1a17f03bdSSanjay Patel //===------- VectorCombine.cpp - Optimize partial vector operations -------===// 2a17f03bdSSanjay Patel // 3a17f03bdSSanjay Patel // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4a17f03bdSSanjay Patel // See https://llvm.org/LICENSE.txt for license information. 5a17f03bdSSanjay Patel // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6a17f03bdSSanjay Patel // 7a17f03bdSSanjay Patel //===----------------------------------------------------------------------===// 8a17f03bdSSanjay Patel // 9a17f03bdSSanjay Patel // This pass optimizes scalar/vector interactions using target cost models. The 10a17f03bdSSanjay Patel // transforms implemented here may not fit in traditional loop-based or SLP 11a17f03bdSSanjay Patel // vectorization passes. 12a17f03bdSSanjay Patel // 13a17f03bdSSanjay Patel //===----------------------------------------------------------------------===// 14a17f03bdSSanjay Patel 15a17f03bdSSanjay Patel #include "llvm/Transforms/Vectorize/VectorCombine.h" 16a17f03bdSSanjay Patel #include "llvm/ADT/Statistic.h" 175006e551SSimon Pilgrim #include "llvm/Analysis/BasicAliasAnalysis.h" 18a17f03bdSSanjay Patel #include "llvm/Analysis/GlobalsModRef.h" 19a17f03bdSSanjay Patel #include "llvm/Analysis/TargetTransformInfo.h" 2019b62b79SSanjay Patel #include "llvm/Analysis/ValueTracking.h" 21b6050ca1SSanjay Patel #include "llvm/Analysis/VectorUtils.h" 22a17f03bdSSanjay Patel #include "llvm/IR/Dominators.h" 23a17f03bdSSanjay Patel #include "llvm/IR/Function.h" 24a17f03bdSSanjay Patel #include "llvm/IR/IRBuilder.h" 25a17f03bdSSanjay Patel #include "llvm/IR/PatternMatch.h" 26a17f03bdSSanjay Patel #include "llvm/InitializePasses.h" 27a17f03bdSSanjay Patel #include "llvm/Pass.h" 2825c6544fSSanjay Patel #include "llvm/Support/CommandLine.h" 29a17f03bdSSanjay Patel #include "llvm/Transforms/Utils/Local.h" 305006e551SSimon Pilgrim #include "llvm/Transforms/Vectorize.h" 31a17f03bdSSanjay Patel 32a17f03bdSSanjay Patel using namespace llvm; 33a17f03bdSSanjay Patel using namespace llvm::PatternMatch; 34a17f03bdSSanjay Patel 35a17f03bdSSanjay Patel #define DEBUG_TYPE "vector-combine" 36a17f03bdSSanjay Patel STATISTIC(NumVecCmp, "Number of vector compares formed"); 3719b62b79SSanjay Patel STATISTIC(NumVecBO, "Number of vector binops formed"); 387aeb41b3SRoman Lebedev STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast"); 390d2a0b44SSanjay Patel STATISTIC(NumScalarBO, "Number of scalar binops formed"); 40ed67f5e7SSanjay Patel STATISTIC(NumScalarCmp, "Number of scalar compares formed"); 41a17f03bdSSanjay Patel 4225c6544fSSanjay Patel static cl::opt<bool> DisableVectorCombine( 4325c6544fSSanjay Patel "disable-vector-combine", cl::init(false), cl::Hidden, 4425c6544fSSanjay Patel cl::desc("Disable all vector combine transforms")); 4525c6544fSSanjay Patel 46a69158c1SSanjay Patel static cl::opt<bool> DisableBinopExtractShuffle( 47a69158c1SSanjay Patel "disable-binop-extract-shuffle", cl::init(false), cl::Hidden, 48a69158c1SSanjay Patel cl::desc("Disable binop extract to shuffle transforms")); 49a69158c1SSanjay Patel 50a69158c1SSanjay Patel 51a69158c1SSanjay Patel /// Compare the relative costs of 2 extracts followed by scalar operation vs. 52a69158c1SSanjay Patel /// vector operation(s) followed by extract. Return true if the existing 53a69158c1SSanjay Patel /// instructions are cheaper than a vector alternative. Otherwise, return false 54a69158c1SSanjay Patel /// and if one of the extracts should be transformed to a shufflevector, set 55a69158c1SSanjay Patel /// \p ConvertToShuffle to that extract instruction. 56*216a37bbSSanjay Patel static bool isExtractExtractCheap(ExtractElementInst *Ext0, 57*216a37bbSSanjay Patel ExtractElementInst *Ext1, unsigned Opcode, 58a69158c1SSanjay Patel const TargetTransformInfo &TTI, 59*216a37bbSSanjay Patel ExtractElementInst *&ConvertToShuffle, 60ce97ce3aSSanjay Patel unsigned PreferredExtractIndex) { 614fa63fd4SAustin Kerbow assert(isa<ConstantInt>(Ext0->getOperand(1)) && 62a69158c1SSanjay Patel isa<ConstantInt>(Ext1->getOperand(1)) && 63a69158c1SSanjay Patel "Expected constant extract indexes"); 6434e34855SSanjay Patel Type *ScalarTy = Ext0->getType(); 65e3056ae9SSam Parker auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType()); 6634e34855SSanjay Patel int ScalarOpCost, VectorOpCost; 6734e34855SSanjay Patel 6834e34855SSanjay Patel // Get cost estimates for scalar and vector versions of the operation. 6934e34855SSanjay Patel bool IsBinOp = Instruction::isBinaryOp(Opcode); 7034e34855SSanjay Patel if (IsBinOp) { 7134e34855SSanjay Patel ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 7234e34855SSanjay Patel VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 7334e34855SSanjay Patel } else { 7434e34855SSanjay Patel assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 7534e34855SSanjay Patel "Expected a compare"); 7634e34855SSanjay Patel ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy, 7734e34855SSanjay Patel CmpInst::makeCmpResultType(ScalarTy)); 7834e34855SSanjay Patel VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy, 7934e34855SSanjay Patel CmpInst::makeCmpResultType(VecTy)); 8034e34855SSanjay Patel } 8134e34855SSanjay Patel 82a69158c1SSanjay Patel // Get cost estimates for the extract elements. These costs will factor into 8334e34855SSanjay Patel // both sequences. 84a69158c1SSanjay Patel unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue(); 85a69158c1SSanjay Patel unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue(); 86a69158c1SSanjay Patel 87a69158c1SSanjay Patel int Extract0Cost = TTI.getVectorInstrCost(Instruction::ExtractElement, 88a69158c1SSanjay Patel VecTy, Ext0Index); 89a69158c1SSanjay Patel int Extract1Cost = TTI.getVectorInstrCost(Instruction::ExtractElement, 90a69158c1SSanjay Patel VecTy, Ext1Index); 91a69158c1SSanjay Patel 92a69158c1SSanjay Patel // A more expensive extract will always be replaced by a splat shuffle. 93a69158c1SSanjay Patel // For example, if Ext0 is more expensive: 94a69158c1SSanjay Patel // opcode (extelt V0, Ext0), (ext V1, Ext1) --> 95a69158c1SSanjay Patel // extelt (opcode (splat V0, Ext0), V1), Ext1 96a69158c1SSanjay Patel // TODO: Evaluate whether that always results in lowest cost. Alternatively, 97a69158c1SSanjay Patel // check the cost of creating a broadcast shuffle and shuffling both 98a69158c1SSanjay Patel // operands to element 0. 99a69158c1SSanjay Patel int CheapExtractCost = std::min(Extract0Cost, Extract1Cost); 10034e34855SSanjay Patel 10134e34855SSanjay Patel // Extra uses of the extracts mean that we include those costs in the 10234e34855SSanjay Patel // vector total because those instructions will not be eliminated. 103e9c79a7aSSanjay Patel int OldCost, NewCost; 104a69158c1SSanjay Patel if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) { 105a69158c1SSanjay Patel // Handle a special case. If the 2 extracts are identical, adjust the 10634e34855SSanjay Patel // formulas to account for that. The extra use charge allows for either the 10734e34855SSanjay Patel // CSE'd pattern or an unoptimized form with identical values: 10834e34855SSanjay Patel // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C 10934e34855SSanjay Patel bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2) 11034e34855SSanjay Patel : !Ext0->hasOneUse() || !Ext1->hasOneUse(); 111a69158c1SSanjay Patel OldCost = CheapExtractCost + ScalarOpCost; 112a69158c1SSanjay Patel NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost; 11334e34855SSanjay Patel } else { 11434e34855SSanjay Patel // Handle the general case. Each extract is actually a different value: 115a69158c1SSanjay Patel // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C 116a69158c1SSanjay Patel OldCost = Extract0Cost + Extract1Cost + ScalarOpCost; 117a69158c1SSanjay Patel NewCost = VectorOpCost + CheapExtractCost + 118a69158c1SSanjay Patel !Ext0->hasOneUse() * Extract0Cost + 119a69158c1SSanjay Patel !Ext1->hasOneUse() * Extract1Cost; 12034e34855SSanjay Patel } 121a69158c1SSanjay Patel 122a69158c1SSanjay Patel if (Ext0Index == Ext1Index) { 123a69158c1SSanjay Patel // If the extract indexes are identical, no shuffle is needed. 124a69158c1SSanjay Patel ConvertToShuffle = nullptr; 125a69158c1SSanjay Patel } else { 126a69158c1SSanjay Patel if (IsBinOp && DisableBinopExtractShuffle) 127a69158c1SSanjay Patel return true; 128a69158c1SSanjay Patel 129a69158c1SSanjay Patel // If we are extracting from 2 different indexes, then one operand must be 130a69158c1SSanjay Patel // shuffled before performing the vector operation. The shuffle mask is 131a69158c1SSanjay Patel // undefined except for 1 lane that is being translated to the remaining 132a69158c1SSanjay Patel // extraction lane. Therefore, it is a splat shuffle. Ex: 133a69158c1SSanjay Patel // ShufMask = { undef, undef, 0, undef } 134a69158c1SSanjay Patel // TODO: The cost model has an option for a "broadcast" shuffle 135a69158c1SSanjay Patel // (splat-from-element-0), but no option for a more general splat. 136a69158c1SSanjay Patel NewCost += 137a69158c1SSanjay Patel TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 138a69158c1SSanjay Patel 139ce97ce3aSSanjay Patel // The more expensive extract will be replaced by a shuffle. If the costs 140ce97ce3aSSanjay Patel // are equal and there is a preferred extract index, shuffle the opposite 141ce97ce3aSSanjay Patel // operand. Otherwise, replace the extract with the higher index. 142a69158c1SSanjay Patel if (Extract0Cost > Extract1Cost) 143a69158c1SSanjay Patel ConvertToShuffle = Ext0; 144a69158c1SSanjay Patel else if (Extract1Cost > Extract0Cost) 145a69158c1SSanjay Patel ConvertToShuffle = Ext1; 146ce97ce3aSSanjay Patel else if (PreferredExtractIndex == Ext0Index) 147ce97ce3aSSanjay Patel ConvertToShuffle = Ext1; 148ce97ce3aSSanjay Patel else if (PreferredExtractIndex == Ext1Index) 149ce97ce3aSSanjay Patel ConvertToShuffle = Ext0; 150a69158c1SSanjay Patel else 151a69158c1SSanjay Patel ConvertToShuffle = Ext0Index > Ext1Index ? Ext0 : Ext1; 152a69158c1SSanjay Patel } 153a69158c1SSanjay Patel 15410ea01d8SSanjay Patel // Aggressively form a vector op if the cost is equal because the transform 15510ea01d8SSanjay Patel // may enable further optimization. 15610ea01d8SSanjay Patel // Codegen can reverse this transform (scalarize) if it was not profitable. 15710ea01d8SSanjay Patel return OldCost < NewCost; 15834e34855SSanjay Patel } 15934e34855SSanjay Patel 160*216a37bbSSanjay Patel /// Given an extract element instruction with constant index operand, shuffle 161*216a37bbSSanjay Patel /// the source vector (shift the scalar element) to a NewIndex for extraction. 162*216a37bbSSanjay Patel /// Return null if the input can be constant folded, so that we are not creating 163*216a37bbSSanjay Patel /// unnecessary instructions. 164*216a37bbSSanjay Patel static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt, 165*216a37bbSSanjay Patel unsigned NewIndex) { 166*216a37bbSSanjay Patel // If the extract can be constant-folded, this code is unsimplified. Defer 167*216a37bbSSanjay Patel // to other passes to handle that. 168*216a37bbSSanjay Patel Value *X = ExtElt->getVectorOperand(); 169*216a37bbSSanjay Patel Value *C = ExtElt->getIndexOperand(); 170*216a37bbSSanjay Patel if (isa<Constant>(X)) 171*216a37bbSSanjay Patel return nullptr; 172*216a37bbSSanjay Patel 173*216a37bbSSanjay Patel // The shuffle mask is undefined except for 1 lane that is being translated 174*216a37bbSSanjay Patel // to the cheap extraction lane. Example: 175*216a37bbSSanjay Patel // ShufMask = { 2, undef, undef, undef } 176*216a37bbSSanjay Patel auto *VecTy = cast<FixedVectorType>(X->getType()); 177*216a37bbSSanjay Patel SmallVector<int, 32> Mask(VecTy->getNumElements(), -1); 178*216a37bbSSanjay Patel assert(isa<ConstantInt>(C) && "Expected a constant index operand"); 179*216a37bbSSanjay Patel Mask[NewIndex] = cast<ConstantInt>(C)->getZExtValue(); 180*216a37bbSSanjay Patel 181*216a37bbSSanjay Patel // extelt X, C --> extelt (shuffle X), NewIndex 182*216a37bbSSanjay Patel IRBuilder<> Builder(ExtElt); 183*216a37bbSSanjay Patel Value *Shuf = Builder.CreateShuffleVector(X, UndefValue::get(VecTy), Mask); 184*216a37bbSSanjay Patel return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex)); 185*216a37bbSSanjay Patel } 186*216a37bbSSanjay Patel 187fc445589SSanjay Patel /// Try to reduce extract element costs by converting scalar compares to vector 188fc445589SSanjay Patel /// compares followed by extract. 189e9c79a7aSSanjay Patel /// cmp (ext0 V0, C), (ext1 V1, C) 190*216a37bbSSanjay Patel static void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 191039ff29eSSanjay Patel Instruction &I) { 192fc445589SSanjay Patel assert(isa<CmpInst>(&I) && "Expected a compare"); 193*216a37bbSSanjay Patel assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 194*216a37bbSSanjay Patel cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 195*216a37bbSSanjay Patel "Expected matching constant extract indexes"); 196a17f03bdSSanjay Patel 197a17f03bdSSanjay Patel // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C 198a17f03bdSSanjay Patel ++NumVecCmp; 199a17f03bdSSanjay Patel IRBuilder<> Builder(&I); 200fc445589SSanjay Patel CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate(); 201*216a37bbSSanjay Patel Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 20246a285adSSanjay Patel Value *VecCmp = Builder.CreateCmp(Pred, V0, V1); 203*216a37bbSSanjay Patel Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand()); 204*216a37bbSSanjay Patel I.replaceAllUsesWith(NewExt); 205a17f03bdSSanjay Patel } 206a17f03bdSSanjay Patel 20719b62b79SSanjay Patel /// Try to reduce extract element costs by converting scalar binops to vector 20819b62b79SSanjay Patel /// binops followed by extract. 209e9c79a7aSSanjay Patel /// bo (ext0 V0, C), (ext1 V1, C) 210*216a37bbSSanjay Patel static void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 211039ff29eSSanjay Patel Instruction &I) { 212fc445589SSanjay Patel assert(isa<BinaryOperator>(&I) && "Expected a binary operator"); 213*216a37bbSSanjay Patel assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 214*216a37bbSSanjay Patel cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 215*216a37bbSSanjay Patel "Expected matching constant extract indexes"); 21619b62b79SSanjay Patel 21734e34855SSanjay Patel // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C 21819b62b79SSanjay Patel ++NumVecBO; 21919b62b79SSanjay Patel IRBuilder<> Builder(&I); 220*216a37bbSSanjay Patel Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 221e9c79a7aSSanjay Patel Value *VecBO = 22234e34855SSanjay Patel Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1); 223e9c79a7aSSanjay Patel 22419b62b79SSanjay Patel // All IR flags are safe to back-propagate because any potential poison 22519b62b79SSanjay Patel // created in unused vector elements is discarded by the extract. 226e9c79a7aSSanjay Patel if (auto *VecBOInst = dyn_cast<Instruction>(VecBO)) 22719b62b79SSanjay Patel VecBOInst->copyIRFlags(&I); 228e9c79a7aSSanjay Patel 229*216a37bbSSanjay Patel Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand()); 230*216a37bbSSanjay Patel I.replaceAllUsesWith(NewExt); 23119b62b79SSanjay Patel } 23219b62b79SSanjay Patel 233fc445589SSanjay Patel /// Match an instruction with extracted vector operands. 234fc445589SSanjay Patel static bool foldExtractExtract(Instruction &I, const TargetTransformInfo &TTI) { 235e9c79a7aSSanjay Patel // It is not safe to transform things like div, urem, etc. because we may 236e9c79a7aSSanjay Patel // create undefined behavior when executing those on unknown vector elements. 237e9c79a7aSSanjay Patel if (!isSafeToSpeculativelyExecute(&I)) 238e9c79a7aSSanjay Patel return false; 239e9c79a7aSSanjay Patel 240*216a37bbSSanjay Patel Instruction *I0, *I1; 241fc445589SSanjay Patel CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 242*216a37bbSSanjay Patel if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) && 243*216a37bbSSanjay Patel !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1)))) 244fc445589SSanjay Patel return false; 245fc445589SSanjay Patel 246fc445589SSanjay Patel Value *V0, *V1; 247fc445589SSanjay Patel uint64_t C0, C1; 248*216a37bbSSanjay Patel if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) || 249*216a37bbSSanjay Patel !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) || 250fc445589SSanjay Patel V0->getType() != V1->getType()) 251fc445589SSanjay Patel return false; 252fc445589SSanjay Patel 253ce97ce3aSSanjay Patel // If the scalar value 'I' is going to be re-inserted into a vector, then try 254ce97ce3aSSanjay Patel // to create an extract to that same element. The extract/insert can be 255ce97ce3aSSanjay Patel // reduced to a "select shuffle". 256ce97ce3aSSanjay Patel // TODO: If we add a larger pattern match that starts from an insert, this 257ce97ce3aSSanjay Patel // probably becomes unnecessary. 258*216a37bbSSanjay Patel auto *Ext0 = cast<ExtractElementInst>(I0); 259*216a37bbSSanjay Patel auto *Ext1 = cast<ExtractElementInst>(I1); 260ce97ce3aSSanjay Patel uint64_t InsertIndex = std::numeric_limits<uint64_t>::max(); 261ce97ce3aSSanjay Patel if (I.hasOneUse()) 2627eed772aSSanjay Patel match(I.user_back(), 2637eed772aSSanjay Patel m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex))); 264ce97ce3aSSanjay Patel 265*216a37bbSSanjay Patel ExtractElementInst *ExtractToChange; 266*216a37bbSSanjay Patel if (isExtractExtractCheap(Ext0, Ext1, I.getOpcode(), TTI, ExtractToChange, 267ce97ce3aSSanjay Patel InsertIndex)) 268fc445589SSanjay Patel return false; 269e9c79a7aSSanjay Patel 270*216a37bbSSanjay Patel if (ExtractToChange) { 271*216a37bbSSanjay Patel unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0; 272*216a37bbSSanjay Patel ExtractElementInst *NewExtract = 273*216a37bbSSanjay Patel translateExtract(ExtractToChange, CheapExtractIdx); 274*216a37bbSSanjay Patel if (!NewExtract) 2756d864097SSanjay Patel return false; 276*216a37bbSSanjay Patel if (ExtractToChange == Ext0) 277*216a37bbSSanjay Patel Ext0 = NewExtract; 278a69158c1SSanjay Patel else 279*216a37bbSSanjay Patel Ext1 = NewExtract; 280a69158c1SSanjay Patel } 281e9c79a7aSSanjay Patel 282e9c79a7aSSanjay Patel if (Pred != CmpInst::BAD_ICMP_PREDICATE) 283039ff29eSSanjay Patel foldExtExtCmp(Ext0, Ext1, I); 284e9c79a7aSSanjay Patel else 285039ff29eSSanjay Patel foldExtExtBinop(Ext0, Ext1, I); 286e9c79a7aSSanjay Patel 287e9c79a7aSSanjay Patel return true; 288fc445589SSanjay Patel } 289fc445589SSanjay Patel 290bef6e67eSSanjay Patel /// If this is a bitcast of a shuffle, try to bitcast the source vector to the 291bef6e67eSSanjay Patel /// destination type followed by shuffle. This can enable further transforms by 292bef6e67eSSanjay Patel /// moving bitcasts or shuffles together. 293b6050ca1SSanjay Patel static bool foldBitcastShuf(Instruction &I, const TargetTransformInfo &TTI) { 294b6050ca1SSanjay Patel Value *V; 295b6050ca1SSanjay Patel ArrayRef<int> Mask; 2967eed772aSSanjay Patel if (!match(&I, m_BitCast( 2977eed772aSSanjay Patel m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask)))))) 298b6050ca1SSanjay Patel return false; 299b6050ca1SSanjay Patel 300bef6e67eSSanjay Patel // Disallow non-vector casts and length-changing shuffles. 301bef6e67eSSanjay Patel // TODO: We could allow any shuffle. 3023297e9b7SChristopher Tetreault auto *DestTy = dyn_cast<VectorType>(I.getType()); 3033297e9b7SChristopher Tetreault auto *SrcTy = cast<VectorType>(V->getType()); 3043297e9b7SChristopher Tetreault if (!DestTy || I.getOperand(0)->getType() != SrcTy) 305b6050ca1SSanjay Patel return false; 306b6050ca1SSanjay Patel 307b6050ca1SSanjay Patel // The new shuffle must not cost more than the old shuffle. The bitcast is 308b6050ca1SSanjay Patel // moved ahead of the shuffle, so assume that it has the same cost as before. 309b6050ca1SSanjay Patel if (TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, DestTy) > 310b6050ca1SSanjay Patel TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy)) 311b6050ca1SSanjay Patel return false; 312b6050ca1SSanjay Patel 313bef6e67eSSanjay Patel unsigned DestNumElts = DestTy->getNumElements(); 314bef6e67eSSanjay Patel unsigned SrcNumElts = SrcTy->getNumElements(); 315b6050ca1SSanjay Patel SmallVector<int, 16> NewMask; 316bef6e67eSSanjay Patel if (SrcNumElts <= DestNumElts) { 317bef6e67eSSanjay Patel // The bitcast is from wide to narrow/equal elements. The shuffle mask can 318bef6e67eSSanjay Patel // always be expanded to the equivalent form choosing narrower elements. 319b6050ca1SSanjay Patel assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask"); 320b6050ca1SSanjay Patel unsigned ScaleFactor = DestNumElts / SrcNumElts; 3211318ddbcSSanjay Patel narrowShuffleMaskElts(ScaleFactor, Mask, NewMask); 322bef6e67eSSanjay Patel } else { 323bef6e67eSSanjay Patel // The bitcast is from narrow elements to wide elements. The shuffle mask 324bef6e67eSSanjay Patel // must choose consecutive elements to allow casting first. 325bef6e67eSSanjay Patel assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask"); 326bef6e67eSSanjay Patel unsigned ScaleFactor = SrcNumElts / DestNumElts; 327bef6e67eSSanjay Patel if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask)) 328bef6e67eSSanjay Patel return false; 329bef6e67eSSanjay Patel } 330bef6e67eSSanjay Patel // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC' 3317aeb41b3SRoman Lebedev ++NumShufOfBitcast; 332bef6e67eSSanjay Patel IRBuilder<> Builder(&I); 333bef6e67eSSanjay Patel Value *CastV = Builder.CreateBitCast(V, DestTy); 3347eed772aSSanjay Patel Value *Shuf = 3357eed772aSSanjay Patel Builder.CreateShuffleVector(CastV, UndefValue::get(DestTy), NewMask); 336b6050ca1SSanjay Patel I.replaceAllUsesWith(Shuf); 337b6050ca1SSanjay Patel return true; 338b6050ca1SSanjay Patel } 339b6050ca1SSanjay Patel 340ed67f5e7SSanjay Patel /// Match a vector binop or compare instruction with at least one inserted 341ed67f5e7SSanjay Patel /// scalar operand and convert to scalar binop/cmp followed by insertelement. 342ed67f5e7SSanjay Patel static bool scalarizeBinopOrCmp(Instruction &I, 343ed67f5e7SSanjay Patel const TargetTransformInfo &TTI) { 344ed67f5e7SSanjay Patel CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 3455dc4e7c2SSimon Pilgrim Value *Ins0, *Ins1; 346ed67f5e7SSanjay Patel if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) && 347ed67f5e7SSanjay Patel !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1)))) 348ed67f5e7SSanjay Patel return false; 349ed67f5e7SSanjay Patel 350ed67f5e7SSanjay Patel // Do not convert the vector condition of a vector select into a scalar 351ed67f5e7SSanjay Patel // condition. That may cause problems for codegen because of differences in 352ed67f5e7SSanjay Patel // boolean formats and register-file transfers. 353ed67f5e7SSanjay Patel // TODO: Can we account for that in the cost model? 354ed67f5e7SSanjay Patel bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE; 355ed67f5e7SSanjay Patel if (IsCmp) 356ed67f5e7SSanjay Patel for (User *U : I.users()) 357ed67f5e7SSanjay Patel if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value()))) 3580d2a0b44SSanjay Patel return false; 3590d2a0b44SSanjay Patel 3605dc4e7c2SSimon Pilgrim // Match against one or both scalar values being inserted into constant 3615dc4e7c2SSimon Pilgrim // vectors: 362ed67f5e7SSanjay Patel // vec_op VecC0, (inselt VecC1, V1, Index) 363ed67f5e7SSanjay Patel // vec_op (inselt VecC0, V0, Index), VecC1 364ed67f5e7SSanjay Patel // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) 3650d2a0b44SSanjay Patel // TODO: Deal with mismatched index constants and variable indexes? 3665dc4e7c2SSimon Pilgrim Constant *VecC0 = nullptr, *VecC1 = nullptr; 3675dc4e7c2SSimon Pilgrim Value *V0 = nullptr, *V1 = nullptr; 3685dc4e7c2SSimon Pilgrim uint64_t Index0 = 0, Index1 = 0; 3697eed772aSSanjay Patel if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0), 3705dc4e7c2SSimon Pilgrim m_ConstantInt(Index0))) && 3715dc4e7c2SSimon Pilgrim !match(Ins0, m_Constant(VecC0))) 3725dc4e7c2SSimon Pilgrim return false; 3735dc4e7c2SSimon Pilgrim if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1), 3745dc4e7c2SSimon Pilgrim m_ConstantInt(Index1))) && 3755dc4e7c2SSimon Pilgrim !match(Ins1, m_Constant(VecC1))) 3760d2a0b44SSanjay Patel return false; 3770d2a0b44SSanjay Patel 3785dc4e7c2SSimon Pilgrim bool IsConst0 = !V0; 3795dc4e7c2SSimon Pilgrim bool IsConst1 = !V1; 3805dc4e7c2SSimon Pilgrim if (IsConst0 && IsConst1) 3815dc4e7c2SSimon Pilgrim return false; 3825dc4e7c2SSimon Pilgrim if (!IsConst0 && !IsConst1 && Index0 != Index1) 3835dc4e7c2SSimon Pilgrim return false; 3845dc4e7c2SSimon Pilgrim 3855dc4e7c2SSimon Pilgrim // Bail for single insertion if it is a load. 3865dc4e7c2SSimon Pilgrim // TODO: Handle this once getVectorInstrCost can cost for load/stores. 3875dc4e7c2SSimon Pilgrim auto *I0 = dyn_cast_or_null<Instruction>(V0); 3885dc4e7c2SSimon Pilgrim auto *I1 = dyn_cast_or_null<Instruction>(V1); 3895dc4e7c2SSimon Pilgrim if ((IsConst0 && I1 && I1->mayReadFromMemory()) || 3905dc4e7c2SSimon Pilgrim (IsConst1 && I0 && I0->mayReadFromMemory())) 3915dc4e7c2SSimon Pilgrim return false; 3925dc4e7c2SSimon Pilgrim 3935dc4e7c2SSimon Pilgrim uint64_t Index = IsConst0 ? Index1 : Index0; 3945dc4e7c2SSimon Pilgrim Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType(); 3950d2a0b44SSanjay Patel Type *VecTy = I.getType(); 3965dc4e7c2SSimon Pilgrim assert(VecTy->isVectorTy() && 3975dc4e7c2SSimon Pilgrim (IsConst0 || IsConst1 || V0->getType() == V1->getType()) && 3980d2a0b44SSanjay Patel (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy()) && 3990d2a0b44SSanjay Patel "Unexpected types for insert into binop"); 4000d2a0b44SSanjay Patel 401ed67f5e7SSanjay Patel unsigned Opcode = I.getOpcode(); 402ed67f5e7SSanjay Patel int ScalarOpCost, VectorOpCost; 403ed67f5e7SSanjay Patel if (IsCmp) { 404ed67f5e7SSanjay Patel ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy); 405ed67f5e7SSanjay Patel VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy); 406ed67f5e7SSanjay Patel } else { 407ed67f5e7SSanjay Patel ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 408ed67f5e7SSanjay Patel VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 409ed67f5e7SSanjay Patel } 4100d2a0b44SSanjay Patel 4110d2a0b44SSanjay Patel // Get cost estimate for the insert element. This cost will factor into 4120d2a0b44SSanjay Patel // both sequences. 4130d2a0b44SSanjay Patel int InsertCost = 4140d2a0b44SSanjay Patel TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index); 4155dc4e7c2SSimon Pilgrim int OldCost = (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + 4165dc4e7c2SSimon Pilgrim VectorOpCost; 4175f730b64SSanjay Patel int NewCost = ScalarOpCost + InsertCost + 4185dc4e7c2SSimon Pilgrim (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) + 4195dc4e7c2SSimon Pilgrim (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost); 4200d2a0b44SSanjay Patel 4210d2a0b44SSanjay Patel // We want to scalarize unless the vector variant actually has lower cost. 4220d2a0b44SSanjay Patel if (OldCost < NewCost) 4230d2a0b44SSanjay Patel return false; 4240d2a0b44SSanjay Patel 425ed67f5e7SSanjay Patel // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) --> 426ed67f5e7SSanjay Patel // inselt NewVecC, (scalar_op V0, V1), Index 427ed67f5e7SSanjay Patel if (IsCmp) 428ed67f5e7SSanjay Patel ++NumScalarCmp; 429ed67f5e7SSanjay Patel else 4300d2a0b44SSanjay Patel ++NumScalarBO; 4315dc4e7c2SSimon Pilgrim 4325dc4e7c2SSimon Pilgrim // For constant cases, extract the scalar element, this should constant fold. 433ed67f5e7SSanjay Patel IRBuilder<> Builder(&I); 4345dc4e7c2SSimon Pilgrim if (IsConst0) 4355dc4e7c2SSimon Pilgrim V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index)); 4365dc4e7c2SSimon Pilgrim if (IsConst1) 4375dc4e7c2SSimon Pilgrim V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index)); 4385dc4e7c2SSimon Pilgrim 439ed67f5e7SSanjay Patel Value *Scalar = 44046a285adSSanjay Patel IsCmp ? Builder.CreateCmp(Pred, V0, V1) 441ed67f5e7SSanjay Patel : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1); 442ed67f5e7SSanjay Patel 443ed67f5e7SSanjay Patel Scalar->setName(I.getName() + ".scalar"); 4440d2a0b44SSanjay Patel 4450d2a0b44SSanjay Patel // All IR flags are safe to back-propagate. There is no potential for extra 4460d2a0b44SSanjay Patel // poison to be created by the scalar instruction. 4470d2a0b44SSanjay Patel if (auto *ScalarInst = dyn_cast<Instruction>(Scalar)) 4480d2a0b44SSanjay Patel ScalarInst->copyIRFlags(&I); 4490d2a0b44SSanjay Patel 4500d2a0b44SSanjay Patel // Fold the vector constants in the original vectors into a new base vector. 451ed67f5e7SSanjay Patel Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1) 452ed67f5e7SSanjay Patel : ConstantExpr::get(Opcode, VecC0, VecC1); 4530d2a0b44SSanjay Patel Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index); 4540d2a0b44SSanjay Patel I.replaceAllUsesWith(Insert); 4550d2a0b44SSanjay Patel Insert->takeName(&I); 4560d2a0b44SSanjay Patel return true; 4570d2a0b44SSanjay Patel } 4580d2a0b44SSanjay Patel 459a17f03bdSSanjay Patel /// This is the entry point for all transforms. Pass manager differences are 460a17f03bdSSanjay Patel /// handled in the callers of this function. 461a17f03bdSSanjay Patel static bool runImpl(Function &F, const TargetTransformInfo &TTI, 462a17f03bdSSanjay Patel const DominatorTree &DT) { 46325c6544fSSanjay Patel if (DisableVectorCombine) 46425c6544fSSanjay Patel return false; 46525c6544fSSanjay Patel 466a17f03bdSSanjay Patel bool MadeChange = false; 467a17f03bdSSanjay Patel for (BasicBlock &BB : F) { 468a17f03bdSSanjay Patel // Ignore unreachable basic blocks. 469a17f03bdSSanjay Patel if (!DT.isReachableFromEntry(&BB)) 470a17f03bdSSanjay Patel continue; 471a17f03bdSSanjay Patel // Do not delete instructions under here and invalidate the iterator. 47281e9ede3SSanjay Patel // Walk the block forwards to enable simple iterative chains of transforms. 473a17f03bdSSanjay Patel // TODO: It could be more efficient to remove dead instructions 474a17f03bdSSanjay Patel // iteratively in this loop rather than waiting until the end. 47581e9ede3SSanjay Patel for (Instruction &I : BB) { 476fc3cc8a4SSanjay Patel if (isa<DbgInfoIntrinsic>(I)) 477fc3cc8a4SSanjay Patel continue; 478fc445589SSanjay Patel MadeChange |= foldExtractExtract(I, TTI); 479b6050ca1SSanjay Patel MadeChange |= foldBitcastShuf(I, TTI); 480ed67f5e7SSanjay Patel MadeChange |= scalarizeBinopOrCmp(I, TTI); 481a17f03bdSSanjay Patel } 482fc3cc8a4SSanjay Patel } 483a17f03bdSSanjay Patel 484a17f03bdSSanjay Patel // We're done with transforms, so remove dead instructions. 485a17f03bdSSanjay Patel if (MadeChange) 486a17f03bdSSanjay Patel for (BasicBlock &BB : F) 487a17f03bdSSanjay Patel SimplifyInstructionsInBlock(&BB); 488a17f03bdSSanjay Patel 489a17f03bdSSanjay Patel return MadeChange; 490a17f03bdSSanjay Patel } 491a17f03bdSSanjay Patel 492a17f03bdSSanjay Patel // Pass manager boilerplate below here. 493a17f03bdSSanjay Patel 494a17f03bdSSanjay Patel namespace { 495a17f03bdSSanjay Patel class VectorCombineLegacyPass : public FunctionPass { 496a17f03bdSSanjay Patel public: 497a17f03bdSSanjay Patel static char ID; 498a17f03bdSSanjay Patel VectorCombineLegacyPass() : FunctionPass(ID) { 499a17f03bdSSanjay Patel initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry()); 500a17f03bdSSanjay Patel } 501a17f03bdSSanjay Patel 502a17f03bdSSanjay Patel void getAnalysisUsage(AnalysisUsage &AU) const override { 503a17f03bdSSanjay Patel AU.addRequired<DominatorTreeWrapperPass>(); 504a17f03bdSSanjay Patel AU.addRequired<TargetTransformInfoWrapperPass>(); 505a17f03bdSSanjay Patel AU.setPreservesCFG(); 506a17f03bdSSanjay Patel AU.addPreserved<DominatorTreeWrapperPass>(); 507a17f03bdSSanjay Patel AU.addPreserved<GlobalsAAWrapperPass>(); 508024098aeSSanjay Patel AU.addPreserved<AAResultsWrapperPass>(); 509024098aeSSanjay Patel AU.addPreserved<BasicAAWrapperPass>(); 510a17f03bdSSanjay Patel FunctionPass::getAnalysisUsage(AU); 511a17f03bdSSanjay Patel } 512a17f03bdSSanjay Patel 513a17f03bdSSanjay Patel bool runOnFunction(Function &F) override { 514a17f03bdSSanjay Patel if (skipFunction(F)) 515a17f03bdSSanjay Patel return false; 516a17f03bdSSanjay Patel auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 517a17f03bdSSanjay Patel auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 518a17f03bdSSanjay Patel return runImpl(F, TTI, DT); 519a17f03bdSSanjay Patel } 520a17f03bdSSanjay Patel }; 521a17f03bdSSanjay Patel } // namespace 522a17f03bdSSanjay Patel 523a17f03bdSSanjay Patel char VectorCombineLegacyPass::ID = 0; 524a17f03bdSSanjay Patel INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine", 525a17f03bdSSanjay Patel "Optimize scalar/vector ops", false, 526a17f03bdSSanjay Patel false) 527a17f03bdSSanjay Patel INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 528a17f03bdSSanjay Patel INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine", 529a17f03bdSSanjay Patel "Optimize scalar/vector ops", false, false) 530a17f03bdSSanjay Patel Pass *llvm::createVectorCombinePass() { 531a17f03bdSSanjay Patel return new VectorCombineLegacyPass(); 532a17f03bdSSanjay Patel } 533a17f03bdSSanjay Patel 534a17f03bdSSanjay Patel PreservedAnalyses VectorCombinePass::run(Function &F, 535a17f03bdSSanjay Patel FunctionAnalysisManager &FAM) { 536a17f03bdSSanjay Patel TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); 537a17f03bdSSanjay Patel DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); 538a17f03bdSSanjay Patel if (!runImpl(F, TTI, DT)) 539a17f03bdSSanjay Patel return PreservedAnalyses::all(); 540a17f03bdSSanjay Patel PreservedAnalyses PA; 541a17f03bdSSanjay Patel PA.preserveSet<CFGAnalyses>(); 542a17f03bdSSanjay Patel PA.preserve<GlobalsAA>(); 543024098aeSSanjay Patel PA.preserve<AAManager>(); 544024098aeSSanjay Patel PA.preserve<BasicAA>(); 545a17f03bdSSanjay Patel return PA; 546a17f03bdSSanjay Patel } 547