Index0) 2913b95d834SSanjay Patel return Ext1; 2923b95d834SSanjay Patel if (PreferredExtractIndex == Index1) 2933b95d834SSanjay Patel return Ext0; 2943b95d834SSanjay Patel 2953b95d834SSanjay Patel // Otherwise, replace the extract with the higher index. 2963b95d834SSanjay Patel return Index0 > Index1 ? Ext0 : Ext1; 2973b95d834SSanjay Patel } 2983b95d834SSanjay Patel 299a69158c1SSanjay Patel /// Compare the relative costs of 2 extracts followed by scalar operation vs. 300a69158c1SSanjay Patel /// vector operation(s) followed by extract. Return true if the existing 301a69158c1SSanjay Patel /// instructions are cheaper than a vector alternative. Otherwise, return false 302a69158c1SSanjay Patel /// and if one of the extracts should be transformed to a shufflevector, set 303a69158c1SSanjay Patel /// \p ConvertToShuffle to that extract instruction. 3046bdd531aSSanjay Patel bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0, 3056bdd531aSSanjay Patel ExtractElementInst *Ext1, 3060dcd2b40SSimon Pilgrim const Instruction &I, 307216a37bbSSanjay Patel ExtractElementInst *&ConvertToShuffle, 308ce97ce3aSSanjay Patel unsigned PreferredExtractIndex) { 3094fa63fd4SAustin Kerbow assert(isa<ConstantInt>(Ext0->getOperand(1)) && 310a69158c1SSanjay Patel isa<ConstantInt>(Ext1->getOperand(1)) && 311a69158c1SSanjay Patel "Expected constant extract indexes"); 3120dcd2b40SSimon Pilgrim unsigned Opcode = I.getOpcode(); 31334e34855SSanjay Patel Type *ScalarTy = Ext0->getType(); 314e3056ae9SSam Parker auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType()); 31536710c38SCaroline Concatto InstructionCost ScalarOpCost, VectorOpCost; 31634e34855SSanjay Patel 31734e34855SSanjay Patel // Get cost estimates for scalar and vector versions of the operation. 31834e34855SSanjay Patel bool IsBinOp = Instruction::isBinaryOp(Opcode); 31934e34855SSanjay Patel if (IsBinOp) { 32034e34855SSanjay Patel ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 32134e34855SSanjay Patel VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 32234e34855SSanjay Patel } else { 32334e34855SSanjay Patel assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 32434e34855SSanjay Patel "Expected a compare"); 3250dcd2b40SSimon Pilgrim CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate(); 3260dcd2b40SSimon Pilgrim ScalarOpCost = TTI.getCmpSelInstrCost( 3270dcd2b40SSimon Pilgrim Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred); 3280dcd2b40SSimon Pilgrim VectorOpCost = TTI.getCmpSelInstrCost( 3290dcd2b40SSimon Pilgrim Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred); 33034e34855SSanjay Patel } 33134e34855SSanjay Patel 332a69158c1SSanjay Patel // Get cost estimates for the extract elements. These costs will factor into 33334e34855SSanjay Patel // both sequences. 334a69158c1SSanjay Patel unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue(); 335a69158c1SSanjay Patel unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue(); 336a69158c1SSanjay Patel 33736710c38SCaroline Concatto InstructionCost Extract0Cost = 3386bdd531aSSanjay Patel TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index); 33936710c38SCaroline Concatto InstructionCost Extract1Cost = 3406bdd531aSSanjay Patel TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index); 341a69158c1SSanjay Patel 342a69158c1SSanjay Patel // A more expensive extract will always be replaced by a splat shuffle. 343a69158c1SSanjay Patel // For example, if Ext0 is more expensive: 344a69158c1SSanjay Patel // opcode (extelt V0, Ext0), (ext V1, Ext1) --> 345a69158c1SSanjay Patel // extelt (opcode (splat V0, Ext0), V1), Ext1 346a69158c1SSanjay Patel // TODO: Evaluate whether that always results in lowest cost. Alternatively, 347a69158c1SSanjay Patel // check the cost of creating a broadcast shuffle and shuffling both 348a69158c1SSanjay Patel // operands to element 0. 34936710c38SCaroline Concatto InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost); 35034e34855SSanjay Patel 35134e34855SSanjay Patel // Extra uses of the extracts mean that we include those costs in the 35234e34855SSanjay Patel // vector total because those instructions will not be eliminated. 35336710c38SCaroline Concatto InstructionCost OldCost, NewCost; 354a69158c1SSanjay Patel if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) { 355a69158c1SSanjay Patel // Handle a special case. If the 2 extracts are identical, adjust the 35634e34855SSanjay Patel // formulas to account for that. The extra use charge allows for either the 35734e34855SSanjay Patel // CSE'd pattern or an unoptimized form with identical values: 35834e34855SSanjay Patel // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C 35934e34855SSanjay Patel bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2) 36034e34855SSanjay Patel : !Ext0->hasOneUse() || !Ext1->hasOneUse(); 361a69158c1SSanjay Patel OldCost = CheapExtractCost + ScalarOpCost; 362a69158c1SSanjay Patel NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost; 36334e34855SSanjay Patel } else { 36434e34855SSanjay Patel // Handle the general case. Each extract is actually a different value: 365a69158c1SSanjay Patel // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C 366a69158c1SSanjay Patel OldCost = Extract0Cost + Extract1Cost + ScalarOpCost; 367a69158c1SSanjay Patel NewCost = VectorOpCost + CheapExtractCost + 368a69158c1SSanjay Patel !Ext0->hasOneUse() * Extract0Cost + 369a69158c1SSanjay Patel !Ext1->hasOneUse() * Extract1Cost; 37034e34855SSanjay Patel } 371a69158c1SSanjay Patel 3723b95d834SSanjay Patel ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex); 3733b95d834SSanjay Patel if (ConvertToShuffle) { 374a69158c1SSanjay Patel if (IsBinOp && DisableBinopExtractShuffle) 375a69158c1SSanjay Patel return true; 376a69158c1SSanjay Patel 377a69158c1SSanjay Patel // If we are extracting from 2 different indexes, then one operand must be 378a69158c1SSanjay Patel // shuffled before performing the vector operation. The shuffle mask is 379a69158c1SSanjay Patel // undefined except for 1 lane that is being translated to the remaining 380a69158c1SSanjay Patel // extraction lane. Therefore, it is a splat shuffle. Ex: 381a69158c1SSanjay Patel // ShufMask = { undef, undef, 0, undef } 382a69158c1SSanjay Patel // TODO: The cost model has an option for a "broadcast" shuffle 383a69158c1SSanjay Patel // (splat-from-element-0), but no option for a more general splat. 384a69158c1SSanjay Patel NewCost += 385a69158c1SSanjay Patel TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 386a69158c1SSanjay Patel } 387a69158c1SSanjay Patel 38810ea01d8SSanjay Patel // Aggressively form a vector op if the cost is equal because the transform 38910ea01d8SSanjay Patel // may enable further optimization. 39010ea01d8SSanjay Patel // Codegen can reverse this transform (scalarize) if it was not profitable. 39110ea01d8SSanjay Patel return OldCost < NewCost; 39234e34855SSanjay Patel } 39334e34855SSanjay Patel 3949934cc54SSanjay Patel /// Create a shuffle that translates (shifts) 1 element from the input vector 3959934cc54SSanjay Patel /// to a new element location. 3969934cc54SSanjay Patel static Value *createShiftShuffle(Value *Vec, unsigned OldIndex, 3979934cc54SSanjay Patel unsigned NewIndex, IRBuilder<> &Builder) { 3989934cc54SSanjay Patel // The shuffle mask is undefined except for 1 lane that is being translated 3999934cc54SSanjay Patel // to the new element index. Example for OldIndex == 2 and NewIndex == 0: 4009934cc54SSanjay Patel // ShufMask = { 2, undef, undef, undef } 4019934cc54SSanjay Patel auto *VecTy = cast<FixedVectorType>(Vec->getType()); 40254143e2bSSanjay Patel SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem); 4039934cc54SSanjay Patel ShufMask[NewIndex] = OldIndex; 4041e6b240dSSanjay Patel return Builder.CreateShuffleVector(Vec, ShufMask, "shift"); 4059934cc54SSanjay Patel } 4069934cc54SSanjay Patel 407216a37bbSSanjay Patel /// Given an extract element instruction with constant index operand, shuffle 408216a37bbSSanjay Patel /// the source vector (shift the scalar element) to a NewIndex for extraction. 409216a37bbSSanjay Patel /// Return null if the input can be constant folded, so that we are not creating 410216a37bbSSanjay Patel /// unnecessary instructions. 4119934cc54SSanjay Patel static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt, 4129934cc54SSanjay Patel unsigned NewIndex, 4139934cc54SSanjay Patel IRBuilder<> &Builder) { 414216a37bbSSanjay Patel // If the extract can be constant-folded, this code is unsimplified. Defer 415216a37bbSSanjay Patel // to other passes to handle that. 416216a37bbSSanjay Patel Value *X = ExtElt->getVectorOperand(); 417216a37bbSSanjay Patel Value *C = ExtElt->getIndexOperand(); 418de65b356SSanjay Patel assert(isa<ConstantInt>(C) && "Expected a constant index operand"); 419216a37bbSSanjay Patel if (isa<Constant>(X)) 420216a37bbSSanjay Patel return nullptr; 421216a37bbSSanjay Patel 4229934cc54SSanjay Patel Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(), 4239934cc54SSanjay Patel NewIndex, Builder); 424216a37bbSSanjay Patel return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex)); 425216a37bbSSanjay Patel } 426216a37bbSSanjay Patel 427fc445589SSanjay Patel /// Try to reduce extract element costs by converting scalar compares to vector 428fc445589SSanjay Patel /// compares followed by extract. 429e9c79a7aSSanjay Patel /// cmp (ext0 V0, C), (ext1 V1, C) 430de65b356SSanjay Patel void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0, 431de65b356SSanjay Patel ExtractElementInst *Ext1, Instruction &I) { 432fc445589SSanjay Patel assert(isa<CmpInst>(&I) && "Expected a compare"); 433216a37bbSSanjay Patel assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 434216a37bbSSanjay Patel cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 435216a37bbSSanjay Patel "Expected matching constant extract indexes"); 436a17f03bdSSanjay Patel 437a17f03bdSSanjay Patel // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C 438a17f03bdSSanjay Patel ++NumVecCmp; 439fc445589SSanjay Patel CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate(); 440216a37bbSSanjay Patel Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 44146a285adSSanjay Patel Value *VecCmp = Builder.CreateCmp(Pred, V0, V1); 442216a37bbSSanjay Patel Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand()); 44398c2f4eeSSanjay Patel replaceValue(I, *NewExt); 444a17f03bdSSanjay Patel } 445a17f03bdSSanjay Patel 44619b62b79SSanjay Patel /// Try to reduce extract element costs by converting scalar binops to vector 44719b62b79SSanjay Patel /// binops followed by extract. 448e9c79a7aSSanjay Patel /// bo (ext0 V0, C), (ext1 V1, C) 449de65b356SSanjay Patel void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0, 450de65b356SSanjay Patel ExtractElementInst *Ext1, Instruction &I) { 451fc445589SSanjay Patel assert(isa<BinaryOperator>(&I) && "Expected a binary operator"); 452216a37bbSSanjay Patel assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 453216a37bbSSanjay Patel cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 454216a37bbSSanjay Patel "Expected matching constant extract indexes"); 45519b62b79SSanjay Patel 45634e34855SSanjay Patel // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C 45719b62b79SSanjay Patel ++NumVecBO; 458216a37bbSSanjay Patel Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 459e9c79a7aSSanjay Patel Value *VecBO = 46034e34855SSanjay Patel Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1); 461e9c79a7aSSanjay Patel 46219b62b79SSanjay Patel // All IR flags are safe to back-propagate because any potential poison 46319b62b79SSanjay Patel // created in unused vector elements is discarded by the extract. 464e9c79a7aSSanjay Patel if (auto *VecBOInst = dyn_cast<Instruction>(VecBO)) 46519b62b79SSanjay Patel VecBOInst->copyIRFlags(&I); 466e9c79a7aSSanjay Patel 467216a37bbSSanjay Patel Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand()); 46898c2f4eeSSanjay Patel replaceValue(I, *NewExt); 46919b62b79SSanjay Patel } 47019b62b79SSanjay Patel 471fc445589SSanjay Patel /// Match an instruction with extracted vector operands. 4726bdd531aSSanjay Patel bool VectorCombine::foldExtractExtract(Instruction &I) { 473e9c79a7aSSanjay Patel // It is not safe to transform things like div, urem, etc. because we may 474e9c79a7aSSanjay Patel // create undefined behavior when executing those on unknown vector elements. 475e9c79a7aSSanjay Patel if (!isSafeToSpeculativelyExecute(&I)) 476e9c79a7aSSanjay Patel return false; 477e9c79a7aSSanjay Patel 478216a37bbSSanjay Patel Instruction *I0, *I1; 479fc445589SSanjay Patel CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 480216a37bbSSanjay Patel if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) && 481216a37bbSSanjay Patel !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1)))) 482fc445589SSanjay Patel return false; 483fc445589SSanjay Patel 484fc445589SSanjay Patel Value *V0, *V1; 485fc445589SSanjay Patel uint64_t C0, C1; 486216a37bbSSanjay Patel if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) || 487216a37bbSSanjay Patel !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) || 488fc445589SSanjay Patel V0->getType() != V1->getType()) 489fc445589SSanjay Patel return false; 490fc445589SSanjay Patel 491ce97ce3aSSanjay Patel // If the scalar value 'I' is going to be re-inserted into a vector, then try 492ce97ce3aSSanjay Patel // to create an extract to that same element. The extract/insert can be 493ce97ce3aSSanjay Patel // reduced to a "select shuffle". 494ce97ce3aSSanjay Patel // TODO: If we add a larger pattern match that starts from an insert, this 495ce97ce3aSSanjay Patel // probably becomes unnecessary. 496216a37bbSSanjay Patel auto *Ext0 = cast<ExtractElementInst>(I0); 497216a37bbSSanjay Patel auto *Ext1 = cast<ExtractElementInst>(I1); 498a0f96741SSanjay Patel uint64_t InsertIndex = InvalidIndex; 499ce97ce3aSSanjay Patel if (I.hasOneUse()) 5007eed772aSSanjay Patel match(I.user_back(), 5017eed772aSSanjay Patel m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex))); 502ce97ce3aSSanjay Patel 503216a37bbSSanjay Patel ExtractElementInst *ExtractToChange; 5040dcd2b40SSimon Pilgrim if (isExtractExtractCheap(Ext0, Ext1, I, ExtractToChange, InsertIndex)) 505fc445589SSanjay Patel return false; 506e9c79a7aSSanjay Patel 507216a37bbSSanjay Patel if (ExtractToChange) { 508216a37bbSSanjay Patel unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0; 509216a37bbSSanjay Patel ExtractElementInst *NewExtract = 5109934cc54SSanjay Patel translateExtract(ExtractToChange, CheapExtractIdx, Builder); 511216a37bbSSanjay Patel if (!NewExtract) 5126d864097SSanjay Patel return false; 513216a37bbSSanjay Patel if (ExtractToChange == Ext0) 514216a37bbSSanjay Patel Ext0 = NewExtract; 515a69158c1SSanjay Patel else 516216a37bbSSanjay Patel Ext1 = NewExtract; 517a69158c1SSanjay Patel } 518e9c79a7aSSanjay Patel 519e9c79a7aSSanjay Patel if (Pred != CmpInst::BAD_ICMP_PREDICATE) 520039ff29eSSanjay Patel foldExtExtCmp(Ext0, Ext1, I); 521e9c79a7aSSanjay Patel else 522039ff29eSSanjay Patel foldExtExtBinop(Ext0, Ext1, I); 523e9c79a7aSSanjay Patel 524300870a9SFlorian Hahn Worklist.push(Ext0); 525300870a9SFlorian Hahn Worklist.push(Ext1); 526e9c79a7aSSanjay Patel return true; 527fc445589SSanjay Patel } 528fc445589SSanjay Patel 529bef6e67eSSanjay Patel /// If this is a bitcast of a shuffle, try to bitcast the source vector to the 530bef6e67eSSanjay Patel /// destination type followed by shuffle. This can enable further transforms by 531bef6e67eSSanjay Patel /// moving bitcasts or shuffles together. 5326bdd531aSSanjay Patel bool VectorCombine::foldBitcastShuf(Instruction &I) { 533b6050ca1SSanjay Patel Value *V; 534b6050ca1SSanjay Patel ArrayRef<int> Mask; 5357eed772aSSanjay Patel if (!match(&I, m_BitCast( 5367eed772aSSanjay Patel m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask)))))) 537b6050ca1SSanjay Patel return false; 538b6050ca1SSanjay Patel 539b4f04d71SHuihui Zhang // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for 540b4f04d71SHuihui Zhang // scalable type is unknown; Second, we cannot reason if the narrowed shuffle 541b4f04d71SHuihui Zhang // mask for scalable type is a splat or not. 542b4f04d71SHuihui Zhang // 2) Disallow non-vector casts and length-changing shuffles. 543bef6e67eSSanjay Patel // TODO: We could allow any shuffle. 544b4f04d71SHuihui Zhang auto *DestTy = dyn_cast<FixedVectorType>(I.getType()); 545b4f04d71SHuihui Zhang auto *SrcTy = dyn_cast<FixedVectorType>(V->getType()); 546b4f04d71SHuihui Zhang if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy) 547b6050ca1SSanjay Patel return false; 548b6050ca1SSanjay Patel 549b4f04d71SHuihui Zhang unsigned DestNumElts = DestTy->getNumElements(); 550b4f04d71SHuihui Zhang unsigned SrcNumElts = SrcTy->getNumElements(); 551b6050ca1SSanjay Patel SmallVector<int, 16> NewMask; 552bef6e67eSSanjay Patel if (SrcNumElts <= DestNumElts) { 553bef6e67eSSanjay Patel // The bitcast is from wide to narrow/equal elements. The shuffle mask can 554bef6e67eSSanjay Patel // always be expanded to the equivalent form choosing narrower elements. 555b6050ca1SSanjay Patel assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask"); 556b6050ca1SSanjay Patel unsigned ScaleFactor = DestNumElts / SrcNumElts; 5571318ddbcSSanjay Patel narrowShuffleMaskElts(ScaleFactor, Mask, NewMask); 558bef6e67eSSanjay Patel } else { 559bef6e67eSSanjay Patel // The bitcast is from narrow elements to wide elements. The shuffle mask 560bef6e67eSSanjay Patel // must choose consecutive elements to allow casting first. 561bef6e67eSSanjay Patel assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask"); 562bef6e67eSSanjay Patel unsigned ScaleFactor = SrcNumElts / DestNumElts; 563bef6e67eSSanjay Patel if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask)) 564bef6e67eSSanjay Patel return false; 565bef6e67eSSanjay Patel } 566e2935dcfSDavid Green 567e2935dcfSDavid Green // The new shuffle must not cost more than the old shuffle. The bitcast is 568e2935dcfSDavid Green // moved ahead of the shuffle, so assume that it has the same cost as before. 569e2935dcfSDavid Green InstructionCost DestCost = TTI.getShuffleCost( 570e2935dcfSDavid Green TargetTransformInfo::SK_PermuteSingleSrc, DestTy, NewMask); 571e2935dcfSDavid Green InstructionCost SrcCost = 572e2935dcfSDavid Green TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy, Mask); 573e2935dcfSDavid Green if (DestCost > SrcCost || !DestCost.isValid()) 574e2935dcfSDavid Green return false; 575e2935dcfSDavid Green 576bef6e67eSSanjay Patel // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC' 5777aeb41b3SRoman Lebedev ++NumShufOfBitcast; 578bef6e67eSSanjay Patel Value *CastV = Builder.CreateBitCast(V, DestTy); 5791e6b240dSSanjay Patel Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask); 58098c2f4eeSSanjay Patel replaceValue(I, *Shuf); 581b6050ca1SSanjay Patel return true; 582b6050ca1SSanjay Patel } 583b6050ca1SSanjay Patel 584ed67f5e7SSanjay Patel /// Match a vector binop or compare instruction with at least one inserted 585ed67f5e7SSanjay Patel /// scalar operand and convert to scalar binop/cmp followed by insertelement. 5866bdd531aSSanjay Patel bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) { 587ed67f5e7SSanjay Patel CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 5885dc4e7c2SSimon Pilgrim Value *Ins0, *Ins1; 589ed67f5e7SSanjay Patel if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) && 590ed67f5e7SSanjay Patel !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1)))) 591ed67f5e7SSanjay Patel return false; 592ed67f5e7SSanjay Patel 593ed67f5e7SSanjay Patel // Do not convert the vector condition of a vector select into a scalar 594ed67f5e7SSanjay Patel // condition. That may cause problems for codegen because of differences in 595ed67f5e7SSanjay Patel // boolean formats and register-file transfers. 596ed67f5e7SSanjay Patel // TODO: Can we account for that in the cost model? 597ed67f5e7SSanjay Patel bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE; 598ed67f5e7SSanjay Patel if (IsCmp) 599ed67f5e7SSanjay Patel for (User *U : I.users()) 600ed67f5e7SSanjay Patel if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value()))) 6010d2a0b44SSanjay Patel return false; 6020d2a0b44SSanjay Patel 6035dc4e7c2SSimon Pilgrim // Match against one or both scalar values being inserted into constant 6045dc4e7c2SSimon Pilgrim // vectors: 605ed67f5e7SSanjay Patel // vec_op VecC0, (inselt VecC1, V1, Index) 606ed67f5e7SSanjay Patel // vec_op (inselt VecC0, V0, Index), VecC1 607ed67f5e7SSanjay Patel // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) 6080d2a0b44SSanjay Patel // TODO: Deal with mismatched index constants and variable indexes? 6095dc4e7c2SSimon Pilgrim Constant *VecC0 = nullptr, *VecC1 = nullptr; 6105dc4e7c2SSimon Pilgrim Value *V0 = nullptr, *V1 = nullptr; 6115dc4e7c2SSimon Pilgrim uint64_t Index0 = 0, Index1 = 0; 6127eed772aSSanjay Patel if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0), 6135dc4e7c2SSimon Pilgrim m_ConstantInt(Index0))) && 6145dc4e7c2SSimon Pilgrim !match(Ins0, m_Constant(VecC0))) 6155dc4e7c2SSimon Pilgrim return false; 6165dc4e7c2SSimon Pilgrim if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1), 6175dc4e7c2SSimon Pilgrim m_ConstantInt(Index1))) && 6185dc4e7c2SSimon Pilgrim !match(Ins1, m_Constant(VecC1))) 6190d2a0b44SSanjay Patel return false; 6200d2a0b44SSanjay Patel 6215dc4e7c2SSimon Pilgrim bool IsConst0 = !V0; 6225dc4e7c2SSimon Pilgrim bool IsConst1 = !V1; 6235dc4e7c2SSimon Pilgrim if (IsConst0 && IsConst1) 6245dc4e7c2SSimon Pilgrim return false; 6255dc4e7c2SSimon Pilgrim if (!IsConst0 && !IsConst1 && Index0 != Index1) 6265dc4e7c2SSimon Pilgrim return false; 6275dc4e7c2SSimon Pilgrim 6285dc4e7c2SSimon Pilgrim // Bail for single insertion if it is a load. 6295dc4e7c2SSimon Pilgrim // TODO: Handle this once getVectorInstrCost can cost for load/stores. 6305dc4e7c2SSimon Pilgrim auto *I0 = dyn_cast_or_null<Instruction>(V0); 6315dc4e7c2SSimon Pilgrim auto *I1 = dyn_cast_or_null<Instruction>(V1); 6325dc4e7c2SSimon Pilgrim if ((IsConst0 && I1 && I1->mayReadFromMemory()) || 6335dc4e7c2SSimon Pilgrim (IsConst1 && I0 && I0->mayReadFromMemory())) 6345dc4e7c2SSimon Pilgrim return false; 6355dc4e7c2SSimon Pilgrim 6365dc4e7c2SSimon Pilgrim uint64_t Index = IsConst0 ? Index1 : Index0; 6375dc4e7c2SSimon Pilgrim Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType(); 6380d2a0b44SSanjay Patel Type *VecTy = I.getType(); 6395dc4e7c2SSimon Pilgrim assert(VecTy->isVectorTy() && 6405dc4e7c2SSimon Pilgrim (IsConst0 || IsConst1 || V0->getType() == V1->getType()) && 641741e20f3SSanjay Patel (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() || 642741e20f3SSanjay Patel ScalarTy->isPointerTy()) && 643741e20f3SSanjay Patel "Unexpected types for insert element into binop or cmp"); 6440d2a0b44SSanjay Patel 645ed67f5e7SSanjay Patel unsigned Opcode = I.getOpcode(); 64636710c38SCaroline Concatto InstructionCost ScalarOpCost, VectorOpCost; 647ed67f5e7SSanjay Patel if (IsCmp) { 6480dcd2b40SSimon Pilgrim CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate(); 6490dcd2b40SSimon Pilgrim ScalarOpCost = TTI.getCmpSelInstrCost( 6500dcd2b40SSimon Pilgrim Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred); 6510dcd2b40SSimon Pilgrim VectorOpCost = TTI.getCmpSelInstrCost( 6520dcd2b40SSimon Pilgrim Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred); 653ed67f5e7SSanjay Patel } else { 654ed67f5e7SSanjay Patel ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 655ed67f5e7SSanjay Patel VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 656ed67f5e7SSanjay Patel } 6570d2a0b44SSanjay Patel 6580d2a0b44SSanjay Patel // Get cost estimate for the insert element. This cost will factor into 6590d2a0b44SSanjay Patel // both sequences. 66036710c38SCaroline Concatto InstructionCost InsertCost = 6610d2a0b44SSanjay Patel TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index); 66236710c38SCaroline Concatto InstructionCost OldCost = 66336710c38SCaroline Concatto (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + VectorOpCost; 66436710c38SCaroline Concatto InstructionCost NewCost = ScalarOpCost + InsertCost + 6655dc4e7c2SSimon Pilgrim (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) + 6665dc4e7c2SSimon Pilgrim (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost); 6670d2a0b44SSanjay Patel 6680d2a0b44SSanjay Patel // We want to scalarize unless the vector variant actually has lower cost. 66936710c38SCaroline Concatto if (OldCost < NewCost || !NewCost.isValid()) 6700d2a0b44SSanjay Patel return false; 6710d2a0b44SSanjay Patel 672ed67f5e7SSanjay Patel // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) --> 673ed67f5e7SSanjay Patel // inselt NewVecC, (scalar_op V0, V1), Index 674ed67f5e7SSanjay Patel if (IsCmp) 675ed67f5e7SSanjay Patel ++NumScalarCmp; 676ed67f5e7SSanjay Patel else 6770d2a0b44SSanjay Patel ++NumScalarBO; 6785dc4e7c2SSimon Pilgrim 6795dc4e7c2SSimon Pilgrim // For constant cases, extract the scalar element, this should constant fold. 6805dc4e7c2SSimon Pilgrim if (IsConst0) 6815dc4e7c2SSimon Pilgrim V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index)); 6825dc4e7c2SSimon Pilgrim if (IsConst1) 6835dc4e7c2SSimon Pilgrim V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index)); 6845dc4e7c2SSimon Pilgrim 685ed67f5e7SSanjay Patel Value *Scalar = 68646a285adSSanjay Patel IsCmp ? Builder.CreateCmp(Pred, V0, V1) 687ed67f5e7SSanjay Patel : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1); 688ed67f5e7SSanjay Patel 689ed67f5e7SSanjay Patel Scalar->setName(I.getName() + ".scalar"); 6900d2a0b44SSanjay Patel 6910d2a0b44SSanjay Patel // All IR flags are safe to back-propagate. There is no potential for extra 6920d2a0b44SSanjay Patel // poison to be created by the scalar instruction. 6930d2a0b44SSanjay Patel if (auto *ScalarInst = dyn_cast<Instruction>(Scalar)) 6940d2a0b44SSanjay Patel ScalarInst->copyIRFlags(&I); 6950d2a0b44SSanjay Patel 6960d2a0b44SSanjay Patel // Fold the vector constants in the original vectors into a new base vector. 697ed67f5e7SSanjay Patel Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1) 698ed67f5e7SSanjay Patel : ConstantExpr::get(Opcode, VecC0, VecC1); 6990d2a0b44SSanjay Patel Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index); 70098c2f4eeSSanjay Patel replaceValue(I, *Insert); 7010d2a0b44SSanjay Patel return true; 7020d2a0b44SSanjay Patel } 7030d2a0b44SSanjay Patel 704b6315aeeSSanjay Patel /// Try to combine a scalar binop + 2 scalar compares of extracted elements of 705b6315aeeSSanjay Patel /// a vector into vector operations followed by extract. Note: The SLP pass 706b6315aeeSSanjay Patel /// may miss this pattern because of implementation problems. 707b6315aeeSSanjay Patel bool VectorCombine::foldExtractedCmps(Instruction &I) { 708b6315aeeSSanjay Patel // We are looking for a scalar binop of booleans. 709b6315aeeSSanjay Patel // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1) 710b6315aeeSSanjay Patel if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1)) 711b6315aeeSSanjay Patel return false; 712b6315aeeSSanjay Patel 713b6315aeeSSanjay Patel // The compare predicates should match, and each compare should have a 714b6315aeeSSanjay Patel // constant operand. 715b6315aeeSSanjay Patel // TODO: Relax the one-use constraints. 716b6315aeeSSanjay Patel Value *B0 = I.getOperand(0), *B1 = I.getOperand(1); 717b6315aeeSSanjay Patel Instruction *I0, *I1; 718b6315aeeSSanjay Patel Constant *C0, *C1; 719b6315aeeSSanjay Patel CmpInst::Predicate P0, P1; 720b6315aeeSSanjay Patel if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) || 721b6315aeeSSanjay Patel !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) || 722b6315aeeSSanjay Patel P0 != P1) 723b6315aeeSSanjay Patel return false; 724b6315aeeSSanjay Patel 725b6315aeeSSanjay Patel // The compare operands must be extracts of the same vector with constant 726b6315aeeSSanjay Patel // extract indexes. 727b6315aeeSSanjay Patel // TODO: Relax the one-use constraints. 728b6315aeeSSanjay Patel Value *X; 729b6315aeeSSanjay Patel uint64_t Index0, Index1; 730b6315aeeSSanjay Patel if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) || 731b6315aeeSSanjay Patel !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1))))) 732b6315aeeSSanjay Patel return false; 733b6315aeeSSanjay Patel 734b6315aeeSSanjay Patel auto *Ext0 = cast<ExtractElementInst>(I0); 735b6315aeeSSanjay Patel auto *Ext1 = cast<ExtractElementInst>(I1); 736b6315aeeSSanjay Patel ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1); 737b6315aeeSSanjay Patel if (!ConvertToShuf) 738b6315aeeSSanjay Patel return false; 739b6315aeeSSanjay Patel 740b6315aeeSSanjay Patel // The original scalar pattern is: 741b6315aeeSSanjay Patel // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1) 742b6315aeeSSanjay Patel CmpInst::Predicate Pred = P0; 743b6315aeeSSanjay Patel unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp 744b6315aeeSSanjay Patel : Instruction::ICmp; 745b6315aeeSSanjay Patel auto *VecTy = dyn_cast<FixedVectorType>(X->getType()); 746b6315aeeSSanjay Patel if (!VecTy) 747b6315aeeSSanjay Patel return false; 748b6315aeeSSanjay Patel 74936710c38SCaroline Concatto InstructionCost OldCost = 75036710c38SCaroline Concatto TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 751b6315aeeSSanjay Patel OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 7520dcd2b40SSimon Pilgrim OldCost += 7530dcd2b40SSimon Pilgrim TTI.getCmpSelInstrCost(CmpOpcode, I0->getType(), 7540dcd2b40SSimon Pilgrim CmpInst::makeCmpResultType(I0->getType()), Pred) * 7550dcd2b40SSimon Pilgrim 2; 756b6315aeeSSanjay Patel OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType()); 757b6315aeeSSanjay Patel 758b6315aeeSSanjay Patel // The proposed vector pattern is: 759b6315aeeSSanjay Patel // vcmp = cmp Pred X, VecC 760b6315aeeSSanjay Patel // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0 761b6315aeeSSanjay Patel int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0; 762b6315aeeSSanjay Patel int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1; 763b6315aeeSSanjay Patel auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType())); 7640dcd2b40SSimon Pilgrim InstructionCost NewCost = TTI.getCmpSelInstrCost( 7650dcd2b40SSimon Pilgrim CmpOpcode, X->getType(), CmpInst::makeCmpResultType(X->getType()), Pred); 766e2935dcfSDavid Green SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem); 767e2935dcfSDavid Green ShufMask[CheapIndex] = ExpensiveIndex; 768e2935dcfSDavid Green NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy, 769e2935dcfSDavid Green ShufMask); 770b6315aeeSSanjay Patel NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy); 771b6315aeeSSanjay Patel NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex); 772b6315aeeSSanjay Patel 773b6315aeeSSanjay Patel // Aggressively form vector ops if the cost is equal because the transform 774b6315aeeSSanjay Patel // may enable further optimization. 775b6315aeeSSanjay Patel // Codegen can reverse this transform (scalarize) if it was not profitable. 77636710c38SCaroline Concatto if (OldCost < NewCost || !NewCost.isValid()) 777b6315aeeSSanjay Patel return false; 778b6315aeeSSanjay Patel 779b6315aeeSSanjay Patel // Create a vector constant from the 2 scalar constants. 780b6315aeeSSanjay Patel SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(), 781b6315aeeSSanjay Patel UndefValue::get(VecTy->getElementType())); 782b6315aeeSSanjay Patel CmpC[Index0] = C0; 783b6315aeeSSanjay Patel CmpC[Index1] = C1; 784b6315aeeSSanjay Patel Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC)); 785b6315aeeSSanjay Patel 786b6315aeeSSanjay Patel Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder); 787b6315aeeSSanjay Patel Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(), 788b6315aeeSSanjay Patel VCmp, Shuf); 789b6315aeeSSanjay Patel Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex); 790b6315aeeSSanjay Patel replaceValue(I, *NewExt); 791b6315aeeSSanjay Patel ++NumVecCmpBO; 792b6315aeeSSanjay Patel return true; 793b6315aeeSSanjay Patel } 794b6315aeeSSanjay Patel 7952db4979cSQiu Chaofan // Check if memory loc modified between two instrs in the same BB 7962db4979cSQiu Chaofan static bool isMemModifiedBetween(BasicBlock::iterator Begin, 7972db4979cSQiu Chaofan BasicBlock::iterator End, 7982db4979cSQiu Chaofan const MemoryLocation &Loc, AAResults &AA) { 7992db4979cSQiu Chaofan unsigned NumScanned = 0; 8002db4979cSQiu Chaofan return std::any_of(Begin, End, [&](const Instruction &Instr) { 8012db4979cSQiu Chaofan return isModSet(AA.getModRefInfo(&Instr, Loc)) || 8022db4979cSQiu Chaofan ++NumScanned > MaxInstrsToScan; 8032db4979cSQiu Chaofan }); 8042db4979cSQiu Chaofan } 8052db4979cSQiu Chaofan 806c24fc37eSFlorian Hahn /// Helper class to indicate whether a vector index can be safely scalarized and 807c24fc37eSFlorian Hahn /// if a freeze needs to be inserted. 808c24fc37eSFlorian Hahn class ScalarizationResult { 809c24fc37eSFlorian Hahn enum class StatusTy { Unsafe, Safe, SafeWithFreeze }; 810c24fc37eSFlorian Hahn 811c24fc37eSFlorian Hahn StatusTy Status; 812c24fc37eSFlorian Hahn Value *ToFreeze; 813c24fc37eSFlorian Hahn 814c24fc37eSFlorian Hahn ScalarizationResult(StatusTy Status, Value *ToFreeze = nullptr) 815c24fc37eSFlorian Hahn : Status(Status), ToFreeze(ToFreeze) {} 816c24fc37eSFlorian Hahn 817c24fc37eSFlorian Hahn public: 818c24fc37eSFlorian Hahn ScalarizationResult(const ScalarizationResult &Other) = default; 819c24fc37eSFlorian Hahn ~ScalarizationResult() { 820c24fc37eSFlorian Hahn assert(!ToFreeze && "freeze() not called with ToFreeze being set"); 821c24fc37eSFlorian Hahn } 822c24fc37eSFlorian Hahn 823c24fc37eSFlorian Hahn static ScalarizationResult unsafe() { return {StatusTy::Unsafe}; } 824c24fc37eSFlorian Hahn static ScalarizationResult safe() { return {StatusTy::Safe}; } 825c24fc37eSFlorian Hahn static ScalarizationResult safeWithFreeze(Value *ToFreeze) { 826c24fc37eSFlorian Hahn return {StatusTy::SafeWithFreeze, ToFreeze}; 827c24fc37eSFlorian Hahn } 828c24fc37eSFlorian Hahn 829c24fc37eSFlorian Hahn /// Returns true if the index can be scalarize without requiring a freeze. 830c24fc37eSFlorian Hahn bool isSafe() const { return Status == StatusTy::Safe; } 831c24fc37eSFlorian Hahn /// Returns true if the index cannot be scalarized. 832c24fc37eSFlorian Hahn bool isUnsafe() const { return Status == StatusTy::Unsafe; } 833c24fc37eSFlorian Hahn /// Returns true if the index can be scalarize, but requires inserting a 834c24fc37eSFlorian Hahn /// freeze. 835c24fc37eSFlorian Hahn bool isSafeWithFreeze() const { return Status == StatusTy::SafeWithFreeze; } 836c24fc37eSFlorian Hahn 837e2f6290eSFlorian Hahn /// Reset the state of Unsafe and clear ToFreze if set. 838e2f6290eSFlorian Hahn void discard() { 839e2f6290eSFlorian Hahn ToFreeze = nullptr; 840e2f6290eSFlorian Hahn Status = StatusTy::Unsafe; 841e2f6290eSFlorian Hahn } 842e2f6290eSFlorian Hahn 843c24fc37eSFlorian Hahn /// Freeze the ToFreeze and update the use in \p User to use it. 844c24fc37eSFlorian Hahn void freeze(IRBuilder<> &Builder, Instruction &UserI) { 845c24fc37eSFlorian Hahn assert(isSafeWithFreeze() && 846c24fc37eSFlorian Hahn "should only be used when freezing is required"); 847c24fc37eSFlorian Hahn assert(is_contained(ToFreeze->users(), &UserI) && 848c24fc37eSFlorian Hahn "UserI must be a user of ToFreeze"); 849c24fc37eSFlorian Hahn IRBuilder<>::InsertPointGuard Guard(Builder); 850c24fc37eSFlorian Hahn Builder.SetInsertPoint(cast<Instruction>(&UserI)); 851c24fc37eSFlorian Hahn Value *Frozen = 852c24fc37eSFlorian Hahn Builder.CreateFreeze(ToFreeze, ToFreeze->getName() + ".frozen"); 853c24fc37eSFlorian Hahn for (Use &U : make_early_inc_range((UserI.operands()))) 854c24fc37eSFlorian Hahn if (U.get() == ToFreeze) 855c24fc37eSFlorian Hahn U.set(Frozen); 856c24fc37eSFlorian Hahn 857c24fc37eSFlorian Hahn ToFreeze = nullptr; 858c24fc37eSFlorian Hahn } 859c24fc37eSFlorian Hahn }; 860c24fc37eSFlorian Hahn 8614e8c28b6SFlorian Hahn /// Check if it is legal to scalarize a memory access to \p VecTy at index \p 8624e8c28b6SFlorian Hahn /// Idx. \p Idx must access a valid vector element. 863c24fc37eSFlorian Hahn static ScalarizationResult canScalarizeAccess(FixedVectorType *VecTy, 864c24fc37eSFlorian Hahn Value *Idx, Instruction *CtxI, 8655131037eSFlorian Hahn AssumptionCache &AC, 8665131037eSFlorian Hahn const DominatorTree &DT) { 867c24fc37eSFlorian Hahn if (auto *C = dyn_cast<ConstantInt>(Idx)) { 868c24fc37eSFlorian Hahn if (C->getValue().ult(VecTy->getNumElements())) 869c24fc37eSFlorian Hahn return ScalarizationResult::safe(); 870c24fc37eSFlorian Hahn return ScalarizationResult::unsafe(); 871c24fc37eSFlorian Hahn } 872575e2affSFlorian Hahn 873c24fc37eSFlorian Hahn unsigned IntWidth = Idx->getType()->getScalarSizeInBits(); 874c24fc37eSFlorian Hahn APInt Zero(IntWidth, 0); 875c24fc37eSFlorian Hahn APInt MaxElts(IntWidth, VecTy->getNumElements()); 876575e2affSFlorian Hahn ConstantRange ValidIndices(Zero, MaxElts); 877c24fc37eSFlorian Hahn ConstantRange IdxRange(IntWidth, true); 878c24fc37eSFlorian Hahn 879c24fc37eSFlorian Hahn if (isGuaranteedNotToBePoison(Idx, &AC)) { 8800edf9995SSanjay Patel if (ValidIndices.contains(computeConstantRange(Idx, /* ForSigned */ false, 8810edf9995SSanjay Patel true, &AC, CtxI, &DT))) 882c24fc37eSFlorian Hahn return ScalarizationResult::safe(); 883c24fc37eSFlorian Hahn return ScalarizationResult::unsafe(); 884c24fc37eSFlorian Hahn } 885c24fc37eSFlorian Hahn 886c24fc37eSFlorian Hahn // If the index may be poison, check if we can insert a freeze before the 887c24fc37eSFlorian Hahn // range of the index is restricted. 888c24fc37eSFlorian Hahn Value *IdxBase; 889c24fc37eSFlorian Hahn ConstantInt *CI; 890c24fc37eSFlorian Hahn if (match(Idx, m_And(m_Value(IdxBase), m_ConstantInt(CI)))) { 891c24fc37eSFlorian Hahn IdxRange = IdxRange.binaryAnd(CI->getValue()); 892c24fc37eSFlorian Hahn } else if (match(Idx, m_URem(m_Value(IdxBase), m_ConstantInt(CI)))) { 893c24fc37eSFlorian Hahn IdxRange = IdxRange.urem(CI->getValue()); 894c24fc37eSFlorian Hahn } 895c24fc37eSFlorian Hahn 896c24fc37eSFlorian Hahn if (ValidIndices.contains(IdxRange)) 897c24fc37eSFlorian Hahn return ScalarizationResult::safeWithFreeze(IdxBase); 898c24fc37eSFlorian Hahn return ScalarizationResult::unsafe(); 8994e8c28b6SFlorian Hahn } 9004e8c28b6SFlorian Hahn 901abc0e012SRoman Lebedev /// The memory operation on a vector of \p ScalarType had alignment of 902abc0e012SRoman Lebedev /// \p VectorAlignment. Compute the maximal, but conservatively correct, 903abc0e012SRoman Lebedev /// alignment that will be valid for the memory operation on a single scalar 904abc0e012SRoman Lebedev /// element of the same type with index \p Idx. 905abc0e012SRoman Lebedev static Align computeAlignmentAfterScalarization(Align VectorAlignment, 906abc0e012SRoman Lebedev Type *ScalarType, Value *Idx, 907abc0e012SRoman Lebedev const DataLayout &DL) { 908abc0e012SRoman Lebedev if (auto *C = dyn_cast<ConstantInt>(Idx)) 909abc0e012SRoman Lebedev return commonAlignment(VectorAlignment, 910abc0e012SRoman Lebedev C->getZExtValue() * DL.getTypeStoreSize(ScalarType)); 911abc0e012SRoman Lebedev return commonAlignment(VectorAlignment, DL.getTypeStoreSize(ScalarType)); 912abc0e012SRoman Lebedev } 913abc0e012SRoman Lebedev 9142db4979cSQiu Chaofan // Combine patterns like: 9152db4979cSQiu Chaofan // %0 = load <4 x i32>, <4 x i32>* %a 9162db4979cSQiu Chaofan // %1 = insertelement <4 x i32> %0, i32 %b, i32 1 9172db4979cSQiu Chaofan // store <4 x i32> %1, <4 x i32>* %a 9182db4979cSQiu Chaofan // to: 9192db4979cSQiu Chaofan // %0 = bitcast <4 x i32>* %a to i32* 9202db4979cSQiu Chaofan // %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1 9212db4979cSQiu Chaofan // store i32 %b, i32* %1 9222db4979cSQiu Chaofan bool VectorCombine::foldSingleElementStore(Instruction &I) { 9232db4979cSQiu Chaofan StoreInst *SI = dyn_cast<StoreInst>(&I); 9246d2df181SQiu Chaofan if (!SI || !SI->isSimple() || 9256d2df181SQiu Chaofan !isa<FixedVectorType>(SI->getValueOperand()->getType())) 9262db4979cSQiu Chaofan return false; 9272db4979cSQiu Chaofan 9282db4979cSQiu Chaofan // TODO: Combine more complicated patterns (multiple insert) by referencing 9292db4979cSQiu Chaofan // TargetTransformInfo. 9302db4979cSQiu Chaofan Instruction *Source; 9316d2df181SQiu Chaofan Value *NewElement; 932575e2affSFlorian Hahn Value *Idx; 9332db4979cSQiu Chaofan if (!match(SI->getValueOperand(), 9342db4979cSQiu Chaofan m_InsertElt(m_Instruction(Source), m_Value(NewElement), 935575e2affSFlorian Hahn m_Value(Idx)))) 9362db4979cSQiu Chaofan return false; 9372db4979cSQiu Chaofan 9382db4979cSQiu Chaofan if (auto *Load = dyn_cast<LoadInst>(Source)) { 9396d2df181SQiu Chaofan auto VecTy = cast<FixedVectorType>(SI->getValueOperand()->getType()); 9402db4979cSQiu Chaofan const DataLayout &DL = I.getModule()->getDataLayout(); 9412db4979cSQiu Chaofan Value *SrcAddr = Load->getPointerOperand()->stripPointerCasts(); 9426d2df181SQiu Chaofan // Don't optimize for atomic/volatile load or store. Ensure memory is not 9436d2df181SQiu Chaofan // modified between, vector type matches store size, and index is inbounds. 9442db4979cSQiu Chaofan if (!Load->isSimple() || Load->getParent() != SI->getParent() || 9452db4979cSQiu Chaofan !DL.typeSizeEqualsStoreSize(Load->getType()) || 946c24fc37eSFlorian Hahn SrcAddr != SI->getPointerOperand()->stripPointerCasts()) 947c24fc37eSFlorian Hahn return false; 948c24fc37eSFlorian Hahn 9495131037eSFlorian Hahn auto ScalarizableIdx = canScalarizeAccess(VecTy, Idx, Load, AC, DT); 950c24fc37eSFlorian Hahn if (ScalarizableIdx.isUnsafe() || 9512db4979cSQiu Chaofan isMemModifiedBetween(Load->getIterator(), SI->getIterator(), 9522db4979cSQiu Chaofan MemoryLocation::get(SI), AA)) 9532db4979cSQiu Chaofan return false; 9542db4979cSQiu Chaofan 955c24fc37eSFlorian Hahn if (ScalarizableIdx.isSafeWithFreeze()) 956c24fc37eSFlorian Hahn ScalarizableIdx.freeze(Builder, *cast<Instruction>(Idx)); 957a213f735SNikita Popov Value *GEP = Builder.CreateInBoundsGEP( 958a213f735SNikita Popov SI->getValueOperand()->getType(), SI->getPointerOperand(), 959a213f735SNikita Popov {ConstantInt::get(Idx->getType(), 0), Idx}); 9602db4979cSQiu Chaofan StoreInst *NSI = Builder.CreateStore(NewElement, GEP); 9612db4979cSQiu Chaofan NSI->copyMetadata(*SI); 962abc0e012SRoman Lebedev Align ScalarOpAlignment = computeAlignmentAfterScalarization( 963abc0e012SRoman Lebedev std::max(SI->getAlign(), Load->getAlign()), NewElement->getType(), Idx, 964abc0e012SRoman Lebedev DL); 965abc0e012SRoman Lebedev NSI->setAlignment(ScalarOpAlignment); 9662db4979cSQiu Chaofan replaceValue(I, *NSI); 967300870a9SFlorian Hahn eraseInstruction(I); 9682db4979cSQiu Chaofan return true; 9692db4979cSQiu Chaofan } 9702db4979cSQiu Chaofan 9712db4979cSQiu Chaofan return false; 9722db4979cSQiu Chaofan } 9732db4979cSQiu Chaofan 9744e8c28b6SFlorian Hahn /// Try to scalarize vector loads feeding extractelement instructions. 9754e8c28b6SFlorian Hahn bool VectorCombine::scalarizeLoadExtract(Instruction &I) { 9764e8c28b6SFlorian Hahn Value *Ptr; 977300870a9SFlorian Hahn if (!match(&I, m_Load(m_Value(Ptr)))) 9784e8c28b6SFlorian Hahn return false; 9794e8c28b6SFlorian Hahn 980300870a9SFlorian Hahn auto *LI = cast<LoadInst>(&I); 9814e8c28b6SFlorian Hahn const DataLayout &DL = I.getModule()->getDataLayout(); 9824e8c28b6SFlorian Hahn if (LI->isVolatile() || !DL.typeSizeEqualsStoreSize(LI->getType())) 9834e8c28b6SFlorian Hahn return false; 9844e8c28b6SFlorian Hahn 9854e8c28b6SFlorian Hahn auto *FixedVT = dyn_cast<FixedVectorType>(LI->getType()); 9864e8c28b6SFlorian Hahn if (!FixedVT) 9874e8c28b6SFlorian Hahn return false; 9884e8c28b6SFlorian Hahn 9895a81a603SArthur Eubanks InstructionCost OriginalCost = 9905a81a603SArthur Eubanks TTI.getMemoryOpCost(Instruction::Load, LI->getType(), LI->getAlign(), 9914e8c28b6SFlorian Hahn LI->getPointerAddressSpace()); 9924e8c28b6SFlorian Hahn InstructionCost ScalarizedCost = 0; 9934e8c28b6SFlorian Hahn 9944e8c28b6SFlorian Hahn Instruction *LastCheckedInst = LI; 9954e8c28b6SFlorian Hahn unsigned NumInstChecked = 0; 9964e8c28b6SFlorian Hahn // Check if all users of the load are extracts with no memory modifications 9974e8c28b6SFlorian Hahn // between the load and the extract. Compute the cost of both the original 9984e8c28b6SFlorian Hahn // code and the scalarized version. 9994e8c28b6SFlorian Hahn for (User *U : LI->users()) { 10004e8c28b6SFlorian Hahn auto *UI = dyn_cast<ExtractElementInst>(U); 10014e8c28b6SFlorian Hahn if (!UI || UI->getParent() != LI->getParent()) 10024e8c28b6SFlorian Hahn return false; 10034e8c28b6SFlorian Hahn 100496ca0349SFlorian Hahn if (!isGuaranteedNotToBePoison(UI->getOperand(1), &AC, LI, &DT)) 100596ca0349SFlorian Hahn return false; 100696ca0349SFlorian Hahn 10074e8c28b6SFlorian Hahn // Check if any instruction between the load and the extract may modify 10084e8c28b6SFlorian Hahn // memory. 10094e8c28b6SFlorian Hahn if (LastCheckedInst->comesBefore(UI)) { 10104e8c28b6SFlorian Hahn for (Instruction &I : 10114e8c28b6SFlorian Hahn make_range(std::next(LI->getIterator()), UI->getIterator())) { 10124e8c28b6SFlorian Hahn // Bail out if we reached the check limit or the instruction may write 10134e8c28b6SFlorian Hahn // to memory. 10144e8c28b6SFlorian Hahn if (NumInstChecked == MaxInstrsToScan || I.mayWriteToMemory()) 10154e8c28b6SFlorian Hahn return false; 10164e8c28b6SFlorian Hahn NumInstChecked++; 10174e8c28b6SFlorian Hahn } 1018c141d158SFlorian Hahn LastCheckedInst = UI; 10194e8c28b6SFlorian Hahn } 10204e8c28b6SFlorian Hahn 10215131037eSFlorian Hahn auto ScalarIdx = canScalarizeAccess(FixedVT, UI->getOperand(1), &I, AC, DT); 1022c24fc37eSFlorian Hahn if (!ScalarIdx.isSafe()) { 1023c24fc37eSFlorian Hahn // TODO: Freeze index if it is safe to do so. 1024e2f6290eSFlorian Hahn ScalarIdx.discard(); 1025007f268cSFlorian Hahn return false; 1026c24fc37eSFlorian Hahn } 1027007f268cSFlorian Hahn 10284e8c28b6SFlorian Hahn auto *Index = dyn_cast<ConstantInt>(UI->getOperand(1)); 10294e8c28b6SFlorian Hahn OriginalCost += 10304e8c28b6SFlorian Hahn TTI.getVectorInstrCost(Instruction::ExtractElement, LI->getType(), 10314e8c28b6SFlorian Hahn Index ? Index->getZExtValue() : -1); 10324e8c28b6SFlorian Hahn ScalarizedCost += 10334e8c28b6SFlorian Hahn TTI.getMemoryOpCost(Instruction::Load, FixedVT->getElementType(), 10344e8c28b6SFlorian Hahn Align(1), LI->getPointerAddressSpace()); 10354e8c28b6SFlorian Hahn ScalarizedCost += TTI.getAddressComputationCost(FixedVT->getElementType()); 10364e8c28b6SFlorian Hahn } 10374e8c28b6SFlorian Hahn 10384e8c28b6SFlorian Hahn if (ScalarizedCost >= OriginalCost) 10394e8c28b6SFlorian Hahn return false; 10404e8c28b6SFlorian Hahn 10414e8c28b6SFlorian Hahn // Replace extracts with narrow scalar loads. 10424e8c28b6SFlorian Hahn for (User *U : LI->users()) { 10434e8c28b6SFlorian Hahn auto *EI = cast<ExtractElementInst>(U); 10444e8c28b6SFlorian Hahn Builder.SetInsertPoint(EI); 1045d4c070d8SFlorian Hahn 1046d4c070d8SFlorian Hahn Value *Idx = EI->getOperand(1); 1047d4c070d8SFlorian Hahn Value *GEP = 1048d4c070d8SFlorian Hahn Builder.CreateInBoundsGEP(FixedVT, Ptr, {Builder.getInt32(0), Idx}); 10494e8c28b6SFlorian Hahn auto *NewLoad = cast<LoadInst>(Builder.CreateLoad( 10504e8c28b6SFlorian Hahn FixedVT->getElementType(), GEP, EI->getName() + ".scalar")); 10514e8c28b6SFlorian Hahn 105220542b47SRoman Lebedev Align ScalarOpAlignment = computeAlignmentAfterScalarization( 105320542b47SRoman Lebedev LI->getAlign(), FixedVT->getElementType(), Idx, DL); 105420542b47SRoman Lebedev NewLoad->setAlignment(ScalarOpAlignment); 105520542b47SRoman Lebedev 10564e8c28b6SFlorian Hahn replaceValue(*EI, *NewLoad); 10574e8c28b6SFlorian Hahn } 10584e8c28b6SFlorian Hahn 10594e8c28b6SFlorian Hahn return true; 10604e8c28b6SFlorian Hahn } 10614e8c28b6SFlorian Hahn 106266d22b4dSSanjay Patel /// Try to convert "shuffle (binop), (binop)" with a shared binop operand into 106366d22b4dSSanjay Patel /// "binop (shuffle), (shuffle)". 106466d22b4dSSanjay Patel bool VectorCombine::foldShuffleOfBinops(Instruction &I) { 106566d22b4dSSanjay Patel auto *VecTy = dyn_cast<FixedVectorType>(I.getType()); 106666d22b4dSSanjay Patel if (!VecTy) 106766d22b4dSSanjay Patel return false; 106866d22b4dSSanjay Patel 106966d22b4dSSanjay Patel BinaryOperator *B0, *B1; 107066d22b4dSSanjay Patel ArrayRef<int> Mask; 107166d22b4dSSanjay Patel if (!match(&I, m_Shuffle(m_OneUse(m_BinOp(B0)), m_OneUse(m_BinOp(B1)), 107266d22b4dSSanjay Patel m_Mask(Mask))) || 107366d22b4dSSanjay Patel B0->getOpcode() != B1->getOpcode() || B0->getType() != VecTy) 107466d22b4dSSanjay Patel return false; 107566d22b4dSSanjay Patel 107666d22b4dSSanjay Patel // Try to replace a binop with a shuffle if the shuffle is not costly. 107766d22b4dSSanjay Patel // The new shuffle will choose from a single, common operand, so it may be 107866d22b4dSSanjay Patel // cheaper than the existing two-operand shuffle. 107966d22b4dSSanjay Patel SmallVector<int> UnaryMask = createUnaryMask(Mask, Mask.size()); 108066d22b4dSSanjay Patel Instruction::BinaryOps Opcode = B0->getOpcode(); 108166d22b4dSSanjay Patel InstructionCost BinopCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 108266d22b4dSSanjay Patel InstructionCost ShufCost = TTI.getShuffleCost( 108366d22b4dSSanjay Patel TargetTransformInfo::SK_PermuteSingleSrc, VecTy, UnaryMask); 108466d22b4dSSanjay Patel if (ShufCost > BinopCost) 108566d22b4dSSanjay Patel return false; 108666d22b4dSSanjay Patel 108766d22b4dSSanjay Patel // If we have something like "add X, Y" and "add Z, X", swap ops to match. 108866d22b4dSSanjay Patel Value *X = B0->getOperand(0), *Y = B0->getOperand(1); 108966d22b4dSSanjay Patel Value *Z = B1->getOperand(0), *W = B1->getOperand(1); 109066d22b4dSSanjay Patel if (BinaryOperator::isCommutative(Opcode) && X != Z && Y != W) 109166d22b4dSSanjay Patel std::swap(X, Y); 109266d22b4dSSanjay Patel 109366d22b4dSSanjay Patel Value *Shuf0, *Shuf1; 109466d22b4dSSanjay Patel if (X == Z) { 109566d22b4dSSanjay Patel // shuf (bo X, Y), (bo X, W) --> bo (shuf X), (shuf Y, W) 109666d22b4dSSanjay Patel Shuf0 = Builder.CreateShuffleVector(X, UnaryMask); 109766d22b4dSSanjay Patel Shuf1 = Builder.CreateShuffleVector(Y, W, Mask); 109866d22b4dSSanjay Patel } else if (Y == W) { 109966d22b4dSSanjay Patel // shuf (bo X, Y), (bo Z, Y) --> bo (shuf X, Z), (shuf Y) 110066d22b4dSSanjay Patel Shuf0 = Builder.CreateShuffleVector(X, Z, Mask); 110166d22b4dSSanjay Patel Shuf1 = Builder.CreateShuffleVector(Y, UnaryMask); 110266d22b4dSSanjay Patel } else { 110366d22b4dSSanjay Patel return false; 110466d22b4dSSanjay Patel } 110566d22b4dSSanjay Patel 110666d22b4dSSanjay Patel Value *NewBO = Builder.CreateBinOp(Opcode, Shuf0, Shuf1); 110766d22b4dSSanjay Patel // Intersect flags from the old binops. 110866d22b4dSSanjay Patel if (auto *NewInst = dyn_cast<Instruction>(NewBO)) { 110966d22b4dSSanjay Patel NewInst->copyIRFlags(B0); 111066d22b4dSSanjay Patel NewInst->andIRFlags(B1); 111166d22b4dSSanjay Patel } 111266d22b4dSSanjay Patel replaceValue(I, *NewBO); 111366d22b4dSSanjay Patel return true; 111466d22b4dSSanjay Patel } 111566d22b4dSSanjay Patel 1116a17f03bdSSanjay Patel /// This is the entry point for all transforms. Pass manager differences are 1117a17f03bdSSanjay Patel /// handled in the callers of this function. 11186bdd531aSSanjay Patel bool VectorCombine::run() { 111925c6544fSSanjay Patel if (DisableVectorCombine) 112025c6544fSSanjay Patel return false; 112125c6544fSSanjay Patel 1122cc892fd9SSanjay Patel // Don't attempt vectorization if the target does not support vectors. 1123cc892fd9SSanjay Patel if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true))) 1124cc892fd9SSanjay Patel return false; 1125cc892fd9SSanjay Patel 1126a17f03bdSSanjay Patel bool MadeChange = false; 1127300870a9SFlorian Hahn auto FoldInst = [this, &MadeChange](Instruction &I) { 1128de65b356SSanjay Patel Builder.SetInsertPoint(&I); 11294a1d63d7SFlorian Hahn if (!ScalarizationOnly) { 113043bdac29SSanjay Patel MadeChange |= vectorizeLoadInsert(I); 11316bdd531aSSanjay Patel MadeChange |= foldExtractExtract(I); 11326bdd531aSSanjay Patel MadeChange |= foldBitcastShuf(I); 1133b6315aeeSSanjay Patel MadeChange |= foldExtractedCmps(I); 113466d22b4dSSanjay Patel MadeChange |= foldShuffleOfBinops(I); 11354a1d63d7SFlorian Hahn } 11364a1d63d7SFlorian Hahn MadeChange |= scalarizeBinopOrCmp(I); 11374e8c28b6SFlorian Hahn MadeChange |= scalarizeLoadExtract(I); 11382db4979cSQiu Chaofan MadeChange |= foldSingleElementStore(I); 1139300870a9SFlorian Hahn }; 1140300870a9SFlorian Hahn for (BasicBlock &BB : F) { 1141300870a9SFlorian Hahn // Ignore unreachable basic blocks. 1142300870a9SFlorian Hahn if (!DT.isReachableFromEntry(&BB)) 1143300870a9SFlorian Hahn continue; 1144300870a9SFlorian Hahn // Use early increment range so that we can erase instructions in loop. 1145300870a9SFlorian Hahn for (Instruction &I : make_early_inc_range(BB)) { 1146098a0d8fSHongtao Yu if (I.isDebugOrPseudoInst()) 1147300870a9SFlorian Hahn continue; 1148300870a9SFlorian Hahn FoldInst(I); 1149a17f03bdSSanjay Patel } 1150fc3cc8a4SSanjay Patel } 1151a17f03bdSSanjay Patel 1152300870a9SFlorian Hahn while (!Worklist.isEmpty()) { 1153300870a9SFlorian Hahn Instruction *I = Worklist.removeOne(); 1154300870a9SFlorian Hahn if (!I) 1155300870a9SFlorian Hahn continue; 1156300870a9SFlorian Hahn 1157300870a9SFlorian Hahn if (isInstructionTriviallyDead(I)) { 1158300870a9SFlorian Hahn eraseInstruction(*I); 1159300870a9SFlorian Hahn continue; 1160300870a9SFlorian Hahn } 1161300870a9SFlorian Hahn 1162300870a9SFlorian Hahn FoldInst(*I); 1163300870a9SFlorian Hahn } 1164a17f03bdSSanjay Patel 1165a17f03bdSSanjay Patel return MadeChange; 1166a17f03bdSSanjay Patel } 1167a17f03bdSSanjay Patel 1168a17f03bdSSanjay Patel // Pass manager boilerplate below here. 1169a17f03bdSSanjay Patel 1170a17f03bdSSanjay Patel namespace { 1171a17f03bdSSanjay Patel class VectorCombineLegacyPass : public FunctionPass { 1172a17f03bdSSanjay Patel public: 1173a17f03bdSSanjay Patel static char ID; 1174a17f03bdSSanjay Patel VectorCombineLegacyPass() : FunctionPass(ID) { 1175a17f03bdSSanjay Patel initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry()); 1176a17f03bdSSanjay Patel } 1177a17f03bdSSanjay Patel 1178a17f03bdSSanjay Patel void getAnalysisUsage(AnalysisUsage &AU) const override { 1179575e2affSFlorian Hahn AU.addRequired<AssumptionCacheTracker>(); 1180a17f03bdSSanjay Patel AU.addRequired<DominatorTreeWrapperPass>(); 1181a17f03bdSSanjay Patel AU.addRequired<TargetTransformInfoWrapperPass>(); 11822db4979cSQiu Chaofan AU.addRequired<AAResultsWrapperPass>(); 1183a17f03bdSSanjay Patel AU.setPreservesCFG(); 1184a17f03bdSSanjay Patel AU.addPreserved<DominatorTreeWrapperPass>(); 1185a17f03bdSSanjay Patel AU.addPreserved<GlobalsAAWrapperPass>(); 1186024098aeSSanjay Patel AU.addPreserved<AAResultsWrapperPass>(); 1187024098aeSSanjay Patel AU.addPreserved<BasicAAWrapperPass>(); 1188a17f03bdSSanjay Patel FunctionPass::getAnalysisUsage(AU); 1189a17f03bdSSanjay Patel } 1190a17f03bdSSanjay Patel 1191a17f03bdSSanjay Patel bool runOnFunction(Function &F) override { 1192a17f03bdSSanjay Patel if (skipFunction(F)) 1193a17f03bdSSanjay Patel return false; 1194575e2affSFlorian Hahn auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1195a17f03bdSSanjay Patel auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1196a17f03bdSSanjay Patel auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 11972db4979cSQiu Chaofan auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 11984a1d63d7SFlorian Hahn VectorCombine Combiner(F, TTI, DT, AA, AC, false); 11996bdd531aSSanjay Patel return Combiner.run(); 1200a17f03bdSSanjay Patel } 1201a17f03bdSSanjay Patel }; 1202a17f03bdSSanjay Patel } // namespace 1203a17f03bdSSanjay Patel 1204a17f03bdSSanjay Patel char VectorCombineLegacyPass::ID = 0; 1205a17f03bdSSanjay Patel INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine", 1206a17f03bdSSanjay Patel "Optimize scalar/vector ops", false, 1207a17f03bdSSanjay Patel false) 1208575e2affSFlorian Hahn INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1209a17f03bdSSanjay Patel INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1210a17f03bdSSanjay Patel INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine", 1211a17f03bdSSanjay Patel "Optimize scalar/vector ops", false, false) 1212a17f03bdSSanjay Patel Pass *llvm::createVectorCombinePass() { 1213a17f03bdSSanjay Patel return new VectorCombineLegacyPass(); 1214a17f03bdSSanjay Patel } 1215a17f03bdSSanjay Patel 1216a17f03bdSSanjay Patel PreservedAnalyses VectorCombinePass::run(Function &F, 1217a17f03bdSSanjay Patel FunctionAnalysisManager &FAM) { 1218575e2affSFlorian Hahn auto &AC = FAM.getResult<AssumptionAnalysis>(F); 1219a17f03bdSSanjay Patel TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); 1220a17f03bdSSanjay Patel DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); 12212db4979cSQiu Chaofan AAResults &AA = FAM.getResult<AAManager>(F); 12224a1d63d7SFlorian Hahn VectorCombine Combiner(F, TTI, DT, AA, AC, ScalarizationOnly); 12236bdd531aSSanjay Patel if (!Combiner.run()) 1224a17f03bdSSanjay Patel return PreservedAnalyses::all(); 1225a17f03bdSSanjay Patel PreservedAnalyses PA; 1226a17f03bdSSanjay Patel PA.preserveSet<CFGAnalyses>(); 1227a17f03bdSSanjay Patel return PA; 1228a17f03bdSSanjay Patel } 1229