1a17f03bdSSanjay Patel //===------- VectorCombine.cpp - Optimize partial vector operations -------===// 2a17f03bdSSanjay Patel // 3a17f03bdSSanjay Patel // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4a17f03bdSSanjay Patel // See https://llvm.org/LICENSE.txt for license information. 5a17f03bdSSanjay Patel // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6a17f03bdSSanjay Patel // 7a17f03bdSSanjay Patel //===----------------------------------------------------------------------===// 8a17f03bdSSanjay Patel // 9a17f03bdSSanjay Patel // This pass optimizes scalar/vector interactions using target cost models. The 10a17f03bdSSanjay Patel // transforms implemented here may not fit in traditional loop-based or SLP 11a17f03bdSSanjay Patel // vectorization passes. 12a17f03bdSSanjay Patel // 13a17f03bdSSanjay Patel //===----------------------------------------------------------------------===// 14a17f03bdSSanjay Patel 15a17f03bdSSanjay Patel #include "llvm/Transforms/Vectorize/VectorCombine.h" 16a17f03bdSSanjay Patel #include "llvm/ADT/Statistic.h" 17575e2affSFlorian Hahn #include "llvm/Analysis/AssumptionCache.h" 185006e551SSimon Pilgrim #include "llvm/Analysis/BasicAliasAnalysis.h" 19a17f03bdSSanjay Patel #include "llvm/Analysis/GlobalsModRef.h" 2043bdac29SSanjay Patel #include "llvm/Analysis/Loads.h" 21a17f03bdSSanjay Patel #include "llvm/Analysis/TargetTransformInfo.h" 2219b62b79SSanjay Patel #include "llvm/Analysis/ValueTracking.h" 23b6050ca1SSanjay Patel #include "llvm/Analysis/VectorUtils.h" 24a17f03bdSSanjay Patel #include "llvm/IR/Dominators.h" 25a17f03bdSSanjay Patel #include "llvm/IR/Function.h" 26a17f03bdSSanjay Patel #include "llvm/IR/IRBuilder.h" 27a17f03bdSSanjay Patel #include "llvm/IR/PatternMatch.h" 28a17f03bdSSanjay Patel #include "llvm/InitializePasses.h" 29a17f03bdSSanjay Patel #include "llvm/Pass.h" 3025c6544fSSanjay Patel #include "llvm/Support/CommandLine.h" 31a17f03bdSSanjay Patel #include "llvm/Transforms/Utils/Local.h" 325006e551SSimon Pilgrim #include "llvm/Transforms/Vectorize.h" 33a17f03bdSSanjay Patel 34300870a9SFlorian Hahn #define DEBUG_TYPE "vector-combine" 35300870a9SFlorian Hahn #include "llvm/Transforms/Utils/InstructionWorklist.h" 36300870a9SFlorian Hahn 37a17f03bdSSanjay Patel using namespace llvm; 38a17f03bdSSanjay Patel using namespace llvm::PatternMatch; 39a17f03bdSSanjay Patel 4043bdac29SSanjay Patel STATISTIC(NumVecLoad, "Number of vector loads formed"); 41a17f03bdSSanjay Patel STATISTIC(NumVecCmp, "Number of vector compares formed"); 4219b62b79SSanjay Patel STATISTIC(NumVecBO, "Number of vector binops formed"); 43b6315aeeSSanjay Patel STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed"); 447aeb41b3SRoman Lebedev STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast"); 450d2a0b44SSanjay Patel STATISTIC(NumScalarBO, "Number of scalar binops formed"); 46ed67f5e7SSanjay Patel STATISTIC(NumScalarCmp, "Number of scalar compares formed"); 47a17f03bdSSanjay Patel 4825c6544fSSanjay Patel static cl::opt<bool> DisableVectorCombine( 4925c6544fSSanjay Patel "disable-vector-combine", cl::init(false), cl::Hidden, 5025c6544fSSanjay Patel cl::desc("Disable all vector combine transforms")); 5125c6544fSSanjay Patel 52a69158c1SSanjay Patel static cl::opt<bool> DisableBinopExtractShuffle( 53a69158c1SSanjay Patel "disable-binop-extract-shuffle", cl::init(false), cl::Hidden, 54a69158c1SSanjay Patel cl::desc("Disable binop extract to shuffle transforms")); 55a69158c1SSanjay Patel 562db4979cSQiu Chaofan static cl::opt<unsigned> MaxInstrsToScan( 572db4979cSQiu Chaofan "vector-combine-max-scan-instrs", cl::init(30), cl::Hidden, 582db4979cSQiu Chaofan cl::desc("Max number of instructions to scan for vector combining.")); 592db4979cSQiu Chaofan 60a0f96741SSanjay Patel static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max(); 61a0f96741SSanjay Patel 62b4447054SBenjamin Kramer namespace { 636bdd531aSSanjay Patel class VectorCombine { 646bdd531aSSanjay Patel public: 656bdd531aSSanjay Patel VectorCombine(Function &F, const TargetTransformInfo &TTI, 664a1d63d7SFlorian Hahn const DominatorTree &DT, AAResults &AA, AssumptionCache &AC, 674a1d63d7SFlorian Hahn bool ScalarizationOnly) 684a1d63d7SFlorian Hahn : F(F), Builder(F.getContext()), TTI(TTI), DT(DT), AA(AA), AC(AC), 694a1d63d7SFlorian Hahn ScalarizationOnly(ScalarizationOnly) {} 706bdd531aSSanjay Patel 716bdd531aSSanjay Patel bool run(); 726bdd531aSSanjay Patel 736bdd531aSSanjay Patel private: 746bdd531aSSanjay Patel Function &F; 75de65b356SSanjay Patel IRBuilder<> Builder; 766bdd531aSSanjay Patel const TargetTransformInfo &TTI; 776bdd531aSSanjay Patel const DominatorTree &DT; 782db4979cSQiu Chaofan AAResults &AA; 79575e2affSFlorian Hahn AssumptionCache &AC; 804a1d63d7SFlorian Hahn 814a1d63d7SFlorian Hahn /// If true only perform scalarization combines and do not introduce new 824a1d63d7SFlorian Hahn /// vector operations. 834a1d63d7SFlorian Hahn bool ScalarizationOnly; 844a1d63d7SFlorian Hahn 85300870a9SFlorian Hahn InstructionWorklist Worklist; 866bdd531aSSanjay Patel 8743bdac29SSanjay Patel bool vectorizeLoadInsert(Instruction &I); 883b95d834SSanjay Patel ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0, 893b95d834SSanjay Patel ExtractElementInst *Ext1, 903b95d834SSanjay Patel unsigned PreferredExtractIndex) const; 916bdd531aSSanjay Patel bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 920dcd2b40SSimon Pilgrim const Instruction &I, 936bdd531aSSanjay Patel ExtractElementInst *&ConvertToShuffle, 946bdd531aSSanjay Patel unsigned PreferredExtractIndex); 95de65b356SSanjay Patel void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 96de65b356SSanjay Patel Instruction &I); 97de65b356SSanjay Patel void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1, 98de65b356SSanjay Patel Instruction &I); 996bdd531aSSanjay Patel bool foldExtractExtract(Instruction &I); 1006bdd531aSSanjay Patel bool foldBitcastShuf(Instruction &I); 1016bdd531aSSanjay Patel bool scalarizeBinopOrCmp(Instruction &I); 102b6315aeeSSanjay Patel bool foldExtractedCmps(Instruction &I); 1032db4979cSQiu Chaofan bool foldSingleElementStore(Instruction &I); 1044e8c28b6SFlorian Hahn bool scalarizeLoadExtract(Instruction &I); 10566d22b4dSSanjay Patel bool foldShuffleOfBinops(Instruction &I); 106ded8187eSDavid Green bool foldShuffleFromReductions(Instruction &I); 107*100cb9a2SDavid Green bool foldSelectShuffle(Instruction &I); 108a69158c1SSanjay Patel 109300870a9SFlorian Hahn void replaceValue(Value &Old, Value &New) { 11098c2f4eeSSanjay Patel Old.replaceAllUsesWith(&New); 111300870a9SFlorian Hahn if (auto *NewI = dyn_cast<Instruction>(&New)) { 112ded8187eSDavid Green New.takeName(&Old); 113300870a9SFlorian Hahn Worklist.pushUsersToWorkList(*NewI); 114300870a9SFlorian Hahn Worklist.pushValue(NewI); 11598c2f4eeSSanjay Patel } 116300870a9SFlorian Hahn Worklist.pushValue(&Old); 117300870a9SFlorian Hahn } 118300870a9SFlorian Hahn 119300870a9SFlorian Hahn void eraseInstruction(Instruction &I) { 120300870a9SFlorian Hahn for (Value *Op : I.operands()) 121300870a9SFlorian Hahn Worklist.pushValue(Op); 122300870a9SFlorian Hahn Worklist.remove(&I); 123300870a9SFlorian Hahn I.eraseFromParent(); 124300870a9SFlorian Hahn } 125300870a9SFlorian Hahn }; 126300870a9SFlorian Hahn } // namespace 12798c2f4eeSSanjay Patel 12843bdac29SSanjay Patel bool VectorCombine::vectorizeLoadInsert(Instruction &I) { 129b2ef2640SSanjay Patel // Match insert into fixed vector of scalar value. 13047aaa99cSSanjay Patel // TODO: Handle non-zero insert index. 131ddd9575dSSanjay Patel auto *Ty = dyn_cast<FixedVectorType>(I.getType()); 13243bdac29SSanjay Patel Value *Scalar; 13348a23bccSSanjay Patel if (!Ty || !match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) || 13448a23bccSSanjay Patel !Scalar->hasOneUse()) 13543bdac29SSanjay Patel return false; 136ddd9575dSSanjay Patel 137b2ef2640SSanjay Patel // Optionally match an extract from another vector. 138b2ef2640SSanjay Patel Value *X; 139b2ef2640SSanjay Patel bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt())); 140b2ef2640SSanjay Patel if (!HasExtract) 141b2ef2640SSanjay Patel X = Scalar; 142b2ef2640SSanjay Patel 143b2ef2640SSanjay Patel // Match source value as load of scalar or vector. 1444452cc40SFangrui Song // Do not vectorize scalar load (widening) if atomic/volatile or under 1454452cc40SFangrui Song // asan/hwasan/memtag/tsan. The widened load may load data from dirty regions 1464452cc40SFangrui Song // or create data races non-existent in the source. 147b2ef2640SSanjay Patel auto *Load = dyn_cast<LoadInst>(X); 148b2ef2640SSanjay Patel if (!Load || !Load->isSimple() || !Load->hasOneUse() || 1494452cc40SFangrui Song Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) || 1504452cc40SFangrui Song mustSuppressSpeculation(*Load)) 15143bdac29SSanjay Patel return false; 15243bdac29SSanjay Patel 15312b684aeSSanjay Patel const DataLayout &DL = I.getModule()->getDataLayout(); 15412b684aeSSanjay Patel Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts(); 15512b684aeSSanjay Patel assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type"); 156c36c0fabSArtem Belevich 15712b684aeSSanjay Patel unsigned AS = Load->getPointerAddressSpace(); 15843bdac29SSanjay Patel 15947aaa99cSSanjay Patel // We are potentially transforming byte-sized (8-bit) memory accesses, so make 16047aaa99cSSanjay Patel // sure we have all of our type-based constraints in place for this target. 161ddd9575dSSanjay Patel Type *ScalarTy = Scalar->getType(); 16243bdac29SSanjay Patel uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits(); 163ddd9575dSSanjay Patel unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth(); 16447aaa99cSSanjay Patel if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 || 16547aaa99cSSanjay Patel ScalarSize % 8 != 0) 16643bdac29SSanjay Patel return false; 16743bdac29SSanjay Patel 16843bdac29SSanjay Patel // Check safety of replacing the scalar load with a larger vector load. 169aaaf0ec7SSanjay Patel // We use minimal alignment (maximum flexibility) because we only care about 170aaaf0ec7SSanjay Patel // the dereferenceable region. When calculating cost and creating a new op, 171aaaf0ec7SSanjay Patel // we may use a larger value based on alignment attributes. 1728fb05593SSanjay Patel unsigned MinVecNumElts = MinVectorSize / ScalarSize; 1738fb05593SSanjay Patel auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false); 17447aaa99cSSanjay Patel unsigned OffsetEltIndex = 0; 17547aaa99cSSanjay Patel Align Alignment = Load->getAlign(); 17647aaa99cSSanjay Patel if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) { 17747aaa99cSSanjay Patel // It is not safe to load directly from the pointer, but we can still peek 17847aaa99cSSanjay Patel // through gep offsets and check if it safe to load from a base address with 17947aaa99cSSanjay Patel // updated alignment. If it is, we can shuffle the element(s) into place 18047aaa99cSSanjay Patel // after loading. 18147aaa99cSSanjay Patel unsigned OffsetBitWidth = DL.getIndexTypeSizeInBits(SrcPtr->getType()); 18247aaa99cSSanjay Patel APInt Offset(OffsetBitWidth, 0); 18347aaa99cSSanjay Patel SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); 18447aaa99cSSanjay Patel 18547aaa99cSSanjay Patel // We want to shuffle the result down from a high element of a vector, so 18647aaa99cSSanjay Patel // the offset must be positive. 18747aaa99cSSanjay Patel if (Offset.isNegative()) 18847aaa99cSSanjay Patel return false; 18947aaa99cSSanjay Patel 19047aaa99cSSanjay Patel // The offset must be a multiple of the scalar element to shuffle cleanly 19147aaa99cSSanjay Patel // in the element's size. 19247aaa99cSSanjay Patel uint64_t ScalarSizeInBytes = ScalarSize / 8; 19347aaa99cSSanjay Patel if (Offset.urem(ScalarSizeInBytes) != 0) 19447aaa99cSSanjay Patel return false; 19547aaa99cSSanjay Patel 19647aaa99cSSanjay Patel // If we load MinVecNumElts, will our target element still be loaded? 19747aaa99cSSanjay Patel OffsetEltIndex = Offset.udiv(ScalarSizeInBytes).getZExtValue(); 19847aaa99cSSanjay Patel if (OffsetEltIndex >= MinVecNumElts) 19947aaa99cSSanjay Patel return false; 20047aaa99cSSanjay Patel 201aaaf0ec7SSanjay Patel if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) 20243bdac29SSanjay Patel return false; 20343bdac29SSanjay Patel 20447aaa99cSSanjay Patel // Update alignment with offset value. Note that the offset could be negated 20547aaa99cSSanjay Patel // to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but 20647aaa99cSSanjay Patel // negation does not change the result of the alignment calculation. 20747aaa99cSSanjay Patel Alignment = commonAlignment(Alignment, Offset.getZExtValue()); 20847aaa99cSSanjay Patel } 20947aaa99cSSanjay Patel 210b2ef2640SSanjay Patel // Original pattern: insertelt undef, load [free casts of] PtrOp, 0 21138ebc1a1SSanjay Patel // Use the greater of the alignment on the load or its source pointer. 21247aaa99cSSanjay Patel Alignment = std::max(SrcPtr->getPointerAlignment(DL), Alignment); 213b2ef2640SSanjay Patel Type *LoadTy = Load->getType(); 21436710c38SCaroline Concatto InstructionCost OldCost = 21536710c38SCaroline Concatto TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS); 2168fb05593SSanjay Patel APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0); 217b2ef2640SSanjay Patel OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts, 218b2ef2640SSanjay Patel /* Insert */ true, HasExtract); 21943bdac29SSanjay Patel 22043bdac29SSanjay Patel // New pattern: load VecPtr 22136710c38SCaroline Concatto InstructionCost NewCost = 22236710c38SCaroline Concatto TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS); 22347aaa99cSSanjay Patel // Optionally, we are shuffling the loaded vector element(s) into place. 224e2935dcfSDavid Green // For the mask set everything but element 0 to undef to prevent poison from 225e2935dcfSDavid Green // propagating from the extra loaded memory. This will also optionally 226e2935dcfSDavid Green // shrink/grow the vector from the loaded size to the output size. 227e2935dcfSDavid Green // We assume this operation has no cost in codegen if there was no offset. 228e2935dcfSDavid Green // Note that we could use freeze to avoid poison problems, but then we might 229e2935dcfSDavid Green // still need a shuffle to change the vector size. 230e2935dcfSDavid Green unsigned OutputNumElts = Ty->getNumElements(); 231e2935dcfSDavid Green SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem); 232e2935dcfSDavid Green assert(OffsetEltIndex < MinVecNumElts && "Address offset too big"); 233e2935dcfSDavid Green Mask[0] = OffsetEltIndex; 23447aaa99cSSanjay Patel if (OffsetEltIndex) 235e2935dcfSDavid Green NewCost += TTI.getShuffleCost(TTI::SK_PermuteSingleSrc, MinVecTy, Mask); 23643bdac29SSanjay Patel 23743bdac29SSanjay Patel // We can aggressively convert to the vector form because the backend can 23843bdac29SSanjay Patel // invert this transform if it does not result in a performance win. 23936710c38SCaroline Concatto if (OldCost < NewCost || !NewCost.isValid()) 24043bdac29SSanjay Patel return false; 24143bdac29SSanjay Patel 24243bdac29SSanjay Patel // It is safe and potentially profitable to load a vector directly: 24343bdac29SSanjay Patel // inselt undef, load Scalar, 0 --> load VecPtr 24443bdac29SSanjay Patel IRBuilder<> Builder(Load); 2452e44b787SFraser Cormack Value *CastedPtr = Builder.CreatePointerBitCastOrAddrSpaceCast( 2462e44b787SFraser Cormack SrcPtr, MinVecTy->getPointerTo(AS)); 2478fb05593SSanjay Patel Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment); 2481e6b240dSSanjay Patel VecLd = Builder.CreateShuffleVector(VecLd, Mask); 249d399f870SSanjay Patel 25043bdac29SSanjay Patel replaceValue(I, *VecLd); 25143bdac29SSanjay Patel ++NumVecLoad; 25243bdac29SSanjay Patel return true; 25343bdac29SSanjay Patel } 25443bdac29SSanjay Patel 2553b95d834SSanjay Patel /// Determine which, if any, of the inputs should be replaced by a shuffle 2563b95d834SSanjay Patel /// followed by extract from a different index. 2573b95d834SSanjay Patel ExtractElementInst *VectorCombine::getShuffleExtract( 2583b95d834SSanjay Patel ExtractElementInst *Ext0, ExtractElementInst *Ext1, 2593b95d834SSanjay Patel unsigned PreferredExtractIndex = InvalidIndex) const { 26034f97a37SSimon Pilgrim auto *Index0C = dyn_cast<ConstantInt>(Ext0->getIndexOperand()); 26134f97a37SSimon Pilgrim auto *Index1C = dyn_cast<ConstantInt>(Ext1->getIndexOperand()); 26234f97a37SSimon Pilgrim assert(Index0C && Index1C && "Expected constant extract indexes"); 2633b95d834SSanjay Patel 26434f97a37SSimon Pilgrim unsigned Index0 = Index0C->getZExtValue(); 26534f97a37SSimon Pilgrim unsigned Index1 = Index1C->getZExtValue(); 2663b95d834SSanjay Patel 2673b95d834SSanjay Patel // If the extract indexes are identical, no shuffle is needed. 2683b95d834SSanjay Patel if (Index0 == Index1) 2693b95d834SSanjay Patel return nullptr; 2703b95d834SSanjay Patel 2713b95d834SSanjay Patel Type *VecTy = Ext0->getVectorOperand()->getType(); 2723b95d834SSanjay Patel assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types"); 27336710c38SCaroline Concatto InstructionCost Cost0 = 27436710c38SCaroline Concatto TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 27536710c38SCaroline Concatto InstructionCost Cost1 = 27636710c38SCaroline Concatto TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 27736710c38SCaroline Concatto 27836710c38SCaroline Concatto // If both costs are invalid no shuffle is needed 27936710c38SCaroline Concatto if (!Cost0.isValid() && !Cost1.isValid()) 28036710c38SCaroline Concatto return nullptr; 2813b95d834SSanjay Patel 2823b95d834SSanjay Patel // We are extracting from 2 different indexes, so one operand must be shuffled 2833b95d834SSanjay Patel // before performing a vector operation and/or extract. The more expensive 2843b95d834SSanjay Patel // extract will be replaced by a shuffle. 2853b95d834SSanjay Patel if (Cost0 > Cost1) 2863b95d834SSanjay Patel return Ext0; 2873b95d834SSanjay Patel if (Cost1 > Cost0) 2883b95d834SSanjay Patel return Ext1; 2893b95d834SSanjay Patel 2903b95d834SSanjay Patel // If the costs are equal and there is a preferred extract index, shuffle the 2913b95d834SSanjay Patel // opposite operand. 2923b95d834SSanjay Patel if (PreferredExtractIndex == Index0) 2933b95d834SSanjay Patel return Ext1; 2943b95d834SSanjay Patel if (PreferredExtractIndex == Index1) 2953b95d834SSanjay Patel return Ext0; 2963b95d834SSanjay Patel 2973b95d834SSanjay Patel // Otherwise, replace the extract with the higher index. 2983b95d834SSanjay Patel return Index0 > Index1 ? Ext0 : Ext1; 2993b95d834SSanjay Patel } 3003b95d834SSanjay Patel 301a69158c1SSanjay Patel /// Compare the relative costs of 2 extracts followed by scalar operation vs. 302a69158c1SSanjay Patel /// vector operation(s) followed by extract. Return true if the existing 303a69158c1SSanjay Patel /// instructions are cheaper than a vector alternative. Otherwise, return false 304a69158c1SSanjay Patel /// and if one of the extracts should be transformed to a shufflevector, set 305a69158c1SSanjay Patel /// \p ConvertToShuffle to that extract instruction. 3066bdd531aSSanjay Patel bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0, 3076bdd531aSSanjay Patel ExtractElementInst *Ext1, 3080dcd2b40SSimon Pilgrim const Instruction &I, 309216a37bbSSanjay Patel ExtractElementInst *&ConvertToShuffle, 310ce97ce3aSSanjay Patel unsigned PreferredExtractIndex) { 31134f97a37SSimon Pilgrim auto *Ext0IndexC = dyn_cast<ConstantInt>(Ext0->getOperand(1)); 31234f97a37SSimon Pilgrim auto *Ext1IndexC = dyn_cast<ConstantInt>(Ext1->getOperand(1)); 31334f97a37SSimon Pilgrim assert(Ext0IndexC && Ext1IndexC && "Expected constant extract indexes"); 31434f97a37SSimon Pilgrim 3150dcd2b40SSimon Pilgrim unsigned Opcode = I.getOpcode(); 31634e34855SSanjay Patel Type *ScalarTy = Ext0->getType(); 317e3056ae9SSam Parker auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType()); 31836710c38SCaroline Concatto InstructionCost ScalarOpCost, VectorOpCost; 31934e34855SSanjay Patel 32034e34855SSanjay Patel // Get cost estimates for scalar and vector versions of the operation. 32134e34855SSanjay Patel bool IsBinOp = Instruction::isBinaryOp(Opcode); 32234e34855SSanjay Patel if (IsBinOp) { 32334e34855SSanjay Patel ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 32434e34855SSanjay Patel VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 32534e34855SSanjay Patel } else { 32634e34855SSanjay Patel assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 32734e34855SSanjay Patel "Expected a compare"); 3280dcd2b40SSimon Pilgrim CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate(); 3290dcd2b40SSimon Pilgrim ScalarOpCost = TTI.getCmpSelInstrCost( 3300dcd2b40SSimon Pilgrim Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred); 3310dcd2b40SSimon Pilgrim VectorOpCost = TTI.getCmpSelInstrCost( 3320dcd2b40SSimon Pilgrim Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred); 33334e34855SSanjay Patel } 33434e34855SSanjay Patel 335a69158c1SSanjay Patel // Get cost estimates for the extract elements. These costs will factor into 33634e34855SSanjay Patel // both sequences. 33734f97a37SSimon Pilgrim unsigned Ext0Index = Ext0IndexC->getZExtValue(); 33834f97a37SSimon Pilgrim unsigned Ext1Index = Ext1IndexC->getZExtValue(); 339a69158c1SSanjay Patel 34036710c38SCaroline Concatto InstructionCost Extract0Cost = 3416bdd531aSSanjay Patel TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index); 34236710c38SCaroline Concatto InstructionCost Extract1Cost = 3436bdd531aSSanjay Patel TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index); 344a69158c1SSanjay Patel 345a69158c1SSanjay Patel // A more expensive extract will always be replaced by a splat shuffle. 346a69158c1SSanjay Patel // For example, if Ext0 is more expensive: 347a69158c1SSanjay Patel // opcode (extelt V0, Ext0), (ext V1, Ext1) --> 348a69158c1SSanjay Patel // extelt (opcode (splat V0, Ext0), V1), Ext1 349a69158c1SSanjay Patel // TODO: Evaluate whether that always results in lowest cost. Alternatively, 350a69158c1SSanjay Patel // check the cost of creating a broadcast shuffle and shuffling both 351a69158c1SSanjay Patel // operands to element 0. 35236710c38SCaroline Concatto InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost); 35334e34855SSanjay Patel 35434e34855SSanjay Patel // Extra uses of the extracts mean that we include those costs in the 35534e34855SSanjay Patel // vector total because those instructions will not be eliminated. 35636710c38SCaroline Concatto InstructionCost OldCost, NewCost; 357a69158c1SSanjay Patel if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) { 358a69158c1SSanjay Patel // Handle a special case. If the 2 extracts are identical, adjust the 35934e34855SSanjay Patel // formulas to account for that. The extra use charge allows for either the 36034e34855SSanjay Patel // CSE'd pattern or an unoptimized form with identical values: 36134e34855SSanjay Patel // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C 36234e34855SSanjay Patel bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2) 36334e34855SSanjay Patel : !Ext0->hasOneUse() || !Ext1->hasOneUse(); 364a69158c1SSanjay Patel OldCost = CheapExtractCost + ScalarOpCost; 365a69158c1SSanjay Patel NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost; 36634e34855SSanjay Patel } else { 36734e34855SSanjay Patel // Handle the general case. Each extract is actually a different value: 368a69158c1SSanjay Patel // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C 369a69158c1SSanjay Patel OldCost = Extract0Cost + Extract1Cost + ScalarOpCost; 370a69158c1SSanjay Patel NewCost = VectorOpCost + CheapExtractCost + 371a69158c1SSanjay Patel !Ext0->hasOneUse() * Extract0Cost + 372a69158c1SSanjay Patel !Ext1->hasOneUse() * Extract1Cost; 37334e34855SSanjay Patel } 374a69158c1SSanjay Patel 3753b95d834SSanjay Patel ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex); 3763b95d834SSanjay Patel if (ConvertToShuffle) { 377a69158c1SSanjay Patel if (IsBinOp && DisableBinopExtractShuffle) 378a69158c1SSanjay Patel return true; 379a69158c1SSanjay Patel 380a69158c1SSanjay Patel // If we are extracting from 2 different indexes, then one operand must be 381a69158c1SSanjay Patel // shuffled before performing the vector operation. The shuffle mask is 382a69158c1SSanjay Patel // undefined except for 1 lane that is being translated to the remaining 383a69158c1SSanjay Patel // extraction lane. Therefore, it is a splat shuffle. Ex: 384a69158c1SSanjay Patel // ShufMask = { undef, undef, 0, undef } 385a69158c1SSanjay Patel // TODO: The cost model has an option for a "broadcast" shuffle 386a69158c1SSanjay Patel // (splat-from-element-0), but no option for a more general splat. 387a69158c1SSanjay Patel NewCost += 388a69158c1SSanjay Patel TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 389a69158c1SSanjay Patel } 390a69158c1SSanjay Patel 39110ea01d8SSanjay Patel // Aggressively form a vector op if the cost is equal because the transform 39210ea01d8SSanjay Patel // may enable further optimization. 39310ea01d8SSanjay Patel // Codegen can reverse this transform (scalarize) if it was not profitable. 39410ea01d8SSanjay Patel return OldCost < NewCost; 39534e34855SSanjay Patel } 39634e34855SSanjay Patel 3979934cc54SSanjay Patel /// Create a shuffle that translates (shifts) 1 element from the input vector 3989934cc54SSanjay Patel /// to a new element location. 3999934cc54SSanjay Patel static Value *createShiftShuffle(Value *Vec, unsigned OldIndex, 4009934cc54SSanjay Patel unsigned NewIndex, IRBuilder<> &Builder) { 4019934cc54SSanjay Patel // The shuffle mask is undefined except for 1 lane that is being translated 4029934cc54SSanjay Patel // to the new element index. Example for OldIndex == 2 and NewIndex == 0: 4039934cc54SSanjay Patel // ShufMask = { 2, undef, undef, undef } 4049934cc54SSanjay Patel auto *VecTy = cast<FixedVectorType>(Vec->getType()); 40554143e2bSSanjay Patel SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem); 4069934cc54SSanjay Patel ShufMask[NewIndex] = OldIndex; 4071e6b240dSSanjay Patel return Builder.CreateShuffleVector(Vec, ShufMask, "shift"); 4089934cc54SSanjay Patel } 4099934cc54SSanjay Patel 410216a37bbSSanjay Patel /// Given an extract element instruction with constant index operand, shuffle 411216a37bbSSanjay Patel /// the source vector (shift the scalar element) to a NewIndex for extraction. 412216a37bbSSanjay Patel /// Return null if the input can be constant folded, so that we are not creating 413216a37bbSSanjay Patel /// unnecessary instructions. 4149934cc54SSanjay Patel static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt, 4159934cc54SSanjay Patel unsigned NewIndex, 4169934cc54SSanjay Patel IRBuilder<> &Builder) { 417216a37bbSSanjay Patel // If the extract can be constant-folded, this code is unsimplified. Defer 418216a37bbSSanjay Patel // to other passes to handle that. 419216a37bbSSanjay Patel Value *X = ExtElt->getVectorOperand(); 420216a37bbSSanjay Patel Value *C = ExtElt->getIndexOperand(); 421de65b356SSanjay Patel assert(isa<ConstantInt>(C) && "Expected a constant index operand"); 422216a37bbSSanjay Patel if (isa<Constant>(X)) 423216a37bbSSanjay Patel return nullptr; 424216a37bbSSanjay Patel 4259934cc54SSanjay Patel Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(), 4269934cc54SSanjay Patel NewIndex, Builder); 427216a37bbSSanjay Patel return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex)); 428216a37bbSSanjay Patel } 429216a37bbSSanjay Patel 430fc445589SSanjay Patel /// Try to reduce extract element costs by converting scalar compares to vector 431fc445589SSanjay Patel /// compares followed by extract. 432e9c79a7aSSanjay Patel /// cmp (ext0 V0, C), (ext1 V1, C) 433de65b356SSanjay Patel void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0, 434de65b356SSanjay Patel ExtractElementInst *Ext1, Instruction &I) { 435fc445589SSanjay Patel assert(isa<CmpInst>(&I) && "Expected a compare"); 436216a37bbSSanjay Patel assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 437216a37bbSSanjay Patel cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 438216a37bbSSanjay Patel "Expected matching constant extract indexes"); 439a17f03bdSSanjay Patel 440a17f03bdSSanjay Patel // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C 441a17f03bdSSanjay Patel ++NumVecCmp; 442fc445589SSanjay Patel CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate(); 443216a37bbSSanjay Patel Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 44446a285adSSanjay Patel Value *VecCmp = Builder.CreateCmp(Pred, V0, V1); 445216a37bbSSanjay Patel Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand()); 44698c2f4eeSSanjay Patel replaceValue(I, *NewExt); 447a17f03bdSSanjay Patel } 448a17f03bdSSanjay Patel 44919b62b79SSanjay Patel /// Try to reduce extract element costs by converting scalar binops to vector 45019b62b79SSanjay Patel /// binops followed by extract. 451e9c79a7aSSanjay Patel /// bo (ext0 V0, C), (ext1 V1, C) 452de65b356SSanjay Patel void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0, 453de65b356SSanjay Patel ExtractElementInst *Ext1, Instruction &I) { 454fc445589SSanjay Patel assert(isa<BinaryOperator>(&I) && "Expected a binary operator"); 455216a37bbSSanjay Patel assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == 456216a37bbSSanjay Patel cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && 457216a37bbSSanjay Patel "Expected matching constant extract indexes"); 45819b62b79SSanjay Patel 45934e34855SSanjay Patel // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C 46019b62b79SSanjay Patel ++NumVecBO; 461216a37bbSSanjay Patel Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); 462e9c79a7aSSanjay Patel Value *VecBO = 46334e34855SSanjay Patel Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1); 464e9c79a7aSSanjay Patel 46519b62b79SSanjay Patel // All IR flags are safe to back-propagate because any potential poison 46619b62b79SSanjay Patel // created in unused vector elements is discarded by the extract. 467e9c79a7aSSanjay Patel if (auto *VecBOInst = dyn_cast<Instruction>(VecBO)) 46819b62b79SSanjay Patel VecBOInst->copyIRFlags(&I); 469e9c79a7aSSanjay Patel 470216a37bbSSanjay Patel Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand()); 47198c2f4eeSSanjay Patel replaceValue(I, *NewExt); 47219b62b79SSanjay Patel } 47319b62b79SSanjay Patel 474fc445589SSanjay Patel /// Match an instruction with extracted vector operands. 4756bdd531aSSanjay Patel bool VectorCombine::foldExtractExtract(Instruction &I) { 476e9c79a7aSSanjay Patel // It is not safe to transform things like div, urem, etc. because we may 477e9c79a7aSSanjay Patel // create undefined behavior when executing those on unknown vector elements. 478e9c79a7aSSanjay Patel if (!isSafeToSpeculativelyExecute(&I)) 479e9c79a7aSSanjay Patel return false; 480e9c79a7aSSanjay Patel 481216a37bbSSanjay Patel Instruction *I0, *I1; 482fc445589SSanjay Patel CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 483216a37bbSSanjay Patel if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) && 484216a37bbSSanjay Patel !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1)))) 485fc445589SSanjay Patel return false; 486fc445589SSanjay Patel 487fc445589SSanjay Patel Value *V0, *V1; 488fc445589SSanjay Patel uint64_t C0, C1; 489216a37bbSSanjay Patel if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) || 490216a37bbSSanjay Patel !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) || 491fc445589SSanjay Patel V0->getType() != V1->getType()) 492fc445589SSanjay Patel return false; 493fc445589SSanjay Patel 494ce97ce3aSSanjay Patel // If the scalar value 'I' is going to be re-inserted into a vector, then try 495ce97ce3aSSanjay Patel // to create an extract to that same element. The extract/insert can be 496ce97ce3aSSanjay Patel // reduced to a "select shuffle". 497ce97ce3aSSanjay Patel // TODO: If we add a larger pattern match that starts from an insert, this 498ce97ce3aSSanjay Patel // probably becomes unnecessary. 499216a37bbSSanjay Patel auto *Ext0 = cast<ExtractElementInst>(I0); 500216a37bbSSanjay Patel auto *Ext1 = cast<ExtractElementInst>(I1); 501a0f96741SSanjay Patel uint64_t InsertIndex = InvalidIndex; 502ce97ce3aSSanjay Patel if (I.hasOneUse()) 5037eed772aSSanjay Patel match(I.user_back(), 5047eed772aSSanjay Patel m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex))); 505ce97ce3aSSanjay Patel 506216a37bbSSanjay Patel ExtractElementInst *ExtractToChange; 5070dcd2b40SSimon Pilgrim if (isExtractExtractCheap(Ext0, Ext1, I, ExtractToChange, InsertIndex)) 508fc445589SSanjay Patel return false; 509e9c79a7aSSanjay Patel 510216a37bbSSanjay Patel if (ExtractToChange) { 511216a37bbSSanjay Patel unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0; 512216a37bbSSanjay Patel ExtractElementInst *NewExtract = 5139934cc54SSanjay Patel translateExtract(ExtractToChange, CheapExtractIdx, Builder); 514216a37bbSSanjay Patel if (!NewExtract) 5156d864097SSanjay Patel return false; 516216a37bbSSanjay Patel if (ExtractToChange == Ext0) 517216a37bbSSanjay Patel Ext0 = NewExtract; 518a69158c1SSanjay Patel else 519216a37bbSSanjay Patel Ext1 = NewExtract; 520a69158c1SSanjay Patel } 521e9c79a7aSSanjay Patel 522e9c79a7aSSanjay Patel if (Pred != CmpInst::BAD_ICMP_PREDICATE) 523039ff29eSSanjay Patel foldExtExtCmp(Ext0, Ext1, I); 524e9c79a7aSSanjay Patel else 525039ff29eSSanjay Patel foldExtExtBinop(Ext0, Ext1, I); 526e9c79a7aSSanjay Patel 527300870a9SFlorian Hahn Worklist.push(Ext0); 528300870a9SFlorian Hahn Worklist.push(Ext1); 529e9c79a7aSSanjay Patel return true; 530fc445589SSanjay Patel } 531fc445589SSanjay Patel 532bef6e67eSSanjay Patel /// If this is a bitcast of a shuffle, try to bitcast the source vector to the 533bef6e67eSSanjay Patel /// destination type followed by shuffle. This can enable further transforms by 534bef6e67eSSanjay Patel /// moving bitcasts or shuffles together. 5356bdd531aSSanjay Patel bool VectorCombine::foldBitcastShuf(Instruction &I) { 536b6050ca1SSanjay Patel Value *V; 537b6050ca1SSanjay Patel ArrayRef<int> Mask; 5387eed772aSSanjay Patel if (!match(&I, m_BitCast( 5397eed772aSSanjay Patel m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask)))))) 540b6050ca1SSanjay Patel return false; 541b6050ca1SSanjay Patel 542b4f04d71SHuihui Zhang // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for 543b4f04d71SHuihui Zhang // scalable type is unknown; Second, we cannot reason if the narrowed shuffle 544b4f04d71SHuihui Zhang // mask for scalable type is a splat or not. 545b4f04d71SHuihui Zhang // 2) Disallow non-vector casts and length-changing shuffles. 546bef6e67eSSanjay Patel // TODO: We could allow any shuffle. 547b4f04d71SHuihui Zhang auto *DestTy = dyn_cast<FixedVectorType>(I.getType()); 548b4f04d71SHuihui Zhang auto *SrcTy = dyn_cast<FixedVectorType>(V->getType()); 549b4f04d71SHuihui Zhang if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy) 550b6050ca1SSanjay Patel return false; 551b6050ca1SSanjay Patel 552b4f04d71SHuihui Zhang unsigned DestNumElts = DestTy->getNumElements(); 553b4f04d71SHuihui Zhang unsigned SrcNumElts = SrcTy->getNumElements(); 554b6050ca1SSanjay Patel SmallVector<int, 16> NewMask; 555bef6e67eSSanjay Patel if (SrcNumElts <= DestNumElts) { 556bef6e67eSSanjay Patel // The bitcast is from wide to narrow/equal elements. The shuffle mask can 557bef6e67eSSanjay Patel // always be expanded to the equivalent form choosing narrower elements. 558b6050ca1SSanjay Patel assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask"); 559b6050ca1SSanjay Patel unsigned ScaleFactor = DestNumElts / SrcNumElts; 5601318ddbcSSanjay Patel narrowShuffleMaskElts(ScaleFactor, Mask, NewMask); 561bef6e67eSSanjay Patel } else { 562bef6e67eSSanjay Patel // The bitcast is from narrow elements to wide elements. The shuffle mask 563bef6e67eSSanjay Patel // must choose consecutive elements to allow casting first. 564bef6e67eSSanjay Patel assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask"); 565bef6e67eSSanjay Patel unsigned ScaleFactor = SrcNumElts / DestNumElts; 566bef6e67eSSanjay Patel if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask)) 567bef6e67eSSanjay Patel return false; 568bef6e67eSSanjay Patel } 569e2935dcfSDavid Green 570e2935dcfSDavid Green // The new shuffle must not cost more than the old shuffle. The bitcast is 571e2935dcfSDavid Green // moved ahead of the shuffle, so assume that it has the same cost as before. 572e2935dcfSDavid Green InstructionCost DestCost = TTI.getShuffleCost( 573e2935dcfSDavid Green TargetTransformInfo::SK_PermuteSingleSrc, DestTy, NewMask); 574e2935dcfSDavid Green InstructionCost SrcCost = 575e2935dcfSDavid Green TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy, Mask); 576e2935dcfSDavid Green if (DestCost > SrcCost || !DestCost.isValid()) 577e2935dcfSDavid Green return false; 578e2935dcfSDavid Green 579bef6e67eSSanjay Patel // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC' 5807aeb41b3SRoman Lebedev ++NumShufOfBitcast; 581bef6e67eSSanjay Patel Value *CastV = Builder.CreateBitCast(V, DestTy); 5821e6b240dSSanjay Patel Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask); 58398c2f4eeSSanjay Patel replaceValue(I, *Shuf); 584b6050ca1SSanjay Patel return true; 585b6050ca1SSanjay Patel } 586b6050ca1SSanjay Patel 587ed67f5e7SSanjay Patel /// Match a vector binop or compare instruction with at least one inserted 588ed67f5e7SSanjay Patel /// scalar operand and convert to scalar binop/cmp followed by insertelement. 5896bdd531aSSanjay Patel bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) { 590ed67f5e7SSanjay Patel CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 5915dc4e7c2SSimon Pilgrim Value *Ins0, *Ins1; 592ed67f5e7SSanjay Patel if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) && 593ed67f5e7SSanjay Patel !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1)))) 594ed67f5e7SSanjay Patel return false; 595ed67f5e7SSanjay Patel 596ed67f5e7SSanjay Patel // Do not convert the vector condition of a vector select into a scalar 597ed67f5e7SSanjay Patel // condition. That may cause problems for codegen because of differences in 598ed67f5e7SSanjay Patel // boolean formats and register-file transfers. 599ed67f5e7SSanjay Patel // TODO: Can we account for that in the cost model? 600ed67f5e7SSanjay Patel bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE; 601ed67f5e7SSanjay Patel if (IsCmp) 602ed67f5e7SSanjay Patel for (User *U : I.users()) 603ed67f5e7SSanjay Patel if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value()))) 6040d2a0b44SSanjay Patel return false; 6050d2a0b44SSanjay Patel 6065dc4e7c2SSimon Pilgrim // Match against one or both scalar values being inserted into constant 6075dc4e7c2SSimon Pilgrim // vectors: 608ed67f5e7SSanjay Patel // vec_op VecC0, (inselt VecC1, V1, Index) 609ed67f5e7SSanjay Patel // vec_op (inselt VecC0, V0, Index), VecC1 610ed67f5e7SSanjay Patel // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) 6110d2a0b44SSanjay Patel // TODO: Deal with mismatched index constants and variable indexes? 6125dc4e7c2SSimon Pilgrim Constant *VecC0 = nullptr, *VecC1 = nullptr; 6135dc4e7c2SSimon Pilgrim Value *V0 = nullptr, *V1 = nullptr; 6145dc4e7c2SSimon Pilgrim uint64_t Index0 = 0, Index1 = 0; 6157eed772aSSanjay Patel if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0), 6165dc4e7c2SSimon Pilgrim m_ConstantInt(Index0))) && 6175dc4e7c2SSimon Pilgrim !match(Ins0, m_Constant(VecC0))) 6185dc4e7c2SSimon Pilgrim return false; 6195dc4e7c2SSimon Pilgrim if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1), 6205dc4e7c2SSimon Pilgrim m_ConstantInt(Index1))) && 6215dc4e7c2SSimon Pilgrim !match(Ins1, m_Constant(VecC1))) 6220d2a0b44SSanjay Patel return false; 6230d2a0b44SSanjay Patel 6245dc4e7c2SSimon Pilgrim bool IsConst0 = !V0; 6255dc4e7c2SSimon Pilgrim bool IsConst1 = !V1; 6265dc4e7c2SSimon Pilgrim if (IsConst0 && IsConst1) 6275dc4e7c2SSimon Pilgrim return false; 6285dc4e7c2SSimon Pilgrim if (!IsConst0 && !IsConst1 && Index0 != Index1) 6295dc4e7c2SSimon Pilgrim return false; 6305dc4e7c2SSimon Pilgrim 6315dc4e7c2SSimon Pilgrim // Bail for single insertion if it is a load. 6325dc4e7c2SSimon Pilgrim // TODO: Handle this once getVectorInstrCost can cost for load/stores. 6335dc4e7c2SSimon Pilgrim auto *I0 = dyn_cast_or_null<Instruction>(V0); 6345dc4e7c2SSimon Pilgrim auto *I1 = dyn_cast_or_null<Instruction>(V1); 6355dc4e7c2SSimon Pilgrim if ((IsConst0 && I1 && I1->mayReadFromMemory()) || 6365dc4e7c2SSimon Pilgrim (IsConst1 && I0 && I0->mayReadFromMemory())) 6375dc4e7c2SSimon Pilgrim return false; 6385dc4e7c2SSimon Pilgrim 6395dc4e7c2SSimon Pilgrim uint64_t Index = IsConst0 ? Index1 : Index0; 6405dc4e7c2SSimon Pilgrim Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType(); 6410d2a0b44SSanjay Patel Type *VecTy = I.getType(); 6425dc4e7c2SSimon Pilgrim assert(VecTy->isVectorTy() && 6435dc4e7c2SSimon Pilgrim (IsConst0 || IsConst1 || V0->getType() == V1->getType()) && 644741e20f3SSanjay Patel (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() || 645741e20f3SSanjay Patel ScalarTy->isPointerTy()) && 646741e20f3SSanjay Patel "Unexpected types for insert element into binop or cmp"); 6470d2a0b44SSanjay Patel 648ed67f5e7SSanjay Patel unsigned Opcode = I.getOpcode(); 64936710c38SCaroline Concatto InstructionCost ScalarOpCost, VectorOpCost; 650ed67f5e7SSanjay Patel if (IsCmp) { 6510dcd2b40SSimon Pilgrim CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate(); 6520dcd2b40SSimon Pilgrim ScalarOpCost = TTI.getCmpSelInstrCost( 6530dcd2b40SSimon Pilgrim Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred); 6540dcd2b40SSimon Pilgrim VectorOpCost = TTI.getCmpSelInstrCost( 6550dcd2b40SSimon Pilgrim Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred); 656ed67f5e7SSanjay Patel } else { 657ed67f5e7SSanjay Patel ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); 658ed67f5e7SSanjay Patel VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 659ed67f5e7SSanjay Patel } 6600d2a0b44SSanjay Patel 6610d2a0b44SSanjay Patel // Get cost estimate for the insert element. This cost will factor into 6620d2a0b44SSanjay Patel // both sequences. 66336710c38SCaroline Concatto InstructionCost InsertCost = 6640d2a0b44SSanjay Patel TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index); 66536710c38SCaroline Concatto InstructionCost OldCost = 66636710c38SCaroline Concatto (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + VectorOpCost; 66736710c38SCaroline Concatto InstructionCost NewCost = ScalarOpCost + InsertCost + 6685dc4e7c2SSimon Pilgrim (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) + 6695dc4e7c2SSimon Pilgrim (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost); 6700d2a0b44SSanjay Patel 6710d2a0b44SSanjay Patel // We want to scalarize unless the vector variant actually has lower cost. 67236710c38SCaroline Concatto if (OldCost < NewCost || !NewCost.isValid()) 6730d2a0b44SSanjay Patel return false; 6740d2a0b44SSanjay Patel 675ed67f5e7SSanjay Patel // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) --> 676ed67f5e7SSanjay Patel // inselt NewVecC, (scalar_op V0, V1), Index 677ed67f5e7SSanjay Patel if (IsCmp) 678ed67f5e7SSanjay Patel ++NumScalarCmp; 679ed67f5e7SSanjay Patel else 6800d2a0b44SSanjay Patel ++NumScalarBO; 6815dc4e7c2SSimon Pilgrim 6825dc4e7c2SSimon Pilgrim // For constant cases, extract the scalar element, this should constant fold. 6835dc4e7c2SSimon Pilgrim if (IsConst0) 6845dc4e7c2SSimon Pilgrim V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index)); 6855dc4e7c2SSimon Pilgrim if (IsConst1) 6865dc4e7c2SSimon Pilgrim V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index)); 6875dc4e7c2SSimon Pilgrim 688ed67f5e7SSanjay Patel Value *Scalar = 68946a285adSSanjay Patel IsCmp ? Builder.CreateCmp(Pred, V0, V1) 690ed67f5e7SSanjay Patel : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1); 691ed67f5e7SSanjay Patel 692ed67f5e7SSanjay Patel Scalar->setName(I.getName() + ".scalar"); 6930d2a0b44SSanjay Patel 6940d2a0b44SSanjay Patel // All IR flags are safe to back-propagate. There is no potential for extra 6950d2a0b44SSanjay Patel // poison to be created by the scalar instruction. 6960d2a0b44SSanjay Patel if (auto *ScalarInst = dyn_cast<Instruction>(Scalar)) 6970d2a0b44SSanjay Patel ScalarInst->copyIRFlags(&I); 6980d2a0b44SSanjay Patel 6990d2a0b44SSanjay Patel // Fold the vector constants in the original vectors into a new base vector. 700ed67f5e7SSanjay Patel Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1) 701ed67f5e7SSanjay Patel : ConstantExpr::get(Opcode, VecC0, VecC1); 7020d2a0b44SSanjay Patel Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index); 70398c2f4eeSSanjay Patel replaceValue(I, *Insert); 7040d2a0b44SSanjay Patel return true; 7050d2a0b44SSanjay Patel } 7060d2a0b44SSanjay Patel 707b6315aeeSSanjay Patel /// Try to combine a scalar binop + 2 scalar compares of extracted elements of 708b6315aeeSSanjay Patel /// a vector into vector operations followed by extract. Note: The SLP pass 709b6315aeeSSanjay Patel /// may miss this pattern because of implementation problems. 710b6315aeeSSanjay Patel bool VectorCombine::foldExtractedCmps(Instruction &I) { 711b6315aeeSSanjay Patel // We are looking for a scalar binop of booleans. 712b6315aeeSSanjay Patel // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1) 713b6315aeeSSanjay Patel if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1)) 714b6315aeeSSanjay Patel return false; 715b6315aeeSSanjay Patel 716b6315aeeSSanjay Patel // The compare predicates should match, and each compare should have a 717b6315aeeSSanjay Patel // constant operand. 718b6315aeeSSanjay Patel // TODO: Relax the one-use constraints. 719b6315aeeSSanjay Patel Value *B0 = I.getOperand(0), *B1 = I.getOperand(1); 720b6315aeeSSanjay Patel Instruction *I0, *I1; 721b6315aeeSSanjay Patel Constant *C0, *C1; 722b6315aeeSSanjay Patel CmpInst::Predicate P0, P1; 723b6315aeeSSanjay Patel if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) || 724b6315aeeSSanjay Patel !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) || 725b6315aeeSSanjay Patel P0 != P1) 726b6315aeeSSanjay Patel return false; 727b6315aeeSSanjay Patel 728b6315aeeSSanjay Patel // The compare operands must be extracts of the same vector with constant 729b6315aeeSSanjay Patel // extract indexes. 730b6315aeeSSanjay Patel // TODO: Relax the one-use constraints. 731b6315aeeSSanjay Patel Value *X; 732b6315aeeSSanjay Patel uint64_t Index0, Index1; 733b6315aeeSSanjay Patel if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) || 734b6315aeeSSanjay Patel !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1))))) 735b6315aeeSSanjay Patel return false; 736b6315aeeSSanjay Patel 737b6315aeeSSanjay Patel auto *Ext0 = cast<ExtractElementInst>(I0); 738b6315aeeSSanjay Patel auto *Ext1 = cast<ExtractElementInst>(I1); 739b6315aeeSSanjay Patel ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1); 740b6315aeeSSanjay Patel if (!ConvertToShuf) 741b6315aeeSSanjay Patel return false; 742b6315aeeSSanjay Patel 743b6315aeeSSanjay Patel // The original scalar pattern is: 744b6315aeeSSanjay Patel // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1) 745b6315aeeSSanjay Patel CmpInst::Predicate Pred = P0; 746b6315aeeSSanjay Patel unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp 747b6315aeeSSanjay Patel : Instruction::ICmp; 748b6315aeeSSanjay Patel auto *VecTy = dyn_cast<FixedVectorType>(X->getType()); 749b6315aeeSSanjay Patel if (!VecTy) 750b6315aeeSSanjay Patel return false; 751b6315aeeSSanjay Patel 75236710c38SCaroline Concatto InstructionCost OldCost = 75336710c38SCaroline Concatto TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); 754b6315aeeSSanjay Patel OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); 7550dcd2b40SSimon Pilgrim OldCost += 7560dcd2b40SSimon Pilgrim TTI.getCmpSelInstrCost(CmpOpcode, I0->getType(), 7570dcd2b40SSimon Pilgrim CmpInst::makeCmpResultType(I0->getType()), Pred) * 7580dcd2b40SSimon Pilgrim 2; 759b6315aeeSSanjay Patel OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType()); 760b6315aeeSSanjay Patel 761b6315aeeSSanjay Patel // The proposed vector pattern is: 762b6315aeeSSanjay Patel // vcmp = cmp Pred X, VecC 763b6315aeeSSanjay Patel // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0 764b6315aeeSSanjay Patel int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0; 765b6315aeeSSanjay Patel int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1; 766b6315aeeSSanjay Patel auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType())); 7670dcd2b40SSimon Pilgrim InstructionCost NewCost = TTI.getCmpSelInstrCost( 7680dcd2b40SSimon Pilgrim CmpOpcode, X->getType(), CmpInst::makeCmpResultType(X->getType()), Pred); 769e2935dcfSDavid Green SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem); 770e2935dcfSDavid Green ShufMask[CheapIndex] = ExpensiveIndex; 771e2935dcfSDavid Green NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy, 772e2935dcfSDavid Green ShufMask); 773b6315aeeSSanjay Patel NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy); 774b6315aeeSSanjay Patel NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex); 775b6315aeeSSanjay Patel 776b6315aeeSSanjay Patel // Aggressively form vector ops if the cost is equal because the transform 777b6315aeeSSanjay Patel // may enable further optimization. 778b6315aeeSSanjay Patel // Codegen can reverse this transform (scalarize) if it was not profitable. 77936710c38SCaroline Concatto if (OldCost < NewCost || !NewCost.isValid()) 780b6315aeeSSanjay Patel return false; 781b6315aeeSSanjay Patel 782b6315aeeSSanjay Patel // Create a vector constant from the 2 scalar constants. 783b6315aeeSSanjay Patel SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(), 784b6315aeeSSanjay Patel UndefValue::get(VecTy->getElementType())); 785b6315aeeSSanjay Patel CmpC[Index0] = C0; 786b6315aeeSSanjay Patel CmpC[Index1] = C1; 787b6315aeeSSanjay Patel Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC)); 788b6315aeeSSanjay Patel 789b6315aeeSSanjay Patel Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder); 790b6315aeeSSanjay Patel Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(), 791b6315aeeSSanjay Patel VCmp, Shuf); 792b6315aeeSSanjay Patel Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex); 793b6315aeeSSanjay Patel replaceValue(I, *NewExt); 794b6315aeeSSanjay Patel ++NumVecCmpBO; 795b6315aeeSSanjay Patel return true; 796b6315aeeSSanjay Patel } 797b6315aeeSSanjay Patel 7982db4979cSQiu Chaofan // Check if memory loc modified between two instrs in the same BB 7992db4979cSQiu Chaofan static bool isMemModifiedBetween(BasicBlock::iterator Begin, 8002db4979cSQiu Chaofan BasicBlock::iterator End, 8012db4979cSQiu Chaofan const MemoryLocation &Loc, AAResults &AA) { 8022db4979cSQiu Chaofan unsigned NumScanned = 0; 8032db4979cSQiu Chaofan return std::any_of(Begin, End, [&](const Instruction &Instr) { 8042db4979cSQiu Chaofan return isModSet(AA.getModRefInfo(&Instr, Loc)) || 8052db4979cSQiu Chaofan ++NumScanned > MaxInstrsToScan; 8062db4979cSQiu Chaofan }); 8072db4979cSQiu Chaofan } 8082db4979cSQiu Chaofan 809c24fc37eSFlorian Hahn /// Helper class to indicate whether a vector index can be safely scalarized and 810c24fc37eSFlorian Hahn /// if a freeze needs to be inserted. 811c24fc37eSFlorian Hahn class ScalarizationResult { 812c24fc37eSFlorian Hahn enum class StatusTy { Unsafe, Safe, SafeWithFreeze }; 813c24fc37eSFlorian Hahn 814c24fc37eSFlorian Hahn StatusTy Status; 815c24fc37eSFlorian Hahn Value *ToFreeze; 816c24fc37eSFlorian Hahn 817c24fc37eSFlorian Hahn ScalarizationResult(StatusTy Status, Value *ToFreeze = nullptr) 818c24fc37eSFlorian Hahn : Status(Status), ToFreeze(ToFreeze) {} 819c24fc37eSFlorian Hahn 820c24fc37eSFlorian Hahn public: 821c24fc37eSFlorian Hahn ScalarizationResult(const ScalarizationResult &Other) = default; 822c24fc37eSFlorian Hahn ~ScalarizationResult() { 823c24fc37eSFlorian Hahn assert(!ToFreeze && "freeze() not called with ToFreeze being set"); 824c24fc37eSFlorian Hahn } 825c24fc37eSFlorian Hahn 826c24fc37eSFlorian Hahn static ScalarizationResult unsafe() { return {StatusTy::Unsafe}; } 827c24fc37eSFlorian Hahn static ScalarizationResult safe() { return {StatusTy::Safe}; } 828c24fc37eSFlorian Hahn static ScalarizationResult safeWithFreeze(Value *ToFreeze) { 829c24fc37eSFlorian Hahn return {StatusTy::SafeWithFreeze, ToFreeze}; 830c24fc37eSFlorian Hahn } 831c24fc37eSFlorian Hahn 832c24fc37eSFlorian Hahn /// Returns true if the index can be scalarize without requiring a freeze. 833c24fc37eSFlorian Hahn bool isSafe() const { return Status == StatusTy::Safe; } 834c24fc37eSFlorian Hahn /// Returns true if the index cannot be scalarized. 835c24fc37eSFlorian Hahn bool isUnsafe() const { return Status == StatusTy::Unsafe; } 836c24fc37eSFlorian Hahn /// Returns true if the index can be scalarize, but requires inserting a 837c24fc37eSFlorian Hahn /// freeze. 838c24fc37eSFlorian Hahn bool isSafeWithFreeze() const { return Status == StatusTy::SafeWithFreeze; } 839c24fc37eSFlorian Hahn 840e2f6290eSFlorian Hahn /// Reset the state of Unsafe and clear ToFreze if set. 841e2f6290eSFlorian Hahn void discard() { 842e2f6290eSFlorian Hahn ToFreeze = nullptr; 843e2f6290eSFlorian Hahn Status = StatusTy::Unsafe; 844e2f6290eSFlorian Hahn } 845e2f6290eSFlorian Hahn 846c24fc37eSFlorian Hahn /// Freeze the ToFreeze and update the use in \p User to use it. 847c24fc37eSFlorian Hahn void freeze(IRBuilder<> &Builder, Instruction &UserI) { 848c24fc37eSFlorian Hahn assert(isSafeWithFreeze() && 849c24fc37eSFlorian Hahn "should only be used when freezing is required"); 850c24fc37eSFlorian Hahn assert(is_contained(ToFreeze->users(), &UserI) && 851c24fc37eSFlorian Hahn "UserI must be a user of ToFreeze"); 852c24fc37eSFlorian Hahn IRBuilder<>::InsertPointGuard Guard(Builder); 853c24fc37eSFlorian Hahn Builder.SetInsertPoint(cast<Instruction>(&UserI)); 854c24fc37eSFlorian Hahn Value *Frozen = 855c24fc37eSFlorian Hahn Builder.CreateFreeze(ToFreeze, ToFreeze->getName() + ".frozen"); 856c24fc37eSFlorian Hahn for (Use &U : make_early_inc_range((UserI.operands()))) 857c24fc37eSFlorian Hahn if (U.get() == ToFreeze) 858c24fc37eSFlorian Hahn U.set(Frozen); 859c24fc37eSFlorian Hahn 860c24fc37eSFlorian Hahn ToFreeze = nullptr; 861c24fc37eSFlorian Hahn } 862c24fc37eSFlorian Hahn }; 863c24fc37eSFlorian Hahn 8644e8c28b6SFlorian Hahn /// Check if it is legal to scalarize a memory access to \p VecTy at index \p 8654e8c28b6SFlorian Hahn /// Idx. \p Idx must access a valid vector element. 866c24fc37eSFlorian Hahn static ScalarizationResult canScalarizeAccess(FixedVectorType *VecTy, 867c24fc37eSFlorian Hahn Value *Idx, Instruction *CtxI, 8685131037eSFlorian Hahn AssumptionCache &AC, 8695131037eSFlorian Hahn const DominatorTree &DT) { 870c24fc37eSFlorian Hahn if (auto *C = dyn_cast<ConstantInt>(Idx)) { 871c24fc37eSFlorian Hahn if (C->getValue().ult(VecTy->getNumElements())) 872c24fc37eSFlorian Hahn return ScalarizationResult::safe(); 873c24fc37eSFlorian Hahn return ScalarizationResult::unsafe(); 874c24fc37eSFlorian Hahn } 875575e2affSFlorian Hahn 876c24fc37eSFlorian Hahn unsigned IntWidth = Idx->getType()->getScalarSizeInBits(); 877c24fc37eSFlorian Hahn APInt Zero(IntWidth, 0); 878c24fc37eSFlorian Hahn APInt MaxElts(IntWidth, VecTy->getNumElements()); 879575e2affSFlorian Hahn ConstantRange ValidIndices(Zero, MaxElts); 880c24fc37eSFlorian Hahn ConstantRange IdxRange(IntWidth, true); 881c24fc37eSFlorian Hahn 882c24fc37eSFlorian Hahn if (isGuaranteedNotToBePoison(Idx, &AC)) { 8830edf9995SSanjay Patel if (ValidIndices.contains(computeConstantRange(Idx, /* ForSigned */ false, 8840edf9995SSanjay Patel true, &AC, CtxI, &DT))) 885c24fc37eSFlorian Hahn return ScalarizationResult::safe(); 886c24fc37eSFlorian Hahn return ScalarizationResult::unsafe(); 887c24fc37eSFlorian Hahn } 888c24fc37eSFlorian Hahn 889c24fc37eSFlorian Hahn // If the index may be poison, check if we can insert a freeze before the 890c24fc37eSFlorian Hahn // range of the index is restricted. 891c24fc37eSFlorian Hahn Value *IdxBase; 892c24fc37eSFlorian Hahn ConstantInt *CI; 893c24fc37eSFlorian Hahn if (match(Idx, m_And(m_Value(IdxBase), m_ConstantInt(CI)))) { 894c24fc37eSFlorian Hahn IdxRange = IdxRange.binaryAnd(CI->getValue()); 895c24fc37eSFlorian Hahn } else if (match(Idx, m_URem(m_Value(IdxBase), m_ConstantInt(CI)))) { 896c24fc37eSFlorian Hahn IdxRange = IdxRange.urem(CI->getValue()); 897c24fc37eSFlorian Hahn } 898c24fc37eSFlorian Hahn 899c24fc37eSFlorian Hahn if (ValidIndices.contains(IdxRange)) 900c24fc37eSFlorian Hahn return ScalarizationResult::safeWithFreeze(IdxBase); 901c24fc37eSFlorian Hahn return ScalarizationResult::unsafe(); 9024e8c28b6SFlorian Hahn } 9034e8c28b6SFlorian Hahn 904abc0e012SRoman Lebedev /// The memory operation on a vector of \p ScalarType had alignment of 905abc0e012SRoman Lebedev /// \p VectorAlignment. Compute the maximal, but conservatively correct, 906abc0e012SRoman Lebedev /// alignment that will be valid for the memory operation on a single scalar 907abc0e012SRoman Lebedev /// element of the same type with index \p Idx. 908abc0e012SRoman Lebedev static Align computeAlignmentAfterScalarization(Align VectorAlignment, 909abc0e012SRoman Lebedev Type *ScalarType, Value *Idx, 910abc0e012SRoman Lebedev const DataLayout &DL) { 911abc0e012SRoman Lebedev if (auto *C = dyn_cast<ConstantInt>(Idx)) 912abc0e012SRoman Lebedev return commonAlignment(VectorAlignment, 913abc0e012SRoman Lebedev C->getZExtValue() * DL.getTypeStoreSize(ScalarType)); 914abc0e012SRoman Lebedev return commonAlignment(VectorAlignment, DL.getTypeStoreSize(ScalarType)); 915abc0e012SRoman Lebedev } 916abc0e012SRoman Lebedev 9172db4979cSQiu Chaofan // Combine patterns like: 9182db4979cSQiu Chaofan // %0 = load <4 x i32>, <4 x i32>* %a 9192db4979cSQiu Chaofan // %1 = insertelement <4 x i32> %0, i32 %b, i32 1 9202db4979cSQiu Chaofan // store <4 x i32> %1, <4 x i32>* %a 9212db4979cSQiu Chaofan // to: 9222db4979cSQiu Chaofan // %0 = bitcast <4 x i32>* %a to i32* 9232db4979cSQiu Chaofan // %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1 9242db4979cSQiu Chaofan // store i32 %b, i32* %1 9252db4979cSQiu Chaofan bool VectorCombine::foldSingleElementStore(Instruction &I) { 9262db4979cSQiu Chaofan StoreInst *SI = dyn_cast<StoreInst>(&I); 9276d2df181SQiu Chaofan if (!SI || !SI->isSimple() || 9286d2df181SQiu Chaofan !isa<FixedVectorType>(SI->getValueOperand()->getType())) 9292db4979cSQiu Chaofan return false; 9302db4979cSQiu Chaofan 9312db4979cSQiu Chaofan // TODO: Combine more complicated patterns (multiple insert) by referencing 9322db4979cSQiu Chaofan // TargetTransformInfo. 9332db4979cSQiu Chaofan Instruction *Source; 9346d2df181SQiu Chaofan Value *NewElement; 935575e2affSFlorian Hahn Value *Idx; 9362db4979cSQiu Chaofan if (!match(SI->getValueOperand(), 9372db4979cSQiu Chaofan m_InsertElt(m_Instruction(Source), m_Value(NewElement), 938575e2affSFlorian Hahn m_Value(Idx)))) 9392db4979cSQiu Chaofan return false; 9402db4979cSQiu Chaofan 9412db4979cSQiu Chaofan if (auto *Load = dyn_cast<LoadInst>(Source)) { 9426d2df181SQiu Chaofan auto VecTy = cast<FixedVectorType>(SI->getValueOperand()->getType()); 9432db4979cSQiu Chaofan const DataLayout &DL = I.getModule()->getDataLayout(); 9442db4979cSQiu Chaofan Value *SrcAddr = Load->getPointerOperand()->stripPointerCasts(); 9456d2df181SQiu Chaofan // Don't optimize for atomic/volatile load or store. Ensure memory is not 9466d2df181SQiu Chaofan // modified between, vector type matches store size, and index is inbounds. 9472db4979cSQiu Chaofan if (!Load->isSimple() || Load->getParent() != SI->getParent() || 9482db4979cSQiu Chaofan !DL.typeSizeEqualsStoreSize(Load->getType()) || 949c24fc37eSFlorian Hahn SrcAddr != SI->getPointerOperand()->stripPointerCasts()) 950c24fc37eSFlorian Hahn return false; 951c24fc37eSFlorian Hahn 9525131037eSFlorian Hahn auto ScalarizableIdx = canScalarizeAccess(VecTy, Idx, Load, AC, DT); 953c24fc37eSFlorian Hahn if (ScalarizableIdx.isUnsafe() || 9542db4979cSQiu Chaofan isMemModifiedBetween(Load->getIterator(), SI->getIterator(), 9552db4979cSQiu Chaofan MemoryLocation::get(SI), AA)) 9562db4979cSQiu Chaofan return false; 9572db4979cSQiu Chaofan 958c24fc37eSFlorian Hahn if (ScalarizableIdx.isSafeWithFreeze()) 959c24fc37eSFlorian Hahn ScalarizableIdx.freeze(Builder, *cast<Instruction>(Idx)); 960a213f735SNikita Popov Value *GEP = Builder.CreateInBoundsGEP( 961a213f735SNikita Popov SI->getValueOperand()->getType(), SI->getPointerOperand(), 962a213f735SNikita Popov {ConstantInt::get(Idx->getType(), 0), Idx}); 9632db4979cSQiu Chaofan StoreInst *NSI = Builder.CreateStore(NewElement, GEP); 9642db4979cSQiu Chaofan NSI->copyMetadata(*SI); 965abc0e012SRoman Lebedev Align ScalarOpAlignment = computeAlignmentAfterScalarization( 966abc0e012SRoman Lebedev std::max(SI->getAlign(), Load->getAlign()), NewElement->getType(), Idx, 967abc0e012SRoman Lebedev DL); 968abc0e012SRoman Lebedev NSI->setAlignment(ScalarOpAlignment); 9692db4979cSQiu Chaofan replaceValue(I, *NSI); 970300870a9SFlorian Hahn eraseInstruction(I); 9712db4979cSQiu Chaofan return true; 9722db4979cSQiu Chaofan } 9732db4979cSQiu Chaofan 9742db4979cSQiu Chaofan return false; 9752db4979cSQiu Chaofan } 9762db4979cSQiu Chaofan 9774e8c28b6SFlorian Hahn /// Try to scalarize vector loads feeding extractelement instructions. 9784e8c28b6SFlorian Hahn bool VectorCombine::scalarizeLoadExtract(Instruction &I) { 9794e8c28b6SFlorian Hahn Value *Ptr; 980300870a9SFlorian Hahn if (!match(&I, m_Load(m_Value(Ptr)))) 9814e8c28b6SFlorian Hahn return false; 9824e8c28b6SFlorian Hahn 983300870a9SFlorian Hahn auto *LI = cast<LoadInst>(&I); 9844e8c28b6SFlorian Hahn const DataLayout &DL = I.getModule()->getDataLayout(); 9854e8c28b6SFlorian Hahn if (LI->isVolatile() || !DL.typeSizeEqualsStoreSize(LI->getType())) 9864e8c28b6SFlorian Hahn return false; 9874e8c28b6SFlorian Hahn 9884e8c28b6SFlorian Hahn auto *FixedVT = dyn_cast<FixedVectorType>(LI->getType()); 9894e8c28b6SFlorian Hahn if (!FixedVT) 9904e8c28b6SFlorian Hahn return false; 9914e8c28b6SFlorian Hahn 9925a81a603SArthur Eubanks InstructionCost OriginalCost = 9935a81a603SArthur Eubanks TTI.getMemoryOpCost(Instruction::Load, LI->getType(), LI->getAlign(), 9944e8c28b6SFlorian Hahn LI->getPointerAddressSpace()); 9954e8c28b6SFlorian Hahn InstructionCost ScalarizedCost = 0; 9964e8c28b6SFlorian Hahn 9974e8c28b6SFlorian Hahn Instruction *LastCheckedInst = LI; 9984e8c28b6SFlorian Hahn unsigned NumInstChecked = 0; 9994e8c28b6SFlorian Hahn // Check if all users of the load are extracts with no memory modifications 10004e8c28b6SFlorian Hahn // between the load and the extract. Compute the cost of both the original 10014e8c28b6SFlorian Hahn // code and the scalarized version. 10024e8c28b6SFlorian Hahn for (User *U : LI->users()) { 10034e8c28b6SFlorian Hahn auto *UI = dyn_cast<ExtractElementInst>(U); 10044e8c28b6SFlorian Hahn if (!UI || UI->getParent() != LI->getParent()) 10054e8c28b6SFlorian Hahn return false; 10064e8c28b6SFlorian Hahn 100796ca0349SFlorian Hahn if (!isGuaranteedNotToBePoison(UI->getOperand(1), &AC, LI, &DT)) 100896ca0349SFlorian Hahn return false; 100996ca0349SFlorian Hahn 10104e8c28b6SFlorian Hahn // Check if any instruction between the load and the extract may modify 10114e8c28b6SFlorian Hahn // memory. 10124e8c28b6SFlorian Hahn if (LastCheckedInst->comesBefore(UI)) { 10134e8c28b6SFlorian Hahn for (Instruction &I : 10144e8c28b6SFlorian Hahn make_range(std::next(LI->getIterator()), UI->getIterator())) { 10154e8c28b6SFlorian Hahn // Bail out if we reached the check limit or the instruction may write 10164e8c28b6SFlorian Hahn // to memory. 10174e8c28b6SFlorian Hahn if (NumInstChecked == MaxInstrsToScan || I.mayWriteToMemory()) 10184e8c28b6SFlorian Hahn return false; 10194e8c28b6SFlorian Hahn NumInstChecked++; 10204e8c28b6SFlorian Hahn } 1021c141d158SFlorian Hahn LastCheckedInst = UI; 10224e8c28b6SFlorian Hahn } 10234e8c28b6SFlorian Hahn 10245131037eSFlorian Hahn auto ScalarIdx = canScalarizeAccess(FixedVT, UI->getOperand(1), &I, AC, DT); 1025c24fc37eSFlorian Hahn if (!ScalarIdx.isSafe()) { 1026c24fc37eSFlorian Hahn // TODO: Freeze index if it is safe to do so. 1027e2f6290eSFlorian Hahn ScalarIdx.discard(); 1028007f268cSFlorian Hahn return false; 1029c24fc37eSFlorian Hahn } 1030007f268cSFlorian Hahn 10314e8c28b6SFlorian Hahn auto *Index = dyn_cast<ConstantInt>(UI->getOperand(1)); 10324e8c28b6SFlorian Hahn OriginalCost += 10334e8c28b6SFlorian Hahn TTI.getVectorInstrCost(Instruction::ExtractElement, LI->getType(), 10344e8c28b6SFlorian Hahn Index ? Index->getZExtValue() : -1); 10354e8c28b6SFlorian Hahn ScalarizedCost += 10364e8c28b6SFlorian Hahn TTI.getMemoryOpCost(Instruction::Load, FixedVT->getElementType(), 10374e8c28b6SFlorian Hahn Align(1), LI->getPointerAddressSpace()); 10384e8c28b6SFlorian Hahn ScalarizedCost += TTI.getAddressComputationCost(FixedVT->getElementType()); 10394e8c28b6SFlorian Hahn } 10404e8c28b6SFlorian Hahn 10414e8c28b6SFlorian Hahn if (ScalarizedCost >= OriginalCost) 10424e8c28b6SFlorian Hahn return false; 10434e8c28b6SFlorian Hahn 10444e8c28b6SFlorian Hahn // Replace extracts with narrow scalar loads. 10454e8c28b6SFlorian Hahn for (User *U : LI->users()) { 10464e8c28b6SFlorian Hahn auto *EI = cast<ExtractElementInst>(U); 10474e8c28b6SFlorian Hahn Builder.SetInsertPoint(EI); 1048d4c070d8SFlorian Hahn 1049d4c070d8SFlorian Hahn Value *Idx = EI->getOperand(1); 1050d4c070d8SFlorian Hahn Value *GEP = 1051d4c070d8SFlorian Hahn Builder.CreateInBoundsGEP(FixedVT, Ptr, {Builder.getInt32(0), Idx}); 10524e8c28b6SFlorian Hahn auto *NewLoad = cast<LoadInst>(Builder.CreateLoad( 10534e8c28b6SFlorian Hahn FixedVT->getElementType(), GEP, EI->getName() + ".scalar")); 10544e8c28b6SFlorian Hahn 105520542b47SRoman Lebedev Align ScalarOpAlignment = computeAlignmentAfterScalarization( 105620542b47SRoman Lebedev LI->getAlign(), FixedVT->getElementType(), Idx, DL); 105720542b47SRoman Lebedev NewLoad->setAlignment(ScalarOpAlignment); 105820542b47SRoman Lebedev 10594e8c28b6SFlorian Hahn replaceValue(*EI, *NewLoad); 10604e8c28b6SFlorian Hahn } 10614e8c28b6SFlorian Hahn 10624e8c28b6SFlorian Hahn return true; 10634e8c28b6SFlorian Hahn } 10644e8c28b6SFlorian Hahn 106566d22b4dSSanjay Patel /// Try to convert "shuffle (binop), (binop)" with a shared binop operand into 106666d22b4dSSanjay Patel /// "binop (shuffle), (shuffle)". 106766d22b4dSSanjay Patel bool VectorCombine::foldShuffleOfBinops(Instruction &I) { 106866d22b4dSSanjay Patel auto *VecTy = dyn_cast<FixedVectorType>(I.getType()); 106966d22b4dSSanjay Patel if (!VecTy) 107066d22b4dSSanjay Patel return false; 107166d22b4dSSanjay Patel 107266d22b4dSSanjay Patel BinaryOperator *B0, *B1; 107366d22b4dSSanjay Patel ArrayRef<int> Mask; 107466d22b4dSSanjay Patel if (!match(&I, m_Shuffle(m_OneUse(m_BinOp(B0)), m_OneUse(m_BinOp(B1)), 107566d22b4dSSanjay Patel m_Mask(Mask))) || 107666d22b4dSSanjay Patel B0->getOpcode() != B1->getOpcode() || B0->getType() != VecTy) 107766d22b4dSSanjay Patel return false; 107866d22b4dSSanjay Patel 107966d22b4dSSanjay Patel // Try to replace a binop with a shuffle if the shuffle is not costly. 108066d22b4dSSanjay Patel // The new shuffle will choose from a single, common operand, so it may be 108166d22b4dSSanjay Patel // cheaper than the existing two-operand shuffle. 108266d22b4dSSanjay Patel SmallVector<int> UnaryMask = createUnaryMask(Mask, Mask.size()); 108366d22b4dSSanjay Patel Instruction::BinaryOps Opcode = B0->getOpcode(); 108466d22b4dSSanjay Patel InstructionCost BinopCost = TTI.getArithmeticInstrCost(Opcode, VecTy); 108566d22b4dSSanjay Patel InstructionCost ShufCost = TTI.getShuffleCost( 108666d22b4dSSanjay Patel TargetTransformInfo::SK_PermuteSingleSrc, VecTy, UnaryMask); 108766d22b4dSSanjay Patel if (ShufCost > BinopCost) 108866d22b4dSSanjay Patel return false; 108966d22b4dSSanjay Patel 109066d22b4dSSanjay Patel // If we have something like "add X, Y" and "add Z, X", swap ops to match. 109166d22b4dSSanjay Patel Value *X = B0->getOperand(0), *Y = B0->getOperand(1); 109266d22b4dSSanjay Patel Value *Z = B1->getOperand(0), *W = B1->getOperand(1); 109366d22b4dSSanjay Patel if (BinaryOperator::isCommutative(Opcode) && X != Z && Y != W) 109466d22b4dSSanjay Patel std::swap(X, Y); 109566d22b4dSSanjay Patel 109666d22b4dSSanjay Patel Value *Shuf0, *Shuf1; 109766d22b4dSSanjay Patel if (X == Z) { 109866d22b4dSSanjay Patel // shuf (bo X, Y), (bo X, W) --> bo (shuf X), (shuf Y, W) 109966d22b4dSSanjay Patel Shuf0 = Builder.CreateShuffleVector(X, UnaryMask); 110066d22b4dSSanjay Patel Shuf1 = Builder.CreateShuffleVector(Y, W, Mask); 110166d22b4dSSanjay Patel } else if (Y == W) { 110266d22b4dSSanjay Patel // shuf (bo X, Y), (bo Z, Y) --> bo (shuf X, Z), (shuf Y) 110366d22b4dSSanjay Patel Shuf0 = Builder.CreateShuffleVector(X, Z, Mask); 110466d22b4dSSanjay Patel Shuf1 = Builder.CreateShuffleVector(Y, UnaryMask); 110566d22b4dSSanjay Patel } else { 110666d22b4dSSanjay Patel return false; 110766d22b4dSSanjay Patel } 110866d22b4dSSanjay Patel 110966d22b4dSSanjay Patel Value *NewBO = Builder.CreateBinOp(Opcode, Shuf0, Shuf1); 111066d22b4dSSanjay Patel // Intersect flags from the old binops. 111166d22b4dSSanjay Patel if (auto *NewInst = dyn_cast<Instruction>(NewBO)) { 111266d22b4dSSanjay Patel NewInst->copyIRFlags(B0); 111366d22b4dSSanjay Patel NewInst->andIRFlags(B1); 111466d22b4dSSanjay Patel } 111566d22b4dSSanjay Patel replaceValue(I, *NewBO); 111666d22b4dSSanjay Patel return true; 111766d22b4dSSanjay Patel } 111866d22b4dSSanjay Patel 1119ded8187eSDavid Green /// Given a commutative reduction, the order of the input lanes does not alter 1120ded8187eSDavid Green /// the results. We can use this to remove certain shuffles feeding the 1121ded8187eSDavid Green /// reduction, removing the need to shuffle at all. 1122ded8187eSDavid Green bool VectorCombine::foldShuffleFromReductions(Instruction &I) { 1123ded8187eSDavid Green auto *II = dyn_cast<IntrinsicInst>(&I); 1124ded8187eSDavid Green if (!II) 1125ded8187eSDavid Green return false; 1126ded8187eSDavid Green switch (II->getIntrinsicID()) { 1127ded8187eSDavid Green case Intrinsic::vector_reduce_add: 1128ded8187eSDavid Green case Intrinsic::vector_reduce_mul: 1129ded8187eSDavid Green case Intrinsic::vector_reduce_and: 1130ded8187eSDavid Green case Intrinsic::vector_reduce_or: 1131ded8187eSDavid Green case Intrinsic::vector_reduce_xor: 1132ded8187eSDavid Green case Intrinsic::vector_reduce_smin: 1133ded8187eSDavid Green case Intrinsic::vector_reduce_smax: 1134ded8187eSDavid Green case Intrinsic::vector_reduce_umin: 1135ded8187eSDavid Green case Intrinsic::vector_reduce_umax: 1136ded8187eSDavid Green break; 1137ded8187eSDavid Green default: 1138ded8187eSDavid Green return false; 1139ded8187eSDavid Green } 1140ded8187eSDavid Green 1141ded8187eSDavid Green // Find all the inputs when looking through operations that do not alter the 1142ded8187eSDavid Green // lane order (binops, for example). Currently we look for a single shuffle, 1143ded8187eSDavid Green // and can ignore splat values. 1144ded8187eSDavid Green std::queue<Value *> Worklist; 1145ded8187eSDavid Green SmallPtrSet<Value *, 4> Visited; 1146ded8187eSDavid Green ShuffleVectorInst *Shuffle = nullptr; 1147ded8187eSDavid Green if (auto *Op = dyn_cast<Instruction>(I.getOperand(0))) 1148ded8187eSDavid Green Worklist.push(Op); 1149ded8187eSDavid Green 1150ded8187eSDavid Green while (!Worklist.empty()) { 1151ded8187eSDavid Green Value *CV = Worklist.front(); 1152ded8187eSDavid Green Worklist.pop(); 1153ded8187eSDavid Green if (Visited.contains(CV)) 1154ded8187eSDavid Green continue; 1155ded8187eSDavid Green 1156ded8187eSDavid Green // Splats don't change the order, so can be safely ignored. 1157ded8187eSDavid Green if (isSplatValue(CV)) 1158ded8187eSDavid Green continue; 1159ded8187eSDavid Green 1160ded8187eSDavid Green Visited.insert(CV); 1161ded8187eSDavid Green 1162ded8187eSDavid Green if (auto *CI = dyn_cast<Instruction>(CV)) { 1163ded8187eSDavid Green if (CI->isBinaryOp()) { 1164ded8187eSDavid Green for (auto *Op : CI->operand_values()) 1165ded8187eSDavid Green Worklist.push(Op); 1166ded8187eSDavid Green continue; 1167ded8187eSDavid Green } else if (auto *SV = dyn_cast<ShuffleVectorInst>(CI)) { 1168ded8187eSDavid Green if (Shuffle && Shuffle != SV) 1169ded8187eSDavid Green return false; 1170ded8187eSDavid Green Shuffle = SV; 1171ded8187eSDavid Green continue; 1172ded8187eSDavid Green } 1173ded8187eSDavid Green } 1174ded8187eSDavid Green 1175ded8187eSDavid Green // Anything else is currently an unknown node. 1176ded8187eSDavid Green return false; 1177ded8187eSDavid Green } 1178ded8187eSDavid Green 1179ded8187eSDavid Green if (!Shuffle) 1180ded8187eSDavid Green return false; 1181ded8187eSDavid Green 1182ded8187eSDavid Green // Check all uses of the binary ops and shuffles are also included in the 1183ded8187eSDavid Green // lane-invariant operations (Visited should be the list of lanewise 1184ded8187eSDavid Green // instructions, including the shuffle that we found). 1185ded8187eSDavid Green for (auto *V : Visited) 1186ded8187eSDavid Green for (auto *U : V->users()) 1187ded8187eSDavid Green if (!Visited.contains(U) && U != &I) 1188ded8187eSDavid Green return false; 1189ded8187eSDavid Green 1190ded8187eSDavid Green FixedVectorType *VecType = 1191ded8187eSDavid Green dyn_cast<FixedVectorType>(II->getOperand(0)->getType()); 1192ded8187eSDavid Green if (!VecType) 1193ded8187eSDavid Green return false; 1194ded8187eSDavid Green FixedVectorType *ShuffleInputType = 1195ded8187eSDavid Green dyn_cast<FixedVectorType>(Shuffle->getOperand(0)->getType()); 1196ded8187eSDavid Green if (!ShuffleInputType) 1197ded8187eSDavid Green return false; 1198ded8187eSDavid Green int NumInputElts = ShuffleInputType->getNumElements(); 1199ded8187eSDavid Green 1200ded8187eSDavid Green // Find the mask from sorting the lanes into order. This is most likely to 1201ded8187eSDavid Green // become a identity or concat mask. Undef elements are pushed to the end. 1202ded8187eSDavid Green SmallVector<int> ConcatMask; 1203ded8187eSDavid Green Shuffle->getShuffleMask(ConcatMask); 12047047c479SDavid Green sort(ConcatMask, [](int X, int Y) { return (unsigned)X < (unsigned)Y; }); 1205ded8187eSDavid Green bool UsesSecondVec = 1206ded8187eSDavid Green any_of(ConcatMask, [&](int M) { return M >= NumInputElts; }); 1207ded8187eSDavid Green InstructionCost OldCost = TTI.getShuffleCost( 1208ded8187eSDavid Green UsesSecondVec ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc, VecType, 1209ded8187eSDavid Green Shuffle->getShuffleMask()); 1210ded8187eSDavid Green InstructionCost NewCost = TTI.getShuffleCost( 1211ded8187eSDavid Green UsesSecondVec ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc, VecType, 1212ded8187eSDavid Green ConcatMask); 1213ded8187eSDavid Green 1214ded8187eSDavid Green LLVM_DEBUG(dbgs() << "Found a reduction feeding from a shuffle: " << *Shuffle 1215ded8187eSDavid Green << "\n"); 1216ded8187eSDavid Green LLVM_DEBUG(dbgs() << " OldCost: " << OldCost << " vs NewCost: " << NewCost 1217ded8187eSDavid Green << "\n"); 1218ded8187eSDavid Green if (NewCost < OldCost) { 1219ded8187eSDavid Green Builder.SetInsertPoint(Shuffle); 1220ded8187eSDavid Green Value *NewShuffle = Builder.CreateShuffleVector( 1221ded8187eSDavid Green Shuffle->getOperand(0), Shuffle->getOperand(1), ConcatMask); 1222ded8187eSDavid Green LLVM_DEBUG(dbgs() << "Created new shuffle: " << *NewShuffle << "\n"); 1223ded8187eSDavid Green replaceValue(*Shuffle, *NewShuffle); 1224ded8187eSDavid Green } 1225ded8187eSDavid Green 1226ded8187eSDavid Green return false; 1227ded8187eSDavid Green } 1228ded8187eSDavid Green 1229*100cb9a2SDavid Green /// This method looks for groups of shuffles acting on binops, of the form: 1230*100cb9a2SDavid Green /// %x = shuffle ... 1231*100cb9a2SDavid Green /// %y = shuffle ... 1232*100cb9a2SDavid Green /// %a = binop %x, %y 1233*100cb9a2SDavid Green /// %b = binop %x, %y 1234*100cb9a2SDavid Green /// shuffle %a, %b, selectmask 1235*100cb9a2SDavid Green /// We may, especially if the shuffle is wider than legal, be able to convert 1236*100cb9a2SDavid Green /// the shuffle to a form where only parts of a and b need to be computed. On 1237*100cb9a2SDavid Green /// architectures with no obvious "select" shuffle, this can reduce the total 1238*100cb9a2SDavid Green /// number of operations if the target reports them as cheaper. 1239*100cb9a2SDavid Green bool VectorCombine::foldSelectShuffle(Instruction &I) { 1240*100cb9a2SDavid Green auto *SVI = dyn_cast<ShuffleVectorInst>(&I); 1241*100cb9a2SDavid Green auto *VT = dyn_cast<FixedVectorType>(I.getType()); 1242*100cb9a2SDavid Green if (!SVI || !VT) 1243*100cb9a2SDavid Green return false; 1244*100cb9a2SDavid Green auto *Op0 = dyn_cast<Instruction>(SVI->getOperand(0)); 1245*100cb9a2SDavid Green auto *Op1 = dyn_cast<Instruction>(SVI->getOperand(1)); 1246*100cb9a2SDavid Green if (!Op0 || !Op1 || Op0 == Op1 || !Op0->isBinaryOp() || !Op1->isBinaryOp() || 1247*100cb9a2SDavid Green VT != Op0->getType()) 1248*100cb9a2SDavid Green return false; 1249*100cb9a2SDavid Green auto *SVI0A = dyn_cast<ShuffleVectorInst>(Op0->getOperand(0)); 1250*100cb9a2SDavid Green auto *SVI0B = dyn_cast<ShuffleVectorInst>(Op0->getOperand(1)); 1251*100cb9a2SDavid Green auto *SVI1A = dyn_cast<ShuffleVectorInst>(Op1->getOperand(0)); 1252*100cb9a2SDavid Green auto *SVI1B = dyn_cast<ShuffleVectorInst>(Op1->getOperand(1)); 1253*100cb9a2SDavid Green auto checkSVNonOpUses = [&](Instruction *I) { 1254*100cb9a2SDavid Green if (!I || I->getOperand(0)->getType() != VT) 1255*100cb9a2SDavid Green return true; 1256*100cb9a2SDavid Green return any_of(I->users(), [&](User *U) { return U != Op0 && U != Op1; }); 1257*100cb9a2SDavid Green }; 1258*100cb9a2SDavid Green if (checkSVNonOpUses(SVI0A) || checkSVNonOpUses(SVI0B) || 1259*100cb9a2SDavid Green checkSVNonOpUses(SVI1A) || checkSVNonOpUses(SVI1B)) 1260*100cb9a2SDavid Green return false; 1261*100cb9a2SDavid Green 1262*100cb9a2SDavid Green // Collect all the uses that are shuffles that we can transform together. We 1263*100cb9a2SDavid Green // may not have a single shuffle, but a group that can all be transformed 1264*100cb9a2SDavid Green // together profitably. 1265*100cb9a2SDavid Green SmallVector<ShuffleVectorInst *> Shuffles; 1266*100cb9a2SDavid Green auto collectShuffles = [&](Instruction *I) { 1267*100cb9a2SDavid Green for (auto *U : I->users()) { 1268*100cb9a2SDavid Green auto *SV = dyn_cast<ShuffleVectorInst>(U); 1269*100cb9a2SDavid Green if (!SV || SV->getType() != VT) 1270*100cb9a2SDavid Green return false; 1271*100cb9a2SDavid Green if (find(Shuffles, SV) == Shuffles.end()) 1272*100cb9a2SDavid Green Shuffles.push_back(SV); 1273*100cb9a2SDavid Green } 1274*100cb9a2SDavid Green return true; 1275*100cb9a2SDavid Green }; 1276*100cb9a2SDavid Green if (!collectShuffles(Op0) || !collectShuffles(Op1)) 1277*100cb9a2SDavid Green return false; 1278*100cb9a2SDavid Green 1279*100cb9a2SDavid Green // For each of the output shuffles, we try to sort all the first vector 1280*100cb9a2SDavid Green // elements to the beginning, followed by the second array elements at the 1281*100cb9a2SDavid Green // end. If the binops are legalized to smaller vectors, this may reduce total 1282*100cb9a2SDavid Green // number of binops. We compute the ReconstructMask mask needed to convert 1283*100cb9a2SDavid Green // back to the original lane order. 1284*100cb9a2SDavid Green SmallVector<int> V1, V2; 1285*100cb9a2SDavid Green SmallVector<SmallVector<int>> ReconstructMasks; 1286*100cb9a2SDavid Green int MaxV1Elt = 0, MaxV2Elt = 0; 1287*100cb9a2SDavid Green unsigned NumElts = VT->getNumElements(); 1288*100cb9a2SDavid Green for (ShuffleVectorInst *SVN : Shuffles) { 1289*100cb9a2SDavid Green SmallVector<int> Mask; 1290*100cb9a2SDavid Green SVN->getShuffleMask(Mask); 1291*100cb9a2SDavid Green 1292*100cb9a2SDavid Green // Check the operands are the same as the original, or reversed (in which 1293*100cb9a2SDavid Green // case we need to commute the mask). 1294*100cb9a2SDavid Green Value *SVOp0 = SVN->getOperand(0); 1295*100cb9a2SDavid Green Value *SVOp1 = SVN->getOperand(1); 1296*100cb9a2SDavid Green if (SVOp0 == Op1 && SVOp1 == Op0) { 1297*100cb9a2SDavid Green std::swap(SVOp0, SVOp1); 1298*100cb9a2SDavid Green ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); 1299*100cb9a2SDavid Green } 1300*100cb9a2SDavid Green if (SVOp0 != Op0 || SVOp1 != Op1) 1301*100cb9a2SDavid Green return false; 1302*100cb9a2SDavid Green 1303*100cb9a2SDavid Green // Calculate the reconstruction mask for this shuffle, as the mask needed to 1304*100cb9a2SDavid Green // take the packed values from Op0/Op1 and reconstructing to the original 1305*100cb9a2SDavid Green // order. 1306*100cb9a2SDavid Green SmallVector<int> ReconstructMask; 1307*100cb9a2SDavid Green for (unsigned I = 0; I < Mask.size(); I++) { 1308*100cb9a2SDavid Green if (Mask[I] < 0) { 1309*100cb9a2SDavid Green ReconstructMask.push_back(-1); 1310*100cb9a2SDavid Green } else if (Mask[I] < static_cast<int>(NumElts)) { 1311*100cb9a2SDavid Green MaxV1Elt = std::max(MaxV1Elt, Mask[I]); 1312*100cb9a2SDavid Green auto It = find(V1, Mask[I]); 1313*100cb9a2SDavid Green if (It != V1.end()) 1314*100cb9a2SDavid Green ReconstructMask.push_back(It - V1.begin()); 1315*100cb9a2SDavid Green else { 1316*100cb9a2SDavid Green ReconstructMask.push_back(V1.size()); 1317*100cb9a2SDavid Green V1.push_back(Mask[I]); 1318*100cb9a2SDavid Green } 1319*100cb9a2SDavid Green } else { 1320*100cb9a2SDavid Green MaxV2Elt = std::max<int>(MaxV2Elt, Mask[I] - NumElts); 1321*100cb9a2SDavid Green auto It = find(V2, Mask[I] - NumElts); 1322*100cb9a2SDavid Green if (It != V2.end()) 1323*100cb9a2SDavid Green ReconstructMask.push_back(NumElts + It - V2.begin()); 1324*100cb9a2SDavid Green else { 1325*100cb9a2SDavid Green ReconstructMask.push_back(NumElts + V2.size()); 1326*100cb9a2SDavid Green V2.push_back(Mask[I] - NumElts); 1327*100cb9a2SDavid Green } 1328*100cb9a2SDavid Green } 1329*100cb9a2SDavid Green } 1330*100cb9a2SDavid Green 1331*100cb9a2SDavid Green ReconstructMasks.push_back(ReconstructMask); 1332*100cb9a2SDavid Green } 1333*100cb9a2SDavid Green 1334*100cb9a2SDavid Green // If the Maximum element used from V1 and V2 are not larger than the new 1335*100cb9a2SDavid Green // vectors, the vectors are already packes and performing the optimization 1336*100cb9a2SDavid Green // again will likely not help any further. This also prevents us from getting 1337*100cb9a2SDavid Green // stuck in a cycle in case the costs do not also rule it out. 1338*100cb9a2SDavid Green if (V1.empty() || V2.empty() || 1339*100cb9a2SDavid Green (MaxV1Elt == static_cast<int>(V1.size()) - 1 && 1340*100cb9a2SDavid Green MaxV2Elt == static_cast<int>(V2.size()) - 1)) 1341*100cb9a2SDavid Green return false; 1342*100cb9a2SDavid Green 1343*100cb9a2SDavid Green // Calculate the masks needed for the new input shuffles, which get padded 1344*100cb9a2SDavid Green // with undef 1345*100cb9a2SDavid Green SmallVector<int> V1A, V1B, V2A, V2B; 1346*100cb9a2SDavid Green for (unsigned I = 0; I < V1.size(); I++) { 1347*100cb9a2SDavid Green V1A.push_back(SVI0A->getMaskValue(V1[I])); 1348*100cb9a2SDavid Green V1B.push_back(SVI0B->getMaskValue(V1[I])); 1349*100cb9a2SDavid Green } 1350*100cb9a2SDavid Green for (unsigned I = 0; I < V2.size(); I++) { 1351*100cb9a2SDavid Green V2A.push_back(SVI1A->getMaskValue(V2[I])); 1352*100cb9a2SDavid Green V2B.push_back(SVI1B->getMaskValue(V2[I])); 1353*100cb9a2SDavid Green } 1354*100cb9a2SDavid Green while (V1A.size() < NumElts) { 1355*100cb9a2SDavid Green V1A.push_back(UndefMaskElem); 1356*100cb9a2SDavid Green V1B.push_back(UndefMaskElem); 1357*100cb9a2SDavid Green } 1358*100cb9a2SDavid Green while (V2A.size() < NumElts) { 1359*100cb9a2SDavid Green V2A.push_back(UndefMaskElem); 1360*100cb9a2SDavid Green V2B.push_back(UndefMaskElem); 1361*100cb9a2SDavid Green } 1362*100cb9a2SDavid Green 1363*100cb9a2SDavid Green auto AddShuffleCost = [&](InstructionCost C, ShuffleVectorInst *SV) { 1364*100cb9a2SDavid Green return C + 1365*100cb9a2SDavid Green TTI.getShuffleCost(TTI::SK_PermuteTwoSrc, VT, SV->getShuffleMask()); 1366*100cb9a2SDavid Green }; 1367*100cb9a2SDavid Green auto AddShuffleMaskCost = [&](InstructionCost C, ArrayRef<int> Mask) { 1368*100cb9a2SDavid Green return C + TTI.getShuffleCost(TTI::SK_PermuteTwoSrc, VT, Mask); 1369*100cb9a2SDavid Green }; 1370*100cb9a2SDavid Green 1371*100cb9a2SDavid Green // Get the costs of the shuffles + binops before and after with the new 1372*100cb9a2SDavid Green // shuffle masks. 1373*100cb9a2SDavid Green InstructionCost CostBefore = 1374*100cb9a2SDavid Green TTI.getArithmeticInstrCost(Op0->getOpcode(), VT) + 1375*100cb9a2SDavid Green TTI.getArithmeticInstrCost(Op1->getOpcode(), VT); 1376*100cb9a2SDavid Green CostBefore += std::accumulate(Shuffles.begin(), Shuffles.end(), 1377*100cb9a2SDavid Green InstructionCost(0), AddShuffleCost); 1378*100cb9a2SDavid Green // This set helps us only cost each unique shuffle once. 1379*100cb9a2SDavid Green SmallPtrSet<ShuffleVectorInst *, 4> InputShuffles( 1380*100cb9a2SDavid Green {SVI0A, SVI0B, SVI1A, SVI1B}); 1381*100cb9a2SDavid Green CostBefore += std::accumulate(InputShuffles.begin(), InputShuffles.end(), 1382*100cb9a2SDavid Green InstructionCost(0), AddShuffleCost); 1383*100cb9a2SDavid Green 1384*100cb9a2SDavid Green // The new binops will be unused for lanes past the used shuffle lengths. 1385*100cb9a2SDavid Green // These types attempt to get the correct cost for that from the target. 1386*100cb9a2SDavid Green FixedVectorType *Op0SmallVT = 1387*100cb9a2SDavid Green FixedVectorType::get(VT->getScalarType(), V1.size()); 1388*100cb9a2SDavid Green FixedVectorType *Op1SmallVT = 1389*100cb9a2SDavid Green FixedVectorType::get(VT->getScalarType(), V2.size()); 1390*100cb9a2SDavid Green InstructionCost CostAfter = 1391*100cb9a2SDavid Green TTI.getArithmeticInstrCost(Op0->getOpcode(), Op0SmallVT) + 1392*100cb9a2SDavid Green TTI.getArithmeticInstrCost(Op1->getOpcode(), Op1SmallVT); 1393*100cb9a2SDavid Green CostAfter += std::accumulate(ReconstructMasks.begin(), ReconstructMasks.end(), 1394*100cb9a2SDavid Green InstructionCost(0), AddShuffleMaskCost); 1395*100cb9a2SDavid Green std::set<SmallVector<int>> OutputShuffleMasks({V1A, V1B, V2A, V2B}); 1396*100cb9a2SDavid Green CostAfter += 1397*100cb9a2SDavid Green std::accumulate(OutputShuffleMasks.begin(), OutputShuffleMasks.end(), 1398*100cb9a2SDavid Green InstructionCost(0), AddShuffleMaskCost); 1399*100cb9a2SDavid Green 1400*100cb9a2SDavid Green if (CostBefore <= CostAfter) 1401*100cb9a2SDavid Green return false; 1402*100cb9a2SDavid Green 1403*100cb9a2SDavid Green // The cost model has passed, create the new instructions. 1404*100cb9a2SDavid Green Builder.SetInsertPoint(SVI0A); 1405*100cb9a2SDavid Green Value *NSV0A = Builder.CreateShuffleVector(SVI0A->getOperand(0), 1406*100cb9a2SDavid Green SVI0A->getOperand(1), V1A); 1407*100cb9a2SDavid Green Builder.SetInsertPoint(SVI0B); 1408*100cb9a2SDavid Green Value *NSV0B = Builder.CreateShuffleVector(SVI0B->getOperand(0), 1409*100cb9a2SDavid Green SVI0B->getOperand(1), V1B); 1410*100cb9a2SDavid Green Builder.SetInsertPoint(SVI1A); 1411*100cb9a2SDavid Green Value *NSV1A = Builder.CreateShuffleVector(SVI1A->getOperand(0), 1412*100cb9a2SDavid Green SVI1A->getOperand(1), V2A); 1413*100cb9a2SDavid Green Builder.SetInsertPoint(SVI1B); 1414*100cb9a2SDavid Green Value *NSV1B = Builder.CreateShuffleVector(SVI1B->getOperand(0), 1415*100cb9a2SDavid Green SVI1B->getOperand(1), V2B); 1416*100cb9a2SDavid Green Builder.SetInsertPoint(Op0); 1417*100cb9a2SDavid Green Value *NOp0 = Builder.CreateBinOp((Instruction::BinaryOps)Op0->getOpcode(), 1418*100cb9a2SDavid Green NSV0A, NSV0B); 1419*100cb9a2SDavid Green if (auto *I = dyn_cast<Instruction>(NOp0)) 1420*100cb9a2SDavid Green I->copyIRFlags(Op0, true); 1421*100cb9a2SDavid Green Builder.SetInsertPoint(Op1); 1422*100cb9a2SDavid Green Value *NOp1 = Builder.CreateBinOp((Instruction::BinaryOps)Op1->getOpcode(), 1423*100cb9a2SDavid Green NSV1A, NSV1B); 1424*100cb9a2SDavid Green if (auto *I = dyn_cast<Instruction>(NOp1)) 1425*100cb9a2SDavid Green I->copyIRFlags(Op1, true); 1426*100cb9a2SDavid Green 1427*100cb9a2SDavid Green for (int S = 0, E = ReconstructMasks.size(); S != E; S++) { 1428*100cb9a2SDavid Green Builder.SetInsertPoint(Shuffles[S]); 1429*100cb9a2SDavid Green Value *NSV = Builder.CreateShuffleVector(NOp0, NOp1, ReconstructMasks[S]); 1430*100cb9a2SDavid Green replaceValue(*Shuffles[S], *NSV); 1431*100cb9a2SDavid Green } 1432*100cb9a2SDavid Green 1433*100cb9a2SDavid Green Worklist.pushValue(NSV0A); 1434*100cb9a2SDavid Green Worklist.pushValue(NSV0B); 1435*100cb9a2SDavid Green Worklist.pushValue(NSV1A); 1436*100cb9a2SDavid Green Worklist.pushValue(NSV1B); 1437*100cb9a2SDavid Green for (auto *S : Shuffles) 1438*100cb9a2SDavid Green Worklist.add(S); 1439*100cb9a2SDavid Green return true; 1440*100cb9a2SDavid Green } 1441*100cb9a2SDavid Green 1442a17f03bdSSanjay Patel /// This is the entry point for all transforms. Pass manager differences are 1443a17f03bdSSanjay Patel /// handled in the callers of this function. 14446bdd531aSSanjay Patel bool VectorCombine::run() { 144525c6544fSSanjay Patel if (DisableVectorCombine) 144625c6544fSSanjay Patel return false; 144725c6544fSSanjay Patel 1448cc892fd9SSanjay Patel // Don't attempt vectorization if the target does not support vectors. 1449cc892fd9SSanjay Patel if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true))) 1450cc892fd9SSanjay Patel return false; 1451cc892fd9SSanjay Patel 1452a17f03bdSSanjay Patel bool MadeChange = false; 1453300870a9SFlorian Hahn auto FoldInst = [this, &MadeChange](Instruction &I) { 1454de65b356SSanjay Patel Builder.SetInsertPoint(&I); 14554a1d63d7SFlorian Hahn if (!ScalarizationOnly) { 145643bdac29SSanjay Patel MadeChange |= vectorizeLoadInsert(I); 14576bdd531aSSanjay Patel MadeChange |= foldExtractExtract(I); 14586bdd531aSSanjay Patel MadeChange |= foldBitcastShuf(I); 1459b6315aeeSSanjay Patel MadeChange |= foldExtractedCmps(I); 146066d22b4dSSanjay Patel MadeChange |= foldShuffleOfBinops(I); 1461ded8187eSDavid Green MadeChange |= foldShuffleFromReductions(I); 1462*100cb9a2SDavid Green MadeChange |= foldSelectShuffle(I); 14634a1d63d7SFlorian Hahn } 14644a1d63d7SFlorian Hahn MadeChange |= scalarizeBinopOrCmp(I); 14654e8c28b6SFlorian Hahn MadeChange |= scalarizeLoadExtract(I); 14662db4979cSQiu Chaofan MadeChange |= foldSingleElementStore(I); 1467300870a9SFlorian Hahn }; 1468300870a9SFlorian Hahn for (BasicBlock &BB : F) { 1469300870a9SFlorian Hahn // Ignore unreachable basic blocks. 1470300870a9SFlorian Hahn if (!DT.isReachableFromEntry(&BB)) 1471300870a9SFlorian Hahn continue; 1472300870a9SFlorian Hahn // Use early increment range so that we can erase instructions in loop. 1473300870a9SFlorian Hahn for (Instruction &I : make_early_inc_range(BB)) { 1474098a0d8fSHongtao Yu if (I.isDebugOrPseudoInst()) 1475300870a9SFlorian Hahn continue; 1476300870a9SFlorian Hahn FoldInst(I); 1477a17f03bdSSanjay Patel } 1478fc3cc8a4SSanjay Patel } 1479a17f03bdSSanjay Patel 1480300870a9SFlorian Hahn while (!Worklist.isEmpty()) { 1481300870a9SFlorian Hahn Instruction *I = Worklist.removeOne(); 1482300870a9SFlorian Hahn if (!I) 1483300870a9SFlorian Hahn continue; 1484300870a9SFlorian Hahn 1485300870a9SFlorian Hahn if (isInstructionTriviallyDead(I)) { 1486300870a9SFlorian Hahn eraseInstruction(*I); 1487300870a9SFlorian Hahn continue; 1488300870a9SFlorian Hahn } 1489300870a9SFlorian Hahn 1490300870a9SFlorian Hahn FoldInst(*I); 1491300870a9SFlorian Hahn } 1492a17f03bdSSanjay Patel 1493a17f03bdSSanjay Patel return MadeChange; 1494a17f03bdSSanjay Patel } 1495a17f03bdSSanjay Patel 1496a17f03bdSSanjay Patel // Pass manager boilerplate below here. 1497a17f03bdSSanjay Patel 1498a17f03bdSSanjay Patel namespace { 1499a17f03bdSSanjay Patel class VectorCombineLegacyPass : public FunctionPass { 1500a17f03bdSSanjay Patel public: 1501a17f03bdSSanjay Patel static char ID; 1502a17f03bdSSanjay Patel VectorCombineLegacyPass() : FunctionPass(ID) { 1503a17f03bdSSanjay Patel initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry()); 1504a17f03bdSSanjay Patel } 1505a17f03bdSSanjay Patel 1506a17f03bdSSanjay Patel void getAnalysisUsage(AnalysisUsage &AU) const override { 1507575e2affSFlorian Hahn AU.addRequired<AssumptionCacheTracker>(); 1508a17f03bdSSanjay Patel AU.addRequired<DominatorTreeWrapperPass>(); 1509a17f03bdSSanjay Patel AU.addRequired<TargetTransformInfoWrapperPass>(); 15102db4979cSQiu Chaofan AU.addRequired<AAResultsWrapperPass>(); 1511a17f03bdSSanjay Patel AU.setPreservesCFG(); 1512a17f03bdSSanjay Patel AU.addPreserved<DominatorTreeWrapperPass>(); 1513a17f03bdSSanjay Patel AU.addPreserved<GlobalsAAWrapperPass>(); 1514024098aeSSanjay Patel AU.addPreserved<AAResultsWrapperPass>(); 1515024098aeSSanjay Patel AU.addPreserved<BasicAAWrapperPass>(); 1516a17f03bdSSanjay Patel FunctionPass::getAnalysisUsage(AU); 1517a17f03bdSSanjay Patel } 1518a17f03bdSSanjay Patel 1519a17f03bdSSanjay Patel bool runOnFunction(Function &F) override { 1520a17f03bdSSanjay Patel if (skipFunction(F)) 1521a17f03bdSSanjay Patel return false; 1522575e2affSFlorian Hahn auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1523a17f03bdSSanjay Patel auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1524a17f03bdSSanjay Patel auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 15252db4979cSQiu Chaofan auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 15264a1d63d7SFlorian Hahn VectorCombine Combiner(F, TTI, DT, AA, AC, false); 15276bdd531aSSanjay Patel return Combiner.run(); 1528a17f03bdSSanjay Patel } 1529a17f03bdSSanjay Patel }; 1530a17f03bdSSanjay Patel } // namespace 1531a17f03bdSSanjay Patel 1532a17f03bdSSanjay Patel char VectorCombineLegacyPass::ID = 0; 1533a17f03bdSSanjay Patel INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine", 1534a17f03bdSSanjay Patel "Optimize scalar/vector ops", false, 1535a17f03bdSSanjay Patel false) 1536575e2affSFlorian Hahn INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1537a17f03bdSSanjay Patel INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1538a17f03bdSSanjay Patel INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine", 1539a17f03bdSSanjay Patel "Optimize scalar/vector ops", false, false) 1540a17f03bdSSanjay Patel Pass *llvm::createVectorCombinePass() { 1541a17f03bdSSanjay Patel return new VectorCombineLegacyPass(); 1542a17f03bdSSanjay Patel } 1543a17f03bdSSanjay Patel 1544a17f03bdSSanjay Patel PreservedAnalyses VectorCombinePass::run(Function &F, 1545a17f03bdSSanjay Patel FunctionAnalysisManager &FAM) { 1546575e2affSFlorian Hahn auto &AC = FAM.getResult<AssumptionAnalysis>(F); 1547a17f03bdSSanjay Patel TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); 1548a17f03bdSSanjay Patel DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); 15492db4979cSQiu Chaofan AAResults &AA = FAM.getResult<AAManager>(F); 15504a1d63d7SFlorian Hahn VectorCombine Combiner(F, TTI, DT, AA, AC, ScalarizationOnly); 15516bdd531aSSanjay Patel if (!Combiner.run()) 1552a17f03bdSSanjay Patel return PreservedAnalyses::all(); 1553a17f03bdSSanjay Patel PreservedAnalyses PA; 1554a17f03bdSSanjay Patel PA.preserveSet<CFGAnalyses>(); 1555a17f03bdSSanjay Patel return PA; 1556a17f03bdSSanjay Patel } 1557